1. Let N_1, \ldots, N_5 be independent normal random valables with zero mean. Assume $EN_1^2 = EN_2^2 = EN_3^2 = 4$ and $EN_4^2 = EN_5^2 = 9$. Find c such that

 $0.95 = P\left\{N_1^2 + N_2^2 + N_3^2 \le c(N_4^2 + N_5^2)\right\}.$

2. Let X_1, X_2 and X_3 be three independent normal random variables. X_1 is normal N(0,4), X_2 is normal N(0,12) and X_3 is normal N(0,9). Compute

$$P\left\{\frac{X_1 + X_2}{|X_3|} \le 3\right\}$$

using one of the enclosed tables.

3. Let X_1, X_2, \ldots, X_n be independent identically distributed random variables with density function

$$f(t) = \begin{cases} 0, & \text{if } t < \theta \\ e^{-(t-\theta)}, & \text{if } t > \theta. \end{cases}$$

Find a moment estimator for θ , where θ is the unknown parameter.

4. Let X_1, X_2, \ldots, X_n be independent identically distributed random variables with density function

$$h(t;\theta) = \begin{cases} 0, & \text{if } t \notin [1,3] \\ \theta 2^{-\theta} (t-1)^{\theta-1}, & \text{if } t \in [1,3] \end{cases}$$

Find a maximum likelihood estimator for θ .

5. Let X be a random variable with density function

$$h(t;\theta) = \frac{1}{2\theta} e^{-|t|/\theta}, \quad -\infty < t < \infty.$$

Compute the Cramer-Rao lower bound.

Here are some percentiles that may help you. If the percentile you need is not here, state which one you need and express your answer in terms of the unknown percentile. Note that $f_{.05}(3,2)$ is the fifth percentile of an f-distribution with 3 numerator and 2 denominator degrees of freedom. Similarly, $t_{.87}(1)$ is the 87th percentile of a t-distribution with 1 degree of freedom.

 $f_{.05}(3,2) = .105$ $f_{.10}(3,2) = .183$ $f_{.90}(3,2) = 9.162$ $f_{.95}(3,2) = 19.164$ $t_{.87}(1) = 9/4$ $t_{.92}(2) = 9/4$ $t_{.95}(3) = 9/4$

Special Continuous Distributions

and and the second second

Notation and Parameters	Continuous pdf $f(x)$	Mean	Variance	MGF $M_X(t)$
Uniform $X \sim \text{UNIF}(a, b)$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
a < b	<i>a</i> < <i>x</i> < <i>b</i>			
Normal				
$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\left[(x-\mu)/\sigma\right]^2/2}$	μ	σ^2	$e^{\mu t + \sigma^2 t^2/2}$
$0 < \sigma^2$				
Gamma				
$X \sim \mathrm{GAM}(\theta, \kappa)$	$\frac{1}{\theta^{\kappa}\Gamma(\kappa)} x^{\kappa-1} e^{-x/\theta}$	кθ	$\kappa \theta^2$	$\left(\frac{1}{1-\theta t}\right)^{n}$
$\begin{array}{c} 0 < \theta \\ 0 < \kappa \end{array}$	0 < <i>x</i>			
Exponential				
$X \sim \text{EXP}(\theta)$	$\frac{1}{\theta} e^{-x/\theta}$	θ	θ^2	$\frac{1}{1-\theta t}$
0 < θ	0 < x			
Two-Parameter Exponential				
$X \sim EXP(\theta, \eta)$	$\frac{1}{\theta}e^{-(x-\eta)/\theta}$	$\eta + \theta$	θ^2	$\frac{e^{nt}}{1-\theta t}$
0 < θ	η < x			
Double Exponential				
$X \sim DE(\theta, \eta)$ $0 < \theta$	$\frac{1}{2\theta}e^{- x-\eta /\theta}$	η	$2\theta^2$	$\frac{e^{\eta t}}{1-\theta^2 t^2}$

.

Special Continuous Distributions				
Notation and Parameters	Continuous pdf $f(x)$	Mean	Variance	MGF $M_X(t)$
Weibull				Student's r
$X \sim WEI(0, \beta)$	$\frac{\beta}{\theta^{\beta}} x^{\beta-1} e^{-(x/\theta)^{\beta}}$	$\theta \Gamma \left(1 + \frac{1}{\beta} \right) = 0^2$	$2\left[\Gamma\left(1+\frac{2}{\beta}\right)-\Gamma^{2}\left(1+\frac{2}{\beta}\right)\right]$	$\left(\frac{1}{\beta}\right)$ *
$\begin{array}{c} 0 < \theta \\ 0 < \beta \end{array}$	0 < <i>x</i>			
Extreme Value				v= 1,2,
$X \sim \mathrm{EV}(\theta, \eta) \ \frac{1}{\theta} \mathrm{e}$	$\exp\left\{\left[(x-\eta)/\theta\right]-\exp\left[(x-\eta)\right]\right\}$	η/θ] $\eta - \gamma \theta$	$\frac{\pi^2\theta^2}{6}$	$e^{\eta t}\Gamma(1+\theta t)$
0 < θ		$\gamma \doteq 0.5772$ (Euler's const.)		
Cauchy		1997 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -	1.0. 51	S.I.m.s
$X \sim \operatorname{CAU}(\theta, \eta)$ $0 < \theta$	$\frac{1}{\theta \pi \{1 + [(x - \eta)/\theta]^2\}}$	**	**	
Pareto		Part Parts	DUN ARTHONY TO A	X ~ BETA(a,b
$X \sim \text{PAR}(\theta, \kappa)$	$\frac{\kappa}{\theta(1+x/\theta)^{\kappa+1}}$	$\frac{\theta}{\kappa-1}$	$\frac{\theta^2 \kappa}{(\kappa-2)(\kappa-1)^2}$	••
$\begin{array}{l} 0 < \theta \\ 0 < \kappa \end{array}$	0 < <i>x</i>	1 < κ	2 < κ	"Not trackble Not not side
Chi-Square				
$X \sim \chi^2(v)$	$\frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2}$	v	2v	$\left(\frac{1}{1-2t}\right)^{\nu/2}$
$v=1,2,\ldots$	0 < <i>x</i>			

Special Continuous Distributions

Notation and Parameters	Continuous pdf $f(x)$ M	ean	Variance N	$MGF M_{\chi}(t)$
Student's t	Commune of (c)	Most	Variance	
$\begin{array}{c} \Gamma \\ X \sim t(v) \end{array} - $	$\frac{\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu\pi}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	0	$\frac{v}{v-2}$	x - WEIO ** 0 < 9 0 < 0
$\nu = 1, 2, \ldots$	(-)	1 < v	2 < v	adreme
Snedecor's F	15 1 See			
$X \sim \mathbf{F}(v_1, v_2)$	$\frac{\Gamma\left(\frac{\nu_1+\nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)}\left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}}x^{\frac{\nu_1}{2}-1}$	$\frac{v_2}{v_2-2}$	$\frac{2v_2^2(v_1+v_2-2)}{v_1(v_2-2)^2(v_2-4)}$	€>0 <u>.</u>
$v_1 = 1, 2, \dots$ $v_2 = 1, 2, \dots$	$\times \left(1 + \frac{v_1}{v_2}x\right)^{-\frac{v_1 + v_2}{2}}$	2 < v ₂	4 < v ₂	
Beta $X \sim \text{BETA}(a,b)$ 0 < a	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b+1)(a+b)^2}$	9>0
0 < b	0~~~1		$\frac{1}{2}\frac{\partial}{\partial t}(x+1)\theta = \theta^{1} = \frac{\partial t}{\partial t}$	8>0
**Does not exist.				

Special Discrete Distributions

Notation and Parameters	Discrete pdf $f(x)$	Mean	Variance	
Binomial	and the second second second	·	, analice	MGF $M_{\chi}(t)$
$X \sim \mathrm{BIN}(n,p)$	$\binom{n}{x}p^{x}q^{n-x}$	np	npq	(nd + av
$\begin{array}{l} 0$	$x=0,1,\ldots,n$			(14 + 4)
Bernoulli	n-un in the second	100		18 1.11
$X \sim \mathrm{BIN}(1, p)$	$p^{x}q^{1-x}$	р	Pq	pe ^t + q
$\begin{array}{l} 0$	<i>x</i> = 0, 1			
Negative Binomial				
$X \sim \text{NB}(r, p)$	$\binom{x-1}{r-1}p^rq^{x-r}$	r/p	rq/p^2	$\left(\frac{pe^{t}}{1-at}\right)^{r}$
$0r = 1, 2,$	$x=r,r+1,\ldots$			(1-qe)
Geometric		a alla adam	- Starter	and a second second second second
$X \sim \operatorname{GEO}(p)$	pq^{x-1}	1/p	a/p^2	pet
$\begin{array}{l} 0$	<i>x</i> = 1, 2,	-14	TI P	$\frac{1}{1-qe^{t}}$
Hypergeometric		19-11-18-17		
$X \sim \text{HYP}(n, M, N)$	$\binom{M}{x}\binom{N-M}{n-x}/\binom{N}{n}$	nM/N	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}$	• •
$n = 1, 2, \dots, N$ $M = 0, 1, \dots, N$	$x=0,1,\ldots,n$			
Poisson				
$X \sim \text{POI}(\mu)$	$\frac{e^{-\mu}\mu^{x}}{x!}$	μ	μ	$e^{\mu(e^l-1)}$
0 < μ	x: $x = 0, 1, \dots$	a danan in Manan		
Discrete Uniform				30. 1. 1. 1 ¹
$X \sim \mathrm{DU}(N)$	1/N	N + 1	$N^{2} - 1$	$\frac{1}{1} e^{t} - e^{t(N+t)}$
$N=1,2,\ldots$	$x = 1, 2, \dots, N$	2	12	$N 1 - e^t$
Not tractable.		1. 1891		