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overview

The first lecture introduces the finite Hecke algebra H of a Coxeter system as a
convolution algebra of functions on the corresponding finite Chevalley group which
are invariant by the left and right translation action of a Borel subgroup. This leads
naturally to a construction of H modules from subgroups of the Chevalley group. We
then turn to the Lusztig-Vogan formalism of this construction for connected reductive
groups over an algebraically closed field of positive characteristic, and the H modules
obtained by considering certain special subgroups, namely symmetric ones. In the end,
we obtain an action of H on a spaceM with basis given by irreducible K-equivariant
constructible sheaves on the flag variety for G. Here we return to characteristic zero
and take to be G a complex connected reductive group (as in Adams’ lectures) and K
once again a symmetric subgroup.

The next goal of these lectures is to compute the Hecke algebra action explicitly
in terms of the geometry of K orbits on the flag variety. This will consume most
of Lectures 2–4. Along the way, we need to explain why such K orbits should have
anything to do with the representation theory of real groups. In Vogan’s lectures, for
instance, the orbits of the real group itself are the fundamental geometric objects of
study. The bridge is given by Matsuki duality and Beilinson-Bernstein localization,
which is discussed in Lecture 3.

In Lecture 5, we introduce a canonical basis ofM and use theH module structure to
characterize it. This is the main theorem of [LV]. Finally we explain the representation
theoretic significance of this other basis as in [V3].
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lecture i: modules for convolution algebras

Suppose G is a finite group. In a first course on abstract algebra, the group algebra
C[G] is usually defined to consists of formal (complex) linear combinations of the
elements {eg | g ∈ G}. Multiplication of basis elements is defined in the natural way,

egeh = egh,

and extended linearly to all of C[G]. The reason why this is a good definition is that
the category of finite-dimensional complex representations of G is equivalent to the
category of finite-dimensional unital C[G]-modules.

One disadvantage of this definition is that it is not very useful if G is (say) an
infinite topological group. The discrete linear combinations of basis elements eg can-
not possibly incorporate the topology of G, and modules over C[G] cannot capture
information about the natural (e.g., continuous) representations of G. So it is helpful
to reinterpret the definition of C[G] (for G finite) in such a way that is well-suited for
generalization.

From this point of view, it is better to think of C[G] (again for G finite) as follows.
As a vector space, we may easily identify C[G] with F(G), functions on G,

C[G] −→ F(G)∑
g

cgg −→ f,

where f is defined so that f(g) = cg. If we trace the algebra structure on C[G] through
this isomorphism, we see that it translates into the following product (denoted ?) on
F(G),

[f1 ? f2](x) =
∑
g∈G

f1(g)f2(g−1x). (1)

This in fact is the usual operation of convolution of functions on a group. For instance,
everyone learns early on about convolution of L1 functions on R,

(f1 ? f2)(x) =

∫
R
f1(y)f2(x− y)dy.

It is easy to see the analogy with (1): the sum in (1) is really an integral with respect
to the counting measure.

Thus C[G] is nothing but the convolution algebra of functions on G. Clearly this
is a formulation of the group algebra that admits easy generalization beyond finite
groups. In the case of topological or Lie groups, one may consider various algebras of
function spaces (capturing information about the topology or manifold structure of G)
whose modules are then related to various kinds of representations of G (preserving
corresponding structures). We will not pursue this point of view at all, but nonetheless
it provides some motivations for the constructions we do pursue.

Return to (1). Since the counting measure is (in particular) left invariant, the ?
product behaves well with respect to the left regular representations on functions.
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More precisely, let L denote the left regular representations on F(G),

(Lxf)(g) = f(x−1g).

Then
Lx(f1 ? f2) = [(Lxf1) ? f2] (2)

We also have the corresponding fact for the right regular representation R,

(Rxf)(g) = f(gx).

namely
Rx(f1 ? f2) = [f1 ? (Rxf2)] (3)

Thus if H is any subgroup of G, the space F(H\G/H) of functions which are invariant
under the left and actions of H is a subalgebra of F(G) closed under ?.

Exercise 1.1. Verify the assertion of the previous sentence. Show that F(H\G/H)
has a unit. Thus F(H\G/H) is a complex associative algebra with unit.

Next suppose we are gives another subgroup K of G. Then F(H\G/K) naturally
becomes a modules for F(H\G/H) via

F(H\G/H)×F(H\G/K) −→ F(H\G/K)

(f, γ) −→ f ? γ.

So subgroups are a natural source of modules.

Ultimately we want to generalize this construction to the setting when F need not
be finite. In order to do so, we reinterpret the definition given above which looks much
more categorical (and thus easier to generalize)1. Suppose X and Y are finite sets and
π : X → Y is a map between then. We can then pullback and pushforward function
on X and Y

π∗ : F(X) −→ F(Y )

π∗ : F(Y ) −→ F(X)

via
[π∗(f)](y) =

∑
g∈π−1(y)

f(g),

and
[π∗(h)](x) = h(π(x)).

Given any set M , consider the projection define projections

πij : M ×M ×M −→M ×M i, j ∈ {1, 2, 3}, i 6= j,

via
πij(m1,m2,m3) = (mi,mj).

Then we obtain a product ?′ on F(M ×M) defined for f, h ∈ F(M ×M) by

f ? h = (π13)∗[π
∗
12f ⊗ π∗23h].

1A nice exposition of related ideas is given in [CG] starting in Section 2.6.
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This in fact defines an associative algebra structure on F(M ×M).

In the next proposition we take M = G for a finite group and relate the associative
algebra (F(G×G), ?′) (which makes no use of the group structure on G) to the group
algebra (F(G), ?) (which does).

Proposition 1.2. Let G be a finite group. The subspace F (∆(G)\(G×G)) of F(G×
G) which are invariant under the diagonal action g · (x, y) = (gx, gy) of G is closed
under ?′. The map

(F(G), ?) −→ (F(G×G), ?′)

f −→ f̃

where f̃ is determined by requiring

f̃(x, 1) = f(x)

is an isomorphism of associative algebras.

Proof. Exercise. �

The nice thing about the proposition is that the ?′ operation looks much more amenable
to generalization (when replacing function on G by sheaves on G). The next thing to
check is that the module constructions above come along for the ride.

Corollary 1.3. In the setting of Proposition 1.2, let H and K be subgroups of G. The
isomorphism of Proposition 1.2 restricts to give an algebra isomorphism

(F(H\G/H), ?) −→ (F (∆(G)\(G×G)/(H ×H)) , ?′)

and a vector space isomorphism

F(H\G/K) −→ F (∆(G)\(G×G)/(H ×K))

Now write

π12 : G/H ×G/H ×G/K −→ G/H ×G/H
π23, π13 : G/H ×G/H ×G/K −→ G/H ×G/K.

for the obvious projections. Consider

F (∆(G)\(G×G)/(H ×H))×F (∆(G)\(G×G)/(H ×K))

−→ F (∆(G)\(G×G)/(H ×K))

defined by

(f, h) 7→ (π13)∗[π
∗
12f ⊗ π∗23h]. (4)

This makes F (∆(G)\(G×G)/(H ×K)) a module for (F (∆(G)\(G×G)/(H ×H)) , ?′)

Exercise 1.4. Using the identifications of Proposition 1.2, verify that the module
constructed in the previous paragraph recovers the module defined after Exercise 1.1.
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In general, the group algebra F(G) is complicated (since multiplication in G is),
and for general H, the sets G/H or H\G/H are also complicated. But for suitably
nice choices of H one might hope for substantial simplifications. The choice we have
in mind (whose details were worked out by Iwahori) takes H to be a Borel subgroup
in a finite Chevalley group.

For concreteness, suppose G = GL(n,Fq), the group of n-by-n invertible matrices
over a finite field with q = pf elements. Let B denote the set of upper triangular
matrices. According to the Bruhat decomposition, B\G/B is parameterized by W =
Sn. A set of representatives of the B-double cosets is simply the permutation matrices,
say A(w), for w ∈ W . Given w, let Tw denote the function whose value is 1/|B| on the
B-double coset containing A(w) and 0 elsewhere. Then F(B\G/B) is clearly spanned
by the various Tw as w ranges over W . The question is how two such elements multiply.

As a first example, suppose n = 2, and write W = {e, s}. The double coset
containing A(e) consists of the elements of B, the double coset containing A(s) consists
of everything else. It is clear that Te is the identity in F(B\G/B). (For this to be
true, we needed the 1/|B| factor in the definition of Te.) Meanwhile (Ts + Te) is the

constant function 1/|B| on G. So (Ts + Te)
2 = |G|

|B|(Ts + Te). For notational simplicity,

write H = H(GL(2,Fq)) in place of F(B\G/B). Then H is the complex associative
algebra with basis Ts and Te, Te is the identity in H (and so we denote it by 1 as
usual), and

(Ts + 1)2 = (q + 1)(Ts + 1)

since |G|/|B| = (q + 1). A quick exercise shows that an equivalent presentation of H
is given by the relation

(Ts + 1)(Ts − q) = 1.

If we formally set q = 1, we get the complex associative algebra with unit generated
by Ts subject to T 2

s = 1. That is, specializing q to 1 gives the group algebra C[W ] of
W .

Here is the corresponding abstract definition. (It is more natural to work over Z
instead of C.)

Definition 1.5. Suppose (W,S) is a Coxeter system and q is an indeterminant. Define
the Hecke algebra H = H(W,S) attached to (W,S) to be the associative algebra with
unit over the ring of formal Laurent polynomials Z[q, q−1] generated by {Ts |s ∈ S}
subject to the relations

(1) (Ts + 1)(Ts − q) = 0; and

(2)

mij︷ ︸︸ ︷
Tsi
Tsj
· · · =

mij︷ ︸︸ ︷
Tsj
Tsi
· · · .

The algebra has basis {Tw | w ∈ W} where

Tw := Ts1 · · ·Tsk

is well-defined for any reduced expression w = s1 · · · sk of w.
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Exercise 1.6. Let G = GL(n,Fq) . Show that the convolution algebra of B bi-
invariant functions on G satisfies the relations of Definition 1.5. (We showed this
above for n = 2. The general case amounts to checking the braid relations, which
reduces to the case of n = 3.) More generally, the result holds if G is a finite Chevalley
group (and the proof again reduces to rank two).

Remark 1.7. Let G = GL(n,Fq) (or any finite Chevalley group). Although we
shall not use it, the algebra F(B\G/B) also arise naturally when decomposing the
spherical principal series X := F(G/B) of right B-invariant functions on G (with the
left translation action). Because of (3), convolution (on the right) with an element h
of F(B\G/B) defines an intertwining operator of X with itself,

F(B\G/B) −→ HomG(X,X)

h −→ [f 7→ f ? h].

In fact, this map is an isomorphism.

The remark suggests that if F is finite, then F(B\G/B) is important for the study
of the finite group G. The same should be true if F is algebraically closed. The
formalism after Corollary 1.3 suggests that generalizations to this case might be pos-
sible. In fact, Lusztig and Vogan [LV] introduced versions of these constructions for
reductive groups G over the algebraic closure F̄q when K is a symmetric subgroup.
(Later Mars and Springer generalized the construction to a wider class of groups K
[MS].) The correct “function-like” objects are ∆(G)-equivariant constructible sheaves
of l-adic vector spaces on G/B × G/B or G/B × G/K whose stalks satisfy natural
purity conditions. The Grothendieck group of the former form an algebra with the
product essentially given by (4) where the pullback and pushforward are now opera-
tions on sheaves. (Since pushforward is not exact in this setting, one must take Euler
characteristics2.) This algebra turns out to be the Hecke algebra of Definition 1.5,
and the formalism of (4) gives modules over it. One of the aims of the next several
lectures is to describe this module structure explicitly following [LV] and [V3].

The Grothendieck group of the relevant l-adic sheaves canonically identifies with
that of the more elementary category of equivariant constructible sheaves of complex
vector spaces. So we need to recall the basics of such sheaves. Let H be a complex
reductive algebraic group acting algebraically on a complex algebraic variety X. A
sheaf S (of complex vector spaces, say) is H-equivariant if it is invariant under the
pullback of the action map mh (mapping x to h · x) for each h ∈ H. The sheaf is con-
structible (with respect to the stratification of X by H-orbits) if it is locally constant
when restricted to each H orbit on X. (This is analogous to the requirement that
a function on X is H invariant.) Let C(H,X) denote the category of H-equivariant
constructible sheaves on X.

The irreducible objects in C(H,X) admit a simple parametrization. To each such
irreducible sheaf S, we first attach its support. Since S is assumed to be H-equivariant,

2Or work in an appropriate derived category.
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its support is H invariant. Since S is also irreducible, its support necessarily is a single
H orbit Q on X. So, in fact, S is locally constant on Q. (A remark on terminology:
locally constant sheaves are sometimes called local systems. So, in particular, an
irreducible constructible sheaf is a local system on its support.) By following loops
around in Q we obtain a representations of π1(q,Q) on the stalk of a base point x in Q.
The equivariance condition makes this amount to a representation of the centralizer
in H of x which much be trivial on its identity component. Write

A(Q) := ZH(x)/Z◦H(x). (5)

Up to isomorphism this of course does not depend on the choice of x. We have thus
attached a representations of A(Q) to S. Since S is irreducible, this representation is
irreducible. In fact, the process is reversible and we get

{Irreducible objects in C(H,X)} ↔ {(Q, φ) | Q ∈ H\X,φ ∈ A(Q)b}.
The objects on the right are thus (isomorphism classes of) irreducible H-equivariant
local systems on H orbits in X. We denote them by LocH(X).

Return to the setting of Adams’ first lecture and suppose G is a connected reductive
complex algebraic group with Borel subgroup B. Let K be a symmetric subgroup of
G. Then, following [LV], we obtain a geometrically defined action of the Hecke algebra
H of Definition 1.5 (attached to the root data of G) on a Z[q, q−1]-module M with
basis indexed by Loc∆(G)(G/B×G/K) 3 . This module structure may also be defined
from purely representation theoretic considerations as in [V3]. The goal of the next
few lectures is to give the explicit computation of this module structure and explain
what it has to do with the representation theory (discussed in Vogan’s lectures) of the
real group GR corresponding to K (as in Adams’ second lecture). The final lecture
will be devoted to the main result of [LV] which gives a characterization of a canonical
basis of the H module.

3Restriction from G/B×G/K to G/B× eK defines an equivalence of C(∆(G), G/B×G/K) with
C(K, G/B), and identifies Loc∆(G)(G/B ×G/K) with LocK(G/B). Often we work with these latter
local systems, since it is easier to draw pictures of them in low rank.
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lecture ii: the hecke module structure in rank one

The computation of the H action on M introduced in the last section reduces in
large part to four symmetric pairs (G,K): (SL(2), SL(2)), (SL(2), SO(2)), (GL(2),O(2)),
(SL(2)× SL(2),∆(SL(2))). In the setting of Adams’ second lecture, these correspond
to the real groups SU(2), SL(2,R), GL(2,R), and SL(2,C). We begin this lecture by
working through these four cases.

Example 2.1. Suppose (G,K) = (SL(2) × SL(2),∆(SL(2))). In this case G/B =
P1 × P1, and the orbits of K are parametrized by the Weyl group {e, s} according to
the relative position of a pair of lines: there is the closed diagonal orbit Qe of pairs
of the same line, and there is an open orbit Qs consisting of everything else. The
centralizer of any point is connected. So there are only the trivial irreducible local
systems on these orbits. We write

LocK(G/B) = {γe, γs}.
As mentioned in the previous lecture, the Lusztig-Vogan H action on the module M
with basis LocK(G/B) is simply the left-regular representation of H,

Tsγe = γs

Tsγs = (q − 1)γs + qγe.

We derived these formulas in Lecture 1 by working over Fq, but virtually the identical
derivation holds in the Lustzig-Vogan setting.

Example 2.2. Suppose now (G,K) = (SL(2), SO(2)). In this case G/B = P1 and the
action of z ∈ SO(2, C) ' C× takes the line through (a, b) to the line through (za, z−1b).
There are thus three orbits: the line Q+ through (1, 0), the line Q− through (0, 1)),
and the open orbit Q◦ consisting of everything else. The centralizer of K both closed
orbits is K itself, which is connected, and so there is only the trivial irreducible local
system on closed orbit. Meanwhile, the stabilizer of a point in the open orbit is easily
seen to be ±1 ⊂ C×. So there are two irreducible local systems on Q◦, one of which
is trivial of course, the other which is nontrivial. We write

LocK(G/B) = {δ+, δ−, γ◦, γ
′
◦},

where γ′◦ is the nontrivial local system and the notation for the others is obvious.
We are going to waive our hands once again at the Lusztig-Vogan H calculation by
working by analogy over Fq and using the module structure given by (4). Consider
first

(Ts + 1) · δ+.

Since δ+ is trivial, we can think of it as the constant function 1 on Q+. We need to
translate back to Loc∆(G)(G/B×G/K) to invoke (4). So we should think of δ+ as the
constant function 1 on the corresponding closed orbit in G/B ×G/K. Since (Ts + 1)
is the constant function 1 on G/B ×G/B, (4) gives

(Ts + 1)δ+ = (# of points in Q+ over Fq)(constant function 1 on G/B ×G/K).
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Reverting back to LocK(G/B), the constant function 1 on G/B × G/K corresponds
to the sum δ+ + δ− + γ◦. So we get

(Ts + 1)δ+ = δ+ + δ− + γ◦.

or
Tsδ+ = δ− + γ◦. (6)

By symmetry,
Tsδ− = δ+ + γ◦. (7)

In fact this is indeed the Lusztig-Vogan action.

Next we try to use the same intuition to approach (Ts + 1)γ◦. We once again
conclude

(Ts + 1)γ◦ = (# of points in Q◦ over Fq)(constant function 1 on G/B ×G/K).

Since P1 has q + 1 points, Q◦ has q − 1, and we have

(Ts + 1)γ◦ = (q − 1)(δ+ + δ− + γ◦)

or
Tsγ◦ = (q − 2)γ◦ + (q − 1)(δ+ + δ−). (8)

This is, once again, indeed the Lusztig-Vogan action.

Finally, we turn to (Ts + 1)γ′◦. Since γ′◦ is the Mobius bundle, it has no global
sections, and so it behaves like the zero function in the formalism of (4). That is,

(Ts + 1)γ′◦ = 0

or
Tsγ

′
◦ = −γ′◦, (9)

and we once again recover the Lusztig-Vogan action.

Exercise 2.3. Duplicate the analysis for the compact symmetric pair (SL(2), SL(2)).
(Hint: LocK(G/B) consists of a single element.)

Example 2.4. Consider (G,K) = (GL(2),O(2)). (It would be better conceptually
to stick to rank one and instead consider the noncompact symmetric pair for PSL(2).
But it notationally easy use the matrices in GL(2).) We once again have G/B = P1,
but this time K has two connected components: its identity component SO(2,C), and

the translate of SO(2,C) by t =

(
0 1
1 0

)
. The action of t interchanges the two closed

SO(2,C) orbits Q+ and Q− of the previous example. Write

Q± = Q+ ∪Q−.
The centralizer of a point in Q± in K is SO(2,C), so there is only the trivial irreducible
local system on Q±.

Meanwhile the action of t preserves the open SO(2,C) orbit Q◦, so this is also a
K orbit in this case. But the centralizer in K of a point in Q◦ is now isomorphic to
Z/2× Z/2 so there are four irreducible local systems on the open orbit. Write

LocK(G/B) = {δ±, γ++
◦ , γ−−◦ , γ−+

◦ , γ+−
◦ }.
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Here γ++
◦ is the trivial local system, γ−−◦ has global sections, but neither γ+−

◦ nor γ−+
◦

do. Because of the nontrivial local system with sections, the heuristic computations
we have been making over Fq are less useful. We simply record the formulas for the
Lusztig-Vogan action without saying too much about their actual derivation:

Tsδ± = δ± + γ++
◦ + γ−−◦ (10)

Tsγ
++
◦ = (q − 1)γ++

◦ − γ−−◦ + (q − 1)δ± (11)

Tsγ
−−
◦ = (q − 1)γ−−◦ − γ++

◦ + (q − 1)δ± (12)

Tsγ
+−
◦ = −γ+−

◦ (13)

Tsγ
−+
◦ = −γ−+

◦ . (14)

Remark 2.5. The above rank one examples are already detailed enough to glimpse
one of the deepest features of the theory of real groups, the duality of [V4]. Given any
module M for H, define it’s dual as

M∗ := HomZ[q,q−1]

(
M,Z[q, q−1]

)
.

Since H is nonabelian, making M∗ into a H modules requires choosing an antiauto-
morphism of H. Concretely, for for Ts ∈ H and µ ∈M∗, define

Ts · µ = [−q(Ts)−1]trµ.

Next return to the setting of Example 2.2. The span of δ+, δ− and γ◦ is invariant
under H. Denote this module my M0. In the setting of Example 2.4, let N0 denote
the span of δ± and γ++

◦ and γ−−◦ , also an H module. Let µ◦, µ+, and µ− denote the
corresponding basis of the H module N ∗0 . Consider the map

M0 −→ N ∗0
taking δ+ to µ+, δ− to µ−, and γ◦ to µ◦. Then is it is not hard to verify that this is
an isomorphism of H modules. Meanwhile the dual of the H moduleM1 spanned by
γ′◦ in Example 2.2 is dual to the H module in Example 2.3.

Return to the general setting of the H action onM defined in [LV] for a symmetric
pair (G,K). Then it turns out that M breaks into a direct sum of H modules
(“blocks”)M0, · · · ,Mk. For a fixed i, there is a block Ni in the H module structure
of some dual symmetric pair (G∨, K ′) such that Mi ' N ∗i as H modules. This is
Vogan duality.

In each of the above examples, we saw that LocK(G/B) is finite. This holds in
general. Since the action is algebraic, the assertion amounts to saying that K acts on
G/B with finitely-many orbits.

Proposition 2.6. Let (G,K) be a symmetric pair.

(1) K acts with finitely many orbits on G/B.
(2) If (G,K) is complex (i.e. of the form (G × G,∆(G))), then every element of
LocK(G/B) is trivial.
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lecture iii: representations, localization, and the structure of
K\G/B

Let GR denote the real group corresponding to a symmetric pair (G,K) as in Adams’
third lecture. So far we have been dealing with function-like objects on K orbits on
G/B. Meanwhile, Vogan has shown in his lectures that it is function-like objects on
GR orbits on G/B which naturally give rise to nice representations of GR. Here is a
bridge between the two viewpoints.

Theorem 3.1 (Matsuki Duality). In the setting of the previous paragraph, there is a
natural bijection of GR orbits on G/B with K orbits on G/B which inverts the closure
order on each set.

Example 3.2. The threorem in a tautology for a complex symmetric pair (G ×
G,∆(G)).

Exercise 3.3. Verify the theorem for GR = SL(2,R) and GL(2,R).

Next we want to go further and explain briefly how to attach to each irreducible
Harish-Chandra module an element of LocK(G/B). (Excellent references for this ma-
terial are [Mi1] and [Mi2].) Let D denote the sheaf of algebraic differential operators
on G/B, and let g denote the Lie algebra of G. Assume first that X is an irreducible
U(g) module whose annihilator in U(g) contains the ideal I generated by the anni-
hilator in the center Z(g) of the trivial representation (i.e. suppose the annihilator of
X contains the augmentation ideal of Z(g)). In the terminology of Vogan’s lectures,
assume X has the same infinitesimal character as the trivial representation. Since
U(g) acts on G/B by global differential operators the “localization”

X := D ⊗U(g) X

makes sense as a sheaf of (quasi-coherent) D modules. This defines a functor

[U(g)/I] -mod −→ D-mod.

which is, in fact, an equivalence (with inverse given by taking global sections). For gen-
eral infinitesimal character, a very similar statement holds, but one must use sheaves
of twisted differential operators (with the twist corresponding to the infinitesimal
character).

Now suppose X is an irreducible (g, K) module, as in Vogan’s lectures, with trivial
infinitesimal character. Then the localization X will be suitably K-equivariant (and
irreducible). So the support supp(X) := supp(X ) ⊂ G/B will be a K-invariant
subset of G/B; since X is irreducible, it will be the closure of a single K orbit which
we denote supp◦(X). In this way, we have attached an element of K\G/B to an
irreducible Harish-Chandra module for the symmetric pair (G,K). To get an element
of the more refined set LocK(G/B) from X (and hence X) we must consider the D-
module inverse image of X with respect to the inclusion of supp◦(X) into G/B. Since
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X is irreducible, this inverse image is a locally free sheaf of OG/B modules, and hence
defines an element of LocK(G/B).

In fact, to motivate the study of the general Hecke algebra action, we need to
understand something about the classification of irreducible Harish-Chandra sheaves
of D-modules or, by the equivalence of localization, the classification of irreducible
(g, K) modules with trivial infinitesimal character. For this we shall unfortunately be
somewhat vague. Fix τ ∈ LocK(G/B) supported on Q in K\G/B. Then it is possible
to form a “direct image” I(Q, τ) of τ with respect to the inclusion of Q in G/B. This
is a (coherent) sheaf of D-modules supported on the closure of Q. (One of the main
technical results of [V3] precisely identifies its global sections as the Harish-Chandra
module of a principal series representation of GR.) The standard module I(Q, τ)
has a unique irreducible quotient L(Q, τ). Each irreducible Harish-Chandra sheaf
of D modules arises in this way, and there are no coincidences among the L(Q, τ).
In this way LocK(G/B) parametrizes irreducible Harish-Chandra sheaves, and hence
irreducible (g, K) modules with trivial infinitesimal character.

In the Grothendieck group of Harish-Chandra sheaves of D-modules, we may write

[I(φ)] =
∑

ψ∈LocK(G/B)

Mφ,ψ[L(ψ)],

for nonnegative integers Mφ,ψ. It is possible to invert this system and write

[L(φ)] =
∑

ψ∈LocK(G/B)

mφ,ψ[I(ψ)]

this time for integers mφ,ψ.

The Kazhdan-Lusztig conjectures for GR (proved in [V3]) characterize — and com-
pute — the integers mφ,ψ in terms of the Lusztig-Vogan Hecke algebra action. This
will be discussed in the final lecture. To finish the present lecture, we make precise
the sense in which the examples of Lecture 2 are indicative of the general case. This
is, without a doubt, one of the most basic ideas in these lectures.

Fix a symmetric pair (G,K), chose a Cartan subalgebra h in g, and a Borel subalge-
bra b containing it. Let B ' G/B denote the variety of Borel subalgebras in g. For a
simple root α of h in b, write Pα for the corresponding parabolic subgroup containing
B, and let Pα ' G/Pα denote the variety of parabolic subalgebras of type α. Write
πα for the projection from B to Pα. This is a P1 ' Pα/B bundle.

Let Q be an orbit of K on B and consider

S = Sα(Q) := π−1
α (πα(Q)) .

Since πα is in particular K equivariant, S is a union of K orbits on B. We claim S
contains a unique dense K orbit. This is obvious if K is connected: since πα is a P1

bundle, S is a K invariant irreducible subset of B, and so Proposition 2.6 implies it
has a dense K orbit. In general, the component group of K acts transitively on the
irreducible component of Q, hence S, and the claim once again follows. We write

sα ·Q = unique dense orbit in Sα(Q).
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(This actually leads to a well-defined monoid action on K\G/B [?], but we shall not
emphasize this.) Since πα is a fibration (with one dimensional fiber), either

dim(sα ·Q) = dim(Q) + 1

or

dim(sα ·Q) = dim(Q).

In the latter case we say α is in the descent set of Q; in the latter, we say it is not.
The terminology is motivated by the following exercise.

Exercise 3.4. Consider a complex symmetric pair (G × G,∆(G)). Fix a Cartan
subalgebra h = hL ⊕ hR in g ⊕ g and a Borel subalgebra b = bL ⊕ bR. Fix Q ∈
K\(G×G)/B parametrized by w ∈ W according to the Bruhat decomposition.

(i) Suppose αL is a simple root of h in b whose corresponding root space lies in
bL. Then α is in the descent set of Q if and only if

l(sαw) < l(w).

(ii) Suppose αL is a simple root of h in b whose corresponding root space lies in
bL. Then α is in the descent set of Q if and only if

l(wsα) < l(w).

�

In the setting above, given x in B, let Lx = π−1
α (πα(x)). Fix an orbit Q of K on

G/B and suppose α is not in the descent set of Q. Set

Q′ = sα ·Q.
Then there are exactly three mutually exclusive possibilities4:

(b) Q ∩ Lx consists of a single point and

Lx = (Q ∩ Lx)
⋃

(Q′ ∩ Lx);

or, equivalently,

Sα(Q) = Q
⋃

Q′.

In this case, we say α is a complex root for Q (not in the descent set of Q).
Correspondingly we also say α is a complex root for Q′ (in the descent set of
Q). We write, as in Adams’ lectures, Q = sα×Q′ and Q′ = sα×Q. The basic
example of this is Example 2.1.

(d) Q∩Lx consists of a single point, there is another orbit Q′′ (denoted sα×Q in
Adams’ lectures) such that Q′′ ∩ Lx is a point, and

Lx = (Q ∩ Lx)
⋃

(Q′ ∩ Lx)
⋃

(Q′′ ∩ Lx);

4The apparently strange labeling of the cases is arranged to match [LV, Lemma 3.5] and [V3,
Definition 6.4].



14 PETER E. TRAPA

or, equivalently,

Sα(Q) = Q
⋃

Q′
⋃

Q′′.

In this case, we say α is Type I noncompact imaginary for Q and that Q′ is
the Cayley transform through α of Q or Q′′. This time we say α is a Type I
real root for Q′, and write sα ×Q′ = Q′. The basic example is Example 2.2.

(c) Q ∩ Lx consists of two points, and

Lx = (Q ∩ Lx)
⋃

(Q′ ∩ Lx).

or, equivalently,

Sα(Q) = Q
⋃

Q′.

In this case, we say α is Type II noncompact imaginary for Q. We say α is a
Type II real root for Q′′ and that Q′′ is the Cayley transform of Q through α.
We write sα ×Q = Q and sα ×Q′ = Q′. The basic example is Example 2.4.

Suppose next that α is in the descent set of Q. Cases (b)–(d) above cover three
possibilities, and there is a fourth:

(a) Q ∩ Lx = Lx or, equivalently, Q = Q′. In this case we say α is compact
imaginary for Q and write Q = sα ×Q. The basic example is Example 2.3.

Remark 3.5. The terminology “noncompact imaginary”, “real”, “complex”, “Cayley
transform”, etc., are motivated by terminology from the representation theory of real
groups. This is explained in Adams’ lectures, as is the cross action sα ×Q.

All of the information in cases (a)–(d) is available from the output of atlas. (This
might be explained in Thursday’s evening session.) We simply finish with the rank
one examples of Lecture 2.

Example 3.6. Let us consider Example 2.1 to begin5.

real: type

Lie type: A1.A1

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es): C

main: kgb

there is a unique real form: sl(2,C)

kgbsize: 2

Name an output file (return for stdout, ? to abandon):

0: 0 0 [C,C] 1 1 * * e

1: 1 0 [C,C] 0 0 * * 1,2

5Atlas output is from version 0.3, the same version used on the web interface.
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The output of this last table means there are two elements of K\G/B. The second
column gives their lengths (which are simply their dimensions minus the dimension
of a closed orbit, one in this case). The terms in brackets correspond to the simple
roots αL and αR (in the obvious notation as in Exercise 3.4). The [C,C] in the first
row means that both αL and αR are complex roots for the orbit Q0; the [C,C] in the
second row means the same thing for the orbit Q1. The next entries 11 in the first
row mean, respectively, that sαL

×Q0 = Q1 and that sαR
×Q0 = Q1; the next entries

11 in the next row mean, respectively, that sαL
×Q1 = Q0 and that sαR

×Q1 = Q0.

Example 3.7. We next look at the output corresponding to Example 2.2.

empty: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es): s

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

real: kgb

kgbsize: 3

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n] 1 2 e

1: 0 0 [n] 0 2 e

2: 1 1 [r] 2 * 1

This time there are three orbits of dimensions 0, 0, and 1 respectively. The [n] and
r mean that unique simple root α is noncompact imaginary for the first two, and real
for the third. The next column says

sα ×Q0 = Q1

sα ×Q1 = Q0

sα ×Q2 = Q2.

The next column says that the Cayley transform of Q0 and Q1 through α is Q2, and
the * means that the Cayley transform of Q2 though α is not defined (since α is real
for Q2). The root α is Type I noncompact imaginary for Q0 and Q1.

Example 3.8. Here is the output corresponding to Example 2.4.

empty: type

Lie type: T1.A1
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elements of finite order in the center of the simply connected group:

Q/Z.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): ss

main: realform

(weak) real forms are:

0: gl(1,R).su(2)

1: gl(1,R).sl(2,R)

enter your choice: 1

real: kgb

kgbsize: 2

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n] 0 1 e

1: 1 1 [r] 1 * 1

There are thus two orbits, one of length 0 and one of length 1. The unique simple root
α is noncompact imaginary for the (and Type II ) for the former, real for the latter,
the cross action in α fixes both orbits, the Cayley transform of Q0 through α is Q1,
and the Cayley transform of Q1 through α is not defined.

Example 3.9. Finally we continue Exercise 2.3.

empty: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es): c

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 0

real: kgb

kgbsize: 1

Name an output file (return for stdout, ? to abandon):

0: 0 0 [c] 0 * e

The output is more or less self-explanatory.

Example 3.10. Finally we conclude with a higher rank example of Sp(4,R).
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empty: type

Lie type: C2

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es): s

main: realform

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

real: kgb

kgbsize: 11

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n,n] 1 2 4 5 e

1: 0 0 [n,n] 0 3 4 6 e

2: 0 0 [c,n] 2 0 * 5 e

3: 0 0 [c,n] 3 1 * 6 e

4: 1 1 [r,C] 4 9 * * 1

5: 1 2 [C,r] 7 5 * * 2

6: 1 2 [C,r] 8 6 * * 2

7: 2 2 [C,n] 5 8 * 10 1,2,1

8: 2 2 [C,n] 6 7 * 10 1,2,1

9: 2 1 [n,C] 9 4 10 * 2,1,2

10: 3 3 [r,r] 10 10 * * 2,1,2,1

Consider the row labeled 4. It describes an orbit of length 1 (dimension 2 in this
case). The first simple root α (which is short in the Bourbaki labeling) is real, the
long simple root β is complex. We see that sβ × Q4 = Q9, so indeed β is not in the
descent set of Q4. Turning to the row labeled 9, we see that α is now noncompact
imaginary for Q9. The Cayley transform of Q9 through α is Q10, the open orbit. The
root α is Type II (why?).
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lecture iv: the hecke algebra action in general

We need to extend the analysis at the end of the last section from K\G/B to
LocK(G/B). Fortunately this is once again no harder than the examples of Lecture
2.

Definition 4.1 ( [V3, Definition 6.4]). Let (G,K) be a symmetric pair and fix H ⊂
B ⊂ G. Let M be the free Z[q, q−1] module with basis indexed by LocK(G/B). We
identify τ ∈ LocK(G/B) with the corresponding basis element of M. Let α be a
simple root of h in b, and write s = sα for the corresponding simple root.

(a) Suppose γ ∈ LocK(G/B) is supported on Q of the form considered in (a) of
the previous section. Then define

Tsγ = qγ,

and s× γ = γ.
(b1) Suppose γ ∈ LocK(G/B) is supported on Q of the form considered in (b) of

the previous section. Then there is a unique K equivariant locally constant
sheaf η on Q ∪ Q′ such that η|Q is γ. (In other words, there is a unique K
equivariant locally constant extension η of γ to S = Q ∪ Q′.) In this case
γ′ := η|Q′ is irreducible, i.e. is an element of LocK(G/B). Define

Tsγ = γ′,

s× γ′ = γ, and s× γ = γ′.
(b2) Suppose γ′ ∈ LocK(G/B) is supported on Q′ of the form considered in (b) of

the previous section. Then there is a unique K equivariant locally constant
sheaf η extending γ to Q ∪Q′. As before, γ := η|Q ∈ LocK(G/B). Define

Tsγ
′ = (q − 1)γ + qγ′.

(c1) Suppose γ ∈ LocK(G/B) is supported on Q of the form considered in (c) of the
previous section. Then there are two K equivariant locally constant sheaves
η+ and η− extending γ to S = Q ∪ Q′. Let γ+ = (η+)Q′ and γ− = (η−)Q′ .
Define

Tsγ = γ + γ+ + γ−,

s× γ± = γ∓, and s× γ = γ.
(c2) Suppose γ′ ∈ LocK(G/B) is supported on Q′ of the form considered in (c) of

the previous section. Assume there is a K equivariant locally constant sheaf
η extending γ′ to S = Q ∪ Q′; in this case η is unique. Write γ = η|Q. Then
there is one other extension K equivariant locally constant extension η′ 6= η of
γ to S. Write γ′′ = η′|Q′ . Define

Tsγ
′ = (q − 1)γ′ − γ′′ + (q − 1)γ.

(d1) Suppose γ ∈ LocK(G/B) is supported on Q of the form considered in (d) of
the previous section. Then there is a unique locally constant extension η of γ
to S(Q) = Q ∪Q′ ∪Q′′. Write γ′ = η|Q′ and γ′′ = η|Q′′ . Define

Tsγ = γ′ + γ′′,
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s× γ = γ′′, s× γ′ = γ′, and γ′ = s× γ′.
(d2) Suppose γ′ ∈ LocK(G/B) is supported on Q′ of the form considered in (d) of

the previous section. Let η denote the unique K-equivariant locally constant
extention to S(Q′) = Q ∪Q′ ∪Q′′. Let γ = η|Q and γ′′ = η|Q′′ . Define

Tsγ
′ = (q − 2)γ′ + (q − 1)(γ + γ′′).,

(e) Suppose γ′ ∈ LocK(G/B) is supported on Q′ of the form considered in (c) of
the previous section (as in (c2) above), but suppose there is no K equivariant
locally constant sheaf η extending γ′ to S. Define

Tsγ
′ = −γ′

and s× γ′ = γ′.

Proposition 4.2 ([LV, Lemma 3.5]). The formulas of Definition 4.1 coincide with
the geometrically defined Lusztig-Vogan Hecke algebra action on M.

Remark 4.3. In rank 1, Definition 4.1 of course reduces to the formulas of Lecture
2.

Remark 4.4. The formulas s × γ generate an action of W on LocK(G/B). After
composing with the equivalence of localization (Lecture 3), this is Vogan’s cross action
([Vgr, Chapter 8]) defined in the context of coherent continuation of characters.

Rather than deal with generalities, we shall instead consider examples of Definition
4.1 using the output of atlas.



20 PETER E. TRAPA

lecture v: the kazhdan-lusztig conjectures for real groups
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