Math 5090
8/31/2016
Given a random sample of size 100 with sample mean of 2 from a $N(\mu, 1)$ population, give a 95% onesided lower confidence limit by doing the following steps. Note that $\mathrm{z}_{0.05}=-1.645$.

$$
.95=P\left(z_{.05}^{\text {Write an appropriate probability statement. } \left.<\frac{\mu-\bar{x}}{\frac{1}{10}}\right)=P\left(-1.645<\frac{\mu-\bar{x}}{\frac{1}{10}}\right)}\right.
$$

Rewrite the statement to isolate μ.

Write the random interval; it should be in the form (expression, ∞).

$$
(\bar{X}-0.1645, \infty)
$$

Write the outcome of the random interval (ie. confidence interval).

$$
(2-0.1645, \infty)=(1.8355, \infty)
$$

Write the 95\% one-sided lower confidence limit.

