Name:

Quiz 9, Attempt 1

200 people were assessed for Race and the presence of a certain characteristic. The following data were collected.

 Monte e contra logica grante con 	Present	Absent	Total
Race 1	10 (50)	40 ³ (梁)	50
Race 2	50 (50)	50 50	100
Race 3	30(25)	20 (25)	50

Test the null hypothesis that the proportion of people with the characteristic present is 0.25 for Race 1 and 0.50 for Races 2 and 3. Express your answer as a p-value in terms of a known distribution. Be sure to write down the outcome of the test statistic, but you don't need to simplify it.

٠

$$t = \left(\frac{10 - \frac{50}{4}}{\frac{50}{4}}\right)^{2} + \left(\frac{40 - \frac{3(50)}{4}}{\frac{3(50)}{4}}\right)^{2} + \frac{5^{2}}{25} + \frac{5^{2}}{25}$$

 $P-value = P(\chi^2(3) \stackrel{>}{\underset{\sim}{\rightarrow}} t)$

Quiz 7, Attempt 2

Suppose a population has a BER(p) distribution. What is the p-value based on the uniformly most powerful test of H₀: $p = \frac{3}{4}$ against the alternative that $p \neq \frac{3}{4}$? State what the test statistic is and report your answer in terms of the test statistic OR state that no uniformly most powerful test exists.

No UMP test exists.