MATH 6370, LECTURE 12
 ELLIPTIC CURVES II
 APRIL 13

GORDAN SAVIN

In this lecture we shall use torsion points on the elliptic curve E given by the equation $2 y^{2}=x^{3}-x$ to construct abelian extension of $\mathbb{Q}(i)$. Given any field extension of K of \mathbb{Q}, let $E(K)$ be the set of solutions (x, y) of the cubic such that x and y are in K.
Exercise: Show that $E(K)$ is a subgroup of $E(\mathbb{C})$. This is the group of K-rational points.
Assume not that K is a Galois extension of K of $\mathbb{Q}(i)$. Let G_{K} be the Galos group of K over $\mathbb{Q}(i)$. Let $\sigma \in G_{K}$. If $P=(x, y)$ is point in $E(K)$, then $\sigma(P)=(\sigma(x), \sigma(y)) \in E(K)$. Also, since $i \in K, i \cdot(x, y)=(-x, i y) \in E(K)$. Since $\sigma(i)=i$ it is clear that σ and complex multiplication commute!. This is the key observation.

Finding torsion points on E amounts to solving equations $m P=O$. For a fixed m, finding coordinates of P amounts to finding roots of rational polynomials. (Rational since, in this particular case, the curve $2 y^{2}=x^{3}-x$ has rational coefficients) Fix a prime p. For every integer $n=1,2, \ldots$, let K_{n} be the Galois extension of $\mathbb{Q}(i)$ obtained by adjoining the coordinates of p^{n}-torsion points. Then

$$
K_{1} \subset K_{2} \subset \ldots \subset K=\cup_{n=1}^{\infty} K_{n}
$$

is a tower of Galois extensions. The Galois groups G_{n} of K_{n} over $\mathbb{Q}(i)$ form an inverse system,

$$
G_{1} \leftarrow G_{2} \leftarrow \ldots
$$

Let G_{K} be the limit of this inverse system. The action of G_{K} on the Tate module $\lim _{\leftarrow} E\left(p^{n}\right) \cong$ \mathbb{Z}_{p}^{2} gives an injective homomorphism

$$
\varphi: G_{K} \rightarrow \mathrm{GL}\left(\mathbb{Z}_{p}\right)
$$

Proposition 0.1. The group G_{K} is commutative. More precisely, we have an injective homomorphism

$$
\varphi: G_{K} \rightarrow \mathbb{Z}_{p}[i]^{\times} .
$$

Proof. We know that any $\sigma \in G_{K}$ commutes with the complex multiplication, i.e. the action of i. Thus $\varphi\left(G_{K}\right)$ is contained in the centralizer of i in $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$. Recall, from the last lecture, that i is represented by the matrix

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

It is an elementary exercise to check that the centralizer of this matrix is the set of all

$$
g=\left(\begin{array}{rr}
a & -b \\
b & a \\
1 &
\end{array}\right)
$$

where $a, b \in \mathbb{Z}_{p}$ and $\operatorname{det}(g)=a^{2}+b^{2} \in \mathbb{Z}_{p}^{\times}$. Now $g \mapsto a+b i$ is an isomorphism of the centralizer and $\mathbb{Z}_{p}[i]^{\times}$.

This is great, however, more is true, torsion points generate ray class fields. More precisely, let $I \subseteq A$ be a non-zero ideal. The ray class field corresponding to I is generated by squares of x-coordinates of points P annihilated by I. Let's look at an example $p=2$. Recall that 2 ramifies, $(2)=(\pi)^{2}$ in $A=\mathbb{Z}[i]$, where

$$
\pi=1+i
$$

Let K_{m} be the extension of $\mathbb{Q}(i)$ obtained by adjoining squares of x-coordinates of points P such that $\pi^{m} \cdot P=O$. Let $G_{K_{m}}$ be the Galois group of K_{m} over $\mathbb{Q}(i)$. Then (note $A^{+}=\mu_{4}$)

$$
G_{K_{m}} \cong\left(A / \pi^{m}\right)^{\times} / \mu_{4}
$$

Exercise: Show that $\left(A / \pi^{m}\right)^{\times} / \mu_{4}$ is trivial for $m=1,2,3$.
To work out some K_{m} we need to compute $\left(x^{\prime}, y^{\prime}\right)=\pi \cdot(x, y)=(x, y)+(-x, i y)$. Let $y=A x+B$ be the line through (x, y) and $(-x, i y)$. The slope is

$$
A=\frac{(1-i) y}{2 x}
$$

hence

$$
x^{\prime}=2 A^{2}=-i \frac{y^{2}}{x^{2}}=\frac{1}{2}\left(\frac{x}{i}+\frac{i}{x}\right)
$$

and $y^{\prime}=-\left(y+A\left(x-x^{\prime}\right)\right)$. Starting with $P_{0}=O$, once can find easily a sequence of points P_{m} such that $\pi \cdot P_{m}=P_{m-1}$. For $m=1,2,3,4$ the square of x-coordinate of P_{m} is $0,1,-1,3+2 \sqrt{2}$. Hence $K_{1}=K_{2}=K_{3}=\mathbb{Q}(i)$, however, $K_{4}=\mathbb{Q}(i, \sqrt{2})$ is a proper extension of $\mathbb{Q}(i)$.

Serge Lang's book, Elliptic functions, is a nice introduction to elliptic curves and complex multiplication. In particular, the book contains the construction of the ray class fields for quadratic imaginary fields.

