Math 5090, Assignment 2, Chapter 12, Exercises 6, 9, 11, 16.
6. (a) $P_{\eta_{0}}\left(X_{1} \geq c\right)=e^{-\left(c-\eta_{0}\right)}$ if $c \geq \eta_{0}$, so $P_{\eta_{0}}\left(X_{1: n} \geq c\right)=e^{-n\left(c-\eta_{0}\right)}$ if $c \geq \eta_{0}$. For this to be $\alpha$ we need $c=-n^{-1} \log \alpha+\eta_{0}$.
(b) $\pi(\eta)=P_{\eta}\left(X_{1: n} \geq c\right)=e^{-n(c-\eta)}=e^{-n\left(-n^{-1} \log \alpha+\eta_{0}-\eta\right)}$ as long as the quantity in parentheses is nonnegative, so $\pi(\eta)=\min \left(\alpha e^{n\left(\eta-\eta_{0}\right)}, 1\right)$.
(c) We want $\pi\left(\eta_{1}\right)=1-\beta$ so $\alpha e^{n\left(\eta_{1}-\eta_{0}\right)}=1-\beta$ or $n\left(\eta_{1}-\eta_{0}\right)=\log (1-$ $\beta)-\log \alpha$, hence $n=(\log (1-\beta)-\log \alpha) /\left(\eta_{1}-\eta_{0}\right)$.
9. (a) $S_{p}^{2}=\left[\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right] /\left(n_{1}+n_{2}-2\right)=(8 \cdot 36+8$. $45) /(16)=40.5$. The text statistic is $T_{0}=(\bar{Y}-\bar{X}) /\left(S_{p} \sqrt{1 / n_{1}+1 / n_{2}}\right)=$ $(10-16) / \sqrt{40.5(1 / 9+1 / 9)}=-2$. But $t_{0.95}(16)=1.746$, so since $|-2|>1.746$ we reject $H_{0}$.
(b) $T=(\bar{Y}-\bar{X}) / \sqrt{S_{1}^{2} / n 1+S_{2}^{2} / n_{2}}=(10-16) / \sqrt{36 / 9+45 / 9}=-2$ and degrees of freedom are estimated as
$\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\left(s_{1}^{2} / n_{1}\right)^{2} /\left(n_{1}-1\right)+\left(s_{2}^{2} / n_{2}\right)^{2} /\left(n_{2}-1\right)}=\frac{(36 / 9+45 / 9)^{2}}{(36 / 9)^{2} / 8+(45 / 9)^{2} / 8}=\frac{81}{41 / 8}=15.8$,
so we interpolate to get about 1.75, and we again reject $H_{0}$.
(c) $T=(\bar{Y}-\bar{X}) /\left(S_{D} / \sqrt{n}\right)=(10-16) / \sqrt{81 / 9}=-2$ and $t_{0.95}(8)=1.860$. Since $|-2|>1.860$ we reject $H_{0}$.
(d) $F_{0}=S_{1}^{2} / S_{2}^{2}=36 / 45=0.8 . \quad F_{0.95}(8,8)=3.44$. Since $0.8>1 / 3.44=$ 0.291, we fail to reject $H_{0}$.
(e) $P_{\sigma_{2}^{2} / \sigma_{1}^{2}=1.33}\left(S_{1}^{2} / S_{2}^{2} \leq 1 / 3.44\right)=P\left(\left(S_{1}^{2} / \sigma_{1}^{2}\right) /\left(S_{2}^{2} / \sigma_{2}^{2}\right) \leq 1.33 / 3.44\right)=$ $P(F(8,8) \leq 0.3866)=P(F(8,8) \geq 2.586)=0.10$ from Table 7 .
11. (a) $\lambda(x, 1,2)=1 /(2 x)$ is the NP statistic. Under $H_{0}, X$ has a $\operatorname{UNIF}(0,1)$ distribution. $P_{1}(1 /(2 X) \leq k)=P_{1}(X \geq c)=0.05$ if $c=0.95$. Reject $H_{0}$ if $X \geq 0.95$.
(b) $\pi(2)=P_{2}(X \geq 0.95)=\int_{0.95}^{1} 2 x d x=1-0.95^{2}=0.0975$.
(c) $\lambda(\boldsymbol{x}, 1,2)=1 /\left(2^{n} x_{1} x_{2} \cdots x_{n}\right)$, so the critical region has the form $\{\boldsymbol{x}$ : $\left.x_{1} x_{2} \cdots x_{n} \geq c\right\}$. We need to determine $c$ to have size $\alpha=0.05$. Under $H_{0}$, $X_{1}, X_{2}, \ldots, X_{n}$ are independent $\operatorname{UNIF}(0,1)$, hence $-2 \log X_{1}, \ldots,-2 \log X_{n}$ are independent $\operatorname{EXP}(2)$ and the critical region is $\left\{\boldsymbol{x}:-2 \sum_{1}^{n} \log x_{i} \leq c_{1}\right\}$. The sum of $n$ independent $\operatorname{EXP}(2)$ random variables is $\operatorname{GAM}(2, n)=\chi^{2}(2 n)$. So $c_{1}=\chi_{0.05}^{2}(2 n)$ gives the desired size.
16. We can apply the NP Lemma with $H_{0}: \theta=\theta_{0}$ vs. $H_{a}: \theta=\theta_{1}$ with $\theta_{1}>\theta_{0}$.

$$
\lambda\left(\boldsymbol{x}, \theta_{0}, \theta_{1}\right)=\frac{\left(3^{n} x_{1}^{2} \cdots x_{n}^{2} / \theta_{0}^{n}\right) e^{-\sum_{1}^{n} x_{i}^{3} / \theta_{0}}}{\left(3^{n} x_{1}^{2} \cdots x_{n}^{2} / \theta_{1}^{n}\right) e^{-\sum_{1}^{n} x_{i}^{3} / \theta_{1}}}=\frac{\theta_{1}^{n}}{\theta_{0}^{n}} e^{-\left(1 / \theta_{0}-1 / \theta_{1}\right) \sum_{1}^{n} x_{i}^{3}}
$$

This is $\leq k$ if and only if $\sum_{1}^{n} x_{i}^{3} \geq k_{1}$, since $1 / \theta_{0}-1 / \theta_{1}>0$. What is the distribution of $X^{3}$ if $X$ has density $f(x ; \theta)$ ? The transformation formula tells us it is $\operatorname{EXP}(\theta)$. So our test statistic, under $H_{0}$, can be taken to be $\left(2 / \theta_{0}\right) \sum_{1}^{n} X_{i}^{3}$, which is $\operatorname{GAM}(2, n)=\chi^{2}(2 n)$. We reject $H_{0}$ if $\left(2 / \theta_{0}\right) \sum_{1}^{n} X_{i}^{3} \geq \chi_{1-\alpha}^{2}(2 n)$. By the NP Lemma, this is UMP.

