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Let L = Zwy + Zws be a lattice in C. Then the quotient £ = C/L is a compact Riemann

surface. ) . .
=5 3 (o)
weL\{0}

Then p(z) is L-periodic meromorphic function, and z — (p(2), p’(2)) is a bijection from C/L
and the cubic curve

y? =42” — go(L)x — g5(L)

g(L) = Y (%) :
weL\{0}
Since p and p’ have poles at z = 0, 0 € C/L maps to a point O at “infinity” obtained by
compactifying the cubic curve in the projective plane. If L' = ¢- L, for some ¢ € C*, then
C/L = C/L'. Observe that g,(L) = c¢*"g,(L’). We shall be interested in the case where L is
a multiple of Z[i]. Then i - L = L, hence

95(L) = gs(iL) = °g5(L) = —gs(L)
which implies that g3(L) = 0. Moreover, one can pick L so that go(L) = 1. Hence the
Riemann surface C/Z[i] is isomorphic to the cubic curve y* = 42® — z. For practical reasons
we shall rewrite this equation slightly. Multiply it by 2 and redefine x := 2x. This gives the
curve

where

2y = 1% — 7.

Observe that £ = C/L is an abelian group. Let E(m) be the m-torsion, that is the set of
elements z € F such that mz = 0. This is a subgroup of F, clearly,

E(m) = %L/L >~ [L/mL = (Z/mZ)*

where the middle isomorphism is given by multiplication by m, while the last depends on a
choice of a basis of L. Fix a prime p. Then we have an inverse system

L/pL + L/p*L + ....
whose inverse limit
: ny ~ 72
hin L/p"L =7,
is called the Tate module attached to E. Let End(FE) be the set of endomorphisms of F,

that is, the set of group homomorphisms 7" : £ — E. The set of endomorphism forms a
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ring, since endomorphisms can be added and composed. FIx a prime p. For every n, T
induces a homomorphism T;, : E(p") — E(p"). After identifying E(p") = (Z/p"Z)?, the
homomorphism T, is represented by a 2 x 2 matrix with coefficients in the ring Z/p"Z.
These T;, are compatible with the maps E(p") — E(p"~!) and patch together to give a 2 x 2
matrix with coeffcients in Z, giving the action of 7" on the Tate module. Thus for every p
we have a ring homomorphism

¢ : End(E) — My(Z,)

where Ms(Z,) is the ring of 2 x 2 matrices with coefficients in Z,. Let’s look at E = C/Z]i].
Since Zli] is a subring of C, every element v = a + bi € Z[i] defines a map on C by z — - z,
for all z € C, that preserves Z[i], hence 7 defines a map on E. Thus Z[i] C End(FE). It is

easy to check
a —b
p(y) = ( b a )

if we use 1 and ¢ as the basis of Z][i].

Let’s see how these structures look on the corresponding cubic curve 2y% = 2% — z. In the
projective P? space this curve is given by a homogeneous equation 2y*z = 23 — x2%. Observe
that O = (0 :1:0) is the unique point on the curve with z = 0, i.e. not on the (x,y)-affine
plane. Recall that 0 € C/L maps to the point O. The group addition 4 on the curve exploits
the fact that a line intersects a cubic projective curve in three points, P, () and R, counted
with multiplicities. These three points add to 0: P+ @ + R = O. The inverse of a point
P = (z,y) is —P = (z,—y). Observe that 2-torsion consists of points such that P = —P.
This implies that y = 0 and we get three points

(0,1), (1,0) (—1,0)

and the identity O. The addition is performed as follows. Assume that P, = (z1,y;) and
Py, = (z2,y2) are two points on the curve. Let y = Az + B be the equation of the line
through these two points. Substitute this expression for y into 2y = 2® — z. This gives a
cubic equation in x

0=2a®—-2A%2+... = (v —21)(z — 23) (2 — x3)

whose two roots are x; and x5, while the third root x5 is a coordinate of the third intersection
point P of the line and the curve. The root x5 is easy to figure out from the equation

2A2 =2 + X9 + 3.

Finally y3 = Ax3 + B gives the other coordinate of the point P3;. The multiplication by ¢ is
the automorphism of the curve

i (I’,y) = (—:E,iy).

Exercise: Find the formula for the multiplication by (1 + i), i.e. add (z,y) and i - (z,y),

where (z,) is a point on the curve 2y* = 23 — .



