Math 5090, Assignment 6: Chapter 13, Exercise 20. Chapter 14, Exercises 1, 2,5 .
20. (a) $C M=1 /(12 \cdot 40)+\left(1-e^{-0.15 / 100}-(1-0.5) / 40\right)^{2}+\cdots+(1-$ $\left.e^{-409.97 / 100}-(40-0.5) / 40\right)^{2}=0.06618$, using a spreadsheet. At level 0.10 we fail to reject H_{0} because the test statistic does not exceed the critical value 0.347 .
(b) We estimate θ using the MLE $\hat{\theta}=\bar{x}=93.11975$. Replacing 100 by this estimate we find that $\widehat{C M}=0.04336$. We must multiply this by $1+0.16 / n$ with $n=40$. We get 0.04353 . At level 0.10 we fail to reject H_{0} because 0.04353 does not exceed the critical value 0.177 .
(c) Here we have to use the censored sampling formula (13.8.1). $C M=$ $1 /(12 \cdot 40)+\left(1-e^{-0.15 / 100}-(1-0.5) / 40\right)^{2}+\cdots+\left(1-e^{-66.71 / 100}-(20-0.5) / 40\right)^{2}=$ 0.01250. At level 0.10 we fail to reject H_{0} because the test statistic does not exceed the critical value 0.189. (See Table 9.)
(d) $D^{+}=\max \left(1 / 40-\left(1-e^{-0.15 / 100}\right), \ldots, 40 / 40-\left(1-e^{-409.97 / 100}\right)\right)=0.1057$ and $D^{-}=\max \left(1-e^{-0.15 / 100}-0 / 40, \ldots, 1-e^{-409.97 / 100}-39 / 40\right)=0.0692$, hence $D=\max \left(D^{+}, D^{-}\right)=0.1057$. Now by Table 11 , we must multiply D by $\sqrt{n}+0.12+0.11 / \sqrt{n}$ with $n=40$. We get 0.6830 , which does not exceed the critical value 1.224 , so we fail to reject H_{0} at the 0.10 level.

1. (a) We simply count the number of observations that are less than 0.5 . There are 10. The critical region is the left tail of the $\operatorname{BIN}(20,1 / 2)$ distribution. So the p-value is $P(\operatorname{BIN}(20,1 / 2) \leq 10)=0.5881$ (Table 1 or from a spreadsheet). We fail to reject H_{0} at level 0.10 .
(b) Here we count the number of observations that are less than 0.25 . There are only 2 . The critical region is the left tail of the $\operatorname{BIN}(20,1 / 2)$ distribution. So the p-value is $P(\operatorname{BIN}(20,1 / 2) \leq 2)=0.000201$ (Table 1 or from a spreadsheet). We reject H_{0} at level 0.10. I graded this problem wrong, thinking that $\operatorname{BIN}(20,1 / 2)$ should be $\operatorname{BIN}(20,1 / 4)$. If you lost a point on this but shouldn't have, please let me correct it. If you gained a point but shouldn't have, you don't have to tell me.
2. We must count the number of incomes that are less than 24,800 . We find that there are 13 . The critical region is the right tail of the $\operatorname{BIN}(20,1 / 2)$ distribution. So the p-value is $P(\operatorname{BIN}(20,1 / 2) \geq 13)=1-P(\operatorname{BIN}(20,1 / 2) \leq$ 12) $=1-0.8684=0.1316$ (Table 1 or from a spreadsheet). We fail to reject H_{0} at level 0.10.
3. The problem concerns the "first bus motor failure data", of which there are 191 observations. The number with fewer than 40,000 miles is 17 . We must use the left tail of the $\operatorname{BIN}(191,1 / 4)$ distribution. So the p-value is $P(\operatorname{BIN}(191,1 / 4) \leq 17)=1.2 \times 10^{-8}$ (from a spreadsheet). We reject H_{0} at level 0.01. We could also use a normal approximation of the binomial to get the p-value, $\Phi((17.5-191(1 / 4)) / \sqrt{191(1 / 4)(3 / 4)})=\Phi(-5.05)=2.21 \times 10^{-7}$, with the last step from a spreadsheet. The normal approximation is not very accurate here.
