Name:

Quiz 9, Attempt 1

200 people were assessed for Race and the presence of a certain characteristic. The following data were collected.

	Present	Absent	Total
Race 1	$10\left(\frac{55}{4}\right)$	$403\left(\frac{50}{4}\right)$	50
Race 2	$50(50)$	$50(50)$	100
Race 3	$30(25)$	$20(25)$	50

Test the null hypothesis that the proportion of people with the characteristic present is 0.25 for Race 1 and 0.50 for Races 2 and 3 . Express your answer as a p-value in terms of a known distribution. Be sure to write down the outcome of the test statistic, but you don't need to simplify it.

$$
\begin{aligned}
& t=\frac{\left(10-\frac{50}{4}\right)^{2}}{\frac{50}{4}}+\frac{\left(40-\frac{3(50)}{4}\right)^{2}}{\frac{3(50)}{4}}+\frac{5^{2}}{25}+\frac{5^{2}}{25} \\
& P \text {-value }=P\left(x^{2}(3) \geq t\right)
\end{aligned}
$$

Quiz 7, Attempt 2

Suppose a population has a $\operatorname{BER}(\mathrm{p})$ distribution. What is the p -value based on the uniformly most powerful test of $H_{0}: p=3 / 4$ against the alternative that $p \neq 3 / 4$? State what the test statistic is and report your answer in terms of the test statistic OR state that no uniformly most powerful test exists.

No UMP test exists.

