Throughout this exam, put all of your answers in the boxes provided. Each page represents a standalone problem, but there may be multiple parts within the page.

Suppose you have a normally distributed population with a variance of 1 . What test statistic would make a good test for the hypotheses below? (1 point)
$T=$

Construct a rejection region for a test of size 16% for a null hypothesis of a mean less than or equal to zero against a one sided alternative that the mean is greater than zero. (1 point)

Reject the null hypothesis if the outcome, t, of the test statistic, T, is in this interval:

What is the probability of type II error if the population mean is 7 ? (1 point)

$$
\begin{aligned}
& P(T \leq Z .84 \mid \mu=7) \\
= & \left.P\left(\frac{x-7}{1 / \sqrt{n}} \leq 7.84-7 \sqrt{n}\right) m=7\right)=\frac{\$}{9}(7.84-7 \sqrt{n})
\end{aligned}
$$

Compute the p-value if the outcome of the test statistics is 5 . (1 point)
p-value $-P(T \geq 5 \mid M=0)$

$$
1-\Phi(5)
$$

(1 point) Suppose you have an exponentially distributed population with a mean of either 1 or 2 and you have a sample of size 10 from that population. A uniformly most powerful test of size 10% of the null hypothesis that the mean is 1 against the alternative that the mean is 2 is to reject the null hypothesis if

$$
\begin{aligned}
& x>\frac{\frac{x^{2}(20}{20}}{20)} \\
& \lambda=\frac{\prod_{i=1}^{10} \frac{1}{\lambda_{0}} e^{-x_{i} / \lambda_{0}}}{\pi \frac{1}{\lambda_{1}} e^{-x_{i} / \lambda_{1}}}=\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{10} e^{\left(-\frac{1}{\lambda_{0}}+\frac{1}{\lambda_{1}}\right) \sum_{i=1}^{10} x_{i}} \\
& \text { Reject if } \sum x_{i} \text { is large. } \\
& \frac{2 \sum x_{i}}{1} H_{0}^{2}(20) \\
& \text { Reject if } 2 \sum_{x_{i}}>x^{2}(20
\end{aligned}
$$

(1 point) A uniformly most powerful test of size 10% would be to reject the null hypothesis if

$$
x>\frac{x^{2} \cdot 90(20)}{20}
$$

Suppose you have a population with a Poisson distribution. A generalized likelihood ratio test of size 5\% of the null hypothesis that the mean is 12 against the 2 -sided alternative is to reject the null hypothesis if

$$
\lambda=\frac{f(\underline{x} ; 12)}{f(\underline{x} ; \bar{x})}=\frac{\prod^{\frac{e^{-12}}{\prod^{12}}} \frac{e^{x_{i}}}{e^{-\bar{x}}}=e^{n(\bar{x}-12)}\left(\frac{12}{\bar{x}}\right)^{\sum x_{i}}}{x_{i!}}
$$

A random sample of size 3 is obtained from Population A with outcomes of 1,2,7. A random sample of size 2 is obtained from Population B with outcomes of 4 and 40 . The two samples are independent. Population A and Population B are thought to have similarly shaped distributions but with a possible shift in the mean. The p-value for a Wilcoxon rank-sum test of the null hypothesis that the means are the same against the one-sided alternative that the mean for Population A is smaller is

(2 points)

$$
w_{a}=7
$$

1	2	3	4	5	w_{a}
0	0				12
0		0			11
0			0		10
0				0	9
	0	0			10
	0	0	0	0	8
		0	0	0	7

In a random sample of size 50 from the population of Utah voters, 30 prefer Hilary over Trump; 10 prefer Trump over Hilary, and 10 hate them both equally. Use a sign test to test the null hypothesis that Utahans are evenly split between favoring Hilary vs. Trump against the alternative that Hilary is preferred over Trump. The p-value is

$$
P\left(\operatorname{BIN}\left(40, \frac{1}{2}\right) \geq 30\right)
$$

11. A sample of 400 people was asked their degree of support of a balanced budget and their degree of support of public education, with the following results:

	Supported Balanced Budget			
	Public Education	Strong	Undecided	Weak
Strong Undecided Weak	100	80	20	200
	60	50	15	125
	20	50	5	75
	180	180	40	400

We would like to test the null hypothesis that support for a balanced budget is independent of support for public education.

Under the null hypothesis, what the expected number with strong support for both is
$400\left(\frac{180}{400}\right)\left(\frac{200}{400}\right)=90$

Using the standard chi-squared test statistic, t, for this test, the p-value is

Suppose you have a population whose distribution is the two-parameter exponential with location parameter η and scale parameter $\theta=1$. A pivotal quantity for η is

A one-sided upper 90% confidence bound on η is

$$
\begin{aligned}
& \text { - } 90=P\left(a<X_{1: n}-n\right)=P\left(n<X_{1 e_{n}}-a\right) \\
& =P\left(X_{1 . n}>a+\pi\right)=\left[P\left(X_{1}>a+\pi\right)\right]^{n n}=e^{-a n} \\
& \text { Since } P\left(X_{1}-n>a\right)=\int_{a}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{a} ^{\infty} \\
& =+e^{-a} \\
& \text { If } .9=e^{-a n}, \text { then } \log (9)=\left(-a_{n}\right) \\
& \Rightarrow a=\frac{-\log (.9)}{n}
\end{aligned}
$$

