Quiz 1 solution
Math 5080-2
Sept. 2, 2015

1. Let X_{1} and X_{2} be independent $N(0,1)$ random variables. Each has density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad-\infty<x<\infty
$$

Find the joint density $g\left(y_{1}, y_{2}\right)$ of Y_{1} and Y_{2}, where

$$
\begin{align*}
& Y_{1}=X_{1}+X_{2} \tag{1}\\
& Y_{2}=X_{1}-X_{2}
\end{align*}
$$

Show all your work, and simplify your final result algebraically.
Hint: To find the inverse transformation, add and subtract the equations in (1).

Sol. The inverse transformation is

$$
\begin{aligned}
& X_{1}=\left(Y_{1}+Y_{2}\right) / 2 \\
& X_{2}=\left(Y_{1}-Y_{2}\right) / 2
\end{aligned}
$$

which has Jacobian

$$
J=\operatorname{det}\left(\begin{array}{lr}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right)=-1 / 2
$$

So the joint density of Y_{1} and Y_{2} is

$$
\begin{aligned}
g\left(y_{1}, y_{2}\right) & =f\left(x_{1}\right) f\left(x_{2}\right)|J|=f\left(\left(y_{1}+y_{2}\right) / 2\right) f\left(\left(y_{1}-y_{2}\right) / 2\right)|J| \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\left(y_{1}+y_{2}\right)^{2} / 8} \frac{1}{\sqrt{2 \pi}} e^{-\left(y_{1}-y_{2}\right)^{2} / 8} \frac{1}{2} \\
& =\frac{1}{\sqrt{4 \pi}} e^{-y_{1}^{2} / 4} \frac{1}{\sqrt{4 \pi}} e^{-y_{2}^{2} / 4} .
\end{aligned}
$$

It is not necessary to mention it, but this shows that Y_{1} and Y_{2} are independent $N(0,2)$ random variables.

Quiz 2
Math 5080-2
Name: solutions
Sept. 9, 2015

1. Let X_{1}, X_{2}, X_{3} be independent uniform $(0,1)$ random variables, and let Y_{1}, Y_{2}, Y_{3} be their order statistics.
(a) Find the pdf of $Y_{1}=\min \left(X_{1}, X_{2}, X_{3}\right)$.

Method 1. Use the formula derived in class:

$$
f_{Y_{1}}\left(y_{1}\right)=\binom{3}{0,1,2} y_{1}^{0} 1\left(1-y_{1}\right)^{2}=3\left(1-y_{1}\right)^{2}
$$

Method 2. Use the cdf method:

$$
F_{Y_{1}}\left(y_{1}\right)=1-P\left(Y_{1}>y_{1}\right)=1-P\left(X_{1}>y_{1}\right)^{3}=1-\left(1-y_{1}\right)^{3}
$$

so $f_{Y_{1}}\left(y_{1}\right)=3\left(1-y_{1}\right)^{2}$.
Method 3. Integrate the joint pdf: $f\left(y_{1}, y_{2}, y_{3}\right)=6,0<y_{1}<y_{2}<y_{3}<1$, so

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{y_{1}}^{1} \int_{y_{2}}^{1} 6 d y_{3} d y_{2}=\int_{y_{1}}^{1} 6\left(1-y_{2}\right) d y_{2}=3\left(1-y_{1}\right)^{2}
$$

(b) Find the mean of Y_{1}. If you are not confident about your answer to (a), you may use the fact that

$$
E\left[Y_{1}\right]=\int_{0}^{1} y_{1} 3\left(1-y_{1}\right)^{2} d y_{1}=3 \int_{0}^{1}\left(y_{1}-2 y_{1}^{2}+y_{1}^{3}\right) d y_{1}=3\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)=\frac{1}{4}
$$

or
$E\left[Y_{1}\right]=\int_{0}^{1} P\left(Y_{1}>y\right) d y=\int_{0}^{1} P\left(X_{1}>y\right)^{3} d y=\int_{0}^{1}(1-y)^{3} d y=\int_{0}^{1} z^{3} d z=\frac{1}{4}$.

Quiz 3
Math 5080-2
Name:
Sept. 16, 2015

1. Consider a random sample of size n from a distribution with CDF $F(x)=$ $1-1 /(1+x)$ if $x>0,=0$ otherwise.
(a) Find the CDF $F_{n}(x)$ of $X_{1: n}=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Sol. $F_{n}(x)=1-(1-F(x))^{n}=1-1 /(1+x)^{n}$ for $x>0$.
(b) Use (a) to find the $\operatorname{CDF} G_{n}(y)$ of $Y_{n}=n X_{1: n}$.

Sol. $G_{n}(y)=F_{n}(y / n)=1-1 /(1+y / n)^{n}$ for $y>0$.
(c) Use (b) to find the limiting $\operatorname{CDF} G(y)$ of $Y_{n}=n X_{1: n}$ as $n \rightarrow \infty$.

Sol. $G(y)=1-1 / e^{y}=1-e^{-y}$ for $y>0$. The limiting distribution is exponential.

Quiz 4
Math 5080-2 Name: solution
Sept. 23, 2015

1. Let X_{1}, X_{2}, \ldots be independent exponential (density $f(x)=e^{-x}, x>0$). We know that the sample median $X_{(n+1) / 2: n}$ (if n is odd) is asymptotically normal.
(a) Find the asymptotic mean and variance. Recall formulas $m=x_{p}$ (asymptotic mean is p th quantile) and c^{2} / n (asymptotic variance) with $c^{2}=$ $p(1-p) /\left[f\left(x_{p}\right)\right]^{2}$; here $p=1 / 2$.

Sol. Must find x_{p}. CDF is $F(x)=1-e^{-x}$, so solve $F\left(x_{p}\right)=p .1-e^{-x_{p}}=p$ or $e^{-x_{p}}=1-p . x_{p}=-\ln (1-p)$. With $p=1 / 2$, we get $x_{1 / 2}=-\ln (1 / 2)=\ln 2$. Thus, asymptotic mean is $m=\ln 2$. And $c^{2}=(1 / 4) /\left(e^{-\ln 2}\right)^{2}=(1 / 4) /(1 / 2)^{2}=$ 1. Thus, asymptotic variance is $1 / n$.
(b) Explain why the reciprocal $1 / X_{(n+1) / 2: n}$ is also asymptotically normal, and find the asymptotic mean and variance.

Sol. If Y_{n} is $\operatorname{asymp} N\left(m, c^{2} / n\right)$, then $g\left(Y_{n}\right)$ is asymp $N\left(g(m), c^{2}\left|g^{\prime}(m)\right| / n\right)$. We apply this with $g(y)=1 / y$, hence $g^{\prime}(y)=-1 / y^{2}$. Conclude that $1 / X_{(n+1) / 2: n}$ is asymptotically normal with asymptotic mean $1 / \ln 2$ and asymptotic variance $1 /\left[n(\ln 2)^{2}\right]$.

Quiz 5
Math 5080-2
Name: answers
Sept. 30, 2015

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $N\left(\mu, \sigma^{2}\right)$. State the distribution of (a) $\bar{X}_{n}:=\left(X_{1}+\cdots+X_{n}\right) / n \sim N\left(\mu, \sigma^{2} / n\right)$
(b) $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} / \sigma^{2} \sim \chi^{2}(n)$
(c) $\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} / \sigma^{2} \sim \chi^{2}(n-1)$
(d) $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \sim t(n-1)$
(e) $n\left(\bar{X}_{n}-\mu\right)^{2} /\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}\right] \sim F(1, n-1)$

Quiz 6
Math 5080-2
Name: solution
Oct. 21, 2015

1. Suppose we have a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the lognormal distribution with density function

$$
f(x ; \theta)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} x^{-1} e^{-(\log x-\mu)^{2} /\left(2 \sigma^{2}\right)}, \quad x>0
$$

where $\theta=\left(\mu, \sigma^{2}\right)$. Find the maximum likelihood estimators of μ and σ^{2}.
Hints: Maximize the log likelihood by taking partial derivatives. First find $\hat{\mu}$, then find $\hat{\sigma}^{2}$. The argument is very similar to what we did in the $N\left(\mu, \sigma^{2}\right)$ case. (You may use log or \ln, as you prefer.)

Sol.

$$
\begin{gather*}
L\left(\mu, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2}\left(x_{1} x_{2} \cdots x_{n}\right)^{-1} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\log x_{i}-\mu\right)^{2}\right\} \\
\log L\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\log \left(x_{1} x_{2} \cdots x_{n}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\log x_{i}-\mu\right)^{2} \\
\frac{\partial}{\partial \mu} \log L\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(\log x_{i}-\mu\right)=0 \tag{1}\\
\frac{\partial}{\partial \sigma^{2}} \log L\left(\mu, \sigma^{2}\right)=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(\log x_{i}-\mu\right)^{2} \tag{2}
\end{gather*}
$$

$\mathrm{Bu}(1), \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} \log x_{i}$. By (2), $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\log x_{i}-\hat{\mu}\right)^{2}$.

Quiz 7
Math 5080-2
Name:
Oct. 28, 2015

1. Suppose we have a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the $\operatorname{Poisson}(\lambda)$ distribution with density function

$$
f(x ; \lambda)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \ldots
$$

where $\lambda>0$. Recall that the mean and variance of a $\operatorname{Poisson}(\lambda)$ random variable are both equal to λ.
(a) Find the Cramér-Rao lower bound (CRLB) for the variance of an unbiased estimator T of $\tau(\lambda)=e^{-\lambda}$.

Sol. $\log f(x ; \lambda)=-\lambda+x \log \lambda$, so $(\partial / \partial \lambda) \log f(x ; \lambda)=-1+x / \lambda$. Hence $I_{1}(\lambda)=E\left[(-1+X / \lambda)^{2}\right]=\lambda^{-2} E\left[(X-\lambda)^{2}\right]=\lambda^{-2} \operatorname{Var}(X)=\lambda^{-2} \lambda=\lambda^{-1}$. The CRLB is

$$
\left(\tau^{\prime}(\lambda)\right)^{2} /\left(n I_{1}(\lambda)\right)=\left(-e^{-\lambda}\right)^{2} /(n / \lambda)=\lambda e^{-2 \lambda} / n
$$

(b) Notice that the estimator

$$
T=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{X_{i}=0\right\}}
$$

(which is the proportion of observations that are equal to 0) is unbiased. Find its variance. Does it achieve the lower bound?

Sol. T is a sample proportion, so its variance is $p(1-p) / n$ with $p=P(X=$ $0)=e^{-\lambda}$. Thus, the variance $e^{-\lambda}\left(1-e^{-\lambda}\right) / n$ does not achieve the CRLB.

Quiz 8
Math 5080-2
Name: Solution
Nov. 4, 2015

1. Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{EXP}(1 / \theta)$, which has density $f(x ; \theta)=\theta e^{-\theta x}, x>0$. Now assume that Θ is random with prior density $\operatorname{EXP}(1)$, that is, $f_{\Theta}(\theta)=e^{-\theta}, \theta>0$.
(a) Find the posterior density of Θ, given x_{1}, \ldots, x_{n}, up to a constant (in θ) multiple. Is this density of the form $\operatorname{GAM}(\alpha, \beta)$, which has the form (as a function of θ)

$$
\begin{equation*}
f(\theta)=\mathrm{constant} \theta^{\beta-1} e^{-\theta / \alpha} \tag{1}
\end{equation*}
$$

If so, find the parameters α and β in terms of x_{1}, \ldots, x_{n} and n.
Sol. The posterior density is proportional to

$$
e^{-\theta} \prod_{i=1}^{n} \theta e^{-\theta x_{i}}=\theta^{n} e^{-\theta\left(1+\sum x_{i}\right)}
$$

This has the form of (1) with $\beta-1=n$ and $1 / \alpha=1+\sum x_{i}$, or $\alpha=1 /\left(1+\sum x_{i}\right)$ and $\beta=1+n$.
(b) Find the Bayes estimator of Θ, assuming squared error loss. Hint: The mean of the $\operatorname{GAM}(\alpha, \beta)$ density in (1) is the product $\alpha \beta$.

Sol. The Bayes estimator is the mean of the posterior distribution, which is $\alpha \beta$ or

$$
\frac{1+n}{1+\sum_{i=1}^{n} x_{i}}
$$

Quiz 9
Math 5080-2 Name:
Nov. 11, 2015

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the two-parameter exponential distribution, with density

$$
f(x ; \theta, \eta)=\frac{1}{\theta} e^{-(x-\eta) / \theta} I_{(\eta, \infty)}(x)
$$

where $I_{(\eta, \infty)}(x)=1$ if $x>\eta$ and $=0$ otherwise. Using the factorization theorem, find a pair of jointly sufficient statistics for (θ, η).

Sol.

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta, \eta\right)=\frac{1}{\theta^{n}} e^{-\sum_{i=1}^{n}\left(x_{i}-\eta\right) / \theta} \prod_{i=1}^{n} I_{(\eta, \infty)}\left(x_{i}\right)=\frac{1}{\theta^{n}} e^{-\left(\sum_{i=1}^{n} x_{i}-n \eta\right) / \theta} I_{(\eta, \infty)}\left(x_{1: n}\right)
$$

We find that $\sum_{i=1}^{n} x_{i}$ and $x_{1: n}$ are jointly sufficient. Equivalently, \bar{x} and $x_{1: n}$ are jointly sufficient.

Quiz 10
Math 5080-2 Name: Sol.
Dec. 2, 2015

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\mathrm{WEI}(\theta, 2)$ distribution with density

$$
f(x ; \theta)=\frac{2}{\theta^{2}} x e^{-x^{2} / \theta^{2}}, \quad x>0
$$

(a) Find a pivotal quantity, that is, an expression depending on the sample and the parameter θ whose distribution does not depend on θ. Hint 1 : Is θ a scale parameter? Hint 2: The maximum likelihood estimator of θ is

$$
\hat{\theta}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

Sol. Yes, θ is a scale parameter, since $f(x ; \theta)=\frac{1}{\theta} 2 \frac{x}{\theta} e^{-(x / \theta)^{2}}$. So $\hat{\theta} / \theta$ is a pivotal quantity if $\hat{\theta}$ is the MLE. We find that

$$
\frac{\hat{\theta}}{\bar{\theta}}=\frac{1}{\theta} \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

is pivotal.
(b) Use this to find a $100(1-\alpha) \%$ confidence interval for θ. (You may denote the γ-quantile of the pivotal quantity by q_{γ}. You need not evaluate it.)

Sol.

$$
P\left(q_{\alpha / 2}<\frac{\hat{\theta}}{\theta}<q_{1-\alpha / 2}\right)=1-\alpha
$$

so

$$
P\left(\frac{\hat{\theta}}{q_{1-\alpha / 2}}<\theta<\frac{\hat{\theta}}{q_{\alpha / 2}}\right)=1-\alpha .
$$

The interval

$$
\left(\frac{\hat{\theta}}{q_{1-\alpha / 2}}, \frac{\hat{\theta}}{q_{\alpha / 2}}\right)
$$

is a $100(1-\alpha) \%$ confidence interval for θ.

Quiz 11
Math 5080-2
Name:
Dec. 9, 2015

1. We have two independent normal samples of sizes $n_{1}=3$ and $n_{2}=4$, from $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$ (note the equal but unknown variances). The data for the x-sample are $1,3,5$, and the data for the y sample are $2,4,6,8$. (Admittedly, this is a bit artificial, but numbers were chosen so that you can do computations by hand.) Write down a 90% confidence interval for the mean difference $\mu_{2}-\mu_{1}$. You may use your book (or borrow one) to look up the relevant quantile in a table.

Sol. The general form of the $100(1-\alpha) \%$ confidence interval was derived as

$$
\bar{y}-\bar{x} \pm t_{1-\alpha / 2}\left(n_{1}+n_{2}-2\right) s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

with $s_{p}^{2}=\left[\left(n_{1}-1\right) s_{x}^{2}+\left(n_{2}-1\right) s_{y}^{2}\right] /\left(n_{1}+n_{2}-2\right)$.
We can compute each of these quantities. $\bar{x}=3$ and $\bar{y}=5$, hence ($n_{1}-$ 1) $s_{x}^{2}=8$ and $\left(n_{2}-1\right) s_{y}^{2}=20$. We get $s_{p}^{2}=28 / 5=5.6$. We look up $t_{0.95}(5)$, getting 2.015. Result is

$$
2 \pm 2.015 \sqrt{5.6} \sqrt{\frac{1}{3}+\frac{1}{4}}=2 \pm 3.6419
$$

or ($-1.6419,5.6419$).

