MATH 6370, LECTURE 11 ELLIPTIC CURVES APRIL 10

GORDAN SAVIN

Let $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} . Then the quotient $E = \mathbb{C}/L$ is a compact Riemann surface.

$$\mathfrak{p}(z) = \frac{1}{z^2} + \sum_{\omega \in L \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

Then $\mathfrak{p}(z)$ is *L*-periodic meromorphic function, and $z \mapsto (\mathfrak{p}(z), \mathfrak{p}'(z))$ is a bijection from \mathbb{C}/L and the cubic curve

$$y^2 = 4x^3 - g_2(L)x - g_3(L)$$

where

$$g_n(L) = \sum_{\omega \in L \setminus \{0\}} \left(\frac{1}{\omega^{2n}}\right).$$

Since \mathfrak{p} and \mathfrak{p}' have poles at $z = 0, 0 \in \mathbb{C}/L$ maps to a point O at "infinity" obtained by compactifying the cubic curve in the projective plane. If $L' = c \cdot L$, for some $c \in \mathbb{C}^{\times}$, then $\mathbb{C}/L \cong \mathbb{C}/L'$. Observe that $g_n(L) = c^{2n}g_n(L')$. We shall be interested in the case where L is a multiple of $\mathbb{Z}[i]$. Then $i \cdot L = L$, hence

$$g_3(L) = g_3(iL) = i^6 g_3(L) = -g_3(L)$$

which implies that $g_3(L) = 0$. Moreover, one can pick L so that $g_2(L) = 1$. Hence the Riemann surface $\mathbb{C}/\mathbb{Z}[i]$ is isomorphic to the cubic curve $y^2 = 4x^3 - x$. For practical reasons we shall rewrite this equation slightly. Multiply it by 2 and redefine x := 2x. This gives the curve

$$2y^2 = x^3 - x$$

Observe that $E = \mathbb{C}/L$ is an abelian group. Let E(m) be the *m*-torsion, that is the set of elements $z \in E$ such that mz = 0. This is a subgroup of E, clearly,

$$E(m) = \frac{1}{m}L/L \cong L/mL \cong (\mathbb{Z}/m\mathbb{Z})^2$$

where the middle isomorphism is given by multiplication by m, while the last depends on a choice of a basis of L. Fix a prime p. Then we have an inverse system

$$L/pL \leftarrow L/p^2L \leftarrow \dots$$

whose inverse limit

$$\lim_{\leftarrow} L/p^n L \cong \mathbb{Z}_p^2$$

is called the Tate module attached to E. Let End(E) be the set of endomorphisms of E, that is, the set of group homomorphisms $T : E \to E$. The set of endomorphism forms a

GORDAN SAVIN

ring, since endomorphisms can be added and composed. FIx a prime p. For every n, T induces a homomorphism $T_n : E(p^n) \to E(p^n)$. After identifying $E(p^n) \cong (\mathbb{Z}/p^n\mathbb{Z})^2$, the homomorphism T_n is represented by a 2×2 matrix with coefficients in the ring $\mathbb{Z}/p^n\mathbb{Z}$. These T_n are compatible with the maps $E(p^n) \to E(p^{n-1})$ and patch together to give a 2×2 matrix with coefficients in \mathbb{Z}_p giving the action of T on the Tate module. Thus for every p we have a ring homomorphism

$$\varphi : \operatorname{End}(E) \to M_2(\mathbb{Z}_p)$$

where $M_2(\mathbb{Z}_p)$ is the ring of 2×2 matrices with coefficients in \mathbb{Z}_p . Let's look at $E = \mathbb{C}/\mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is a subring of \mathbb{C} , every element $\gamma = a + bi \in \mathbb{Z}[i]$ defines a map on \mathbb{C} by $z \mapsto \gamma \cdot z$, for all $z \in \mathbb{C}$, that preserves $\mathbb{Z}[i]$, hence γ defines a map on E. Thus $\mathbb{Z}[i] \subset \text{End}(E)$. It is easy to check

$$\varphi(\gamma) = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)$$

if we use 1 and i as the basis of $\mathbb{Z}[i]$.

Let's see how these structures look on the corresponding cubic curve $2y^2 = x^3 - x$. In the projective \mathbb{P}^2 space this curve is given by a homogeneous equation $2y^2z = x^3 - xz^2$. Observe that O = (0:1:0) is the unique point on the curve with z = 0, i.e. not on the (x, y)-affine plane. Recall that $0 \in \mathbb{C}/L$ maps to the point O. The group addition + on the curve exploits the fact that a line intersects a cubic projective curve in three points, P, Q and R, counted with multiplicities. These three points add to 0: P + Q + R = O. The inverse of a point P = (x, y) is -P = (x, -y). Observe that 2-torsion consists of points such that P = -P. This implies that y = 0 and we get three points

$$(0,1), (1,0)(-1,0)$$

and the identity O. The addition is performed as follows. Assume that $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two points on the curve. Let y = Ax + B be the equation of the line through these two points. Substitute this expression for y into $2y^2 = x^3 - x$. This gives a cubic equation in x

$$0 = x^{3} - 2A^{2}x^{2} + \ldots = (x - x_{1})(x - x_{2})(x - x_{3})$$

whose two roots are x_1 and x_2 , while the third root x_3 is a coordinate of the third intersection point P_3 of the line and the curve. The root x_3 is easy to figure out from the equation

$$2A^2 = x_1 + x_2 + x_3$$

Finally $y_3 = Ax_3 + B$ gives the other coordinate of the point P_3 . The multiplication by *i* is the automorphism of the curve

$$i \cdot (x, y) = (-x, iy).$$

Exercise: Find the formula for the multiplication by (1 + i), i.e. add (x, y) and $i \cdot (x, y)$, where (x, y) is a point on the curve $2y^2 = x^3 - x$.