Math 5080
Solutions to Exam 1
10/11/2013

1. Notice that $X_{2}=\left(X_{1}+X_{2}\right) Y_{2}=Y_{1}^{2} Y_{2}$ and $X_{1}=Y_{1}^{2}-X_{2}=Y_{1}^{2}-Y_{1}^{2} Y_{2}=$ $Y_{1}^{2}\left(1-Y_{2}\right)$, so the inverse transformation is

$$
\begin{aligned}
& x_{1}=y_{1}^{2}\left(1-y_{2}\right) \\
& x_{2}=y_{1}^{2} y_{2} .
\end{aligned}
$$

Its Jacobian is

$$
J=\operatorname{det}\left(\begin{array}{cc}
2 y_{1}\left(1-y_{2}\right) & -y_{1}^{2} \\
2 y_{1} y_{2} & y_{1}^{2}
\end{array}\right)=2 y_{1}^{3}\left(1-y_{2}\right)+2 y_{1}^{3} y_{2}=2 y_{1}^{3} .
$$

Now X_{1} has pdf $f(x)=F^{\prime}(x)=x e^{-x^{2} / 2}$ for $x>0$, so

$$
\begin{aligned}
g\left(y_{1}, y_{2}\right) & =f\left(x_{1}\right) f\left(x_{2}\right)\left|2 y_{1}^{3}\right|=f\left(y_{1}^{2}\left(1-y_{2}\right)\right) f\left(y_{1}^{2} y_{2}\right) 2 y_{1}^{3} \\
& =y_{1}^{2}\left(1-y_{2}\right) e^{-\left[y_{1}^{2}\left(1-y_{2}\right)\right]^{2} / 2} y_{1}^{2} y_{2} e^{-\left[y_{1}^{2} y_{2}\right]^{2} / 2} 2 y_{1}^{3},
\end{aligned}
$$

and this holds for $y_{1}>0$ and $0<y_{2}<1$ (which is equivalent to $x_{1}>0$ and $x_{2}>0$).
2. The equation

$$
M_{X_{1}+X_{2}+X_{3}}(t)=M_{X_{1}}(t) M_{X_{2}}(t) M_{X_{3}}(t)
$$

becomes

$$
e^{4 t+(1 / 2) 16 t^{2}}=e^{2 t+(1 / 2) 4 t^{2}} e^{3 t+(1 / 2) 9 t^{2}} M_{X_{3}}(t),
$$

therefore

$$
M_{X_{3}}(t)=e^{(4-2-3) t+(1 / 2)(16-4-9) t^{2}}=e^{-t+(1 / 2) 3 t^{2}}
$$

The latter MGF is that of $N(-1,3)$, so X_{3} must be $N(-1,3)$.
3. (a) The theorem tells us that $X_{\lfloor n / 2\rfloor: n}$ is asymptotically normal with asymptotic mean $x_{1 / 2}$ and asymptotic variance c^{2} / n, where $c^{2}=\frac{1}{2}\left(1-\frac{1}{2}\right) / f\left(x_{1 / 2}\right)^{2}$. Here $f(x)=e^{-x}$ for $x>0$, and the corresponding CDF is $F(x)=1-e^{-x}$ for $x>0$. Now $x_{1 / 2}$ satisfies $F\left(x_{1 / 2}\right)=\frac{1}{2}$, i.e.,

$$
1-e^{-x_{1 / 2}}=\frac{1}{2}
$$

so $x_{1 / 2}=\ln 2$. Finally, $c^{2}=1 /\left(2 e^{-x_{1 / 2}}\right)^{2}=1 /(2(1 / 2))^{2}=1$. In summary, $X_{\lfloor n / 2\rfloor: n}$ is asymptotically normal with asymptotic mean $\ln 2$ and asymptotic variance $1 / n$.
(b) By the theorem, Y_{n}^{3} is asymptotically normal with asymptotic mean m^{3} and asymptotic variance $c^{2}\left(3 m^{2}\right)^{2} / n$, since y^{3} has derivative $3 y^{2}$.
4. (a) The simplest answer is $Y_{1}=\left(X_{1}-\mu\right) / \sigma$. Another is $Y_{1}^{\prime}=\left(\bar{X}_{4}-\mu\right) /(\sigma / \sqrt{4})$.
(b) The simplest answer is

$$
Y_{2}=\left(\frac{X_{2}-\mu}{\sigma}\right)^{2}+\left(\frac{X_{3}-\mu}{\sigma}\right)^{2}+\left(\frac{X_{4}-\mu}{\sigma}\right)^{2}
$$

but $Y_{2}^{\prime}=(4-1) S_{4}^{2} / \sigma^{2}$ also works.
(c) Take $Y_{3}=Y_{1}^{2} /\left(Y_{2} / 3\right)$. The only thing one must be careful of is to make sure that Y_{1} and Y_{2} are independent.
(d) Take $Y_{4}=Y_{1} / \sqrt{Y_{2} / 3}$. The only thing one must be careful of is to make sure that Y_{1} and Y_{2} are independent. Another possibility is $Y_{4}^{\prime}=\left(\bar{X}_{4}-\mu\right) /\left(S_{4} / \sqrt{4}\right)$.

