Math 5080-2
Name: solutions
Midterm Exam 1
October 7, 2015
Turn in solutions for any 3 of the 4 problems. If you attempt all 4 problems, each will count $1 / 4$ instead of $1 / 3$. You may use one formula sheet, but exchanging formula sheets is not allowed.

1. Let X_{1} and X_{2} be independent $\operatorname{EXP}(1)$ random variables ($\operatorname{pdf} e^{-x}, x>0$). Find the joint pdf of (a) $Y_{1}=X_{1} / X_{2}$ and (b) $Y_{2}=X_{1}+X_{2}$.

Hint for inverse transformation: Solve eq. (a) for X_{1} in terms of Y_{1} and X_{2} and call this eq. (c); solve eq. (b) for X_{2} in terms of Y_{2} and X_{1} and call this eq. (d). Substitute eq. (d) into eq. (c) and solve for X_{1}.

Sol. (c) $X_{1}=Y_{1} X_{2}$. (d) $X_{2}=Y_{2}-X_{1}$. Hence $X_{1}=Y_{1}\left(Y_{2}-X_{1}\right)=$ $Y_{1} Y_{2}-Y_{1} X_{1}$ or $\left(1+Y_{1}\right) X_{1}=Y_{1} Y_{2}$, hence

$$
X_{1}=\frac{Y_{1} Y_{2}}{1+Y_{1}}, \quad X_{2}=\frac{Y_{2}}{1+Y_{1}}
$$

Jacobian is

$$
J=\operatorname{det}\left(\begin{array}{cc}
y_{2} /\left(1+y_{1}\right)^{2} & y_{1} /\left(1+y_{1}\right) \\
-y_{2} /\left(1+y_{1}\right)^{2} & 1 /\left(1+y_{1}\right)
\end{array}\right)=\frac{y_{2}+y_{1} y_{2}}{\left(1+y_{1}\right)^{3}}=\frac{y_{2}}{\left(1+y_{1}\right)^{2}}
$$

Conclude that

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}}\left(\frac{y_{1} y_{2}}{1+y_{1}}\right) f_{X_{2}}\left(\frac{y_{2}}{1+y_{1}}\right) \frac{y_{2}}{\left(1+y_{1}\right)^{2}}=y_{2} e^{-y_{2}} /\left(1+y_{1}\right)^{2}
$$

where $y_{1}>0$ and $y_{2}>0$.
2. Let X_{1}, X_{2}, X_{3} be a random sample of size 3 from the $\operatorname{UNIF}(0,1)$ distribution.
(a) Find the joint pdf of the order statistics Y_{1}, Y_{2}, Y_{3}. Part of the problem is to identify the y_{1}, y_{2}, y_{3} values for which the formula is valid.
(b) Find the (marginal) joint pdf of Y_{1} and Y_{3}. Part of the problem is to identify the y_{1}, y_{3} values for which the formula is valid.
(c) Find the mean of the sample range $R=Y_{3}-Y_{1}$. (It is not necessary to find the pdf of R.)

Sol. (a) By a theorem, $f_{Y_{1}, Y_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right)=6,0<y_{1}<y_{2}<y_{3}<1$.
(b) $f_{Y_{1}, Y_{3}}\left(y_{1}, y_{3}\right)=\int_{y_{1}}^{y_{3}} f_{Y_{1}, Y_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right) d y_{2}=6\left(y_{3}-y_{1}\right), 0<y_{1}<y_{3}<1$.
(c) $E\left[Y_{3}-Y_{1}\right]=\iint\left(y_{3}-y_{1}\right) 6\left(y_{3}-y_{1}\right) d y_{1} d y_{3}=\int_{0}^{1} \int_{y_{1}}^{1} 6\left(y_{3}-y_{1}\right)^{2} d y_{3} d y_{1}=$ $\int_{0}^{1} 2\left(1-y_{1}\right)^{3} d y_{1}=\frac{1}{2}$.

Alternatively, $E\left[Y_{3}-Y_{1}\right]=E\left[Y_{3}\right]-E\left[Y_{1}\right]=\int_{0}^{1} y_{3} 3 y_{3}^{2} d y_{3}=\int_{0}^{1} y_{1} 3(1-$ $\left.y_{1}\right)^{2} d y_{1}=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}$.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent LOGN $\left(\mu, \sigma^{2}\right)$ (i.e., $\ln \left(X_{1}\right), \ln \left(X_{2}\right), \ldots$, $\ln \left(X_{n}\right)$ are independent $\left.\mathrm{N}\left(\mu, \sigma^{2}\right)\right)$. Use a theorem to show that the sample
median is asymptotically normal and find its asymptotic mean and asymptotic variance. For simplicity, assume that n is odd. In case the LOGN density is needed, it has the form $f(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} x^{-1} e^{-(\ln x-\mu)^{2} /\left(2 \sigma^{2}\right)}, x>0$.

Sol. $X_{1}=e^{Y_{1}}, \ldots, X_{n}=e^{Y_{n}}$ with Y_{1}, \ldots, Y_{n} i.i.d. $\mathrm{N}\left(\mu, \sigma^{2}\right)$. What is $x_{1 / 2}$ for $X_{1} ? \frac{1}{2}=P\left(X_{1}>x_{1 / 2}\right)=P\left(Y_{1}>\ln x_{1 / 2}\right)$ implies $\ln x_{1 / 2}=\mu$ or $x_{1 / 2}=e^{\mu}$. Conclude by a theorem that the sample median $X_{(n+1) / 2: n}$ is asymptotically normal with asymptotic mean $x_{1 / 2}=e^{\mu}$ and asymptotic variance c^{2} / n, where

$$
c^{2}=\frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{f_{X_{1}}\left(x_{1 / 2}\right)^{2}}=\frac{1 / 4}{\left[\left(\sqrt{2 \pi \sigma^{2}} e^{\mu}\right)^{-1}\right]^{2}}=(\pi / 2) \sigma^{2} e^{2 \mu}
$$

Alternative solution: $Y_{(n+1) / 2: n}$ is asymptotically normal with asymptotic mean μ and asymptotic variance c^{2} / n, where

$$
c^{2}=\frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{f_{Y_{1}}(\mu)^{2}}=\frac{1 / 4}{\left[\left(\sqrt{2 \pi \sigma^{2}}\right)^{-1}\right]^{2}}=(\pi / 2) \sigma^{2} .
$$

Now $X_{(n+1) / 2: n}=e^{Y_{(n+1) / 2: n}}$, which is therefore asymptotically normal with asymptotic mean e^{μ} and asymptotic variance $e^{2 \mu} c^{2} / n$ with c^{2} as above.
4. Let V_{n} be χ^{2} with n degrees of freedom.
(a) Show that $(1 / n) V_{n}$ is asymptotically normal, and determine the asymptotic mean and asymptotic variance. Hint: If Z is $N(0,1)$, then $\operatorname{Var}\left(Z^{2}\right)=2$.
(b) Explain why $e^{(1 / n) V_{n}}$ is asymptotically normal, and find its asymptotic mean and asymptotic variance.

Sol. (a) By the central limit theorem, \bar{X}_{n} is asymptotically normal with asymptotic mean μ and asymptotic variance σ^{2} / n. Now $(1 / n) V_{n}$ is of the form of \bar{X}_{n} with $\mu=E\left[Z^{2}\right]=1$ and $\sigma^{2}=\operatorname{Var}\left(Z^{2}\right)=2$, so $(1 / n) V_{n}$ is asymptotically normal with asymptotic mean 1 and asymptotic variance $2 / n$.
(b) We apply a theorem with $g(x)=e^{x}$, hence $g^{\prime}(x)=e^{x}$ also. We get that $e^{(1 / n) V_{n}}$ is asymptotically normal with asymptotic mean $g(1)=e$ and asymptotic variance $g^{\prime}(1)^{2}(2 / n)=2 e^{2} / n$.

