
Math 5090, Assignment 3, Chapter 12, Exercises 17, 18, 22, 24.

17. (a) For σ2 > σ1 > 0 the likelihood ratio is
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which is increasing in
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i . By the MLR theorem, a UMP test of H0 : σ = σ0

vs. Ha : σ > σ0 has the form: Reject H0 if
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that this is α when σ = σ0.

(c) π(2) = P (χ2(20) ≥ (1/4)χ2
0.995(20)) = P (χ2(20) ≥ (1/4)40.00) =

P (χ2(20) ≥ 10) = 1− 0.032 = 0.968.

18. Let θ1 < θ0. First consider H0 : θ = θ0 vs. Ha : θ = θ1. Then the NP
statistic is

λ(x; θ0, θ1) =
(1/θ0)n1(0,θ0)(xn:n)

(1/θ1)n1(0,θ1)(xn:n)

We reject H0 if this is ≤ k, or equivalently if 1/λ(x; θ0, θ1) ≥ 1/k. Notice that
1/λ(x; θ0, θ1) is nonincreasing in xn:n, so a nearly equivalent rejection criterion
is xn:n ≤ k1. Under H0, xn:n/θ0 has CDF Pθ0(xn:n/θ0 ≤ x) = xn, which is α if
x = α1/n. So our critical region is xn:n ≤ θ0α1/n.

Now this critical region does not depend on θ1 (only on the fact that θ1 < θ0),
so the test is UMP for H0 : θ = θ0 vs. Ha : θ < θ0.

To extend to the composite null hypothesis, we need only show that the
power of the test for θ ≥ θ0 is maximized at θ0. For this, π(θ) = Pθ(xn:n ≤
θ0α

1/n) = Pθ(xn:n/θ ≤ (θ0/θ)α
1/n) = [(θ0/θ)α

1/n]n = (θ0/θ)
nα, from which

the desired result follows.

22. (a) For 0 < θ1 < θ2, the likelihood ratio is
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which is increasing in
∑n

1 xi. This has the MLR property, so a UMP test is of
the form: Reject H0 if

∑n
1 xi ≥ k. Now, if θ = θ0, then

∑n
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(c) π(2) = P (χ2(16) ≥ (1/2)χ2
0.99(16)) = P (χ2(16) ≥ (1/2)32.00) = P (χ2(16) ≥

16) = 1− 0.547 = 0.453.
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(d) If 0 < κ1 < κ2, the likelihood ratio is
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which is an increasing function of x1 · · ·xn. This has the MLR property, so a
UMP test is of the form: Reject H0 if x1 · · ·xn ≥ k. Unfortunately, we cannot
go any further with this because we do not know the distribution of the product
of n independent GAM(θ, κ0) random variables.

24. For 0 < θ1 < θ2, the likelihood ratio is
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which is an increasing function of
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i . This has the MLR property, so a

UMP test is of the form: Reject H0 if
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has density EXP(θ2). Hence, if θ = θ0,
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