Midterm #2 – Practice Exam

Question #1: Let  be independent normal random variables such that  for . Assuming that  and , find the value of  such that .

· Since all of these random variables have zero mean and  for any random variable , we have that  and . We can then transform each of these random variables to standard normal ones, so we have that  and . Next, squaring these standard normal random variables transforms them into chi-square distributed random variables, so that  and . Since the sum of independent chi-square random variables is also distributed chi-square with the parameter being the sum of the individual parameters, we see that  and . Finally, we know that the ratio of two chi-square random variables divided by their respective degrees of freedom follows the F distribution, so that . Using these facts above, we can compute that  where . From the F table of values, we see that , so we equate  and solve for the value of , so that .



Question #2: If  are three independent normal random variables such that , , and , then compute the probability .

· From the known distributions of the three random variables, we can conclude that  and . Also, we can see that  which implies that . From the definition of the t distribution, we know that , which allows us to find , where the random variable  and we used the t table of values.

Question #3: Let  be independent and identically distributed random variables from the density function . Find the Method of Moments Estimator (MME) for the unknown parameter  and show that it is unbiased.

· We first compute . Using integration by parts with ,  and ,  we can compute that . We then equate this population moment to the corresponding sample moment and solve for the unknown parameter  in . Therefore, we have that , so the estimator is . To show this estimator is unbiased for , we compute .




Question #4: Let  be independent and identically distributed random variables from the density function . Find the Maximum Likelihood Estimator (MLE) for the unknown parameter .

· We first find the likelihood function  so . We then differentiate the log likelihood function with respect to the parameter to obtain . We equate this to zero and solve for to obtain . Since the second derivative will be negative, verifying that the likelihood function is maximized, we have found that .

Question #5: If  is a random variable from the density function  whenever , then compute the Cramer-Rao Lower Bound (CRLB).

· We know that , so we compute each of these components individually. Since , we have . We then compute . We then calculate Fisher’s Information since , so we have that  and . We must therefore compute . This integral can be solved using integration by parts with ,  and , , so . We can then find Fisher’s information since  Combining these results, we have that . This means that  for any estimator  which satisfies .

Question #6: Let  be a random sample from  (in particular, the mean and variance are both equal to ). Find the Maximum Likelihood Estimator (MLE) of .

· Since , its density is . This allows us to find  and the log of the likelihood function . We then differentiate this to obtain . Finally, we set this equal to zero and solve, so that . The solutions to this quadratic equation are , but we choose the positive solution since . Therefore, we have found that .




Question #7: Let  be a random sample from  such that  whenever . a) Find the Cramer-Rao Lower Bound (CRLB) on the variance of unbiased estimators of , and b) is the estimator  a UMVUE of ?

a) Since , then  and . Then since , we have ,, and . Since this is a constant, we have  so that .

b) We first verify unbiasedness by calculating . Then we compute the variance to check if it equals the Cramer-Rao Lower Bound. Thus, we have . This then verifies that the estimator  is the uniformly minimum variance unbiased estimator.

Question #8: Let  be a random sample from  such that  whenever . a) Find a single sufficient statistic and then assume that it is complete, and b) State the Lehmann-Scheffe Theorem and use it to show that  is a UMVUE of .

a) We verify that  is a member of the REC and use that to find a complete sufficient statistic. This is clear since , where . Thus, we know  is a complete sufficient statistic.

b) The Lehmann-Scheffe Theorem states that if  have joint density function ,  is a complete sufficient statistic for the parameter ,  is a statistic that is unbiased for the parameter  and is a function of , then  is a UMVUE for . Since  and , it is a UMVUE for .
Question #9: Let  be a random sample from the population with CDF given by , where  and . Find the corresponding density function and the Maximum Likelihood Estimators (MLE) for  and .

· We have . Then the likelihood function is given by . By inspection, we can see that  is the MLE for the unknown parameter . To find the MLE for , we first construct the log likelihood function  and then find . Since the second derivative is negative, we have that .

Question #10: If  is a random sample from the distribution  where , then a) find the Cramer-Rao Lower Bound for the variance of unbiased estimators of the unknown parameter , and b) use this information to find a UMVUE for .

a) We have , so . Then we find , so that . We then compute , which means . Thus, .

b) [bookmark: _GoBack]By inspection, we see that the estimator  is both unbiased and achieved the lower found. To verify unbiasedness, note that . Then we can compute , so  is a UMVUE for .

Question #11: If  is a random sample from  where , then a) find a pair of jointly sufficient statistics, and b) find a single sufficient statistic based on those two.

a) Since , we have . We then note that this can be written as , so the factorization criterion guarantees that  and  are jointly sufficient for , where  depends on the  only through the sufficient statistics and  does not depend on .

b) We can also write the density as  by multiplying the first indicator function by a negative 1. But then , so by the factorization criterion the single statistic  is sufficient.

Question #12: If  is a random sample from the distribution  where , then a) find a complete sufficient statistic for  using the Regular Exponential Class (REC), and b) state the Lehmann-Scheffe Theorem and use it to find a UMVUE for .

a) For , we have , which verifies that the density is a member of the REC. Then we know that the statistic  is complete sufficient for the parameter .

b) The Lehmann-Scheffe Theorem states that if  have joint density function ,  is a complete sufficient statistic for the parameter ,  is a statistic that is unbiased for the parameter  and is a function of , then  is a UMVUE for . We thus need to find a statistic which is both unbiased and a function of . We do this by first noting that , so that we have . This means that  will be unbiased, so the Lehmann-Scheffe Theorem guarantees that it will be a UMVUE for .

Question #13: Let  be a random sample from  such that  for  and let the prior distribution of  be from  such that the density is  whenever . Note that a gamma random variable has mean  and variance . a) Find the posterior distribution, and b) find the Bayes Estimator (BE) of the parameter  under a squared error loss function .

a) Since the posterior distribution is , we can write that it is simply proportional to  since  is a constant term. Therefore, we have . Except for the constant term, this clearly resembles a gamma distribution, with first parameter  and second parameter . Thus, we have found that the posterior distribution of the parameter is .

b) We know that under the squared error loss function , the Bayes estimator of  is given by the conditional mean of the posterior distribution. However, the mean of a gamma random variable is simply the product of its parameters, so we have that . Under the absolute error loss function , the Bayes estimator is simply given by the median of the posterior distribution. However, there is no closed form expression for the median of a gamma random variable, so the Bayes estimator in this case would have to be computed numerically.



Question #14: Let  be a random sample from the distribution  where we have  and the mass function is . a) If it is assumed that  has prior density , then find the posterior density given the sample, and b) find the Bayes Estimator (BE) assuming squared error loss.

a) Note that the prior distribution of  is , where the general density function of a  random variable is . Then we have that . After combining like terms, we see that  which clearly resembles a beta random distribution except for the constant term. Thus, we have found that the posterior distribution is 

b) Since the Bayes Estimator under a squared error loss function is the mean of the posterior distribution and the mean of a  is , we can conclude that . Under the absolute error function, the Bayes Estimator is the median which is approximately  in this case.
