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Let V be a Hilbert space and W ⊂ V a closed subspace. The orthogonal complement
of W is the set

W⊥ = {v ∈ V | (v, w) = 0 for all w ∈ W}.

Exercise: Prove that W⊥ is a closed subspace of V .

Solution. Let v be a limit point of W⊥, that is, v = limn vn where (vn) is a sequence
in W⊥. Let w ∈ W . Then, by a previous exercise,

(v, w) = lim
n

(vn, w) = lim
n

0 = 0.

Hence v ∈ W⊥, so W⊥ is closed.

If v is contained in W and W⊥ then (v, v) = 0 hence v = 0. Thus W ∩W⊥ = 0.
Terminology complement comes from the following:

Proposition 0.1. Any x ∈ V can be uniquely written as a sum x = y+z where y ∈ W
and z ∈ W⊥.

Proof. The idea of the proof is that y is the element in W closest to x. That is, y
minimizes the function

f(w) = ||x− w||2.
where w ∈ W . Assume that y ∈ W is the minimum of the function f . Fix w ∈ W .
Let t ∈ R. Then the function of t

f(y+tw) = ||x−(y+tw)||2 = (x−y−tw, x−y−tw) = (x−y, x−y)−2t(x−y, w)+t2(w,w)

has the minimum at t = 0. Thus f ′(0) = 0 which works out to (x − y, w) = 0. This
is true for all w ∈ W , hence z = x − y ∈ W⊥. So we need to show that there exists
the closest y. Since f is non-negative δ = infw f(w) exists. Let yn be a sequence in W
such that limn f(yn) = δ. If (yn) is a Cauchy sequence, then y = limn yn. This limit
exists since V is complete, and it is contained in W since W is closed. To prove that
(yn) is Cauchy, we need the parallelogram identity (check it):

||v + u||2 + ||u− v||2 = 2||v||2 + 2||u||2

Put v = x− yn and u = x− ym,

||2x− (yn + ym)||2 + ||yn − ym||2 = 2||x− yn||2 + 2||x− ym||2.
Observe that (yn + ym)/2 ∈ W and

||2x− (yn + ym)||2 = 4||x− (yn + ym)/2|| = 4f((yn + ym)/2) ≥ 4δ.
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Thus the parallelogram identity yields

||yn − ym||2 = 2f(yn) + 2f(ym)− 4f((yn + ym)/2)) ≤ 2f(yn) + 2f(ym)− 4δ.

As n,m→∞, f(yn), f(ym)→ δ, hence ||yn − ym||2 → 0, thus (yn) is Cauchy.

Exercise: Prove uniqueness of the decomposition x = y+z. Hint: use that W∩W⊥ = 0.

Solution: Let x = y′ + z′ be another decomposition where y′ ∈ W and z′ ∈ W⊥. Then

0 = x− x = (y + z)− (y′ + z′) = (y − y′) + (z − z′).
Thus y− y′ = z′− z. But y− y′ ∈ W and z′− z ∈ W⊥. Thus y− y′ = z′− z = 0 since
W ∩W⊥ = 0. Hence y = y′ and z = z′.

�

Example: Let V = L2([−1, 1]). Let W be the subspace of even functions. Then W⊥ is
the subspace of odd functions. (Check that W is closed.)

We derive two wonderful consequences of the proposition. We can define

P : V → W

P (x) = y where x = y+z is the decomposition given in the proposition, for x ∈ V . It is
trivial to check that this is linear transformation. Moreover, since ||x||2 = ||y||2 + ||z||2
for perpendicular y and z,

||P (x)|| = ||y|| ≤ ||x||
the linear transformation P is continuous. Clearly P (x) = x for x ∈ W and P (x) = 0
for x ∈ W⊥ so P is called orthogonal projection of V onto W .

The second consequence is classification of continuous linear functionals on V . Ob-
serve that any y ∈ V defines a linear functional `y : V → R via the scalar product

`y(x) = (x, y)

for all x ∈ V . This functional is bounded, hence continuous, since

|`y(x)| = |(x, y))| ≤ ||y|| · ||x||
by the Cauchy-Schwarz inequality. Conversely:

Corollary 0.2. Let f : V → R be continuous functional. Then there exists y ∈ V such
that

f(x) = (x, y)

for all x ∈ V .

Proof. If f = 0 then y = 0, so assume f 6= 0. Since f is continuous, its null-space
W = f−1(0) is closed. Let W⊥ be its orthogonal complement. We claim that W⊥ is
one-dimensional. If u, v are two non-zero elements in W⊥, then their linear combination

f(v)u− f(u)v
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is in W⊥. On the other hand, evaluating f on this element,

f(f(v)u− f(u)v) = f(v)f(u)− f(u)f(v) = 0

so this element is also in W . Hence f(v)u− f(u)v = 0, i.e u and v are dependent. Let
e span the line W⊥ and we can assume that (e, e) = 1. Any element v ∈ V can be
written uniquely as v = w + te, for some w ∈ W and t ∈ R. Then

f(v) = f(w + te) = f(w) + tf(e) = tf(e) = (v, y)

where y = f(e)e (check the last equality).
�


