1. Let p be prime. Show that an element in the symmetric group S_n has order p if and only if it is a product of commuting p-cycles. Show by an explicit example that this need not to be the case if p is not prime.

Solution: (\Rightarrow) Suppose $\sigma \in S_n$ has order p. Then we have that $\sigma^p(a_1) = a_1$. Construct the cycle $C_1 = (a_1 \sigma(a_1) \ldots \sigma^k(a_1))$. Since p is the order, we have $k \leq p$ and $k | p$, so either $k = 1$ or $k = p$. The case $k = 1$ is trivial. For $k = p$, consider i to be the smallest i that is not in C_1. We have a cycle containing a_i of the form $C_i(a_i \sigma(a_i) \ldots \sigma^k(a_i))$. We continue to repeat this process, so any element of order p has its cycle decomposition has product of commutative p-cycles.

(\Leftarrow) Suppose $\sigma = (a_{1,1} \ldots a_{1,p}) \ldots (a_{k,1} \ldots a_{k,p})$ where each $a_{i,j}$ is distinct. Since the cycles commute, we have that if

$$\sigma^l = (a_{1,1} \ldots a_{1,p})^l \ldots (a_{k,1} \ldots a_{k,p})^l = 1$$

and since the order of each p-cycle is p, then $p | l$. Hence, the minimum value for l is p.

For the example, $\sigma = (1 \ 2)(3 \ 4 \ 5)$ has order 6.

2. Prove that the number of Sylow p-subgroups of $GL_2(\mathbb{F}_p)$ is $p + 1$.

Solution: Consider n_p the number of Sylow p-subgroups of $GL_2(\mathbb{F}_p)$. Since $|GL_2(\mathbb{F}_p)| = p(p + 1)(p - 1)^2$, we have that $n_p | (p + 1)(p - 1)^2$ and $n_p \equiv 1 \mod p$ so $n_p \in \{1, p + 1, (p - 1)^2, (p + 1)(p - 1)^2\}$. The matrix \[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\] has order p and generates a Sylow p-subgroup P.
Its transpose \(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) also has order \(p \), so \(n_p \neq 1 \). If \(a, d \neq 0 \), we have

\[
\frac{1}{ad} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d & -b \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1 & ad^{-1} \\ 1 & 1 \end{pmatrix}
\]

so every \(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \) is in the normalizer \(N_P(G) \). There are \(p(p - 1)^2 \) such elements. Since \(n_p = [G : N_P(G)] \), then \(n_p \leq p + 1 \) so \(n_p = p + 1 \).

3. Let \(G \) be a \(p \)-group with \(|G| > p \). Show that

(a) \(G \) has a nontrivial center;

Solution: Consider the action of \(G \) on itself by conjugation. From the class equation, we have that

\[
|G| = |Z(G)| + \sum_{i=1}^r |G : C_G(g_i)|
\]

where \(g_i \) are representatives of the distinct noncentral conjugacy classes. By definition, \(C_G(g_i) \neq G \), so \(p \) divides \(|G : C_G(g_i)| \). Since \(p \) divides \(|G| \), then \(p \) divides \(|Z(G)| \). Therefore, the center is nontrivial.

(b) \(G \) has a normal subgroup of every order \(p^m < |G| \).

Solution: Suppose that every group of order \(p^m \) for \(0 \leq m \leq n \). Let \(G \) be a group of order \(p^{n+1} \). We have that \(Z(G) \) is nontrivial. If \(Z(G) = G \), then \(G \) is abelian. Let \(H \leq G \) be a subgroup of order \(p \) by Cauchy.

If \(Z(G) \neq G \), then \(Z(G) \) is a nontrivial proper normal subgroup. Let \(H = Z(G) \). Since \(H \) and \(G/H \) are groups of order \(p^k \) for \(1 \leq k \leq n \). Then \(H \) has a subgroup of order \(p^j \) for all \(p^j \) dividing \(|H| \). We have the same for \(G/H \). By Fourth Isomorphism theorem, \(G \) has a subgroup of order \(p^j \) for all \(0 \leq j \leq n + 1 \).

4. For the matrix \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} \), find:

(a) the rational canonical form over \(\mathbb{Q} \);

Solution: The characteristic polynomial is \(p_A(x) = (x - 1)^2(x - 2) \) and the minimal polynomial is \(m_A(x) = (x - 1)(x - 2) \) hence the invariant factors are \((x - 1)(x - 2) = x^2 - 3x + 2 \) and \(x - 1 \).
The corresponding companion matrices are \[
\begin{pmatrix}
0 & -2 \\
1 & 3
\end{pmatrix}
\]
and 1. Therefore, the rational canonical form is
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & -2 \\
0 & 1 & 3
\end{pmatrix}
\]
(b) the Jordan canonical form over \(\mathbb{C}\).

Solution: Since the minimal polynomial is \(m_A(x) = (x - 1)(x - 2)\), then all Jordan blocks have size 1. Therefore, the Jordan form is
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix}
\]

5. Prove that the ring \(\mathbb{Z}[i]\) is a Euclidean domain.

Solution: Let \(\alpha = a + bi\) and \(\beta = c + di \neq 0\) be Gaussian integers. Then in \(\mathbb{Q}[i]\), we have that \(\frac{a}{b} = r + si\) where \(r = \frac{ac + bd}{c^2 + d^2}, s = \frac{bc - ad}{c^2 + d^2} \in \mathbb{Q}\). Let \(p \in \mathbb{Z}\) be the integer closest to the rational \(r\) and let \(q\) be the integer closest to the rational \(s\) so that both \(|r - p|\) and \(|s - q|\) are at most \(\frac{1}{2}\). Then \(\alpha = (p + qi)\beta + \gamma\) for some \(\gamma \in \mathbb{Z}[i]\) with \(N(\gamma) \leq \frac{1}{2} N(\beta)\).

6. Let \(G\) be a finite abelian group and \(H\) a subgroup of \(G\). Show that \(G\) has a subgroup isomorphic with \(G/H\).

Solution: Since \(G\) is a finite abelian group, we have that \(G \cong \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_k}\) where \(d_1, \ldots, d_k\) are the invariant factors \(d_i > 1\) and \(d_i|d_{i+1}\). Since \(H \leq G\), \(H \cong (H \cap \mathbb{Z}_{d_1}) \oplus \cdots \oplus (H \cap \mathbb{Z}_{d_k})\). Since every subgroup of a cyclic group is cyclic, we have \(H_i := H \cap \mathbb{Z}_{d_i} \cong \mathbb{Z}_{n_i}\) where \(H_i \leq \mathbb{Z}_{d_i}\) so by Lagrange \(\frac{d_i}{n_i} = l_i \in \mathbb{Z}\). Since \(\mathbb{Z}_{d_i}\) is cyclic, \(\mathbb{Z}_{d_i}\) has a unique subgroup \(N_i \cong \mathbb{Z}_{l_i}\). Thus, \(G\) has a subgroup \(N \cong N_1 \oplus \cdots N_k \cong \mathbb{Z}_{l_1} \oplus \cdots \oplus \mathbb{Z}_{l_k} \cong N\) so \(G/H\) is isomorphic to a subgroup \(N\) of \(G\).

7. Let \(m, n\) be positive integers and \(d\) their greatest common divisor. Show that \(\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}\).

Solution: \(\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}\) is cyclic since \(a \otimes b = b(a \otimes 1) = ab(1 \otimes 1)\) with \(1 \otimes 1\) as generator. There exist integers \(a, b\) such that \(am + bn = d\).
so $d(1 \otimes 1) = (am + bn)(1 \otimes 1) = am \otimes bn = 0$, so the order of the cyclic group divides d. Consider $\varphi : \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}$ defined by $(a \mod m, b \mod n) \mapsto ab \mod d$. It is \mathbb{Z}-linear and the induced map $\varphi' : \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}$ maps $1 \otimes 1 \mapsto \bar{1}$ an element of order d. Thus $1 \otimes 1$ has order at least d, hence the cyclic group has order at least d, so the order is exactly d. Then φ' is an isomorphism.

8. For a ring R define its nilradical $\mathfrak{n}(R) = \{x \in R : x^n = 0 \text{ for some } n \in \mathbb{Z}\}$.

(a) If R is commutative, prove that $\mathfrak{n}(R)$ is an ideal of R.

Solution: Consider $x, y \in \mathfrak{n}(R)$, so we have $x^n = y^m = 0$. So

$$(x + y)^{n+m} = \sum_{k=0}^{n+m} x^k y^{n+m-k}$$

$$= \sum_{k=0}^{n-1} x^k y^{n+m-k} + \sum_{k=n}^{n+m} x^k y^{n+m-k}$$

$$= 0$$

so $x+y \in \mathfrak{n}(R)$. We have that $0 \in \mathfrak{n}(R)$ and $(-x)^n = (-1)^n x^n = 0$ so $-x \in \mathfrak{n}(R)$. Then $\mathfrak{n}(R)$ is an additive subgroup of R. Since R is commutative, let $r \in R$ and $(rx)^n = r^n x^n = (xr)^n = 0$. Hence $\mathfrak{n}(R)$ is an ideal.

(b) Is the nilradical an ideal even if R is noncommutative?

Solution: Consider $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Since $x^2 = y^2 = 0$ then x, y are in the nilradical of the noncommutative ring of matrices. We have that $x+y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $(x+y)^2 = I$, which is a unit, and it’s not nilpotent.

9. What is the Galois group of $x^4 - 5$ over:

(a) \mathbb{Q}

Solution: The splitting field of $x^4 - 5$ is $\mathbb{Q}(i, \sqrt[4]{5})$. The automorphisms are given by $\tau : i \mapsto -i, \sqrt[4]{5} \mapsto \sqrt[4]{5}$ and $\sigma : i \mapsto i, \sqrt[4]{5} \mapsto i\sqrt[4]{5}$. We have that $|\tau| = 2, |\sigma| = 4$, and $\sigma \tau = \tau \sigma^{-1}$. Hence $\text{Gal}(\mathbb{Q}(i, \sqrt[4]{5})/\mathbb{Q}) = D_4$.

4
(b) \(\mathbb{Q}(\sqrt{5}) \)

Solution: \(\mathbb{Q}(\sqrt{5}) \) is fixed by \(\langle \tau, \sigma^2 \rangle \), hence the Galois group is isomorphic to the Klein group, \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

(c) \(\mathbb{Q}(i) \)

Solution: Since \(\sigma \) fixes \(i \), we have that the Galois group of \(x^4 - 5 \) over \(\mathbb{Q}(i) \) is \(\langle \sigma \rangle \), so it is isomorphic to \(\mathbb{Z}_4 \).

10. Show that the extension \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) is Galois over \(\mathbb{Q} \), and determine the Galois group.

Solution: \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) is the splitting field of the separable polynomial \((x^2 - 2)(x^2 - 3) \) and hence it’s Galois over \(\mathbb{Q} \). This extension has degree 4 since \(\sqrt{3} \notin \mathbb{Q}(\sqrt{2}) \). Since the automorphisms permute the roots of each irreducible factor, they are \(\tau : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \) and \(\sigma : \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \). Hence \(\text{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}) = \mathbb{Z}_2 \times \mathbb{Z}_2 \).

11. Show that the polynomial \(x^2 + y^2 - 1 = 0 \) is irreducible in \(\mathbb{Q}[x, y] \). Is it irreducible in \(\mathbb{C}[x, y] \)?

Solution: \(x^2 + y^2 - 1 \in \mathbb{Q}[x, y] = \mathbb{Q}[x][y] \). Since \(\mathbb{Q}[y] \) is a UFD and \(y + 1 \in \mathbb{Q}[y] \) is irreducible, hence prime. So \(x^2 + (y + 1)(y - 1) \) is irreducible by Eisenstein.

Suppose \(x^2 + y^2 - 1 \) is reducible on \(\mathbb{C}[x, y] \), then \(x^2 + y^2 - 1 = f(x, y)g(x, y) \) and \(\deg f, \deg g = 1 \). So the circle \(x^2 + y^2 - 1 = 0 \) would be a union of two lines, a contradiction.