1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
h(t ; \theta)= \begin{cases}0, & \text { if }-\infty<t<0 \\ \frac{1}{\theta} e^{-t / \theta}, & \text { if } 0 \leq t<\infty .\end{cases}
$$

We wish to test $H_{0}: \theta=\theta_{0}$ against $H_{A}: \quad \theta \neq \theta_{0}$. Find a test using the generalized likelihood ratio.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with probability mass function

$$
P\left\{X_{i}=t\right\}=\frac{\theta^{t}}{t!} e^{-\theta} I\{t=0,1,2, \ldots\} .
$$

We wish to test $H_{0}: \theta=\theta_{0}$ against $H_{A}: \quad \theta \neq \theta_{0}$. Find a test using the generalized likelihood ratio.

Consider a random sample of size 37 for $N\left(\mu_{1}, 1\right)$ and another, independent random sample of size 51 from $N\left(\mu_{2}, \sigma^{2}\right)$. Construct a test of the null hypothesis that $\mu_{1}=\mu_{2}$ against the two-sided alternative using the generalized likelihood ratio. Write down an expression for the p -value in terms of an appropriate distribution.

Consider a random sample of size 37 for $N\left(\mu_{1}, \sigma^{2}\right)$ and another, independent random sample of size 51 from $N\left(\mu_{2}, \sigma^{2}\right)$. Construct a test of the null hypothesis that $\mu_{1}=\mu_{2}$ against the two-sided alternative using the generalized likelihood ratio. Write down an expression for the p -value in terms of an appropriate distribution.

