Math 5090, Assignment 3, Chapter 12, Exercises 17, 18, 22, 24.
17. (a) For $\sigma_{2}>\sigma_{1}>0$ the likelihood ratio is

$$
\frac{\left(2 \pi \sigma_{2}^{2}\right)^{-n / 2} \exp \left\{-\left(1 / \sigma_{2}^{2}\right) \sum_{1}^{n} x_{i}^{2}\right\}}{\left(2 \pi \sigma_{1}^{2}\right)^{-n / 2} \exp \left\{-\left(1 / \sigma_{1}^{2}\right) \sum_{1}^{n} x_{i}^{2}\right\}}=\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right)^{-n / 2} \exp \left\{-\left(1 / \sigma_{2}^{2}-1 / \sigma_{1}^{2}\right) \sum_{1}^{n} x_{i}^{2}\right\}
$$

which is increasing in $\sum_{1}^{n} x_{i}^{2}$. By the MLR theorem, a UMP test of $H_{0}: \sigma=\sigma_{0}$ vs. $H_{a}: \sigma>\sigma_{0}$ has the form: Reject H_{0} if $\sum_{1}^{n} x_{i}^{2} \geq k$, where k is chosen to assure size α. Under $H_{0}, \sum_{1}^{n} x_{i}^{2} / \sigma_{0}^{2}$ is $\chi^{2}(n)$, so we reject H_{0} if $\sum_{1}^{n} x_{i}^{2} \geq$ $\sigma_{0}^{2} \chi_{1-\alpha}^{2}(n)$.
(b) $\pi(\sigma)=P_{\sigma}\left(\sum_{1}^{n} x_{i}^{2} \geq \sigma_{0}^{2} \chi_{1-\alpha}^{2}(n)\right)=P\left(\chi^{2}(n) \geq\left(\sigma_{0}^{2} / \sigma^{2}\right) \chi_{1-\alpha}^{2}(n)\right)$. Note that this is α when $\sigma=\sigma_{0}$.
(c) $\pi(2)=P\left(\chi^{2}(20) \geq(1 / 4) \chi_{0.995}^{2}(20)\right)=P\left(\chi^{2}(20) \geq(1 / 4) 40.00\right)=$ $P\left(\chi^{2}(20) \geq 10\right)=1-0.032=0.968$.
18. Let $\theta_{1}<\theta_{0}$. First consider $H_{0}: \theta=\theta_{0}$ vs. $H_{a}: \theta=\theta_{1}$. Then the NP statistic is

$$
\lambda\left(\boldsymbol{x} ; \theta_{0}, \theta_{1}\right)=\frac{\left(1 / \theta_{0}\right)^{n} 1_{\left(0, \theta_{0}\right)}\left(x_{n: n}\right)}{\left(1 / \theta_{1}\right)^{n} 1_{\left(0, \theta_{1}\right)}\left(x_{n: n}\right)}
$$

We reject H_{0} if this is $\leq k$, or equivalently if $1 / \lambda\left(\boldsymbol{x} ; \theta_{0}, \theta_{1}\right) \geq 1 / k$. Notice that $1 / \lambda\left(\boldsymbol{x} ; \theta_{0}, \theta_{1}\right)$ is nonincreasing in $x_{n: n}$, so a nearly equivalent rejection criterion is $x_{n: n} \leq k_{1}$. Under $H_{0}, x_{n: n} / \theta_{0}$ has $\operatorname{CDF} P_{\theta_{0}}\left(x_{n: n} / \theta_{0} \leq x\right)=x^{n}$, which is α if $x=\alpha^{1 / n}$. So our critical region is $x_{n: n} \leq \theta_{0} \alpha^{1 / n}$.

Now this critical region does not depend on θ_{1} (only on the fact that $\theta_{1}<\theta_{0}$), so the test is UMP for $H_{0}: \theta=\theta_{0}$ vs. $H_{a}: \theta<\theta_{0}$.

To extend to the composite null hypothesis, we need only show that the power of the test for $\theta \geq \theta_{0}$ is maximized at θ_{0}. For this, $\pi(\theta)=P_{\theta}\left(x_{n: n} \leq\right.$ $\left.\theta_{0} \alpha^{1 / n}\right)=P_{\theta}\left(x_{n: n} / \theta \leq\left(\theta_{0} / \theta\right) \alpha^{1 / n}\right)=\left[\left(\theta_{0} / \theta\right) \alpha^{1 / n}\right]^{n}=\left(\theta_{0} / \theta\right)^{n} \alpha$, from which the desired result follows.
22. (a) For $0<\theta_{1}<\theta_{2}$, the likelihood ratio is
$\frac{\left(\theta_{2}^{\kappa} \Gamma(\kappa)\right)^{-n}\left(x_{1} \cdots x_{n}\right)^{\kappa-1} \exp \left\{-\sum x_{i} / \theta_{2}\right\}}{\left(\theta_{1}^{\kappa} \Gamma(\kappa)\right)^{-n}\left(x_{1} \cdots x_{n}\right)^{\kappa-1} \exp \left\{-\sum x_{i} / \theta_{1}\right\}}=\left(\frac{\theta_{1}}{\theta_{2}}\right)^{\kappa n} \exp \left\{-\left(1 / \theta_{2}-1 / \theta_{1}\right) \sum_{1}^{n} x_{i}\right\}$,
which is increasing in $\sum_{1}^{n} x_{i}$. This has the MLR property, so a UMP test is of the form: Reject H_{0} if $\sum_{1}^{n} x_{i} \geq k$. Now, if $\theta=\theta_{0}$, then $\sum_{1}^{n} x_{i}$ has distribution $\operatorname{GAM}\left(\theta_{0}, n \kappa\right)$, so $\left(2 / \theta_{0}\right) \sum_{1}^{n} x_{i}$ is $\operatorname{GAM}(2,2 n \kappa / 2)$ or $\chi^{2}(2 n \kappa)$. We reject H_{0} if $\left(2 / \theta_{0}\right) \sum_{1}^{n} x_{i} \geq \chi_{1-\alpha}^{2}(2 n \kappa)$.
(b) $\pi(\theta)=P_{\theta}\left(\left(2 / \theta_{0}\right) \sum_{1}^{n} x_{i} \geq \chi_{1-\alpha}^{2}(2 n \kappa)\right)=P_{\theta}\left((2 / \theta) \sum_{1}^{n} x_{i} \geq\left(\theta_{0} / \theta\right) \chi_{1-\alpha}^{2}(2 n \kappa)\right)=$ $P\left(\chi^{2}(2 n \kappa) \geq\left(\theta_{0} / \theta\right) \chi_{1-\alpha}^{2}(2 n \kappa)\right)$.
(c) $\pi(2)=P\left(\chi^{2}(16) \geq(1 / 2) \chi_{0.99}^{2}(16)\right)=P\left(\chi^{2}(16) \geq(1 / 2) 32.00\right)=P\left(\chi^{2}(16) \geq\right.$ 16) $=1-0.547=0.453$.
(d) If $0<\kappa_{1}<\kappa_{2}$, the likelihood ratio is

$$
\frac{\left(\theta^{\kappa_{2}} \Gamma\left(\kappa_{2}\right)\right)^{-n}\left(x_{1} \cdots x_{n}\right)^{\kappa_{2}-1} \exp \left\{-\sum x_{i} / \theta\right\}}{\left(\theta^{\kappa_{1}} \Gamma\left(\kappa_{1}\right)\right)^{-n}\left(x_{1} \cdots x_{n}\right)^{\kappa_{1}-1} \exp \left\{-\sum x_{i} / \theta\right\}}=\frac{\left(\theta^{\kappa_{2}} \Gamma\left(\kappa_{2}\right)\right)^{-n}}{\left(\theta^{\kappa_{1}} \Gamma\left(\kappa_{1}\right)\right)^{-n}}\left(x_{1} \cdots x_{n}\right)^{\kappa_{2}-\kappa_{1}},
$$

which is an increasing function of $x_{1} \cdots x_{n}$. This has the MLR property, so a UMP test is of the form: Reject H_{0} if $x_{1} \cdots x_{n} \geq k$. Unfortunately, we cannot go any further with this because we do not know the distribution of the product of n independent $\operatorname{GAM}\left(\theta, \kappa_{0}\right)$ random variables.
24. For $0<\theta_{1}<\theta_{2}$, the likelihood ratio is

$$
\frac{2^{n} \theta_{2}^{-2 n} x_{1} \cdots x_{n} \exp \left\{-\sum\left(x_{i} / \theta_{2}\right)^{2}\right\}}{2^{n} \theta_{1}^{-2 n} x_{1} \cdots x_{n} \exp \left\{-\sum\left(x_{i} / \theta_{1}\right)^{2}\right\}}=\left(\frac{\theta_{1}}{\theta_{2}}\right)^{2 n} \exp \left\{-\left(1 / \theta_{2}^{2}-1 / \theta_{1}^{2}\right) \sum_{1}^{n} x_{i}^{2}\right\}
$$

which is an increasing function of $\sum_{1}^{n} x_{i}^{2}$. This has the MLR property, so a UMP test is of the form: Reject H_{0} if $\sum_{1}^{n} x_{i}^{2} \leq k$. If X is $\operatorname{WEI}(\theta, 2)$, then X^{2} has density $\operatorname{EXP}\left(\theta^{2}\right)$. Hence, if $\theta=\theta_{0}, \sum_{1}^{n} x_{i}^{2}$ is $\operatorname{GAM}\left(\theta_{0}^{2}, n\right)$ and $\left(2 / \theta_{0}^{2}\right) \sum_{1}^{n} x_{i}^{2}$ is $\operatorname{GAM}(2,2 n / 2)=\chi^{2}(2 n)$. We reject H_{0} if $\left(2 / \theta_{0}^{2}\right) \sum_{1}^{n} x_{i}^{2} \leq \chi_{\alpha}^{2}(2 n)$.

