Math 5090, Assignment 3, Chapter 12, Exercises 17, 18, 22, 24.

17. (a) For $\sigma_2 > \sigma_1 > 0$ the likelihood ratio is

$$\frac{(2\pi\sigma_2^2)^{-n/2}\exp\{-(1/\sigma_2^2)\sum_1^n x_i^2\}}{(2\pi\sigma_1^2)^{-n/2}\exp\{-(1/\sigma_1^2)\sum_1^n x_i^2\}} = \binom{\sigma_2^2}{\sigma_1^2}^{-n/2}\exp\{-(1/\sigma_2^2 - 1/\sigma_1^2)\sum_1^n x_i^2\},$$

which is increasing in $\sum_{1}^{n} x_i^2$. By the MLR theorem, a UMP test of $H_0: \sigma = \sigma_0$ vs. $H_a: \sigma > \sigma_0$ has the form: Reject H_0 if $\sum_{1}^{n} x_i^2 \ge k$, where k is chosen to assure size α . Under H_0 , $\sum_{1}^{n} x_i^2 / \sigma_0^2$ is $\chi^2(n)$, so we reject H_0 if $\sum_{1}^{n} x_i^2 \ge \sigma_0^2 \chi_{1-\alpha}^2(n)$.

(b) $\pi(\sigma) = P_{\sigma}(\sum_{i=1}^{n} x_i^2 \ge \sigma_0^2 \chi_{1-\alpha}^2(n)) = P(\chi^2(n) \ge (\sigma_0^2/\sigma^2)\chi_{1-\alpha}^2(n)).$ Note that this is α when $\sigma = \sigma_0$.

(c) $\pi(2) = P(\chi^2(20) \ge (1/4)\chi^2_{0.995}(20)) = P(\chi^2(20) \ge (1/4)40.00) = P(\chi^2(20) \ge 10) = 1 - 0.032 = 0.968.$

18. Let $\theta_1 < \theta_0$. First consider $H_0 : \theta = \theta_0$ vs. $H_a : \theta = \theta_1$. Then the NP statistic is

$$\lambda(\boldsymbol{x};\theta_0,\theta_1) = \frac{(1/\theta_0)^n \mathbf{1}_{(0,\theta_0)}(\boldsymbol{x}_{n:n})}{(1/\theta_1)^n \mathbf{1}_{(0,\theta_1)}(\boldsymbol{x}_{n:n})}$$

We reject H_0 if this is $\leq k$, or equivalently if $1/\lambda(\boldsymbol{x};\theta_0,\theta_1) \geq 1/k$. Notice that $1/\lambda(\boldsymbol{x};\theta_0,\theta_1)$ is nonincreasing in $x_{n:n}$, so a nearly equivalent rejection criterion is $x_{n:n} \leq k_1$. Under H_0 , $x_{n:n}/\theta_0$ has CDF $P_{\theta_0}(x_{n:n}/\theta_0 \leq x) = x^n$, which is α if $x = \alpha^{1/n}$. So our critical region is $x_{n:n} \leq \theta_0 \alpha^{1/n}$.

Now this critical region does not depend on θ_1 (only on the fact that $\theta_1 < \theta_0$), so the test is UMP for $H_0: \theta = \theta_0$ vs. $H_a: \theta < \theta_0$.

To extend to the composite null hypothesis, we need only show that the power of the test for $\theta \geq \theta_0$ is maximized at θ_0 . For this, $\pi(\theta) = P_{\theta}(x_{n:n} \leq \theta_0 \alpha^{1/n}) = P_{\theta}(x_{n:n}/\theta \leq (\theta_0/\theta)\alpha^{1/n}) = [(\theta_0/\theta)\alpha^{1/n}]^n = (\theta_0/\theta)^n \alpha$, from which the desired result follows.

22. (a) For $0 < \theta_1 < \theta_2$, the likelihood ratio is

$$\frac{(\theta_2^{\kappa}\Gamma(\kappa))^{-n}(x_1\cdots x_n)^{\kappa-1}\exp\{-\sum x_i/\theta_2\}}{(\theta_1^{\kappa}\Gamma(\kappa))^{-n}(x_1\cdots x_n)^{\kappa-1}\exp\{-\sum x_i/\theta_1\}} = \left(\frac{\theta_1}{\theta_2}\right)^{\kappa n}\exp\left\{-(1/\theta_2 - 1/\theta_1)\sum_1^n x_i\right\}$$

which is increasing in $\sum_{1}^{n} x_i$. This has the MLR property, so a UMP test is of the form: Reject H_0 if $\sum_{1}^{n} x_i \ge k$. Now, if $\theta = \theta_0$, then $\sum_{1}^{n} x_i$ has distribution $GAM(\theta_0, n\kappa)$, so $(2/\theta_0) \sum_{1}^{n} x_i$ is $GAM(2, 2n\kappa/2)$ or $\chi^2(2n\kappa)$. We reject H_0 if $(2/\theta_0) \sum_{1}^{n} x_i \ge \chi_{1-\alpha}^2(2n\kappa)$. (b) $\pi(\theta) = P_{\theta}((2/\theta_0) \sum_{1}^{n} x_i \ge \chi_{1-\alpha}^2(2n\kappa)) = P_{\theta}((2/\theta) \sum_{1}^{n} x_i \ge (\theta_0/\theta)\chi_{1-\alpha}^2(2n\kappa)) = P_{\theta}(2/\theta) \sum_{1}^{n} x_i \ge \chi_{1-\alpha}^2(2n\kappa)$

(b) $\pi(\theta) = P_{\theta}((2/\theta_0) \sum_{1}^{n} x_i \ge \chi_{1-\alpha}^2(2n\kappa)) = P_{\theta}((2/\theta) \sum_{1}^{n} x_i \ge (\theta_0/\theta) \chi_{1-\alpha}^2(2n\kappa)) = P(\chi^2(2n\kappa) \ge (\theta_0/\theta) \chi_{1-\alpha}^2(2n\kappa)).$ (c) $\pi(2) = P(\chi^2(16) \ge (1/2) \chi_{0.99}^2(16)) = P(\chi^2(16) \ge (1/2) 32.00) = P(\chi^2(16) \ge 16) = 1 - 0.547 = 0.453.$ (d) If $0 < \kappa_1 < \kappa_2$, the likelihood ratio is

$$\frac{(\theta^{\kappa_2}\Gamma(\kappa_2))^{-n}(x_1\cdots x_n)^{\kappa_2-1}\exp\{-\sum x_i/\theta\}}{(\theta^{\kappa_1}\Gamma(\kappa_1))^{-n}(x_1\cdots x_n)^{\kappa_1-1}\exp\{-\sum x_i/\theta\}} = \frac{(\theta^{\kappa_2}\Gamma(\kappa_2))^{-n}}{(\theta^{\kappa_1}\Gamma(\kappa_1))^{-n}}(x_1\cdots x_n)^{\kappa_2-\kappa_1},$$

which is an increasing function of $x_1 \cdots x_n$. This has the MLR property, so a UMP test is of the form: Reject H_0 if $x_1 \cdots x_n \ge k$. Unfortunately, we cannot go any further with this because we do not know the distribution of the product of n independent $\text{GAM}(\theta, \kappa_0)$ random variables.

24. For $0 < \theta_1 < \theta_2$, the likelihood ratio is

$$\frac{2^n \theta_2^{-2n} x_1 \cdots x_n \exp\{-\sum (x_i/\theta_2)^2\}}{2^n \theta_1^{-2n} x_1 \cdots x_n \exp\{-\sum (x_i/\theta_1)^2\}} = \left(\frac{\theta_1}{\theta_2}\right)^{2n} \exp\{-(1/\theta_2^2 - 1/\theta_1^2) \sum_{i=1}^n x_i^2\},\$$

which is an increasing function of $\sum_{1}^{n} x_i^2$. This has the MLR property, so a UMP test is of the form: Reject H_0 if $\sum_{1}^{n} x_i^2 \leq k$. If X is WEI $(\theta, 2)$, then X^2 has density EXP (θ^2) . Hence, if $\theta = \theta_0$, $\sum_{1}^{n} x_i^2$ is GAM (θ_0^2, n) and $(2/\theta_0^2) \sum_{1}^{n} x_i^2$ is GAM $(2, 2n/2) = \chi^2(2n)$. We reject H_0 if $(2/\theta_0^2) \sum_{1}^{n} x_i^2 \leq \chi_{\alpha}^2(2n)$.