
ANNIHILATORS OF LOCAL COHOMOLOGY INCHARACTERISTIC ZEROPAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASTo Phil Gri�thAbstract. This paper discusses the problem of whether it is possibleto annihilate elements of local cohomology modules by elements of arbi-trarily small order under a �xed valuation. We �rst discuss the generalproblem and its relationship to the Direct Summand Conjecture, andnext present two concrete examples where annihilators with small orderare shown to exist. We then prove a more general theorem, where theexistence of such annihilators is established in some cases using resultson abelian varieties and the Abel-Jacobi map.1. Almost vanishing of local cohomologyThe concept of almost vanishing that we use here comes out of recent workonAlmost Ring Theory by Gabber and Ramero [4]. This theory was developedto give a �rm foundation to the results of Faltings on Almost �etale extensions[3], and these ideas have their origins in a classic work of Tate on p-divisiblegroups [21]. The use of the general theory, for our purposes, is comparativelystraightforward, but it illustrates the main questions in looking at certainhomological conjectures, as discussed later in the section. The approach isheavily in
uenced by Heitmann's proof of the Direct Summand Conjecturefor rings of dimension three [8].Let A be an integral domain, and let v be a valuation on A with values inthe abelian group of rational numbers; more precisely, v is a function from Ato Q [ f1g such that(1) v(a) =1 if and only if a = 0,(2) v(ab) = v(a) + v(b) for all a; b 2 A, and(3) v(a+ b) > minfv(a); v(b)g for all a; b 2 A.We will also assume that v(a) > 0 for all elements a 2 A.De�nition 1.1. An A-moduleM is almost zero if for everym 2M and everyreal number " > 0, there exists an element a in A with v(a) < " and am = 0.1991 Mathematics Subject Classi�cation. Primary 13D22. Secondary 13D45, 14K05.P.R. and A.K.S. were supported in part by grants from the National Science Foundation.1



2 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASWhen it is necessary to specify the valuation, we say that M is almost zerowith respect to the valuation v.We note some properties of almost zero modules:(1) For an exact sequence0 �!M 0 �!M �!M 00 �! 0 ;the module M is almost zero if and only if each of M 0 and M 00 isalmost zero.(2) If fMig is a directed system consisting of almost zero modules, thenits direct limit lim�!iMi is almost zero.In [4] Gabber and Ramero de�ne a module to be almost zero if it is annihi-lated by a �xed ideal m of A with m = m2. This set of modules also satis�esconditions (1) and (2), though in many cases their condition is stronger thanthe one in De�nition 1.1.The absolute integral closure R+ of a domain R is the integral closure ofR in an algebraic closure of its fraction �eld. An important situation for uswill be where (R;m) is a complete local ring. In this case, �x a valuationv : R �! Z[f1g which is positive on m. By Izumi's Theorem [16], two suchvaluations are bounded by constant multiples of each other. Since R+ is anintegral extension, v extends to a valuation v : R+ �! Q [ f1g. Let A bea subring of R+ containing R; we often take A to be R+. Note that v ispositive on the maximal ideal of A. The ring A need not be Noetherian, andby a system of parameters for A, we shall mean a system of parameters forsome Noetherian subring of A that contains R.The main question we consider is whether the local cohomology modulesH im(A) are almost zero for i < dimA. Let x1 : : : ; xd be a system of parametersfor R. Then the local cohomology module H im(A) is the i-th cohomologymodules of the �Cech complex0 �! A �! �Axi �! �Axixj �! � � � �! Ax1���xd �! 0 :The question whether H im(A) is almost zero for i = 0; : : : ; d � 1 is closelyrelated to the question whether the xi come close to forming a regular sequencein the following sense.De�nition 1.2. A sequence of elements x1; : : : ; xd 2 A is an almost regularsequence if for each i = 1; : : : ; d, the module((x1; : : : ; xi�1) :A xi)=(x1; : : : ; xi�1)is almost zero. If every system of parameters for A is an almost regularsequence, we say that A is almost Cohen-Macaulay.The usual inductive argument as in [20, Theorem IV.2.3] shows that ifA is almost Cohen-Macaulay, then the modules H im(A) are almost zero fori < dimA. However, we do not know whether the converse holds in general.



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 3As motivation for the de�nitions introduced above, we discuss how theseare related to the homological conjectures. Let x1; : : : ; xd be a system ofparameters for a local ring R. Hochster's Monomial Conjecture states thatxt1 � � �xtd =2 �xt+11 ; : : : ; xt+1d �R for all t > 0:This is known to be true for local rings containing a �eld, and Heitmann[8] proved it for local rings of mixed characteristic of dimension up to three.It remains open for mixed characteristic rings of higher dimension, where itis equivalent to several other conjectures such as the Direct Summand Con-jecture (which states that regular local rings are direct summands of theirmodule-�nite extension rings), the Canonical Element Conjecture, and theImproved New Intersection Conjecture; for some of the related work, we men-tion [2, 10, 11, 18] and [19].The connection between the Monomial Conjecture and the almost Cohen-Macaulay property is evident from the following proposition.Proposition 1.3. Let R be a local domain with an integral extension whichis almost Cohen-Macaulay. Then the Monomial Conjecture holds for R, i.e.,for each system of parameters x1; : : : ; xd of R, we havext1 � � �xtd =2 �xt+11 ; : : : ; xt+1d �R for all t > 0 :Proof. Let A be an integral extension of R which is almost Cohen-Macaulaywith respect to a valuation v which is positive on the maximal ideal of R.Then v(xi) > 0 for each i = 1; : : : ; d; let " be the minimum of these positiverational numbers. If xt1 � � �xtd 2 (xt+11 ; : : : ; xt+1d )R for some integer t, thenxt1 � � �xtd = a1xt+11 + � � �+ adxt+1dfor elements ai of A. (The ai can be chosen in R, though we will only considerthem as elements of A.) Rearranging terms in the above equation, we havext1(xt2 � � �xtd � a1x1) 2 �xt+12 ; : : : ; xt+1d �A :Since A is almost Cohen-Macaulay, the elements xt1; xt+12 ; : : : ; xt+1d form analmost regular sequence. Hence there exists c1 2 A with v(c1) < "=d andc1(xt2 � � �xtd � a1x1) 2 �xt+12 ; : : : ; xt+1d �A :This implies that c1xt2 � � �xtd 2 (x1; xt+12 ; : : : ; xt+1d )A. We now repeat theprocess for x2, i.e., we havec1xt2 � � �xtd = b1x1 + b2xt+12 + � � �+ bdxt+1dwith bi 2 A, soxt2(c1xt3 � � �xtd � b2x2) 2 �x1; xt+13 ; : : : ; xt+1d �A :By an argument similar to the one above, there is an element c2 2 A withv(c2) < "=d and c1c2xt3 � � �xtd 2 �x1; x2; xt+13 ; : : : ; xt+1d �A :



4 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASRepeating this procedure d� 2 more times, we obtain elements c1; c2; : : : ; cdin A with v(ci) < "=d andc1c2 � � � cd = u1x1 + � � �+ udxdfor some ui 2 A. But thenv(c1 � � � cd) = v(c1) + � � �+ v(cd) < d("=d) = "whereas, since v(u) > 0 for all u 2 A, we also havev(u1x1+ � � �+udxd) > minfv(uixi)g > minfv(ui)+v(xi)g > minfv(xi)g = " ;which is a contradiction. �To put the results of the remainder of the paper in context, we recallthe situation in positive characteristic. Let R be a complete local domaincontaining a �eld of characteristic p > 0. We let R1 denote the perfectclosure of R, that is, R1 is the ring obtained by adjoining to R the pn-throots of all its elements.Proposition 1.4. Let (R;m) be a complete local domain containing a �eldof prime characteristic. Then R1 is almost Cohen-Macaulay with respect toany valuation which is positive on m.Proof. Let v be such a valuation, and let x1; : : : ; xd be a system of parametersfor R1. Suppose that(1.4.1) axi = b1x1 + � � �+ bi�1xi�1for a; bj 2 R1. Let R0 be the Noetherian subring of R1 generated over R bya, b1; : : : ; bi�1, and x1; : : : ; xd. By Cohen's structure theorem, R0 is a �niteextension of a power series ring S = K[[x1; : : : ; xd]], where K is a coe�cient�eld. Let m be the largest integer such that R0 contains a free S-module ofrank m. In this case, the cokernel ofSm � R0is a torsion S-module, so there exists a nonzero element c 2 S such thatcR0 � Sm. Taking pn-th powers in equation (1.4.1) gives usapnxpni 2 �xpn1 ; : : : ; xpni�1�R0 for all n > 0 :Multiplying the above by c and using cR0 � Sm, we getcapnxpni 2 �xpn1 ; : : : ; xpni�1�Sm :Since xpn1 ; : : : ; xpni is a regular sequence on the free module Sm, it follows thatcapn 2 �xpn1 ; : : : ; xpni�1�Sm � �xpn1 ; : : : ; xpni�1�R0 :Taking pn-th roots in an equation for capn 2 (xpn1 ; : : : ; xpni�1)R0 gives usc1=pna 2 �x1; : : : ; xi�1�R1 for all n > 0 :



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 5Since the limit of v(c1=pn) is zero as n �! 1, it follows that R1 is almostCohen-Macaulay. �In [14] Hochster and Huneke proved the much deeper fact that for anexcellent local domain R of positive characteristic, the ring R+ is Cohen-Macaulay; see also [15]. We remark that the subring R1 may not be Cohen-Macaulay in general: if R is an F -pure ring which is not Cohen-Macaulay,then, since R ,! R1 is pure, R1 is not Cohen-Macaulay as well.If R is a local domain containing a �eld of characteristic zero, then R+is typically not a big Cohen-Macaulay algebra. For example, let R be anormal ring of characteristic zero which is not Cohen-Macaulay. Then the �eldtrace map shows that R splits from �nite integral extensions. Consequently anontrivial relation on a system of parameters for R remains nontrivial in �niteextensions, and hence in R+. Speci�cally, for a ring (R;m) of characteristiczero, the map H im(R) �! H im(R+)is injective for all i. This leads to the following question.Question 1.5. Let (R;m) be a complete local domain. For i < dimR, is theimage of natural map H im(R) �! H im(R+)almost zero?The answer is a�rmative if the ring R contains a �eld of positive char-acteristic: this follows from Proposition 1.4, or from either of the strongerstatements [14, Theorem 1.1] or [15, Theorem 2.1]. If R is a three-dimensionalring of mixed characteristic p, Heitmann [8] proved that the image of H2m(R)in H2m(R+) is killed by p1=n for all integers n > 0; more recently, he provedthe stronger statement [9, Theorem 2.9] that H2m(R+) is annihilated by c1=nfor all c 2 m and n > 0. Consequently the answer to Question 1.5 is alsoa�rmative for mixed characteristic rings of dimension less than or equal tothree. 2. ExamplesIn this section, we present two nontrivial examples where local cohomologymodules of characteristic zero rings are annihilated by elements of arbitrarilysmall positive order. The examples are N-graded, and in such cases it isnatural to use the valuation arising from the grading: v(r) is the least integern such that the n-th degree component of r is nonzero.Proposition 2.1. Let K be a �eld of characteristic zero, and consider thehypersurface S = K[x; y; z; w]=(xy � zw). For distinct elements �i of K, let



6 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVAS� be a square root of 4Yi=1(x � �iz) :Then the integral closure of S[�] in its �eld of fractions is the ringR = S ��; wx �; w2x2 �� :Proof. The element (w2=x2)� is integral over S[�] since�w2x2 ��2 = 4Yi=1(w � �iy) :A similar computation shows that (w=x)� is integral over S[�], and it remainsto prove that the integral closure of S[�] is generated by these elements. Anelement of the fraction �eld of S[�] can be written as a + b�, with a and bfrom the fraction �eld of S. Now a + b� is integral over S if and only if itstrace and norm of are elements of S. Since 2 is a unit in S this is equivalentto a 2 S and b2�2 2 S. Thus the integral closure of S[�] is S � I�, where I isthe fractional ideal consisting of elements b with b2�2 2 S.Since S is a normal domain, b2�2 belongs to S if and only if vp(b2�2) > 0for all valuations vp corresponding to height one prime ideals p of S. Notethat vp(�2) > 0 precisely for the primes p0 = (x; z) and pi = (x��iz; w��iy)for 1 6 i 6 4. Since vp0(�2) = 4 and vpi(�2) = 1 for 1 6 i 6 4, the conditionfor b to be an element of I is thatvp0(b) > �2 and vp(b) > 0 for all p 6= p0 :This implies that vp(bx2) > 0 for all height one primes p, i.e., that bx2 2 S.Let b = s=x2. Then v(x;w)(b) > 0 implies that s must be in the ideal (x;w)2.Hence I is generated over S by 1, w=x, and w2=x2. �Example 2.2. We continue in the notation of Proposition 2.1, i.e., R is thenormalization of S[�]. The ring R is normal by construction, and has dimen-sion three. It follows that H0m(R) = 0 = H1m(R), where m is the homogeneousmaximal ideal of R. We show that there are elements of R+ of arbitrarilysmall positive order annihilating the image of H2m(R) in H2m(R+).Note that x, y, z + w form a homogeneous system of parameters for thehypersurface S, and hence also for R. In the ring R, we have a relation onthese elements given by the equationwx � � (z + w) = � � y + w2x2 � � x :This is a nontrivial relation in the sense that (w=x)� does not belong to theideal generated by x and y, so the ring R is not Cohen-Macaulay. Consider



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 7the element of H2m(R) given by this relation; it turns out that H2m(R) is aone-dimensional K-vector space generated by this element, see Remark 2.3.Let v be the valuation de�ned by the grading on R, i.e., v takes value 1 onx, y, z, and w, and v(�) = 2. We construct elements xn in �nite extensionsRn of R with v(xn) = 1=2n and xn(w=x)� 2 (x; y)Rn; it then follows thateach xn annihilates the image of the map H2m(R) �! H2m(R+).Let R1 be the extension ring of R obtained by adjoining px� �iz for1 6 i 6 4 and normalizing. We claim that the element x1 = px� �1zmultiplies (w=x)� into the ideal (x; y)R1. To see this, note thatx1wx � = x1wx 4Yi=1px� �iz = (x� �1z)wx 4Yi=2px� �iz= x wx 4Yi=2px� �iz!� y �1 4Yi=2px� �iz! :The element x1 has v(x1) = 1=2. To �nd an annihilator x2 with v(x2) = 1=4,we �rst write x� �3z = �(x � �1z)� 
(x� �2z)for suitable �; 
 2 K, and then factor as a di�erence of squares to obtainx� �3z= �p�(x � �1z) +p
(x� �2z)��p�(x � �1z)�p
(x� �2z)� :We let x2 =qp�(x� �1z) +p
(x� �2z) ;which is an element with v(x2) = 1=4. Nowx2px� �3z = ��p�(x � �1z) +p
(x� �2z)�where � =qp�(x� �1z)�p
(x� �2z) ;and sox2� = �(x � �1z)p�(x� �2z)(x� �4z)+ �(x� �2z)p
(x� �1z)(x� �4z) :Using this, we getx2wx � = x��wxp�(x � �2z)(x� �4z)�� y ���1p�(x� �2z)(x� �4z)�+ x��wxp
(x� �1z)(x� �4z)�� y ���2p
(x� �1z)(x� �4z)�



8 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASand consequently x2(w=x)� 2 (x; y)R2, where R2 is the �nite extension of Robtained by adjoining the various roots occurring in the previous equationand normalizing.We describe brie
y the process of constructing xn for n > 3. The �rststep is to write px� �4z in terms of px� �1z and px� �2z as we did forpx� �3z above. This enables us to write px� �3zpx� �4z as a productof four square roots, each of which is a linear combination of px� �1z andpx� �2z. We can now repeat the process used to construct x2, essentiallyreplacing x by px� �3z and z by px� �3z. Finally, we can repeat thisprocess inde�nitely, obtaining elements xn with v(xn) = 1=2n which annihilatethe given element of local cohomology.Remark 2.3. The ring R in the previous example can be obtained as a Segreproducts of rings of lower dimension, and we brie
y discuss this point of view.Let A and B be N-graded normal rings which are �nitely generated over a�eld A0 = B0 = K. Their Segre product is the ringR = A#B =Mn>0An 
K Bn ;which inherits a natural grading where Rn = An
K Bn. If K is algebraicallyclosed then the tensor product A 
K B is a normal ring, and hence so is itsdirect summand A#B. If M and N are Z-graded modules over A and Brespectively, then their Segre product is the R-moduleM#N =Mn2ZMn 
K Nn :Using m to denote the homogeneous maximal ideal of R, the local cohomologymodules Hkm(R) can be computed using the K�unneth formula due to Goto andWatanabe, [5, Theorem 4.1.5]:Hkm(R) = �A#HkmB (B)� � �HkmA(A)#B�� Mi+j=k+1 �H imA(A)#HjmB (B)� :It follows that if A and B have positive dimension, thendim(A#B) = dimA+ dimB � 1 :We claim that the ring R in Example 2.2 is isomorphic to the Segre productA#B, where A = K[a; b; c]=�c2 � 4Yi=1(a� �ib)�



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 9is a hypersurface with deg a = deg b = 1 and deg c = 2, and B = K[s; t] is astandard graded polynomial ring. The mapx 7�! as ; y 7�! bt ; z 7�! bs ; w 7�! at ;� 7�! cs2 ; (w=x)� 7�! cst ; (w=x)2� 7�! ct2extends to a K-algebra homomorphism ' : R �! A#B. This is a surjec-tive homomorphism of integral domains of equal dimension, so it must be anisomorphism. Since A and B are Cohen-Macaulay rings of dimension 2, theK�unneth formula for H2m(R) reduces toH2m(R) = �A#H2mB (B)� � �H2mA(A)#B� :The module H2mB (B) vanishes in nonnegative degrees, which implies thatA#H2mB (B) = 0. The component of H2mA(A) in nonnegative degree is theone-dimensional vector space spanned by the degree 0 elementh cabi 2 H2mA(A) :Hence H2m(R) is the one-dimensional vector space spanned by [c=ab]
 1. Thesearch for elements xn 2 R+ of small degree annihilating the image of H2m(R)in H2m(R+) is essentially the search for homogeneous elements of A+, of smalldegree, multiplying c into the ideal (a; b)A+.Example 2.4. Let K be an algebraically closed �eld of characteristic zero,� 2 K a primitive cube root of unity, and setA = K[x; y; z]=��x3 + �2y3 + z3� :Let R be the Segre product of A and the polynomial ring K[s; t]. Then Ris a normal ring of dimension 3, and the elements sx, ty, sy + tx form ahomogeneous system of parameters for R. Using the K�unneth formula as inRemark 2.3, the local cohomology module H2m(R) is a one-dimensional vectorspace spanned by an element corresponding to the relationsztz(sy+ tx) = (sz)2ty + (tz)2sx :To annihilate this relation by an element of R+ of positive degree " 2 Q, itsu�ces to �nd an element u 2 A+ of degree " such thatuz2 2 (x; y)A+ ;indeed if uz2 = vx+ wy for homogeneous v; w 2 A+ of degree 1 + ", then(s"u)(sztz) = (s"tv)(sx) + (s1+"w)(ty) ;and s"tv and s1+"w are easily seen to be integral over S.We have now reduced our problem to working over the hypersurface A,where we are looking for elements u 2 A+ of small degree which annihilate� z2xy� 2 H2mA(A+) :



10 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASLet A1 be the extension of A obtained by adjoining x1, y1, z1, wherex31 = �1=3x+ �2=3y ; y31 = �1=3x+ �5=3y ; z31 = �1=3x+ �8=3y :Note that x and y can be written as K-linear combinations of x31 and y31 .Moreover,(x1y1z1)3 = ��1=3x+ �2=3y���1=3x+ �5=3y���1=3x+ �8=3y�= �x3 + �2y3 = �z3 ;so z belongs to the K-algebra generated by x1, y1, and z1. Now�x31 + �2y31 + z31 = ���1=3x+ �2=3y�+ �2��1=3x+ �5=3y�+ ��1=3x+ �8=3y�= ��4=3 + �7=3 + �1=3�x+ ��5=3 + �11=3 + �8=3�y = 0 ;which implies that A1 = K[x1; y1; z1]=��x31 + �2y31 + z31�is a ring isomorphic to A. Thus A � A1 gives a �nite embedding of A into itselfunder which the generators of degree 1 go to elements of degree 3; or, in termsof the original degree, the new generators of the homogeneous maximal idealhave degree 1=3. Since [H2mA(A)]0 is annihilated by all elements of positivedegree, the image of [H2mA(A)]0 in H2mA(A1) is annihilated by elements ofdegree 1=3. Iterating this construction, we conclude that there are elementsof arbitrarily small positive degree annihilating the image of [H2mA(A)]0 inH2mA(A+). Quite explicitly, we have a tower of extensionsA = A0 � A1 � A2 � : : : where An = K[xn; yn; zn]=��x3n + �2y3n + z3n� :The maps H2m(An) �! H2m(An+1) preserve degrees, so [H2mA(A)]0 maps tothe socle of H2m(An) which is killed by all elements of An of positive degree,e.g., by the elements xn; yn; zn which have degree 1=3n.Remark 2.5. In [9, Theorem 2.9] Heitmann proves that if (R;m) is a mixedcharacteristic excellent local domain of dimension three, then the image ofH2m(R) in H2m(R+) is annihilated by arbitrarily small powers of every non-unit. The corresponding statement is false for three-dimensional domains ofcharacteristic zero: for the ring R of Example 2.4, we claim that psz doesnot annihilate the image of H2m(R) �! H2m(R+). Because of the splittingprovided by �eld trace, it su�ces to verify thatpsz (sztz) =2 (sx; ty)T ;where T is any normal subring of R+ containing R[psz]. Take T to be theSegre product of eA = A[px;py;pz] and eB = B[ps;pt]. Note that eB is apolynomial ring in ps and pt, and that eA is the hypersurfaceK[px;py;pz]= ��(px)6 + �2(py)6 + (pz)6� :



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 11It is enough to check thatpsz (sztz) =2 (sx; ty)( eA
K eB), and after specializingps 7�! 1 and pt 7�! 1 to check that(pz)5 =2 �(px)2; (py)2� eA ;which is immediately seen to be true. The same argument shows that psx,psy, etc. do not annihilate the image of H2m(R) �! H2m(R+). The situationis quite similar with Example 2.2.3. Annihilators using the Abel-Jacobi mapFor an N-graded domain R which is �nitely generated over a �eld R0,let R+GR be the Q>0 -graded ring generated by those elements of R+ whichcan be assigned a degree such that they satisfy a homogeneous equation ofintegral dependence over R. If R0 is a �eld of prime characteristic, Hochsterand Huneke [14, Theorem 5.15] proved that the induced mapH im(R) �! H im(R+GR)is zero for all i < dimR. Translating to projective varieties, one immediatelyhas the vanishing theorem:Theorem 3.1. [14, Theorem 1.2] Let X be an irreducible closed subvariety ofPnK, where K is a �eld of positive characteristic. Then for all integers i with0 < i < dimX, and all integers t, there exists a projective variety Y over a�nite extension of K with a �nite surjective morphism f : Y �! X, such thatthe induced map H i(X;OX(t)) �! H i(Y; f�OX(t))is zero.Over �elds of characteristic zero, the corresponding statements are falsebecause of the splitting provided by �eld trace. However, the following gradedanalogue of Question 1.5 remains open.Question 3.2. Let R be an N-graded domain, �nitely generated over a �eldR0 of characteristic zero. For i < dimR, is every element of the image ofH im(R) �! H im(R+GR)killed by elements of R+GR of arbitrarily small positive degree?This question, when considered for Segre products, leads to the following:Question 3.3. Let R be an N-graded domain of dimension d, �nitely gener-ated over a �eld R0 of characteristic zero. Is the image of�Hdm(R)�>0 �! Hdm(R+GR)killed by elements of R+GR of arbitrarily small positive degree?



12 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASIn Examples 2.2 and 2.4, we obtained a�rmative answers to Question 3.2by explicitly constructing the annihilators. In this section, we obtain an af-�rmative answer for the image of [H2m(R)]0 and also settle Question 3.3 forrings of dimension two. We �rst recall some basic facts about the relationshipbetween graded rings and very ample divisors.If R is a graded ring, then the associated projective scheme X = ProjRhas a very ample divisor O(1) with sections de�ned by elements of degreeone. Conversely, a very ample divisor de�nes a standard graded ring and anembedding of X into projective space. The strategy is to �nd a �nite mapfrom a scheme Y to X , together with a very ample divisor L on Y , such thatL
n is the pullback of OX(1) and such that a section of L annihilates thepullback of the given element of local cohomology. This will essentially beaccomplished by mapping X to its Albanese variety, and pulling back by themultiplication by N map for large integers N . The precise result that weprove is as follows.Theorem 3.4. Let R be an N-graded domain which is �nitely generated overa �eld R0 of characteristic 0. Let X = ProjR and let � be an element ofH1(X;OX). Then, for every " > 0, there exists a �nite extension R � S ofQ-graded rings such that the image of � under the induced mapH1(X;OX) �! H1(Y;OY ) where Y = ProjSis annihilated by an element of S of degree less that ".We remark that since H1(X;OX) corresponds to the component of H2m(R)of degree zero, this theorem only implies that we can annihilate elements ofH2m(R) of degree zero by elements of small degree. IfH2m(R) is generated by itsdegree zero elements|and this happens in several interesting examples|wecan deduce the result for all elements of H2m(R).Proof. Replacing R by its normalization, it su�ces to work throughout withnormal rings. We also reduce to the case where R is a standard N-graded ringas follows. Using [6, Lemme 2.1.6], R has a Veronese subring R(t) which is gen-erated by elements of equal degree. The local cohomology of R(t) supportedat its homogeneous maximal ideal m can be obtained by [5, Theorem 3.1.1]which states that H im(R(t)) =Mn2Z[H im(R)]nt :In particular, we have[H2m(R(t))]0 = [H2m(R)]0 = H1(X;OX) :If elements of this cohomology group can be annihilated in graded �nite ex-tensions of R(t), then the same can be achieved in extensions of R.We next treat the special case where ProjR is itself an abelian variety,which we denote A. For each integer N , let [NA] : A �! A be the morphism



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 13corresponding to multiplication by N . Assume that the very ample sheafOA(1) de�ning the graded ring R satis�es the condition that(3.4.1) [(�1)A]�(OA(1)) = OA(1) :We recall two facts about abelian varieties from Mumford [17]:(1) H1(A;OA(1)) = 0. By \The Vanishing Theorem" [17, page 150],given a line bundle L, there is a unique integer i such that H i(A;L)is nonzero. Since OA(1) is very ample, this integer must be 0.(2) [NA]�(OA(1)) = OA(N2). This follows from [17, Corollary II.6.3]since we are assuming (3.4.1).The theorem in this case follows from these two properties: the morphism[NA] induces a mapR =Mn �(A;OA(n)) �!Mn �(A; [NA]�OA(n)) ;and, by the second property above,�(A; [NA]�OA(n)) = �(A;OA(N2n)) :Thus we have a map of graded rings from R to itself, that takes an elementof degree 1 to an element of degree N2. Denote the new copy of R by S, andregrade S with a Q-grading such that the map R �! S preserves degrees.This implies that S has elements s of degree 1=N2 under the new grading.Such an element s must annihilate the image of � 2 H1(A;OA), since theproduct s � � lies in H1(A;OA(1)) = 0. Hence for each positive integer N ,we have found a �nite extension of R with an element of degree 1=N2 thatannihilates the image of �.The remainder of the proof is devoted to reducing to the previous case.Let R be a graded domain such that X = ProjR is normal. Let A be theAlbanese variety of X , and let ' : X �! A be the Abel-Jacobi map. Then Ais an abelian variety and ' induces an isomorphismH1(A;OA) �= H1(X;OX) ;see Chevalley [1]. Since A is an abelian variety, it has a very ample invert-ible sheaf OA(1), see for example [17, pp. 60{62]. After replacing OA(1) byOA(1)
 [(�1)A]�OA(1) if necessary, we may assume that[(�1)A]�(OA(1)) �= OA(1) :We let OX(1) denote the very ample invertible sheaf de�ned by the gradingon R. Let �1 : Y1 �! X be the pullback of multiplication by N on A, andlet '1 : Y1 �! A be the map induced by ', so that we have the �ber product



14 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVASdiagram below. Y1 '1 //�1 �� A[NA]��X ' // ALet M1 = '�1(OA(1)). Then��1('�(OA(1))) = '�1([NA]�(OA(1))) = '�1(OA(N2)) =M
N21 :Let m be an integer such that '�(OA(�1)) 
 O(m) is globally generated;such an m exists since O(1) is ample. Since '�(OA(�1)) 
O(m) is globallygenerated, there exists a map  : X �! Pn such that �1(OPn(1)) = '�(OA(�1))
OX(m) :Let � : Pn �! Pn be a �nite map such that ��(OPn(1)) = OPn(N); forexample, we can take � to be the map de�ned by the ring homomorphism ona polynomial ring that sends the variables to their N -th powers. Let Y2 bethe normalization of a reduced component of the �ber product of  and �,which gives us a diagram Y2 '2 //�2 �� Pn���X  // Pn :Let M2 = '�2(OPn(1)). We then have��2('�(OA(�1))
OX(m)) �= ��2( �(OPn(1))) = '�2(��(OPn(1)))�= '�2(OPn(N)) �=M
N2 :Let Y be a component of the normalization of the reduced �bre productof �1 : Y1 �! X and �2 : Y2 �! X . We then have an induced �nite map� : Y �! X , and induced maps �1 : Y �! Y1 and �2 : Y �! Y2, giving acommutative diagram Y �1 //�2 �� �   BBBBBBBB Y1�1��Y2 �2 // X :By construction, we have��OX(m) = ��('�OA(1)
 '�OA(�1)
OX(m))= ��1��1('�(OA(1)))
 ��2��2('�(OA(�1))
OX (m))= ��1(M
N21 )
 ��2(M
N2 ) =M
N ;where M = ��1M
N1 
 ��2M2:



ANNIHILATORS OF LOCAL COHOMOLOGY IN CHARACTERISTIC ZERO 15Now M1 = '�1(OA(1)) is generated by global sections of the form '�1(u)with u 2 H0(A;OA(1)). Choose any such element u such that its image inH0(Y; ��1M1) is nonzero. Let v be a nonzero element of H0(Y; ��2M2), andlet s be the image of ��1'�1(uN )
 v in H0(Y;M). Then s is a nonzero sectionof M, and since ��(OX(m)) =M
N , the degree of s in the grading inducedfrom that on R is m=N . We claim that the compositionH1(X;OX) ������! H1(Y;OY ) �s����! H1(Y;M)vanishes. For this, it su�ces to show that the compositionH1(X;OX) ������! H1(Y;OY ) ��1'�1(u)�����! H1(Y; ��1M1)vanishes, which in turn reduces to showing thatH1(X;OX) ������! H1(Y;OY ) '�1(u)����! H1(Y1;M1)vanishes. Since '� : H1(A;OA) �! H1(X;OX) is an isomorphism, we furtherreduce to showing thatH1(A;OA) [NA]�����! H1(A;OA) �u����! H1(A;OA(1))vanishes. But this is true since H1(A;OA(1)) = 0.Since we can make m=N arbitrarily small by choosing N large, this com-pletes the proof. �As a corollary, we see that the answer to Question 3.3 is a�rmative forrings of dimension two:Corollary 3.5. Let R be an N-graded domain of dimension 2, which is �nitelygenerated over a �eld R0 of characteristic zero. Then the image of�H2m(R)�>0 �! H2m(R+GR)is killed by elements of R+GR of arbitrarily small positive degree.Proof. By adjoining roots of elements if necessary, we may assume that Rhas a system of parameters x; y consisting of linear forms. Theorem 3.4 im-plies that the image of [H2m(R)]0 is killed by elements of R+GR of arbitrarilysmall positive degree, so it su�ces to prove that [H2m(R)]>0 is the R-modulegenerated by [H2m(R)]0.Since x and y are linear forms, we have [Rxy]n+1 = [Rxy]n � R1 for allintegers n. Computing H2m(R) using the �Cech complex on x; y, it follows that�H2m(R)�n+1 = �H2m(R)�n �R1 for all n 2 Z : �



16 PAUL ROBERTS, ANURAG K. SINGH, AND V. SRINIVAS4. Closure operationsThe issues discussed here are closely related to closure operations consid-ered by Hochster and Huneke, and by Heitmann. The plus closure of an ideala of a domain R is de�ned as a+ = aR+ \ R. It has desirable properties forrings of prime characteristic, e.g., it bounds colon ideals on systems of param-eters: if x1; : : : ; xd is a system of parameters for an excellent local domain Rcontaining a �eld of prime characteristic, then(x1; : : : ; xi�1) :R xi � (x1; : : : ; xi�1)+ for all i :In general, plus closure does not have this colon-capturing property for ringsof characteristic zero or of mixed characteristic. Several alternative closureoperations are de�ned by Heitmann in [7] including the extended plus clo-sure. Building on these ideas, he settled the Direct Summand Conjecture formixed characteristic rings of dimension three [8]. In [9, Theorem 1.3] Heit-mann proved that extended plus closure has the colon-capturing property forarbitrary sets of three parameters in excellent domains of mixed characteristic.Let (R;m) be a complete local domain and �x, as usual, a valuationv : R �! Z[ f1g which is positive on m and extend to v : R+ �! Q [ f1g.In [13] Hochster and Huneke de�ne the dagger closure ay of an ideal a as theideal consisting of all elements x 2 R for which there exist elements u 2 R+,of arbitrarily small positive order, with ux 2 aR+. In [13, Theorem 3.1] it isproved that the dagger closure ay agrees with the tight closure a� for ideals ofcomplete local domains of prime characteristic, see also [12, x 6]. While tightclosure is de�ned in characteristic zero by reduction to prime characteristic,the de�nition of dagger closure is characteristic-free.Question 4.1 (Hochster-Huneke). Does the dagger closure operation havethe colon-capturing property, i.e., if x1; : : : ; xd is a system of parameters fora complete local domain R, is it true that(x1; : : : ; xi�1) :R xi � (x1; : : : ; xi�1)y ?According to Hochster and Huneke [13, page 244] \it is important to raise(and answer) this question." If Question 4.1 has an a�rmative answer, thenso does Question 1.5.Consider the hypersurface K[[x; y; z]]=(x3+ y3+ z3). If K has prime char-acteristic, a straightforward calculation|performed in many an introductorylecture on tight closure theory|shows that z2 2 (x; y)�. If K has character-istic zero, the \reduction modulo p" nature of the de�nition of tight closure[12, x 3] immediately yields z2 2 (x; y)� once again. In contrast, the compu-tation that z2 2 (x; y)y is quite delicate and, aside from the linear changeof variables, is the computation we performed in Example 2.4. While con-crete descriptions of the multipliers of small order are available in this andsome other examples, dagger closure remains quite mysterious even in simpleexamples such as diagonal hypersurfaces:
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