Math 5090, Assignment 4, Chapter 12, Exercises 27, 30, 37, 39.

27. (a) $f(\boldsymbol{x};\theta) = \theta^{-n} \exp\{-\sum x_i/\theta\}$. $\log f(\boldsymbol{x};\theta) = -n \log \theta - \sum x_i/\theta$ has derivative $-n/\theta + \sum x_i/\theta^2$. Set equal to 0 and solve to get the MLE, $\hat{\theta} = \overline{x}$. Under H_0 , $\hat{\theta}_0 = \theta_0$. So the GLR statistic is

$$\lambda(\boldsymbol{x}) = \frac{f(\boldsymbol{x};\theta_0)}{f(\boldsymbol{x};\hat{\theta})} = \frac{\theta_0^{-n} \exp\{-\sum x_i/\theta_0\}}{\overline{x}^{-n} \exp\{-\sum x_i/\overline{x}\}} = \operatorname{const}_n \overline{x}^n \exp\{-(n/\theta_0)\overline{x}\}.$$

With $g(x) = x^n e^{-(n/\theta_0)x}$, choose $c_1 < c_2$ such that $g(c_1) = g(c_2)$ and $\{\overline{x} \leq c_1 \text{ or } \overline{x} \geq c_2\}$ has size α . This is the GLR test of size α . It is difficult to determine the constants c_1 and c_2 precisely, so an equal-tailed test is usually chosen.

In the large sample case, we use $-2 \log \lambda(\boldsymbol{x})$ as our test statistic, and an approximate critical region for the size α test is $\{-2 \log \lambda(\boldsymbol{x}) \ge \chi_{1-\alpha}^2(1)\}$.

(b) We need to find the MLE when θ is restricted to $[\theta_0, \infty)$. It is $\hat{\theta} = \overline{x}$ if $\overline{x} \ge \theta_0$ and θ_0 if $\overline{x} < \theta_0$. In other words, it is $\max(\overline{x}, \theta_0)$. Now the GLR statistic is

$$\lambda(\boldsymbol{x}) = \frac{f(\boldsymbol{x}; \hat{\theta}_0)}{f(\boldsymbol{x}; \hat{\theta})} = \frac{\theta_0^{-n} \exp\{-\sum x_i/\theta_0\}}{\max(\overline{x}, \theta_0)^{-n} \exp\{-\sum x_i/\max(\overline{x}, \theta_0)\}}$$
$$= \begin{cases} \operatorname{const}_n \overline{x}^n \exp\{-(n/\theta_0)\overline{x}\} & \text{if } \overline{x} \ge \theta_0\\ 1 & \text{if } \overline{x} < \theta_0 \end{cases}.$$

Then $\lambda(\mathbf{x}) \leq k$ is equivalent to $\overline{\mathbf{x}} \geq c$, and c can be chosen to give size α . Specifically, $\overline{\mathbf{x}}$ is $\text{GAM}(\theta_0/n, n)$ under H_0 so $(2n/\theta_0)\overline{\mathbf{x}}$ is GAM(2, n) or $\chi^2(2n)$. We reject H_0 if $(2n/\theta_0)\overline{\mathbf{x}} \geq \chi^2_{1-\alpha}(2n)$.

30. (a) Assume means are known. The likelihood function is $L(\sigma_1^2, \sigma_2^2) = (2\pi\sigma_1^2)^{-n_1/2} \exp\{-\sum (x_i - \mu_1)^2/(2\sigma_1^2)\}(2\pi\sigma_2^2)^{-n_2/2} \exp\{-\sum (y_i - \mu_2)^2/(2\sigma_2^2)\}\}$, so we can find the unrestricted MLEs to be $\hat{\sigma}_1^2 = (1/n_1)\sum (x_i - \mu_1)^2$ and $\hat{\sigma}_2^2 = (1/n_2)\sum (y_i - \mu_2)^2$.

Next we must find the MLEs under H_0 . Under H_0 the likelihood function is $L_0(\sigma^2) = (2\pi\sigma^2)^{-(n_1+n_2)/2} \exp\{-\sum(x_i - \mu_1)^2/(2\sigma^2)\}\exp\{-\sum(y_i - \mu_2)^2/(2\sigma^2)\}$. We get $\hat{\sigma}_0^2 = [\sum(x_i - \mu_1)^2 + \sum(y_i - \mu_2)^2]/(n_1 + n_2)$, or

$$\hat{\sigma}_0^2 = \frac{n_1}{n_1 + n_2} \hat{\sigma}_1^2 + \frac{n_2}{n_1 + n_2} \hat{\sigma}_2^2.$$

So our GLR statistic $\lambda(\boldsymbol{x}, \boldsymbol{y})$ is

$$\begin{split} &\frac{L_0(\hat{\sigma}_0^2)}{L(\hat{\sigma}_1^2,\hat{\sigma}_2^2)} \\ &= \frac{(2\pi\hat{\sigma}_0^2)^{-(n_1+n_2)/2} \exp\{-\sum(x_i-\mu_1)^2/(2\hat{\sigma}_0^2)\} \exp\{-\sum(y_i-\mu_2)^2/(2\hat{\sigma}_0^2)\}}{(2\pi\hat{\sigma}_1^2)^{-n_1/2} \exp\{-\sum(x_i-\mu_1)^2/(2\hat{\sigma}_1^2)\}(2\pi\hat{\sigma}_2^2)^{-n_2/2} \exp\{-\sum(y_i-\mu_2)^2/(2\hat{\sigma}_2^2)\}} \\ &= \frac{(\hat{\sigma}_0^2)^{-(n_1+n_2)/2}}{(\hat{\sigma}_1^2)^{-n_1/2}(\hat{\sigma}_2^2)^{-n_2/2}}. \end{split}$$

This is a function g of $\hat{\sigma}_1^2/\hat{\sigma}_2^2$, and $g(x) \leq k$ is equivalent to $x \leq c_1$ or $x \geq c_2$. Again it is difficult to determine the exact c_1 and c_2 , so an equal-tailed test is usually used. Under H_0 , $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ has an $F(n_1, n_2)$ distribution, so we reject H_0 if this statistic is $\leq F_{\alpha/2}(n_1, n_2)$ or $\geq F_{1-\alpha/2}(n_1, n_2)$.

(b) Here the means are unknown. The unrestricted MLEs are $\hat{\mu}_1 = \overline{x}$, $\hat{\mu}_2 = \overline{y}$, $\hat{\sigma}_1^2 = n_1^{-1} \sum (x_i - \overline{x})^2$, and $\hat{\sigma}_2^2 = n_2^{-1} \sum (y_i - \overline{y})^2$. Under H_0 , the MLEs are $\hat{\mu}_1 = \overline{x}$, $\hat{\mu}_2 = \overline{y}$, and $\hat{\sigma}_0^2 = (n_1 + n_2)^{-1} [\sum (x_i - \overline{x})^2 + \sum (y_i - \overline{y})^2]$. So our GLR statistic $\lambda(\boldsymbol{x}, \boldsymbol{y})$ is

$$\begin{split} & \frac{L_0(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_0^2)}{L(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1^2, \hat{\sigma}_2^2)} \\ &= \frac{(2\pi\hat{\sigma}_0^2)^{-(n_1+n_2)/2} \exp\{-\sum(x_i - \overline{x})^2/(2\hat{\sigma}_0^2)\} \exp\{-\sum(y_i - \overline{y})^2/(2\hat{\sigma}_0^2)\}}{(2\pi\hat{\sigma}_1^2)^{-n_1/2} \exp\{-\sum(x_i - \overline{x})^2/(2\hat{\sigma}_1^2)\}(2\pi\hat{\sigma}_2^2)^{-n_2/2} \exp\{-\sum(y_i - \overline{y})^2/(2\hat{\sigma}_2^2)\}} \\ &= \frac{(\hat{\sigma}_0^2)^{-(n_1+n_2)/2}}{(\hat{\sigma}_1^2)^{-n_1/2}(\hat{\sigma}_2^2)^{-n_2/2}}. \end{split}$$

The situation is similar to part (a). Again we use an equal-tailed test. Under H_0 , $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ has an $F(n_1 - 1, n_2 - 1)$ distribution, so we reject H_0 if this statistic is $\leq F_{\alpha/2}(n_1 - 1, n_2 - 1)$ or $\geq F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$.

(c) The unrestricted MLEs are as in part (b). Under H_0 , the MLEs are those for a single sample of size $n_1 + n_2$, so $\hat{\mu} = (n_1 \overline{x} + n_2 \overline{y})/(n_1 + n_2)$ and $\hat{\sigma}^2 = (n_1 + n_2)^{-1} [\sum (x_i - \hat{\mu})^2 + \sum (y_i - \hat{\mu})^2]$. So our GLR statistic $\lambda(\boldsymbol{x}, \boldsymbol{y})$ is

$$\frac{L_0(\hat{\mu}, \hat{\sigma}^2)}{L(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1^2, \hat{\sigma}_2^2)} = \frac{(2\pi\hat{\sigma}^2)^{-(n_1+n_2)/2} \exp\{-\sum(x_i - \hat{\mu})^2/(2\hat{\sigma}^2)\} \exp\{-\sum(y_i - \hat{\mu})^2/(2\hat{\sigma}^2)\}}{(2\pi\hat{\sigma}_1^2)^{-n_1/2} \exp\{-\sum(x_i - \overline{x})^2/(2\hat{\sigma}_1^2)\}(2\pi\hat{\sigma}_2^2)^{-n_2/2} \exp\{-\sum(y_i - \overline{y})^2/(2\hat{\sigma}_2^2)\}} = \frac{(\hat{\sigma}^2)^{-(n_1+n_2)/2}}{(\hat{\sigma}_1^2)^{-n_1/2}(\hat{\sigma}_2^2)^{-n_2/2}}.$$

We reject H_0 for small values of this statistic. Since its null distribution is unclear, we use the large-sample approximation, reject H_0 if $-2 \log \lambda(\boldsymbol{x}, \boldsymbol{y}) \geq \chi^2_{1-\alpha}(4-2)$.

37. (a) $k_0^* = \alpha/(1-\beta) = 0.10/0.95 = 0.1053$ and $k_1^* = (1-\alpha)/\beta = 0.90/0.05 = 18$.

(b) The *n*th likelihood ratio is

$$L_n(\boldsymbol{x}) = \frac{(2\pi)^{-n/2} \exp\{-(1/2) \sum_1^n x_i^2\}}{(18\pi)^{-n/2} \exp\{-(1/18) \sum_1^n x_i^2\}} = 3^n \exp\{-(4/9) \sum_1^n x_i^2\}$$

If, for some $n \ge 1$, $k_0^* < L_m(x) < k_1^*$ for m = 1, 2, ..., n-1 and $L_n(x) \le k_0^*$, then we reject H_0 . If, for some $n \ge 1$, $k_0^* < L_m(x) < k_1^*$ for m = 1, 2, ..., n-1and $L_n(x) \ge k_1^*$, then we accept H_0 .

(c) Take logs in part (b). $\log L_n(\boldsymbol{x}) = n \log 3 - (4/9) \sum_{1}^{n} x_i^2$. If, for some $n \ge 1$, $\log k_0^* < m \log 3 - (4/9) \sum_{1}^{m} x_i^2 < \log k_1^*$ for m = 1, 2, ..., n-1 and

 $n \log 3 - (4/9) \sum_{1}^{n} x_i^2 \leq k_0^*$, then we reject H_0 . If, for some $n \geq 1$, $\log k_0^* < m \log 3 - (4/9) \sum_{1}^{m} x_i^2 < \log k_1^*$ for m = 1, 2, ..., n-1 and $n \log 3 - (4/9) \sum_{1}^{n} x_i^2 \geq k_1^*$, then we accept H_0 .

(d) $E_{\sigma=1}[N] = \{\alpha \log[\alpha/(1-\beta)] + (1-\alpha) \log[(1-\alpha)/\beta]\}/E_{\sigma=1}[\log 3 - (4/9)x_1^2] = (0.10 \log[0.10/0.95] + 0.90 \log[0.90/0.05])/(\log 3 - (4/9)) = 3.63 \text{ and} E_{\sigma=3}[N] = \{(1-\beta) \log[\alpha/(1-\beta)] + \beta \log[(1-\alpha)/\beta]\}/E_{\sigma=3}[\log 3 - (4/9)x_1^2] = (0.95 \log[0.10/0.95] + 0.05 \log[0.90/0.05])/(\log 3 - (4/9)3^2) = 0.69.$

(e) $\log k_0^* = -2.25$ and $\log k_1^* = 2.89$. If $(x_1, x_2, \dots, x_{10}) = (-2.20, 0.50, 2.55, -1.85, -0.45, -1.15, -0.58, 5.65, 0.49, -1.16)$, then $(s_1, \dots, s_{10}) = (-1.05, -0.0650, -1.86, -2.28, -1.27, -0.759, 0.190, -12.9, -11.9, -11.4)$. This exits from the interval at the fourth step, so the test terminates in four steps with rejection of H_0 .

39. (a) The nth likelihood ratio is

$$L_n(\boldsymbol{x}) = \frac{\theta_0^{-n} \exp\{-\sum_1^n x_i/\theta_0\}}{\theta_1^{-n} \exp\{-\sum_1^n x_i/\theta_1\}} = \frac{2^{-n} \exp\{-\sum_1^n x_i/2\}}{4^{-n} \exp\{-\sum_1^n x_i/4\}} = 2^n \exp\{-\sum_1^n x_i/4\}$$

so $\log L_n(\mathbf{x}) = n \log 2 - \sum_{1}^{n} x_i/4$. In particular $z_1 = \log 2 - x_1/4$. With $(x_1, x_2, \dots, x_{20}) = (1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0)$. As in Exercise 37, $\log k_0^* = -2.25$ and $\log k_1^* = 2.89$. At the 14th step, S_n exits from the interval for the first time with $S_{14} = 3.2$. Thus, we fail to reject H_0 .

(b) $E_{\theta=2}[N] = \{\alpha \log[\alpha/(1-\beta)] + (1-\alpha) \log[(1-\alpha)/\beta]\}/E_{\theta=2}[\log 2 - x_1/4] = (0.10 \log[0.10/0.95] + 0.90 \log[0.90/0.05])/(\log 2 - 2/4) = 12.3$

(c) $E_{\theta=4}[N] = \{(1-\beta)\log[\alpha/(1-\beta)] + \beta\log[(1-\alpha)/\beta]\}/E_{\sigma=3}[\log 2 - x_1/4] = (0.95\log[0.10/0.95] + 0.05\log[0.90/0.05])/(\log 2 - 4/4) = 6.5.$