Math 5090, Assignment 7: Chapter 14, Exercises 11, 13, 15, 16.
11. (a) The $B-A$ differences are $-3,10,-10,8,-25,-2,-17,-3,-2,-2$. The sample mean and variance are $\bar{x}=-4.6$ and $s^{2}=110.711$. To test H_{0} : $\mu_{D}=0$ vs. $H_{a}: \mu_{D}<0$, we use the test statistic $(\bar{x}-0) /(s / \sqrt{10})=-1.38249$. The critical value is $-t_{0.90}(9)=-1.383$. The observed value is not less than the critical value, so we cannot reject H_{0} at the $\alpha=0.10$ level, but it is very close.
(b) We consider only the signs of the differences. 8 are negative, 2 are positive. The number of negative signs under H_{0} is $\operatorname{BIN}(10,1 / 2)$, and we reject H_{0} in favor of the alternative if this number is too large. The p-value is $P(\operatorname{BIN}(10,1 / 2) \geq 8)=1-P(\operatorname{BIN}(10,1 / 2) \leq 7)=1-0.9453=0.0547$. This is less that 0.10 , so we reject H_{0} at the $\alpha=0.10$ level.
13. (a) Note that the lambs are dieting to gain weight, not lose it. The weight differences (I - II) are $14,12,-6,15,-2,18,14,17,14,17,-7,-3$. There are 8 positive signs (out of 12). We reject H_{0} in favor of the alternative if this number is too large. The p-value is $P(\operatorname{BIN}(12,1 / 2) \geq 8)=1-P(\operatorname{BIN}(12,1 / 2) \leq 7)=$ $1-0.8062=0.1938$. We do not reject H_{0} at the $\alpha=0.10$ level.
(b) The absolute differences are $14,12,6,15,2,18,14,17,14,17,7,3$. The ranks are $7,5,3,9,1,12,7,10.5,7,10.5,4,2$, where we replace ties by average ranks. The sum of the ranks of negative differences is $3+1+4+2=10$. This is less that or equal to 21 , the critical value for significance level $\alpha=0.10$, so we reject H_{0}.

Now consider the large-sample test, even though $n=12$. Under H_{0}, mean is $n(n+1) / 4=39$ and variance is $n(n+1)(2 n+1) / 24=162.5$. Standardize to get $(10-39) / \sqrt{162.5}=-2.27495$. This is smaller than -1.282 , so we reject H_{0}.
15. (a) If we replace the observations by their ranks among the 20 , we get $1-2-47$: 7, $3,13,1,10,5,2,11,4,6$.
10-2-47: 9, 17, 15, 14, 20, 18, 16, 8, 19, 12.
The sum of the x ranks is $W_{x}=62$, so $U_{x}=W_{x}-10(10+1) / 2=62-55=7$. Reject H_{0} if $U_{x} \leq 27$ or $U_{x} \geq 100-27$ (see Table 13B). We reject H_{0}.

Large-sample approximation: Under H_{0}, mean is $n^{2} / 2=50$ and variance is $n^{2}(2 n+1) / 12=175$. Standardized statistic is $(7-50) / \sqrt{175}=-3.25049$. This is greater in absolute value than 1.645 , so we reject H_{0}.
(b) Differences (second - first) are 38, 324, 8, 418, 184, 326, 316, -52, 383, 237. Absolute differences are 38, 324, 8, 418, 184, 326, 316, 52, 383, 237. The sole negative term has rank 3 among the absolute values, so the Wilcoxon statistic is $T=3$. Reject H_{0} in favor of the two-sided alternative if $T \leq c$ or $T \geq 55-c$, where c is chosen to give size $\alpha \leq 0.10$. From Table 12, we find that $c=10$, so we reject H_{0}.
16. We use the Mann-Whitney test. Replacing observations by ranks in the combined sample, we get

Tester 1: 7, $9,14,5,4,2,10,6,1,3$.

Tester 2: $15,12,13,16,11,8,18,17,19$.
Thus, $W_{x}=7+9+14+5+4+2+10+6+1+3=61$, so $U_{x}=W_{x}-$ $(10)(10+1) / 2=61-55=6$. The critical region for a two-sided test is, by Table 12, $U_{x} \leq 24$ or $U_{x} \geq 90-24$. We reject H_{0}.

