MATH 5210, LECTURE 11 - ORTHOGONAL DECOMPOSITION APRIL 10

Let V be a Hilbert space and $W \subset V$ a closed subspace. The orthogonal complement of W is the set

$$
W^{\perp}=\{v \in V \mid(v, w)=0 \text { for all } w \in W\}
$$

Exercise: Prove that W^{\perp} is a closed subspace of V.
Solution. Let v be a limit point of W^{\perp}, that is, $v=\lim _{n} v_{n}$ where $\left(v_{n}\right)$ is a sequence in W^{\perp}. Let $w \in W$. Then, by a previous exercise,

$$
(v, w)=\lim _{n}\left(v_{n}, w\right)=\lim _{n} 0=0 .
$$

Hence $v \in W^{\perp}$, so W^{\perp} is closed.
If v is contained in W and W^{\perp} then $(v, v)=0$ hence $v=0$. Thus $W \cap W^{\perp}=0$. Terminology complement comes from the following:

Proposition 0.1. Any $x \in V$ can be uniquely written as a sum $x=y+z$ where $y \in W$ and $z \in W^{\perp}$.

Proof. The idea of the proof is that y is the element in W closest to x. That is, y minimizes the function

$$
f(w)=\|x-w\|^{2}
$$

where $w \in W$. Assume that $y \in W$ is the minimum of the function f. Fix $w \in W$. Let $t \in \mathbb{R}$. Then the function of t
$f(y+t w)=\|x-(y+t w)\|^{2}=(x-y-t w, x-y-t w)=(x-y, x-y)-2 t(x-y, w)+t^{2}(w, w)$ has the minimum at $t=0$. Thus $f^{\prime}(0)=0$ which works out to $(x-y, w)=0$. This is true for all $w \in W$, hence $z=x-y \in W^{\perp}$. So we need to show that there exists the closest y. Since f is non-negative $\delta=\inf _{w} f(w)$ exists. Let y_{n} be a sequence in W such that $\lim _{n} f\left(y_{n}\right)=\delta$. If $\left(y_{n}\right)$ is a Cauchy sequence, then $y=\lim _{n} y_{n}$. This limit exists since V is complete, and it is contained in W since W is closed. To prove that $\left(y_{n}\right)$ is Cauchy, we need the parallelogram identity (check it):

$$
\|v+u\|^{2}+\|u-v\|^{2}=2\|v\|^{2}+2\|u\|^{2}
$$

Put $v=x-y_{n}$ and $u=x-y_{m}$,

$$
\left\|2 x-\left(y_{n}+y_{m}\right)\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2}=2\left\|x-y_{n}\right\|^{2}+2\left\|x-y_{m}\right\|^{2} .
$$

Observe that $\left(y_{n}+y_{m}\right) / 2 \in W$ and

$$
\left\|2 x-\left(y_{n}+y_{m}\right)\right\|^{2}=4\left\|x-\left(y_{n}+y_{m}\right) / 2\right\|=4 f\left(\left(y_{n}+y_{m}\right) / 2\right) \geq 4 \delta
$$

Thus the parallelogram identity yields

$$
\left.\left\|y_{n}-y_{m}\right\|^{2}=2 f\left(y_{n}\right)+2 f\left(y_{m}\right)-4 f\left(\left(y_{n}+y_{m}\right) / 2\right)\right) \leq 2 f\left(y_{n}\right)+2 f\left(y_{m}\right)-4 \delta
$$

As $n, m \rightarrow \infty, f\left(y_{n}\right), f\left(y_{m}\right) \rightarrow \delta$, hence $\left\|y_{n}-y_{m}\right\|^{2} \rightarrow 0$, thus $\left(y_{n}\right)$ is Cauchy.
Exercise: Prove uniqueness of the decomposition $x=y+z$. Hint: use that $W \cap W^{\perp}=0$. Solution: Let $x=y^{\prime}+z^{\prime}$ be another decomposition where $y^{\prime} \in W$ and $z^{\prime} \in W^{\perp}$. Then

$$
0=x-x=(y+z)-\left(y^{\prime}+z^{\prime}\right)=\left(y-y^{\prime}\right)+\left(z-z^{\prime}\right)
$$

Thus $y-y^{\prime}=z^{\prime}-z$. But $y-y^{\prime} \in W$ and $z^{\prime}-z \in W^{\perp}$. Thus $y-y^{\prime}=z^{\prime}-z=0$ since $W \cap W^{\perp}=0$. Hence $y=y^{\prime}$ and $z=z^{\prime}$.

Example: Let $V=L^{2}([-1,1])$. Let W be the subspace of even functions. Then W^{\perp} is the subspace of odd functions. (Check that W is closed.)

We derive two wonderful consequences of the proposition. We can define

$$
P: V \rightarrow W
$$

$P(x)=y$ where $x=y+z$ is the decomposition given in the proposition, for $x \in V$. It is trivial to check that this is linear transformation. Moreover, since $\|x\|^{2}=\|y\|^{2}+\|z\|^{2}$ for perpendicular y and z,

$$
\|P(x)\|=\|y\| \leq\|x\|
$$

the linear transformation P is continuous. Clearly $P(x)=x$ for $x \in W$ and $P(x)=0$ for $x \in W^{\perp}$ so P is called orthogonal projection of V onto W.

The second consequence is classification of continuous linear functionals on V. Observe that any $y \in V$ defines a linear functional $\ell_{y}: V \rightarrow \mathbb{R}$ via the scalar product

$$
\ell_{y}(x)=(x, y)
$$

for all $x \in V$. This functional is bounded, hence continuous, since

$$
\left.\left|\ell_{y}(x)\right|=\mid(x, y)\right) \mid \leq\|y\| \cdot\|x\|
$$

by the Cauchy-Schwarz inequality. Conversely:
Corollary 0.2. Let $f: V \rightarrow \mathbb{R}$ be continuous functional. Then there exists $y \in V$ such that

$$
f(x)=(x, y)
$$

for all $x \in V$.
Proof. If $f=0$ then $y=0$, so assume $f \neq 0$. Since f is continuous, its null-space $W=f^{-1}(0)$ is closed. Let W^{\perp} be its orthogonal complement. We claim that W^{\perp} is one-dimensional. If u, v are two non-zero elements in W^{\perp}, then their linear combination

$$
f(v) u-f(u) v
$$

is in W^{\perp}. On the other hand, evaluating f on this element,

$$
f(f(v) u-f(u) v)=f(v) f(u)-f(u) f(v)=0
$$

so this element is also in W. Hence $f(v) u-f(u) v=0$, i.e u and v are dependent. Let e span the line W^{\perp} and we can assume that $(e, e)=1$. Any element $v \in V$ can be written uniquely as $v=w+t e$, for some $w \in W$ and $t \in \mathbb{R}$. Then

$$
f(v)=f(w+t e)=f(w)+t f(e)=t f(e)=(v, y)
$$

where $y=f(e) e$ (check the last equality).

