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1. INTRODUCTION

The interest in intersection properties of modules of finite projective dimension
goes back to Serre’s definition of intersection multiplicities, where intersections for
smooth schemes are defined using homological functors. Serre defined the intersec-
tion multiplicity for two finitely generated modules M and N over a regular local
ring A of dimension d as follows: if M and N satisfy the condition that M ®4 N
has finite length, then their intersection multiplicity is

d
X(M,N) = > (~1)length(Tor;' (M, N)).
i=0
One of the conjectures concerning this multiplicity (proven by Serre [13] in the
geometric case and later by Roberts [10], [11] and Gillet and Soule [4], [5] in the
mixed characteristic case) was the vanishing conjecture, which stated that if

dim(M) + dim(N) < dim(A),

then
xX(M,N) = 0.

It was later asked to what extent this would hold if the condition that A be a
regular local ring were dropped and replaced with the condition that M have finite
projective dimension. The first counterexample to this generalized conjecture was
constructed by Dutta, Hochster, and McLaughlin in [1]. More recently, in answering
a question of multiplicities over Gorenstein rings, another example was constructed
by Miller and Singh in [8]. A similar example had been suggested by Kurano [7],
but he did not actually construct a module with the required property.

These examples answered the question on the vanishing conjecture but gave no
idea why or where such examples existed. In Roberts and Srinivas [12], a general
theorem was proven on the existence of examples of this type, examples that include
the above and many more. However, while this in a certain sense explained why
these examples exist, it gave no idea as to how to construct them. The construction
of examples using this method is the topic of this paper.

2. THE SETUP

In this section we describe the situation in which the theorem of Roberts and
Srinivas applies and modules of finite projective dimension with given intersection
multiplicities are shown to exist.
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Let R be a graded ring for which Ry is a field and R is finitely generated over Ry
by R;. All graded rings will be assumed to have these properties. In this situation
one can define a projective scheme X = Proj(R). We assume that X is a smooth
variety.

Before proceeding, we recall some facts about Chow groups and K-groups that
we will need.

2.1. Chow groups. For any scheme X of finite type over a regular scheme, the
Chow group CH,(X) is defined to be the group of cycles modulo rational equiva-
lence. There are two cases of special interest here, and we describe these in more
detail.

If A is a Noetherian ring, then for each integer ¢ > 0, we let Z;(A) be the free
abelian group on the prime ideals p of A such that the dimension of A/p is equal to
i. For each prime ideal q with dim(A4/q) =4+ 1 and for each f # 0 in A/q, define

div(f, A/a) =Y length(4/(a, /))p[A/p),

where the sum is taken over all prime ideals p such that dim(A/p) = ¢ (this sum
is finite). The component of dimension i of the Chow group, CH;(A), is then the
quotient of Z;(A) by the subgroup generated by all div(f, A/q) for all such q and
I
If A has dimension d, then C' Hy(A) is the free abelian group on the components
of Spec(A) of dimension d. If A is an integrally closed domain of dimension d, then
CHy_1(A) is isomorphis to the ideal class group of A.
The other case of interest is where R is a graded ring over a field and X is the
associated projective scheme. In this case the description is similar except for two
major differences:

(1) Z;(X) is generated by graded prime ideals p with dim(R/p) = i+1 (so that
the projective subscheme defined by R/p has dimension 7).

(2) The relation of rational equivalence is defined by setting div(f, R/q) = 0,
where q is a graded prime ideal and f is a quotient of two homogeneous poly-
nomials of the same degree. Thus f = g/h, and div(f, R/q) = div(g, R/q) —
div(h, R/q) is zero in CH,(X) (but neither div(g, R/q) nor div(h, R/q) is
necessarily zero in CH,(X)).

Note that in the case in which R is graded and X = Proj(R) there is a map
from CH;(X) to CH;11(A), where A is the localization of R at its graded maximal
ideal, induced by the inclusion of the set of graded prime ideals into the set of all
prime ideals of A.

For X = Proj(R) there is an important operator called the hyperplane section
on CH,(X); we denote this operator h. It is defined as the map from CH;(X) to
CH,;_1(X) that sends a generator [R/p] to div(R/p, z), where x is any homogeneous
element of R of degree 1 that is not in p. It is easy to check that this definition is
well defined up to rational equivalence.

If X is smooth, there is an intersection pairing defined on the Chow group of
X, making the Chow group a ring. This pairing can be defined, for example, using
Serre’s definition given in the Introduction. If d is the dimension of X and « and 3
are elements of C H;(X) and CHy_;(X) respectively, we let « - 8 denote the degree
of the intersection product of a and g.
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2.2. K-groups. We will only be concerned with Ky, the Grothendieck group of
objects where relations are given by short exact sequences. There are two main
cases. If X is a smooth scheme, we consider the group Ky(X), which is the free
abelian group on the set of coherent sheaves with relations given by short exact
sequences. If X is not smooth, Ko(X) will denote the K-group where the objects
are perfect complexes. A perfect complex is a complex that is quasi-isomorphic to
a bounded complex of locally free modules. In this case, the relations are of two
types:
(1) 1t
0O=F - F—>F'"=0

is a short exact sequence of complexes (that is, the sequence is exact in
each degree), then [F] = [F'] + [F"].
(2) If f: F — @ is a quasi-isomorphism, then [F] = [G].
If X is smooth, then this definition agrees with the other one, using the fact that
every coherent sheaf has a finite locally free resolution.
We now state a version of the existence theorem of Roberts and Srinivas.

Theorem 1. Let R be a graded ring such that X = Proj(R) is smooth of dimen-
sion d. Let A be the localization of R at the graded mazimal ideal; assume that A
is Cohen-Macaulay. Let n be an element of CH;(X) in the kernel of the hyperplane
section. Then for every graded prime ideal p such that W = Proj(R/p) has dimen-
sion d — i, there is an A-module of finite length and finite projective dimension and
a positive integer n such that

X(M, AfpA) = n(n - [W]).

In many cases the integer n can be taken to be 1, so that x(M, R/p) is exactly
7 - [W]. If A is not Cohen-Macaulay, one can still define a perfect complex with
these properties. In fact, in general the construction produces a complex, and in
the Cohen-Macaulay case a module can be constructed from this complex.

In what follows, we will let R denote a graded ring and let A denote the local-
ization of R at its graded maximal ideal.

To conclude this section we describe the rings and cycles under consideration in
the examples mentioned in the introduction. We use the result of Kurano [7] that
states that if R is a graded ring as above, the Chow group of A is isomorphic to
CH,.(X)/hCH,(X), where h is the hyperplane section.

In most of the examples we consider, the cycles are defined by schemes and
subschemes of the form P™ x P" for various m and n, so we describe the Chow
ring of these schemes in detail. The graded ring R corresponding to P x P™ by
the Segre embedding is the quotient k[X;;]/1>(X;;), where ¢ runs from 1 to m, j
runs from 1 to n, and I,(Xj;) is the ideal of 2 by 2 minors of the m by n matrix
(Xi;). The Chow ring of P™ x P™ is isomorphic to Z[a, b]/(a™*!,b" 1) (see Kurano
[7]). Here a is the cycle of codimension 1 given by H x P™ and b is the cycle
given by P x K, where H and K are hyperplanes in P and P™ respectively. The
corresponding ideals of R are defined by the entries in one column and one row of
the matrix (X;;). The hyperplane in the Chow group of Proj(R) is defined by one
element X;;, and this ideal is the intersection of the ideals of the ideals defined by
the ith row and the jth column, so under our identifications this gives the element
a + b in the Chow group. The class of a point is represented by the class a™b".
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In this situation it is very easy to compute the kernel of the operator given by
intersection with the hyperplane. Since the hyperplane is a + b, an element in the
Chow group will be in the kernel if and only if each homogeneous component of
codimension i is an integer multiple of an element of the form

a' —a"th 4+ a2 — - 4 (1)

where i > m and i > n (some of the terms in this sum may be zero).
We now describe the examples in detail.

2.3. The example of Dutta, Hochster, and McLaughlin. In this case R =
kK[X,Y,Z,W]/(XW —YZ), so X =P x P!. We choose the cycle n to a — b, so
that the intersection with a is a®> — ab = —ab, and the degree of the intersection
is —1. In terms of the ring R, the cycle n can be chosen to be [Proj(R/(X,Y))] —
[Proj(R/(X, Z))] and the intersection with [Proj(R/(X,Y’))] is —1. Thus, by the
theorem, there is a module of finite length and finite projective dimension M with
X(M,R/(X,Z)) = —n for some positive integer n; in fact, n can be taken to be 1
in this case.

2.4. The example of Miller and Singh. In this case the ring R over which the
example is constructed is k[X,Y, Z,U,V,W]/(XU + YV + ZW). The projective
scheme X is a quadric and the prime p is the ideal defined by (X,Y, Z). The cycle
n is [Proj(R/(U,V,W))] — [Proj(R/(U,V, Z))]. (The example of a Gorenstein ring
for which Dutta multiplicity and ordinary multiplicity do not coincide is a finite
extension of this ring R.)

2.5. The example of a Gorenstein ring with nontrivial Todd class of Ku-
rano. In [7], Kurano showed that the ring obtained by dividing a polynomial ring
in nine variables corresponding to the entries of a 3 by 3 matrix by the ideal of 2
by 2 minors of the matrix is a Gorenstein ring of dimension 5 such that the com-
ponent of dimension 3 of the Todd class is nonzero. This gave a candidate for a
Gorenstein ring where Dutta and ordinary multiplicity do not coincide. However,
it was not known how of construct a module for which the two multiplicities are
different. The technique of Roberts and Srinivas [12] shows that a module with
these properties does exist in this case. Here X = P? x P? and the Chow ring of X
is Z[a,b]/(a®,b%). The cycle 5 is a® —ab+ b?. Kurano showed that if M is a module
of finite length and finite projective dimension corresponding to n as in Theorem
1, the Dutta multiplicities and ordinary multiplicities of M are not equal.

2.6. A cubic surface. The component of the Chow group of a cubic surface of
dimension 1 is known by classical results to have rank 7 (see for instance Hartshorne
[6]). and it follows from this and from Theorem 1 that if R is the coordinate ring
of a cubic surface, there are numerous examples of modules of finite length and
finite projective dimension with different intersection multiplicities for various prime
ideals p for which R/p has dimension 2. We do not pursue this here, but we do show
that the existence of nontrivial examples in the case of k[X,Y, Z, W]/(XZ - YW)
implies at least that nontrivial examples exist in this case also. We assume that the
field k is algebraically closed. Let F(X,Y,Z, W) be a homogeneous cubic equation
that defines a smooth surface in P2. Then it is known that the surface contains a
line (in fact, it contains 27 of them), so there are linear forms [ and I such that the
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line defined by [; and [- is contained in S, which implies that there are quadratic
forms ¢; and ¢ such that
F=lLaq +g.

If the four elements did not generate an ideal primary to the maximal ideal,
by the Leibniz rule a nonmaximal prime would contain all the partial deriva-
tives of F, and S would not be smooth. Thus we can map the generators of
KXY, ZW]/(XZ-YW) to li,q1,—I2,q» and taking the tensor product over this
map will transform whatever example we had over k[X,Y,Z, W]/(XZ — YW) to
one over k[X,Y,Z W]/(F(X,Y,X,W)). Note that we can do this for any line on
the surface, and we get examples so that the intersection with any line is nonzero.

3. OUTLINE OF THE CONSTRUCTION

We outline the main steps in the construction. We recall that we are starting
with a cycle n in the Chow group of X with zero intersection with the hyperplane
and ending with a module of finite length and finite projective dimension with the
same intersection with a given module of the form R/p.

There are four steps to the construction. They are:

(1) Finding an element in the K-group of X that corresponds to the element
of the Chow group. Since an element of the Chow group will be a linear
combination of elements of the form [Proj(R/p)], where p is a graded prime
ideal of R, it might look reasonable to take the same combination of the
classes of the coherent sheaves defined by the R/p in Ky(X). However, this
will not work in general; the main problem is that the element of Ko(X)
defined in this manner will not be in the kernel of intersection with the
hyperplane in Ko(X) (we give an example below). The way to proceed in
general is to use the inverse of the Riemann-Roch map, which defines an
isomorphism Ky(X)g — CH.(X)g. In special cases there are also simpler
methods that can be used; we discuss one of these below.

(2) Taking appropriate hyperplanes and representing the element as zero in the
K-group.

Essentially, in this step we find a concrete representation of the relations
of the intersection of our class in the K-group of X with the hyperplane
that show that it is equal to zero. This will consist of a set of short exact
sequences such that when the corresponding relations in the K-group are
taken all terms cancel.

(3) Lifting the short exact sequences to perfect complexes by taking partial
resolutions and lifting.

This is the most difficult step and will be explained in full in a later
section. The main idea is a sfollows. The relations from step 2 are in X,
and involve modules that define coherent sheaves that have finite locally free
resolutions (since X is smooth) but are not of finite projective dimension.
These are approximated by maps of perfect complexes that agree with the
original ones up to complexes with homology of finite length.

(4) Going from a perfect complex to a module.

This process was first developed by Foxby [2] and was also explained in
detail in Roberts and Srinivas [12]. In this paper we do not carry out this
step.

The remainder of the paper is devoted to explaining and working out these steps.
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4. CONSTRUCTING AN ELEMENT ON THE K-GROUP OF X

As outlined above, the first step of the construction is to start with a cycle on X
that is in the kernel of the hyperplane in the Chow group of X and to use that the
Riemann-Roch map is an isomorphism between K (X)g and CH (X)q to find a cor-
responding element in Ko(X). As mentioned above, replacing a linear combination
of integral subschemes by the corresponding combination of coherent sheaves does
not work in general. One property that is necessary but is not necessarily satisfied
by this element of Ky(X) is that it must be in the kernel of the hyperplane. The
inverse image under the Riemann-Roch map will be in the kernel of the hyperplane
section and will agree with this element up to components of lower dimension.

We will use the notation [R/p] for the class of the coherent sheaf defined by R/p
in Ko(X) and denote the corresponding class in CH,(X) by [Proj(R/p)].

In general the Riemann-Roch map may be hard to compute, but in our cases
all the cycles are equal, as schemes, to products of the form P x P", and the
image under the Riemann-Roch map is known in this case. In fact, if we denote the
hyperplane in the Chow group of the factors to be a and b respectively as above,
then the image of the class of P™ x P" is Q(a)™1Q(b)"*!, where

X
QN = 1=

(For a proof of this equality see Kurano [7].) In the examples we use this formula
for various subschemes.
We work out our examples.

4.1. The example fo Dutta, Hochster, and MacLaughlin. Here the class
[Proj(R/(X,Y))] — [Proj(R/(X, Z))] is in the kernel of the hyperplane and is in
fact the image under the Riemann-Roch map of the class [R/(X,Y)] — [R/(Y, 2Z)]
of Ko(X). The intersection of this element of Ky(X) with the hyperplane can
be computed by intersecting the first term with the element Z and the second
with YV (since both of these elements have degree one), giving [(R/(X,Y, Z))] —
[(R/(X,Z,Y))], which is clearly zero.

4.2. The Miller-Singh example. In this example we can also take the obvious
element [j(R/(U,V,W))]—[(R/(U,V, Z))]; intersection with Z in the first term and
W in the second shows that the intersection with the hyperplane in Ko (X) is zero.

4.3. The Kurano example. Here X = P2 x P? and the cycle is a®> — ab + b%. In
this case the obvious choice of cycle in Ko(X) does not work, and we work out this
example in detail. Let R = k[X;]/I> where the X;; are the entries of the matrix

X1 X2 X3
Xo1 Xoo Xos
Xz Xzp X33

and I is the ideal generated by the 2 by 2 minors of this matrix. The element a? of
the Chow group corresponds to the ideal generated by the entries of two columns
of the matrix, which we take to be the first two. The subscheme corresponding
to this quotient is Proj(k[X13, Xo3, X33]), which is P2. The element b? is similar
and is defined by the ideal generated by the first two rows. The element ab is
defined by the ideal of entries in the first row and first column; the subscheme is
PI‘Oj(k[ng, X23, X32, X33]/(X22X33 — X32X23)], which is ]P)l X ]P)l.
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If we attempt to intersect the element of the K-group defined by the correspond-
ing combination of coherent sheaves, the best strategy is to take the hyperplanes
defined by X3 for a?, X for ab, and X3, for b*. This gives

(k[X23, X33]] — [k[X23, X32, X33]/(X32X23)]] + [k[X32, X33]].

This expression is not zero in the K-group; there is a short exact sequence
0 — k[Xa3, X33](—1) =3 k[Xo3, X3y, X33]/(X32X23)] = k[X32, X33] = 0,

but the difference [k[X23, X33](—1)] — [k[X2s3, X33]] = [k[X33]] is not zero in Ky (X),
so the above expression is not zero.
One way around this is to use the element

[k[X23, X33](—1)] — [k[X23, X32, X33]/ (X352 X23)]] + [k[X32, X33]]-

This has all the necessary properties; in particular, the above short exact sequence
shows that the intersection with the hyperplane is zero.

In general, the solution to this problem is not so simple, and we briefly outline
how the general procedure works in this case. To keep notation simple, we denote
the the coherent sheaf corresponding to the cycle a’b’ by A‘BJ. We denote the
Riemann-Roch map by 7.

We recall that the Riemann-Roch map sends the class of P xP" to Q(a)™ T Q(b)"+!.
Using that A2 is P2, AB is P! x P* and so on, we obtain

7(A%) = a®(1 + ;b +b?),7(AB) = ab(1 + a)(1 + b),

7(B?) = b*(1 + ga +a?),7(A’B) = a®b(1 + ),
7(AB?) = ab*(1 + a),and 7(A%B?) = a?b*.

Using these expressions, it is not difficult to compute that the element
. , 1. . .
A? - AB+ B* - i(AzB + AB?)

maps to a® — ab + b? and can be used in the construction.
We note that in this notation the element derived previously is

A?(=1) - AB+ B* = A> - AB + B*> — A’B.

This gives a different element of the K group, but both have the correct components
in dimension 2 and are in the kernel of the hyperplane, so either one can be used.

5. TRANSFORMING THE INTERSECTION WITH THE HYPERPLANE INTO A
PERFECT COMPLEX.

We assume now that we have an element 3 of Ky(X) whose intersection with
the hyperplane is zero. We can write 8 in the form

B = Z ai[R/pi(n:)],

for some graded prime ideals p; and some rational numbers a; and integers n;.

The intersection of # with the hyperplane in Ky (X) is taken by choosing an ele-
ment y; of degree 1 that is not in p; for each 7 and taking the element > a;[R/ (i, yi)]-
In this section we show how to replace R/(p;,y;) by a perfect complex that reduces
to R/(ps,y;) in U = Spec(R) — {m}. To simplify notation, we drop the subscripts
and denote p; by p and y; by y.
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The reason this is not a simple process is that R/p; will usually not have fi-
nite projective dimension. The main technique is suggested by a construction of
Thomason and Trobaugh [14] and involves taking a partial resolution of R/p and
using maps defined on the tensor product of this resolution with a truncated Koszul
complex. We now explain this construction in detail.

Let z1,...,x,, be a sequence of homogeneous elements in m and let K =
K(x1,...,2m) be the Koszul complex on these elements. We define the complex
KT = KT (x1,...,2y) by letting Kj = Kiq1ifi >0and K; =0if i < 0. In
other words, we remove K and shift the other degrees by one. Let E be a graded
truncated resolution of R/p; that is, we have a resolution F of R/p be graded free
R-modules and a positive integer k so that E; = F; for i <k and E; =0 for i > k.
The boundary maps in K+ and E are induced by those of K and F respectively.

Lemma 1. Let E and F be complezes. Suppose we have, for each subset I = {1 <
i <idp < <igp <m}of{1,2,...,m}, a map ¢r : E — F[k] such that for each

I we have
k

drpor = Z(—l)jﬂ% b1—giy + (1) grdp.
j=1
Assume also that ¢g = 0. Then the ¢ define a map of complexes f: KT QFE — F.
More precisely, for each I = {1 < iy < iz < --- < i, < m} let by be the standard
basis element of K,‘ctl. Then, if e € Ey, we let

frre—1(br ® e) = ¢y(e).

Proof. The proof is a matter of unraveling the complex K™ ® E and checking
the conditions for a map to be a map of complexes. Let by ® e be as above. We
have

fn+k_2dK+®E(b[ & e) =dg+ (b[) + (—l)kflbj ® dE(e)
= farn—20 (-1 br—fey @ e+ (1) by @ dp(e)

= (1) Sr—z,,3(€) + (=1)* o1 (di(e))
=dp(d1(e)) = dr(frntr—1(br ®@e€)).

We note that if I = {i} has one element, the condition states that ds¢; = ¢;dg,
which states that ¢; is a map of complexes.

To motivate the construction, we note first that if z1,...,z,, generate an m-
primary ideal, then the Koszul complex on 1, ...,y is exact on U = Spec(R) —
{m}, and this implies that the map from K+ to R defined by the boundary map
from K; to Ky = R is a quasi-isomorphism on U. Thus we can tensor this map
with E and obtain a map ¢ : K+ ® E — FE that is a quasi-isomorphism on U. (We
could also define this map using the above Lemma by letting ¢; = multiplication
by x; and letting ¢; = 0 for || > 1.)

The aim of this section is to represent the quotient R/(p,y) by a perfect complex.
The first approximation to R/p is the complex FE, its graded truncated resolution.
This complex has nonzero homology in two degrees, 0 and k. If we could split E
into a direct sum of two complexes, each with homology in one degree, we could
take the map y in degree 0 and the identity in degree k, and the associated mapping
cone would solve the problem. Usually, however, that will not be possible. What
we do instead is to split the above map from K ® E to E; that is, we show that
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it is a sum of two maps, one of which is zero in low degrees and the other in high
degrees and use this decomposition to construct the desired perfect complex. We
denote this natural map from KT ® E to E by ®.

We assume that E is a graded resolution of R/p truncated in degree k, and that
Z1,..., Ty is a sequence of homogeneous elements of R of positive degree that gen-
erate an m-primary ideal of R. We note that since Proj(R) is smooth, (R/p)(,) has
finite projective dimension over the ring R(,. (Here, following standard notation,
R(,) denotes the ring of homogeneous elements of degree zero in the localization
R..)

In the next Lemma we denote E(—n) the complex E with the grading on each
module in the complex shifted by —n.

Lemma 2. Let E be a projective resolution of R/p truncated at k for some integer
k. Let x© be a homogeneous element of R of positive degree, and let © be an integer
greater than or equal to the projective dimension of (R/p) ) and less than k. Then
there exists an integer n such that multiplication by ™ from E(—n) to E can be
written as a sum ¢' + ¢", where

(1) ¢ and ¢" are maps of complexes that are maps of graded modules in each
degree,

(2) ¢} =0 for j <i and ¢' = multiplication by =" for j > i,

(3) & =0 for j > i and ¢" = multiplication by z" for j <.

Proof. Since i is greater than or equal to the projective dimension of (R/p)(,),
and E(,) is a projective resolution of (R/p)(,) up to a degree k greater than i,
(E(z))i splits into a direct sum Im(d;y1),) © M, where d denotes the boundary
map on E and M is a submodule that maps injectively into (E(;));—1. Taking
the projections onto Im(d;41)(,) and M respectively and clearing denominators,
we obtain a decomposition of the map given by multiplication by z™ on E; into a
sum f'+ f", where d;f' =0 and f"d;+1 = 0. We now define ¢’ and ¢” by letting
¢ = a" for j >, f' for j =i, and 0 for j < i and letting ¢ = 0 for j >4, f" for
j =1, and z" for j < i.

We next combine the maps given by Lemma 2 to split the natural map ® from
Kt®EtoE.

Proposition 1. Let E be a graded resolution truncated in degree k as above. Let
Z1,...Zy, be a set of homogeneous elements of R of positive degree, and let i be
an integer such that i is greater than the projective dimension of E,;) for each
j and k > i+ m. Then there is a positive integer n such that the natural map
®: Kt(al,...,2") @ E — E splits into a sum ® = &' + ®", where

(1) @5 =0 for j <i and ®; = ®; for j >i+m,

(2) @7 =0 for j>i+m and ] = @; for j <i.

Proof. We construct ® and ®" by constructing maps ¢} and ¢7 as in Lemma 1
using induction on the number of elements of I, which we denote |I|. At each step
in the induction we may change the integer n. We begin with the maps ¢ and ¢/
given by Lemma 2. Then, since ¢} is either 0 or x; except in degree i, we have that
T,¢; — x;¢,, has a nonzero component only in degree i, and similarly for ¢".

We now construct, for each I = {i1 < --- <.} of {i1,..., iy}, maps ¢ and ¢
from E to E[k — 1] such that each map is zero except in degree i and, denoting the
components of ¢} and ¢7 in degree i by f; and f] respectively, we have
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fidg =0 and def; = (=1 i fi_gy,
and similarly for f;. Lemma2 says that we have maps satisfying these properties
for r = 1. Fix r, and assume that we have such maps for all smaller values of r.
We then have

e (Vi fi_i ) = O (Viaydpfi_, )
= Z Z(_]‘)j+l$ij$ilf}—{ij,il} =0,

since each term appears twice, with opposite signs. Hence, since E is exact in degree
i+r—2, we can lift the map ) (—1)/x, f}f{ij} and find a map satisfying the second
of the required conditions. To satisfy the first condition, we localize by inverting
Zi, Tiy - - - i, and considering the part of degree zero in the graded localization.
Since ¢ + r — 1 is greated than the projective dimension of B, wiyai,) and ¢ +r
is smaller than k, the degree where the complex is truncated, the complex is split
exact at this point. Therefore we can find a map satisfying also f;dg = 0 by using
the splitting and clearing denominators. We assume that we have done this for each
set I with |I| = 7, and that m is sufficiently large so that it suffices to multiply by
(ziy - x;,)™ to define the map f} for all I. If m > 1 we replace the maps ¢} ;.
by CU?1171 e :U?Zil 21@ for s <r.

We let ¢ = —¢) for each I. The resulting set of maps will now satisfy the
required properties.

We can now define the complex we want.

Definition 1. We let C(p,y) denote the mapping cone of the map ® + y®" from
Kt ® E to E defined above.

It is clear that C(p,y) is a perfect complex.

Lemma 3. There is a map from C(p,y) to R/(p,y) that is a quasi-isomorphism
onU.

Proof. The complex C(p,y) in degree 0 is just Ep, and its homology is the
cokernel under the sum of the images of the map from E; — FEy and that from
KT ® Ey — Ey. The cokernel of the first map is of course R/p and the image of
the second map in this cokernel is the ideal generated by the yx;, which is equal to
the ideal generated by y on U.

The homology in the rest of C(p,y) is determined by that in degree k in E.
Since the natural map is a quasi-isomorphism on U and the maps in homology in
degrees > k are the same as those induced by the natural map, the homology of the
mapping cone is zero in these degrees on U. Hence our map is a quasi-isomorphism
on U.

6. BUILDING THE COMPLEX FROM THE PIECES

As we have discussed, the fact that the intersection of our element of Ky(X) with
the hyperplane is zero implies that the modules R/(p;,y;) above fit into short exact
sequences such that the corresponding alternating sum of terms that occur in these
sequences is zero. The final step in the construction of the complex is to replace
the maps by maps from complexes tensored with truncated Koszul complexes in
a manner similar to that in the previous section and replace the exact sequences
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by appropriate mapping cones. We do not work out this formalism in general but
describe two examples in detail.

6.1. The example on k[[X,Y, Z, W]]/(XW —Y Z). In this case we have two ideals
p1 = (X,Y) and p2 = (X, Z) and homogeneous elements y; = Z and y» =Y such
that
R/(playl) = R/(X7Y7 Z) = R/(X7 Z, Y) = R/(P2,y2)-

Thus C(p1,y1) and C(p2,y2) are isomorphic on U, and we can find a map from
KT ®C(p1,y1) to C(p2,y2) that is a quasi-isomorphism on U for Kt the truncated
Koszul complex on some sequence of homogeneous elements of m that generate an
m-primary ideal. (A proof of this fact can be found in Thomason-Trobaugh [14].
The mapping cone of this map will have homology of finite length and will satisfy
the desired conditions.

In the last section of the paper we describe a much more efficient method to
construct the complex in this case.

6.2. The example of Kurano. We also describe the case suggested by Kurano.
In this case the fact that the intersection with the hyperplane is zero is expressed
by a short exact sequence involving the three terms. As described earlier, we let
p1 be the ideal generated by the first two columns of the matrix (Xj;;), p2 the ideal
generated by the first row and the first column, and ps the ideal generated by the
first two columns. The element of Ko(X) is [R/p1(—1)] — [R/p2] + [R/p3]. We let
y1 = X13,y2 = Xo2, and y3 = X31. We then have a short exact sequence

0= R/(p1,y1)(—=1) = R/(p2,y2) = R/(p3,y3) = 0.

This means that there is a quasi-isomorphism 3 from the mapping cone of « to
R/(ps,ys3). We let @ be a map from K+ ® C(p1,y1) to C(p2,y2) that restricts to
« on U. We then let 3 be a map from the cone on @ tensored with an appropriate
truncated Koszul complex to C(ps,ys) that restricts to 8 on U. The mapping cone
of B will then have the right intersection properties.

7. PROOF THAT THE CONSTRUCTION GIVES THE CORRECT RESULT.

In this section we show that the above construction gives a complex with the
correct intersection properties. First we recall the process used in the proof in
Roberts and Srinivas [12].

Let « be an element of Ko(X) in the kernel of the hyperplane section. The
first step in the proof in [12] is to push this element forward into Ky(Y"), where
Y = Proj(R[T]) with T an indeterminate of degree 1 and where X is embedded
into Y as Proj(R[T]/(T)). A computation shows that this element of Ko(Y") goes
to zero on Y — {p}, where p is the point defined by the maximal ideal of R in R[T],
and the theorem of Thomason and Trobaugh [14] then implies that it is equal in
Ky(Y) to the class of a complex supported at p. The final step is to restrict this
element to Ko(A), where A is the localization of R at the graded maximal ideal.
To prove that the complex we have constructed is correct, we have to show that it
is the restriction to Spec(A) of a complex that is supported at p and whose class in
the K-group of Y is the same as the pushforward of the original element of Ky(X).

We prove this result with one further assumption, that in x1, ...,z we have m
greater than the dimension of R. We then have the following result:



12 GREG PIEPMEYER AND PAUL ROBERTS

Lemma 4. Let E be a perfect complex on'Y. Then, if KT = Kt (xq1,...,2n),
where the x; are homogeneous elements of R and m > dim(R), we have the equality
[KT ®@g E] = [E] in the K-group of Y.

Proof. We show that if K is the whole Koszul complex on zy,..., %, then
K ® F is the class of zero, which is equivalent to the statement of the Lemma. It
suffices to show that the class of K @ g R[T] itself is zero. To see this, we note that
K ®g R[T] is built up out of copies of Oy (n) for various n, and its class in the
K-group of Y depends only on the degrees of the elements z;. Since m > dimR, we
can choose m homogeneous elements of R[T] of the same degrees that generate an
ideal primary to the irrelevant maximal ideal of R[T']. The support of this complex
in Y is empty, so its class is clearly zero.

The element we begin with in the general construction is a combination of classes
of the form [R/p;(n;)]. The image of this class in the K-group of Y is the class of
R[T]/(pi, T)(n;). We assume for simplicity of notation that n; = 0; this does not
affect the proof. The main part of the proof here is to show that there is a complex
with support at p that defines the same element in the K-group and restricts in the
K group of R to the complex C(p;,y;) defined in the previous sections. We note (a
fact already used) that any complex with support contained in (7') is perfect on Y,
since Proj(R[T]/T = Proj(R) is smooth and the embedding of X in Y is a regular
embedding.

In the remainder of this section we use the notation £ and Kt to denote the
extensions E ®g R[T] and KT @g R[T].

The procedure we use involves defining complexes on Y that reduce to the given
complex when T is set equal to 1. We first note that the mapping cone of the map
T times the natural map from K+ ® E to E is equal to the mapping cone of the
map T®" + y;®' in the K-group, since they are mapping cones on maps between
the same two complexes (with the same gradings). We denote these complexes
C(p;,T,T) and C(p;, T,y;) respectively. Note that C(p;,T,y;) becomes C(p;,y;) if
T is set equal to 1.

Lemma 5. For each ¢ we can find a perfect complex QQ; and maps v; : Q; —
C(p;,T,T) and d; : Q; — C(pi, T, y;) such that
(1) Q; is supported at TR[T.
(2) The mapping cones on vy; and J; have homology supported at p except in
degree zero.
(3) We have [R[T)/(pi, T)] = [Cpi, T,T) — [Qi] in Ko(Y).
(4) There is a map from the mapping cone on §; to R[T]/(pi,y:) that is an
isomorphism up to homology supported at {p}.

Proof. We first examine the homology of the mapping cones more closely.
The complex E has homology Hy in degree 0 and Hj, in degree k; the rest of the
homology is zero. Let F' be the mapping cone of T times the natural map from
K™ to R[T]. Let ¢ be the embedding of Hy into E. Then, since F is a complex of
free graded modules, ¢ induces maps from F' ® Hy, to C(p;, T,T) and to C(p;, T, y;)
that induce isomorphisms in homology in degrees > k. We denote these maps 1/~1

Let K be the Koszul complex on x1,...,%,. Then F is identical to K except
that the map from K; to Ky is defined by z1,...,z, while that from F; to Fj
is defined by Ta1,...,Tx,. Consider the submodule (z1, ...,z )Hy of Fy @ Hy.
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The image if this submodule in homology is annihilated by 7', so there is a perfect
complex (); and a map from (); to F ® Hj that induces an isomorphism from
the homology of Q; to (z1,...,Zm)H/(z1,...,2m)TH,. We let ; and J; be the
compositions
and

Qi - F® H]g — C(pz,T, yz)

respectively.

It is clear that @Q; is supported at TR[T']. To prove the second condition, we note
that if we define the map from F to K by taking multiplication by 7" in degrees
> 1 and the identity in degree zero, it induces an isomorphism in homology except
in degree zero, where it induces multiplication by T'. The kernel of multiplication
by T is the quotient (z1,...,Z,)Hi/(21,...,2,)T Hy, which is quasi-isomorphic
to ;. Hence the homology of the mapping cones of v; and d; in degrees > m are
isomorphic to the homology of K ® Hy. Thus the homology of these mapping cones
is supported at {p} except in degree 0, proving (2).

To prove (3), we note first that , by an argument similar to that of the previous
paragraph, there is a map from C(p;,T,T) to F ® Hyp that induces an isomorphism
in homology in degrees < m, and there is a map from F' ® Hy to K ® Hy that is an
isomorphism in homology except in degree zero, where the cokernel is Ho/T Hy =
R[T]/(pi,T). Furthermore, by Lemma 4, the classes of K ® Hy and K ® Hj, are
zero in Ky(Y'). Hence we have

[C(pi, T,T)] = [F @ Ho] + [F @ Hy[K]]
= [K ® Ho] + [R/(pi, T)] + [K @ Hy[k]] + [Qi]
= [R/(p;, T)] + [Qi].

This proves part (3). Part (4) follows from the above statements and an argument
similar to that in Lemma 3.

We now complete the proof. Let C'(d;) denote the mapping cone of ¢;. From the
above Lemma, each C(6;) is a resolution of R/(p;,y;) on U. Hence, as we did for
the C'(p;,y:), we can find maps from truncated Koszul complexes tensored with the
C(d;) so that the result of taking the associated mapping cones, which we denote
C, is supported at p. Since the complex C is built from the C(J;) by the same
procedure as the complex in section 6 was built from the C(p;,y;), to deduce that
C defines the correct class in Ko(Y), it suffices to show that

(1) C(6;) becomes quasi-isomorphic to C(p;,y;) after setting T =1, and
(2) [C(6:)] = [R/(pi, T)] in Ko(Y).

To see the first statement, we note first that C(p;(T
T is set equal to 1. Since [C(d;)] = [C(pi(T,y:))] —
TR[T), this proves (1).

The second statement follows from the equalities

[C(6:)] = [C(pi, T, y:)] — [Qi]
=[C(p;, T, T)] = [Qi] = [R/(p:s, T)]

,¥i)) becomes C'(p;,y;) when
[Q:] and Q; is supported at

by Lemma 5.
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8. EXAMPLE: THE CASE OF k[X,Y,Z, W|/(XW —YZ) WORKED OUT IN DETAIL.

While the previous sections described a general method for constructing com-
plexes, the results are unwieldy and not as efficient as they might be. In this section
we describe a better procedure in the case where R = k[X,Y, Z, W]/(XW —-Y Z)
that, while following the same general idea, gives a simpler result.

In this case the element of the K-group that we begin with is [R/(X,Y)] —
[R/(X,Z)]. The general method would be to take truncated resolutions of each of
these terms and then to takethe cones on natural maps from their tensor products
with truncated Koszul complexes that can be split into sums. Finally, we would take
another map on the complexes tensored with more truncated Koszul complexes to
give the complex we want. Instead, we take another complex that is close to being
a resolution but, like the truncated resolution, is not exact in two places; however,
this complex will have support strictly smaller than that of the simply truncated
resolution. A consequence of the fact that the support is smaller is that we can use
Koszul complexes on fewer elements, leading to a more manageable result. We now
work out the details.

To begin, we let Ey denote the complex

7z -y w
X X -z [X Y]
0>R"—> " R? — R? —

R—0

and let E; denote the complex

Y -z W
X | X Y| [X Z]
0—>R - — R - R*" = ~R-0.

We describe the computations on Ey; those on Ez are similar. The homology of
Ey is R/(X,Y) in degree 0 and R/(X, Z) in degree 2. Let K+ denote the truncated
Koszul complex on W,Y + Z; note that these elements generate the maximal ideal
in both R/(X,Y) and R/(X, Z).

The next step is to split multiplication by W and by Y + Z into a sum satisfying
the properties of Lemma 2. We recall that the splitting in general is begun by
decomposing multiplication by z7 on E; into a sum for certain n and ¢. In this case
we take i = 1 and n = 1. The splitting of multiplication by W is done using the

decomposition
w o | _ | W 0 + 0 0
0 Wi | -2 0 Z W |-

This decomposes multiplication by W on Ey into the sum of the two maps

0 R R2 R 0
[ A A
0 R )Z(] RE_XY EVZT2[X Y] R 0

and
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Similarly, the decomposition

Y+7 0 Y —-w + z W
0 Y+Z | | - X Z X Y
gives a decomposition of multiplication by Y + Z into a sum of two maps. We
denote the two maps on Ey decomposing multiplication by W by ¢}, and ¢%;,, and
those for Y + Z by ¢y, ; and ¢y, 5.

Since the Koszul complex we are using is on only two elements, there is only
one more step in constructing the maps from K+ ® E to E, and that is to lift the
differences

(Y + Z)dhy = Wy, and (Y + Z)gly — W, 1.

We have
(Y+Z)¢'VV—W¢'Y+Z=(Y+Z){_WZ 8}—W[_YX ‘ZW]
Jzw o ow? ] [-vy wl[0 o0
-z —wz |7 x —z||z w|

Thus the map from E to E[1] inserted to make the maps from K™ ® E to E

compatible is given by the matrix from E; to E, and zero elsewhere.

0 O
zZ W
Note that the condition that dg¢), that arose in the proof of Proposition 1 holds
in this case. The corresponding map for ¢ will, as in the general construction, be

. . . . 0 0
given by the negative of this matrix, or [ 7w ] .
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We now, denoting the two maps from K+ ® Ey to Ey by ®) and ., take the
mapping cone of the sum &4, +Z®%.. Thisis the representation of R/(X,Y)/ZR/(X,Y)
by a perfect complex. The result is the mapping cone of

Z 0 -w 0
X 0 0 W[y W 0 0 -w 0
-W 0 Z Y+Z 0 X —Z 0 0 0 -W
Y + 2 0 X 0 Y+Z|| o 0 -Y W Y+2Z 0
A 0 o Y -wllo 0 X -z 0 Y +Z
-X 0 0 -X A 00 0 0 -X —-Y
0—R—R’0RP———— > R*@R>——R*$R——
Y + 2 0 W 0 0 0
lo [Y+Z woo 0] “ 0 Y+Z 0 W Z-2Z2 W-—2ZW
0 R R2 RZ
A -Y w
X D'
X Y 0 0 -—-W
0 0 X Y Y+2Z
—R*®R R 0
Y + 72 -W + ZW w 0 0 5
X+ XZ Z+YZ —Z+Z% ZW OH Vz+2> 2w
]
R? R 0

(In this diagram we identify the modules R* @ R and R? at the right of the top row
with those on the left of the bottom row.)

The mapping cone of the above map of complexes is then the complex C(p1,y1) =
C(X,Y), Z) of the general construction; while the complex Ey that we used here
is not exactly the same as the truncated complexes in the general case, the rest
of the connstruction is identical. The complex C(pz.y2) = C((X, Z),Y) is defined
similarly as the mapping cone of ®), + Y ®7; in fact, by the symmetry of the
situation it suffices to interchange Y and Z in C((X,Y), Z).

The final step is to take the mapping cone of a map from Kt ® Ez to Ey for
a suitable truncated Koszul complex K*. In this case, since both C((X,Y), Z)
and C((X, Z),Y) have support in Spec(R/(X,Y, Z)), it suffices to take a Koszul
complex on one element, a power of W. The homology of both complexes has
finite length everywhere except in degree zero, where the homology modules are
R/(X,Y,Z% ZW) and R/(X, Z,Y? YW) respectively. It follows that we can find
a map of complexes that lifts multiplication by W for some m, and the mapping
cone of the resulting map from C(X,Z),Y) to C(X,Y), Z) will have homology of
finite length. Let C' denote this mapping cone. We now show directly that C' will
have the required intersection multiplicity.

We will show that x(R/(Z,W),C) = —1. Since C is defined as the mapping
cone of a map from C((X, Z),Y) to C((X,Y), Z), it suffices to show that

x(R/(Z,W),C((X,Y), 2)) = x(R/(Z,W),C((X, 2),Y)) = —1.

To accomplish this, we tensor the diagrams for the maps ®} + Z®{ and @', +
Y @', with R/(Z,W) and compute the homology. This is rather tedious, but, since
after tensoring wtih R/(Z, W) we are left with fairly simple complexes with entries
in a polynomial ring in two variables, it is not terribly difficult. We let S =
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R/(Z,W) and let k be the residue field of S. Tensoring the diagram defining the
map @} + Z®Y with R/(Z, W) and taking homology in the rows we obtain

0 0 S/XS ek k ke k

0 0 S/XS 0 k

To complete the computation we need to compute the vertical map in the third posi-
tion. The element of homology that generates the component S/X S is (0,1,0,0,0,0),
and computing its image we obtain Y in the lower copy of S/XS. Thus we
are left with k£ in each row in the third column, and the Euler characteristic of
C((X,)Y),Z2)®R/(Z,W)is1—-2+2-1=0.

If we carry out the same computation tensoring C((X, Z),Y) with R/(Z,W)
(which we do by tensoring C((X,Y), Z) with R/(Y,W), so now S = R/(Y,W)),
we obtain

0 0 k kok S/ XSk

0 0 0 k S/XS.

In this case the vertical map from S/XS to S/XS in the fifth column is multipli-
cation by Z2. Hence the Euler characteristic is 2 — 2 +2 — 1 = 1. Thus the Euler
characteristic of C ® R/(Z,W)is 0 — 1 = —1.
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