1. Let G be a group (not necessarily finite), and suppose that H is a subgroup of index n. Show that there is a normal subgroup N of G with $n! \geq [G : N] \geq n$.

Solution: There is a natural action of G on G/H by left multiplication on the coset representative. This gives us an orbit map $g \mapsto -\cdot g' H$ for every coset $g' H \in G/H$. Since H is a finite index subgroup, G/H is finite. All finite groups can be embedded into a symmetric group of appropriate size, so there is a map $\varphi : G/H \to S_n$ where $|G/H| = [G : H] = n$. Therefore, for any coset $g' H$, we can compose the orbit map with this embedding to get a map $G \to S_n$ defined by $g \mapsto \varphi(g \cdot g' H)$. The kernel K of this map is a normal subgroup of G. Also, G/K is isomorphic to a subgroup of S_n, so $|G/K| = [G : K] \leq n!$.

On the other hand, the action of G on G/H is transitive, so $|G/K| = [G : K] \geq n$.

2. Determine, up to isomorphism, the number of groups of order 70.

Solution: $70 = 2 \cdot 5 \cdot 7$, so the Sylow theorems tell us there are subgroups, call them P_2, P_5, P_7 of sizes 2, 5, 7 respectively. We also know the number of such subgroups, n_p, divides the index $[G : P_p]$ and $n_p \equiv 1 \mod p$. Thus $n_7 = 1$ and so P_7 has no conjugate subgroups and is normal. Then $P_7 P_5 \leq G$ and because $P_7 \cap P_5 = \{e\}$, $P_7 \rtimes_{\psi} P_5$ where $\psi : P_5 \to \text{Aut}(P_7)$. We can think of $\psi : \mathbb{Z}/5 \to \text{Aut}(\mathbb{Z}/7) \cong \mathbb{Z}/6$ and such a map is determined by $\psi(1)$, because there are no elements in $\mathbb{Z}/6$ of order 5, it must be that $\psi(1) = 1$ and $H = P_7 P_5 \cong \mathbb{Z}/7 \times \mathbb{Z}/5$. Now note that $[G : H] = 2$ so it is a normal subgroup, thus $HP_2 \leq G$ and because $H \cap P_2 = \{e\}$ we get $G = H \rtimes_{\varphi} P_2$ where $\varphi : \mathbb{Z}/2 \to \text{Aut}(\mathbb{Z}/7 \times \mathbb{Z}/5) \cong \mathbb{Z}/6 \times \mathbb{Z}/4$. Then φ is determined by $\varphi(1)$ which must have order dividing 2, so $\varphi(2) \in \{(0,0), (0,2), (3,0), (3,2)\}$. Thus, there are 4 groups of order 70.

3. Let p be a prime integer, and G a group in which g^p is the identity for each g in G. Show that G must be abelian if $p = 2$. Give an example where G is not abelian.
Solution: If \(p = 2 \) then \(g^2 = 1 \) for all \(g \in G \), so \(g^{-1} = g \). Let \(g, h \in G \), then \((gh)^2 = ghgh = 1\) and the commutator
\[ggh^{-1}h^{-1} = ghg = 1 \]
so \(G \) is abelian.

To see that this need not hold for \(p \neq 2 \) consider the subgroup of \(M_3(\mathbb{Z}/3) \) of matrices of the form
\[
\begin{pmatrix}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix}
\]
This is a subgroup because
\[
\begin{pmatrix}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix}^2 = \begin{pmatrix}
1 & 2x & 2y + xz \\
0 & 1 & 2z \\
0 & 0 & 1
\end{pmatrix}
\]
and every element has order 3 because
\[
\begin{pmatrix}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix}^3 = \begin{pmatrix}
1 & 3x & 3y + 3xz \\
0 & 1 & 3z \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
However the group is not abelian because, for example
\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

4. Let \(R = \mathbb{Q}[x] \) and let \(M \) be the cokernel of the map from \(R^2 \to R^3 \) given by the matrix
\[
\begin{pmatrix}
x & 0 \\
x & x^2 \\
1 & 1
\end{pmatrix}
\]
Write \(M \) as a direct sum of cyclic \(R \)-modules.

Solution: The Smith normal form of the matrix is
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & x & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
Hence the cokernel is \(R \oplus R/(1) \oplus R/(x) \).

5. Compute the characteristic polynomial, minimal polynomial and the Jordan form of the matrix
\[
\begin{pmatrix}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{pmatrix}
\]
8. Prove that the polynomial x^9 is irreducible over \mathbb{Q}.

Solution: Let $f(x) = x^9 - 1$, note that $f(0) = -1$, $f(1) = -1$ and $f(2) = -1$ so $f(x)$ has no roots in \mathbb{F}_3. (Also see this by noting that $\mathbb{F}_3^x \cong \mathbb{Z}/2$ so $a^5 = a$ for all $a \in \mathbb{F}_3^x$). So p has no linear factors and if it factors over \mathbb{F}_3 then it must be the product of a degree 2 and a degree 3 irreducible polynomial.

There are 9 distinct monic polynomials of degree 2 in $\mathbb{F}_3[x]$. Because there are 3 degree 1 polynomials, there are 6 reducible degree 2 polynomials, so 3 irreducible polynomials of degree 2. Direct check shows that they are: $x^2 + 1, x^2 + x + 2, x^2 + 2x + 2$. Polynomial long division shows that none of these are a factor of $p(x)$, thus p is irreducible over \mathbb{F}_3.

Let α be any root of p and $K = \mathbb{F}_3(\alpha)$, then $[K : \mathbb{F}_3] = 5$, so $K \cong \mathbb{F}_{3^5}$. If $\alpha \in \mathbb{F}_9$ then we’d get a tower of fields $\mathbb{F}_3 \subseteq \mathbb{F}_3(\alpha) \subseteq \mathbb{F}_9$ but $[\mathbb{F}_9 : \mathbb{F}_3] = 2$, so p has no roots in \mathbb{F}_9.

Whenever 5 divides n, \mathbb{F}_{3^5} contains a copy of \mathbb{F}_{3^5} and contains a root of p so p is not irreducible... unsure if p is irreducible when 5 does not divide n.

9. Show that $K = \mathbb{Q}(\sqrt{1+\sqrt{3}})$ is not Galois over \mathbb{Q} and compute $[K : \mathbb{Q}]$.

Solution: $\sqrt{1+\sqrt{3}}$ is a root of $f(x) = x^4 - 2x^2$ which is irreducible by Eisenstein’s criteria, and as such is the minimal polynomial of $\sqrt{1+\sqrt{3}}$. The roots of f are $\{\pm\sqrt{1+\sqrt{3}}, \pm\sqrt{1-\sqrt{3}}\}$, two of which are imaginary and do not live in K. Thus $K \supset \mathbb{Q}$ is not normal and not Galois.
\[[K : \mathbb{Q}] = \deg(\text{min. poly of } \sqrt[4]{1 + \sqrt{3}}) = 4 \]

10. Let \(p \) be a prime integer, and set \(f(x) = x^{p-1} + x^{p-2} + \ldots + x + 1 \). Suppose a prime integer \(q \) divides \(f(a) \) for some integer \(a \), prove that either \(q = p \) or \(q \equiv 1 \mod p \).

Use this to prove that the arithmetic sequence \(1, 1+p, 2+p, \ldots \) contains infinitely many prime integers.

Solution: This was a homework problem.