$$F(x) = \begin{cases} \frac{x+2}{3} & \text{if } x \in (-2,1) \\ 0 & \text{if } x \leq -2 \\ 1 & \text{if } x \geq 1 \end{cases}$$

Quiz 2, Attempt 2

Find the cdf of $Y = X^2$ if $X \sim UNIF(-2, 1)$

$$F_{Y}(y) = P(X^{2} = y) = 1\{y > 0\} P(-\sqrt{y} = X = \sqrt{y})$$

$$= 1\{y > 0\} (F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y}))$$

$$= (\sqrt{\frac{19}{3}} + \sqrt{\frac{9}{3}}) \quad y \in (0, 1)$$

$$1 - (-\frac{\sqrt{y} + 2}{3}) \quad y \in [1, 4)$$

$$0 \quad y = 0$$

$$1 \quad y = 4$$

$$= \begin{cases} \frac{2\pi y}{3} & y \in (0,1) \\ \frac{1+\pi y}{3} & y \in [1,4) \\ 0 & y \leq 0 \end{cases}$$

$$= \begin{cases} \frac{2\pi y}{3} & y \in (0,1) \\ y \leq 1 & y \leq 0 \end{cases}$$

$$z = 1 - e^{-x}$$
 $e^{-x} = z - 1$
 $-x = \ln(z - 1)$
 $x = -\ln(z - 1)$

Name:

Quiz 4, Attempt 1 (6.9c from the homework)

If X is UNIF(0,1) and $Z = 1 - e^{-X}$, use the transformation method to find the density function for Z.

$$f_{Z}(z) = f_{X}(x(z)) \left| \frac{1}{dz} x(z) \right| \frac{1}{2} z \in B$$

$$= \frac{1}{2} \left\{ 0 < z < 1 - \frac{1}{e} \right\} \left| \frac{-1}{z - 1} \right|$$

$$= \frac{1}{2} \left\{ 0 < z < 1 - \frac{1}{e} \right\}$$

check for integration to 1:

$$\int_{0}^{1-\frac{1}{e}} \frac{1}{1-z} dz = -\frac{\ln(1-z)}{1-z} = -\ln(e^{-1}) + \ln(1)$$

$$= -\ln(e^{-1}) + \ln(1)$$