Math 5090, Assignment 1, Chapter 12, Exercises 1, 2, 3, 5.

1. (a) The critical region $A=\{\bar{x} \leq a\}$ will have size $\alpha=0.05$ if $P_{\mu=20}(\bar{X} \leq$ $a)=P_{\mu=20}((\bar{X}-20) /(1 / \sqrt{16}) \leq(a-20) /(1 / \sqrt{16}))=0.05$, which is equivalent to $(a-20) /(1 / \sqrt{16})=-1.645$, so $a=20-1.645 / 4=19.589$. The critical region $B=\{\bar{x} \geq b\}$ will have size $\alpha=0.05$ if $P_{\mu=20}(\bar{X} \geq b)=P_{\mu=20}((\bar{X}-$ $20) /(1 / \sqrt{16}) \geq(b-20) /(1 / \sqrt{16}))=0.05$, or if $(b-20) /(1 / \sqrt{16})=1.645$, so $b=20+1.645 / 4=20.411$.
(b) $A: \beta=P_{\mu=21}(\bar{X}>a)=P_{\mu=21}((\bar{X}-21) /(1 / \sqrt{16})>(a-21) /(1 / \sqrt{16}))=$ $1-\Phi((a-21) /(1 / \sqrt{16}))=1-\Phi(4(19.589-21))=1-\Phi(-5.644) \approx 1 . B$: $\beta=P_{\mu=21}(\bar{X}<b)=P_{\mu=21}((\bar{X}-21) /(1 / \sqrt{16})<(b-21) /(1 / \sqrt{16}))=\Phi((b-$ $21) /(1 / \sqrt{16}))=\Phi(4(20.411-21))=\Phi(-2.356)=1-\Phi(2.356) \approx 0.0092$. For the alternative $\mu=21, A$ is unreasonable, as the large type II error suggests.
(c) $A: \beta=P_{\mu=19}(\bar{X}>a)=P_{\mu=19}((\bar{X}-19) /(1 / \sqrt{16})>(a-19) /(1 / \sqrt{16}))=$ $1-\Phi((a-19) /(1 / \sqrt{16}))=1-\Phi(4(19.589-19))=1-\Phi(2.356) \approx 0.0092$. $B: \beta=P_{\mu=19}(\bar{X}<b)=P_{\mu=19}((\bar{X}-19) /(1 / \sqrt{16})<(b-19) /(1 / \sqrt{16}))=$ $\Phi((b-19) /(1 / \sqrt{16}))=\Phi(4(20.411-19))=\Phi(5.644) \approx 1$. For the alternative $\mu=19, B$ is unreasonable, as the large type II error suggests.
(d) It is $P_{\mu=20}(\bar{X} \leq a$ or $\bar{X} \geq b)=P_{\mu=20}(\bar{X} \leq a)+P_{\mu=20}(\bar{X} \geq b)=\alpha+\alpha=$ $2 \alpha=0.10$.
(e) It is the same for $\mu=19$ or $\mu=21$, by symmetry. $\beta=1-P_{\mu=21}(\bar{X} \leq$ a or $\bar{X} \geq b)=1-P_{\mu=21}(\bar{X} \leq a)+P_{\mu=21}(\bar{X} \geq b)=1-\left(1-\beta_{A}\right)-\left(1-\beta_{B}\right) \approx$ $1-(1-1)-(1-0.0092) \approx 0.0092$.
2. (a) Notice that θ is a discrete parameter here, which is unusual. The probability of a type I error is the probability of rejecting H_{0} when it is true, so it is the probability of getting 2 whites or 2 blacks in the sample of two, when there are two of each in the box. This is $(\theta / 4)^{2}+(1-\theta / 4)^{2}$ when $\theta=2$, which equals $1 / 2$.
(b) The probability of failing to reject H_{0} is $\beta=2(\theta / 4)(1-\theta / 4)$. If $\theta=0$ or $4, \beta=0$. If $\theta=1$ or $3, \beta=3 / 8$.
(c) The probability of rejecting H_{0} is no longer $(\theta / 4)^{2}+(1-\theta / 4)^{2}$ but rather $\theta(\theta-1) /(4 \cdot 3)+(4-\theta)(3-\theta) /(4 \cdot 3)$. When $\theta=2$, this equals $1 / 6+1 / 6=1 / 3$. The probability of failing to reject H_{0} is now $\beta=2 \theta(4-\theta) /(4 \cdot 3)$. If $\theta=0$ or $4, \beta=0$. If $\theta=1$ or $3, \beta=1 / 2$.
3. (a) Test statistic is $T_{0}=(\bar{X}-12) /(\sigma / \sqrt{20})=(11-12) /(2 / \sqrt{20})=$ $-\sqrt{5}=-2.236$. We reject H_{0} if this is less than $-z_{0.99}=-2.326$ (p. 603). It is not, so we do not reject H_{0} at the 0.01 level.
(b) $\beta=P_{\mu=10.5}\left(T_{0}>-2.326\right)=P_{\mu=10.5}((\bar{X}-10.5) /(\sigma / \sqrt{20})>-2.326+$ $1.5 /(\sigma / \sqrt{20}))=1-\Phi(-2.326+1.5 \sqrt{5})=1-\Phi(1.0281)=0.152$.
(c) power $=P_{\mu=10.5}\left(T_{0} \leq-2.326\right)=P_{\mu=10.5}((\bar{X}-10.5) /(\sigma / \sqrt{n}) \leq-2.326+$ $1.5 /(\sigma / \sqrt{n}))=\Phi(-2.326+0.75 \sqrt{n}) \geq 0.90$ if $-2.326+0.75 \sqrt{n} \geq 1.282$ or $\sqrt{n} \geq 4.81$ or $n \geq 23.1$.
(d) Test statistic is $T_{0}=(\bar{X}-12) /(s / \sqrt{20})=(11-12) /(4 / \sqrt{20})=-\sqrt{5} / 2=$ -1.118 . We reject H_{0} if this is less than $-t_{0.99}(19)=-2.539$ (p. 603). It is not, so we do not reject H_{0} at the 0.01 level.
(e) Test statistic is $V_{0}=(n-1) S^{2} / 9=19 \cdot 16 / 9=33.8$. We reject H_{0} if $V_{0} \geq \chi_{0.99}^{2}(19)=36.19$. We do not reject H_{0} at the 0.01 level.
(f) Use the result at the top of page 402 . We want n such that $(9 / 18) \chi_{0.99}^{2}(n-$ $1)=\chi_{0.10}^{2}(n-1)$. In other words, for what n is $\chi_{0.99}^{2}(n-1)$ twice as large as $\chi_{0.10}^{2}(n-1)$? By page 605 , it looks like $n \approx 50$ suffices. If we use the approximation on page 402, we get n approximately equal to

$$
1+2\left[\frac{z_{0.10}-(9 / 18) z_{0.99}}{1-(9 / 18)}\right]^{2}=1+2\left[\frac{-1.282-(1 / 2) 2.326}{1 / 2}\right]^{2}=48.8
$$

or $n=49$. β is 1 minus the power, so $\beta \approx 0.90$.
5. Here $H_{0}: \mu=200$ vs. $H_{a}: \mu \neq 200$. Test statistic is $T_{0}=(\bar{X}-$ $200) /(S / \sqrt{n})$. Critical region is $\left|T_{0}\right| \geq t_{1-\alpha / 2}(n-1)$ with $\alpha=0.01$. We use page 400 and Table 8 on page 612, in which $\alpha=0.005$ because this is a two-sided test. Here $d=\left|\mu_{1}-\mu_{2}\right| / \sigma=20 / 25=0.8$. The table gives $n=32$.

