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Let L = Zω1 + Zω2 be a lattice in C. Then the quotient E = C/L is a compact Riemann
surface.

p(z) =
1

z2
+

∑
ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

)
.

Then p(z) is L-periodic meromorphic function, and z 7→ (p(z), p′(z)) is a bijection from C/L
and the cubic curve

y2 = 4x3 − g2(L)x− g3(L)

where

gn(L) =
∑

ω∈L\{0}

(
1

ω2n

)
.

Since p and p′ have poles at z = 0, 0 ∈ C/L maps to a point O at “infinity” obtained by
compactifying the cubic curve in the projective plane. If L′ = c · L, for some c ∈ C×, then
C/L ∼= C/L′. Observe that gn(L) = c2ngn(L′). We shall be interested in the case where L is
a multiple of Z[i]. Then i · L = L, hence

g3(L) = g3(iL̇) = i6g3(L) = −g3(L)

which implies that g3(L) = 0. Moreover, one can pick L so that g2(L) = 1. Hence the
Riemann surface C/Z[i] is isomorphic to the cubic curve y2 = 4x3− x. For practical reasons
we shall rewrite this equation slightly. Multiply it by 2 and redefine x := 2x. This gives the
curve

2y2 = x3 − x.

Observe that E = C/L is an abelian group. Let E(m) be the m-torsion, that is the set of
elements z ∈ E such that mz = 0. This is a subgroup of E, clearly,

E(m) =
1

m
L/L ∼= L/mL ∼= (Z/mZ)2

where the middle isomorphism is given by multiplication by m, while the last depends on a
choice of a basis of L. Fix a prime p. Then we have an inverse system

L/pL← L/p2L← . . . .

whose inverse limit
lim
←
L/pnL ∼= Z2

p

is called the Tate module attached to E. Let End(E) be the set of endomorphisms of E,
that is, the set of group homomorphisms T : E → E. The set of endomorphism forms a
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ring, since endomorphisms can be added and composed. FIx a prime p. For every n, T
induces a homomorphism Tn : E(pn) → E(pn). After identifying E(pn) ∼= (Z/pnZ)2, the
homomorphism Tn is represented by a 2 × 2 matrix with coefficients in the ring Z/pnZ.
These Tn are compatible with the maps E(pn)→ E(pn−1) and patch together to give a 2× 2
matrix with coeffcients in Zp giving the action of T on the Tate module. Thus for every p
we have a ring homomorphism

ϕ : End(E)→M2(Zp)

where M2(Zp) is the ring of 2× 2 matrices with coefficients in Zp. Let’s look at E = C/Z[i].
Since Z[i] is a subring of C, every element γ = a+ bi ∈ Z[i] defines a map on C by z 7→ γ · z,
for all z ∈ C, that preserves Z[i], hence γ defines a map on E. Thus Z[i] ⊂ End(E). It is
easy to check

ϕ(γ) =

(
a −b
b a

)
if we use 1 and i as the basis of Z[i].

Let’s see how these structures look on the corresponding cubic curve 2y2 = x3− x. In the
projective P2 space this curve is given by a homogeneous equation 2y2z = x3−xz2. Observe
that O = (0 : 1 : 0) is the unique point on the curve with z = 0, i.e. not on the (x, y)-affine
plane. Recall that 0 ∈ C/L maps to the point O. The group addition + on the curve exploits
the fact that a line intersects a cubic projective curve in three points, P , Q and R, counted
with multiplicities. These three points add to 0: P + Q + R = O. The inverse of a point
P = (x, y) is −P = (x,−y). Observe that 2-torsion consists of points such that P = −P .
This implies that y = 0 and we get three points

(0, 1), (1, 0) (−1, 0)

and the identity O. The addition is performed as follows. Assume that P1 = (x1, y1) and
P2 = (x2, y2) are two points on the curve. Let y = Ax + B be the equation of the line
through these two points. Substitute this expression for y into 2y2 = x3 − x. This gives a
cubic equation in x

0 = x3 − 2A2x2 + . . . = (x− x1)(x− x2)(x− x3)
whose two roots are x1 and x2, while the third root x3 is a coordinate of the third intersection
point P3 of the line and the curve. The root x3 is easy to figure out from the equation

2A2 = x1 + x2 + x3.

Finally y3 = Ax3 + B gives the other coordinate of the point P3. The multiplication by i is
the automorphism of the curve

i · (x, y) = (−x, iy).

Exercise: Find the formula for the multiplication by (1 + i), i.e. add (x, y) and i · (x, y),
where (x, y) is a point on the curve 2y2 = x3 − x.


