# MATH 6370, LECTURE 11 ELLIPTIC CURVES <br> APRIL 10 

GORDAN SAVIN

Let $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ be a lattice in $\mathbb{C}$. Then the quotient $E=\mathbb{C} / L$ is a compact Riemann surface.

$$
\mathfrak{p}(z)=\frac{1}{z^{2}}+\sum_{\omega \in L \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

Then $\mathfrak{p}(z)$ is $L$-periodic meromorphic function, and $z \mapsto\left(\mathfrak{p}(z), \mathfrak{p}^{\prime}(z)\right)$ is a bijection from $\mathbb{C} / L$ and the cubic curve

$$
y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L)
$$

where

$$
g_{n}(L)=\sum_{\omega \in L \backslash\{0\}}\left(\frac{1}{\omega^{2 n}}\right) .
$$

Since $\mathfrak{p}$ and $\mathfrak{p}^{\prime}$ have poles at $z=0,0 \in \mathbb{C} / L$ maps to a point $O$ at "infinity" obtained by compactifying the cubic curve in the projective plane. If $L^{\prime}=c \cdot L$, for some $c \in \mathbb{C}^{\times}$, then $\mathbb{C} / L \cong \mathbb{C} / L^{\prime}$. Observe that $g_{n}(L)=c^{2 n} g_{n}\left(L^{\prime}\right)$. We shall be interested in the case where $L$ is a multiple of $\mathbb{Z}[i]$. Then $i \cdot L=L$, hence

$$
g_{3}(L)=g_{3}(i \dot{L})=i^{6} g_{3}(L)=-g_{3}(L)
$$

which implies that $g_{3}(L)=0$. Moreover, one can pick $L$ so that $g_{2}(L)=1$. Hence the Riemann surface $\mathbb{C} / \mathbb{Z}[i]$ is isomorphic to the cubic curve $y^{2}=4 x^{3}-x$. For practical reasons we shall rewrite this equation slightly. Multiply it by 2 and redefine $x:=2 x$. This gives the curve

$$
2 y^{2}=x^{3}-x
$$

Observe that $E=\mathbb{C} / L$ is an abelian group. Let $E(m)$ be the $m$-torsion, that is the set of elements $z \in E$ such that $m z=0$. This is a subgroup of $E$, clearly,

$$
E(m)=\frac{1}{m} L / L \cong L / m L \cong(\mathbb{Z} / m \mathbb{Z})^{2}
$$

where the middle isomorphism is given by multiplication by $m$, while the last depends on a choice of a basis of $L$. Fix a prime $p$. Then we have an inverse system

$$
L / p L \leftarrow L / p^{2} L \leftarrow \ldots
$$

whose inverse limit

$$
\lim _{\leftarrow} L / p^{n} L \cong \mathbb{Z}_{p}^{2}
$$

is called the Tate module attached to $E$. Let $\operatorname{End}(E)$ be the set of endomorphisms of $E$, that is, the set of group homomorphisms $T: E \rightarrow E$. The set of endomorphism forms a
ring, since endomorphisms can be added and composed. FIx a prime $p$. For every $n, T$ induces a homomorphism $T_{n}: E\left(p^{n}\right) \rightarrow E\left(p^{n}\right)$. After identifying $E\left(p^{n}\right) \cong\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}$, the homomorphism $T_{n}$ is represented by a $2 \times 2$ matrix with coefficients in the ring $\mathbb{Z} / p^{n} \mathbb{Z}$. These $T_{n}$ are compatible with the maps $E\left(p^{n}\right) \rightarrow E\left(p^{n-1}\right)$ and patch together to give a $2 \times 2$ matrix with coeffcients in $\mathbb{Z}_{p}$ giving the action of $T$ on the Tate module. Thus for every $p$ we have a ring homomorphism

$$
\varphi: \operatorname{End}(E) \rightarrow M_{2}\left(\mathbb{Z}_{p}\right)
$$

where $M_{2}\left(\mathbb{Z}_{p}\right)$ is the ring of $2 \times 2$ matrices with coefficients in $\mathbb{Z}_{p}$. Let's look at $E=\mathbb{C} / \mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is a subring of $\mathbb{C}$, every element $\gamma=a+b i \in \mathbb{Z}[i]$ defines a map on $\mathbb{C}$ by $z \mapsto \gamma \cdot z$, for all $z \in \mathbb{C}$, that preserves $\mathbb{Z}[i]$, hence $\gamma$ defines a map on $E$. Thus $\mathbb{Z}[i] \subset \operatorname{End}(E)$. It is easy to check

$$
\varphi(\gamma)=\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)
$$

if we use 1 and $i$ as the basis of $\mathbb{Z}[i]$.
Let's see how these structures look on the corresponding cubic curve $2 y^{2}=x^{3}-x$. In the projective $\mathbb{P}^{2}$ space this curve is given by a homogeneous equation $2 y^{2} z=x^{3}-x z^{2}$. Observe that $O=(0: 1: 0)$ is the unique point on the curve with $z=0$, i.e. not on the $(x, y)$-affine plane. Recall that $0 \in \mathbb{C} / L$ maps to the point $O$. The group addition + on the curve exploits the fact that a line intersects a cubic projective curve in three points, $P, Q$ and $R$, counted with multiplicities. These three points add to $0: P+Q+R=O$. The inverse of a point $P=(x, y)$ is $-P=(x,-y)$. Observe that 2-torsion consists of points such that $P=-P$. This implies that $y=0$ and we get three points

$$
(0,1),(1,0)(-1,0)
$$

and the identity $O$. The addition is performed as follows. Assume that $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ are two points on the curve. Let $y=A x+B$ be the equation of the line through these two points. Substitute this expression for $y$ into $2 y^{2}=x^{3}-x$. This gives a cubic equation in $x$

$$
0=x^{3}-2 A^{2} x^{2}+\ldots=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)
$$

whose two roots are $x_{1}$ and $x_{2}$, while the third root $x_{3}$ is a coordinate of the third intersection point $P_{3}$ of the line and the curve. The root $x_{3}$ is easy to figure out from the equation

$$
2 A^{2}=x_{1}+x_{2}+x_{3} .
$$

Finally $y_{3}=A x_{3}+B$ gives the other coordinate of the point $P_{3}$. The multiplication by $i$ is the automorphism of the curve

$$
i \cdot(x, y)=(-x, i y)
$$

Exercise: Find the formula for the multiplication by $(1+i)$, i.e. add $(x, y)$ and $i \cdot(x, y)$, where $(x, y)$ is a point on the curve $2 y^{2}=x^{3}-x$.

