Math 5090, Assignment 8: Chapter 14, Exercises 7, 17, 19, 21.

7. (a) There are $n=60$ observations. None is exactly equal to 5.20 . The number that are smaller than 5.20 is 22 . For the given alternative hypothesis, the p-value is $P(\operatorname{BIN}(60,1 / 2) \leq 22)=0.02595$ (from a spreadsheet). But we were asked to use the normal approximation

$$
P(\operatorname{BIN}(60,1 / 2) \leq 22) \approx \Phi\left(\frac{22.5-60(1 / 2)}{\sqrt{60(1 / 2)(1 / 2)}}\right)=\Phi(-1.9465)=0.02640
$$

In either case this is less than 0.05 , so we reject H_{0}.
(b) Derivation using (14.3.8): $P\left(X_{i: n} \leq x_{0.5} \leq X_{j: n}\right)=P(\operatorname{BIN}(n, 1 / 2) \leq$ $j-1)-P(\operatorname{BIN}(n, 1 / 2) \leq i-1)$, and $P(\operatorname{BIN}(60,1 / 2) \leq 36)=0.9538$ and $P(\operatorname{BIN}(60,1 / 2) \leq 23)=0.4623$. Thus, $\left(X_{24: 60}, X_{37: 60}\right)=(5.22,5.25)$ is the desired interval.
(c) $P\left(X_{k: n} \leq x_{p}\right)=P(\operatorname{BIN}(n, p) \geq k)=1-P(\operatorname{BIN}(n, p) \leq k-1)$, so $X_{k: 60}$ is a 95% lower confidence limit for $x_{0.25}$ if $P(\operatorname{BIN}(60,0.25) \leq k-1) \leq 0.05$. But $k=10$ is the largest k for which this holds. Since $X_{10: 60}=5.13,5.13$ is a 95% LCB for $x_{0.25}$.
17. (a) Pearson's r is the statistic at the top of page 487. The approximate t distribution is stated at the bottom of page 488. We can compute $r=0.1646$ and $\sqrt{n-2} r / \sqrt{1-r^{2}}=0.4720$. This does not exceed $t_{0.95}(8)=1.860$ in absolute value, so we fail to reject H_{0}, assuming a two-sided alternative.
(b) We apply Pearson's r to the ranks (using average ranks in the case of a tie) to get Spearman's R_{s}, and $R_{s}=0.2080$. (Remark: Most students got 0.215 using the formula involving $\sum d_{i}^{2}$, but that formula was derived assuming the ranks are $1,2, \ldots, n$. In this case we had ties, so that assumption was not met.) We fail to reject H_{0} at the $\alpha=0.10$ level by Table 14 (the p-value is between 0.560 and 0.584 , double the values in the table, because the test is two-sided). The large-sample approximation is $\sqrt{n-2} R_{s} / \sqrt{1-R_{s}^{2}}=0.6013$. Again we fail to reject H_{0} since $t_{0.95}(8)=1.860$.
19. $R_{s}=0.636363$, which has p-value $0.027<0.10$ by Table 14 . Alternatively $\sqrt{n-2} R_{s} / \sqrt{1-R_{s}^{2}}=2.3333>t_{0.90}(8)=1.397$. In either case we reject H_{0}.
21. See Example 14.8.3. We find that $n=23$ and $\sum d_{i}^{2}=2703$, so $R_{s}=$ -0.3355 . This gives $t=\sqrt{n-2} R_{s} / \sqrt{1-R_{s}^{2}}=-1.6319$. This is less than $-t_{0.90}(21)=-1.323$, so we reject H_{0} and conclude there is a downward trend.

