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In this lecture we shall use torsion points on the elliptic curve E given by the equation
2y2 = x3 − x to construct abelian extension of Q(i). Given any field extension of K of Q,
let E(K) be the set of solutions (x, y) of the cubic such that x and y are in K.

Exercise: Show that E(K) is a subgroup of E(C). This is the group of K-rational points.

Assume not that K is a Galois extension of K of Q(i). Let GK be the Galos group of K
over Q(i). Let σ ∈ GK . If P = (x, y) is point in E(K), then σ(P ) = (σ(x), σ(y)) ∈ E(K).
Also, since i ∈ K, i · (x, y) = (−x, iy) ∈ E(K). Since σ(i) = i it is clear that σ and complex
multiplication commute!. This is the key observation.

Finding torsion points on E amounts to solving equations mP = O. For a fixed m,
finding coordinates of P amounts to finding roots of rational polynomials. (Rational since,
in this particular case, the curve 2y2 = x3 − x has rational coefficients) Fix a prime p. For
every integer n = 1, 2, . . ., let Kn be the Galois extension of Q(i) obtained by adjoining the
coordinates of pn-torsion points. Then

K1 ⊂ K2 ⊂ . . . ⊂ K = ∪∞n=1Kn

is a tower of Galois extensions. The Galois groups Gn of Kn over Q(i) form an inverse
system,

G1 ← G2 ← . . . .

LetGK be the limit of this inverse system. The action ofGK on the Tate module lim←E(pn) ∼=
Z2

p gives an injective homomorphism

ϕ : GK → GL(Zp).

Proposition 0.1. The group GK is commutative. More precisely, we have an injective
homomorphism

ϕ : GK → Zp[i]
×.

Proof. We know that any σ ∈ GK commutes with the complex multiplication, i.e. the action
of i. Thus ϕ(GK) is contained in the centralizer of i in GL2(Zp). Recall, from the last lecture,
that i is represented by the matrix (

0 −1
1 0

)
.

It is an elementary exercise to check that the centralizer of this matrix is the set of all

g =

(
a −b
b a

)
1
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where a, b ∈ Zp and det(g) = a2 + b2 ∈ Z×p . Now g 7→ a + bi is an isomorphism of the
centralizer and Zp[i]

×. �

This is great, however, more is true, torsion points generate ray class fields. More precisely,
let I ⊆ A be a non-zero ideal. The ray class field corresponding to I is generated by squares
of x-coordinates of points P annihilated by I. Let’s look at an example p = 2. Recall that
2 ramifies, (2) = (π)2 in A = Z[i], where

π = 1 + i.

Let Km be the extension of Q(i) obtained by adjoining squares of x-coordinates of points P
such that πm ·P = O. Let GKm be the Galois group of Km over Q(i). Then (note A+ = µ4)

GKm
∼= (A/πm)×/µ4.

Exercise: Show that (A/πm)×/µ4 is trivial for m = 1, 2, 3.

To work out some Km we need to compute (x′, y′) = π · (x, y) = (x, y) + (−x, iy). Let
y = Ax+B be the line through (x, y) and (−x, iy). The slope is

A =
(1− i)y

2x
hence

x′ = 2A2 = −iy
2

x2
=

1

2

(
x

i
+
i

x

)
and y′ = −(y + A(x − x′)). Starting with P0 = O, once can find easily a sequence of
points Pm such that π · Pm = Pm−1. For m = 1, 2, 3, 4 the square of x-coordinate of Pm

is 0, 1,−1, 3 + 2
√

2. Hence K1 = K2 = K3 = Q(i), however, K4 = Q(i,
√

2) is a proper
extension of Q(i).

Serge Lang’s book, Elliptic functions, is a nice introduction to elliptic curves and complex
multiplication. In particular, the book contains the construction of the ray class fields for
quadratic imaginary fields.


