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1. What is a W-Graph?
Let (W, S) be a Coxeter system, S = {s1,...,58,}.
For us, W will always be a finite Weyl group.
Let H = H(W, S) = the associated Iwahori-Hecke algebra over Z[g*!/?].
= (T1,..., T, | (I3 —q)(T; + 1) = 0, braid relations).

DEFINITION. An S-labeled graph is a triple I' = (V, m, 7), where
e V is a (finite) vertex set,
em:V xV — Zlgt/?] (i.e., a matrix of edge-weights),
o7:V — 25 =2

NOTATION. Write m(u — v) for the (u,v)-entry of m.
Let M(T) = free Z[g*'/?]-module with basis V.

Introduce operators T; on M (I):

qu if i ¢ 7(v),
—v+qt/? D wigr(wy MU = wu i i € 7(v).

Ti(v) = {

DEFINITION (K-L). I' is a W-graph if this yields an H-module.

Note: (T; — q)(T; + 1) = 0 (always), so W-graph < braid relations.



qu if i ¢ 7(v),
—v+q'/? Zu:iﬁ(u) m(v — wu ifi € 7(v).

10 = { 1)

REMARKS.
e Kazhdan-Lusztig use T}, not T;.
e Restriction: for J C S, T'[ :=(V,m,7| )is a W;-graph.

e At ¢ = 1, we get a W-representation.

e However, braid relations at ¢ = 1 A W-graph:

o If 7(v) C 7(u), then (1) does not depend on m(v — u).

CoNVENTION. WLOG, all W-graphs we consider will be reduced:
m(v — u) = 0 whenever 7(v) C 7(u).
DEFINITION. A W-cell is a strongly connected W-graph.
For every W-graph I'; M (I") has a filtration whose subquotients are cells.

Typically, cells are not irreducible as H-reps or W-reps.

However (Gyoja, 1984): every irrep of W may be realized as a W-cell.



2. The Kazhdan-Lusztig W-Graph
H has a distinguished basis {C,, : w € W} (the Kazhdan-Lusztig basis).
The left and right action of T; on C, is encoded by a W x W-graph
I'pr= W, m, TpR):
o 7.r(v) = 1(v) UTg(v), where
1 (v) = {ig : l(s;v) < L(v)}, TrR(V)={ir:Ll(vs;) < {l(v)}

e m is determined by the Kazhdan-Lusztig polynomials:

,LL(U, U)"I_:u(vv u) if TLR(U) Z TLR(U)v
0 ifTLR(’LL) QTLR(U),

m(u—>v):{

where 1(u,v) = coeff. of ¢ =4W=1/2in P, (q) (= 0 unless u < v).

REMARKS.
e Hard to compute p(x,y) without first computing Py ,(q).
e Restricting ' g to the left action (say) yields a W-graph I'y.
e The cells of I';, decompose the regular representation of H.
e Every two-sided K-L cell C' has a “special” W-irrep associated to it that
occurs with positive multiplicity in each left K-L cell C C.
e In type A, every left cell is irreducible, and the partition of W into left

and right cells is given by the Robinson-Schensted correspondence.

The representation theory connection (complex groups):
o K-L “Conjecture”: P,,q w,y(1) = multiplicity of L, in M,,
e Vogan: u(z,y) = dim Ext!(M,, L,),

where M,,=Verma module with h.w. —wp — p, L,, = simple quotient.



3. W-Graphs for Real Groups
There is a similar story for real groups:
Let K = complexification of the maximal compact subgroup of Gg.
Irreps can be assigned to K-orbits on GG/B (complex case: W ~ B\G/B).
There are K-L-V polynomials P, ,(q) generalizing K-L polynomials.
The top coefficients u(x,y) encode a W-graph structure I' iy on K\G/B.

Usually ' will break into more than one component (block).

ExAaMPLE. In the split real form of Eg, the W-graph has 6 blocks, the
largest of which has 453,060 vertices and 104 cells.

Cells for real groups often appear as cells of I';,. Not always.

ExXAMPLE. G¢ as a real group.

It has Weyl group W x W its W x W-graph is ' r.

MAIN POINTS.

e The most basic constraints on these W-graphs are sufficiently strong
that combinatorics alone can lend considerable insight into the structure of
W-graphs and cells for real and complex groups.

e Sufficiently deep understanding of the combinatorics can yield con-

structions of W-cells without needing to compute K-L(-V) polynomials.
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4. Admissible W-Graphs
Three observations about the W-graphs for real and complex groups:
(1) They have nonnegative integer edge weights.

(2) They are edge-symmetric; i.e.,
m(u —v) =m(v —u) if 7(u) € 7(v) and 7(v) € 7(u).

(3) They are bipartite. (If p(u,v) # 0, then ¢(u) # ¢(v) mod 2.)
DEFINITION. A W-graph is admissible if it satisfies (1)—(3).

ExXAMPLE. The admissible A4-cells:

O @ @ ©, O, /@\
@3» @O—@r—@H—a23 \/
23D

@ ©, QA3D Q2D
All of these are K-L cells; none are synthetic.

QUESTION. Is every admissible A,-cell a K-L cell? (Confirmed for n < 9.)

CAUTION. McLarnan-Warrington: Interesting things happen in Aqs.



The admissible Dy-cells (three are synthetic):

O @

@ ©) ® 023 013 012




5. Some Interesting Questions
PROBLEM 1. Are there finitely many admissible W -cells?

e Confirmed for Al, ce ,Ag, BQ, Bg, D4, D5, D6, Eﬁ, GQ.
e What about Wy x Ws-cells? More about this in Part II.

PROBLEM 2. Classify/generate all admissible W -cells.
PROBLEM 3. How can we identify which admissible cells are synthetic?

e Example: If I' contains no “special” W-rep, then I' is synthetic.

e Regard non-synthetics as closed under Levi restriction.
PROBLEM 4. Understand “compressibility” of W -cells and W -graphs.

e A given W-cell or W-graph should be reconstructible from a small

amount of data. (Possible approaches: binding and branching rules.)



6. The Admissible Cells in Rank 2
Consider W = I5(p) (dihedral group), 2 < p < oo.

Given an I5(p)-graph, partition the vertices according to 7:

Focus on non-trivial cells: 7(v) = {1} or {2} for all v € V.
The edge weight matrix will then have a block structure: m = [1(4)1 ]g] :
The conditions on m are as follows:

ep=2:m=0.

ep=3 m?>=1(ie., AB=BA=1).

o p=4: m3=2m.

ep=>5m*—3m?2+1=0.

REMARKS.
e If we assume only Z-weights, no classification is possible (cf. p = 3).
e Edge symmetry < m = m!.

e When p = 3, edge weights € ZZ° = edge symmetry, but not in general.



THEOREM 1. A 2-colored graph is an admissible I5(p)-cell iff it is a properly
2-colored A-D-FE Dynkin diagram whose Coxeter number divides p.

EXAMPLE. The Dynkin diagrams with Coxeter number dividing 6 are Ay,

As, Dy, and As. Therefore, the (nontrivial) admissible G5-cells are

) O—OD—O—O

® >—O—0—0

REMARK. The nontrivial K-L cells for I5(p) are paths of length p — 2.

FacT (Vogan; cf. Problem 3). In a Levi restriction of type By = I5(4), all

nontrivial Bs-cells in 'k are paths of length 2.

Proof Sketch. Let I be any properly 2-colored graph.

in pf
Let ¢,(t) be the Chebyshev polynomial such that ¢,(2cosf) = Snp

sinf
Then I is an Iz(p)-cell & ¢,(m) =0

< m is diagonalizable with eigenvalues C {2cos(7j/p): 1 < j < p}.
Now assume I is admissible (m = m®, Z=-entries).
If T is an I5(p)-cell, then 2 — m is positive definite.
Hence, 2 — m is a (symmetric) Cartan matrix of finite type.
Conversely, let A be any Cartan matrix of finite type (symmetric or not).
Then the eigenvalues of A are 2 — 2cos(me;/h), where ej,ez,... are the

exponents and h is the Coxeter number. []



7. Combinatorial Characterization

What are the graph-theoretic implications of the braid relations?

THEOREM 2. An admissible S-labeled graph is a W-graph if and only if

the following properties are satisfied:

e the Compatibility Rule,
e the Simplicity Rule,

e the Bonding Rule, and
e the Polygon Rule.

THE COMPATIBILITY RULE (applies to all W-graphs for all W):
If m(u — v) # 0, then
every i € T(u) — 7(v) is bonded to every j € T(v) — 7(u).

Necessity follows from analyzing commuting braid relations.

REFORMULATION: Define the compatibility graph Comp(W,.S):
o vertex set 2° = 2["],
e edges I — J when
I & J and every ¢ € [ — J is bonded to every j € J — I.
Compatibility means that 7 : ' — Comp(W, .S) is a graph morphism.



Compatibility graphs for A3, A4, and Dy

L3>

1 2 3 ab
O—0—/0
12D)—<(123 b 3D—2—233
=2 2
bc ab
a c
¢ ot s 4 OO 25——CGD
C a
ab @ bc
) I\
O OO————O—0

abc



THE SIMPLICITY RULE:

Every edge u — v is either
e an arc: 7(u) 2 7(v) (and there is no edge v — u), or
e a simple edge: m(u — v) =m(v - u) =1

Necessity follows from Theorem 1.

THE BONDING RULE:
If s;s; has order p;; > 3, then the cells of F|{i i must be
e singletons with 7 = @ or 7 = {4, j}, and

e A-D-E Dynkin diagrams with Coxeter number dividing p;;.

Necessity again follows from Theorem 1.
EXAMPLE. If p;; = 3, then the nontrivial cells in F\{i 5y are {i} —{j}.
Equivalently (for bonds with p;; = 3): if i € 7(u), j ¢ 7(u) then there is a

unique vertex v adjacent to u such that ¢ ¢ 7(v), j € 7(v).

REMARK. The Compatibility, Simplicity, and Bonding Rules suffice to

determine all admissible As-cells.



THE POLYGON RULE:

[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]

Define
Vi = {fveV:iier(v), jeT(v)},

ij’ ={veV:ier(v), j¢ (v},

Viji={veV:ii¢r(v), j¢7(v)}.
A path u — vy — -+ — v,_1 — v is alternating of type (i,7) if
weVI, v eVi v eVl veVi nueVy, ..., veVy.

Set Nj:(u,v) := > m(u — vi)m(vy — v2) - -m(vy—1 — v)
(sum over all r-step alternating paths of type (,7)).
Then:

N (u,v) = Nj;(u,v) for 2 <r < pij.
ExXAMPLE. 3-step alternating paths

u ij

i/j / o /i
/i \ / i/j
\%

REMARK. The Polygon Rule is quadratic in the arc weights.



8. Direct Products
Does the classification of admissible W7 x Ws-cells reduce to W7 and W5?
Not obviously. Not all cells are direct products.

Let I' = (V, m, 11 UTy) be an admissible W7 x Ws-graph.

FacT. Every edge u — v has one of three flavors:

e Type 1: 7y (u) € 11(v), 72(u) = 12(v)
e Type 2: 7(u) =11 (v), 7o(u) € m2(v)
e Type 12: 7y(u) 2 71 (v), T2(u) 2 T2(v)

Type 2 edges (and no others) are deleted when restricting I' to W7.

Hence, 7 is constant on Wi-cells.

KEY QUESTION. Are there no arcs between cells in the W -restriction of

a Wl X WQ—CGH r?

True for two-sided K-L cells. If true for a general W7 x Ws-cell I, then
e Type 12 edges cannot exist within I'.
e Every Wi-cell in I meets every Ws-cell.
e Bounds the number admissible cells for W; x W5 in terms of Wy, W.
e Every Wi-cell in I' has the same 7;-support.

Even if the answer is negative, something weaker is true.

Fact. The 1-support of I' equals the 7-support of an admissible TW;-cell.



An admissible (K-L) B3 x Bs-cell




9. A Strategy for Resolving the Key Question
Consider two properties of an arbitrary admissible W-graph I' = (V,m, 7):

PROPERTY A. If 'y and I'y are cells of I" such that I'1 < I'y in the induced

partial order, then 7(I'1) # 7(I'2).

PrROPERTY B. If I'y and I'y are cells of I" such that I'y < I'y in the induced
partial order and 7(I'y) = 7(I'3), then there is a third cell I's such that
I'n <I's <I'ys and T(F3) Z T(Fl) = T(Fg).

e (Fasy) Property A implies Property B.
e Property B affirmatively resolves the Key Question.
e Property A holds for the left K-L graph I';. False in general.

e Property B has been confirmed for all low-rank admissible cells.

N.B. If Property B holds for W7, then the Key Question has an affirmative

answer for all W7 x Ws-cells, for all choices of W.



10. Support Families

It is natural to partition W-cells into families according to their T-support.
Any two left K-L cells either

e belong to the same two-sided cell, and

e have the same 7-support, and

e contain the same “special” W-irrep,
or

e belong to distinct two-sided cells, and

e have unequal 7-support, and

e have no W-irreducibles in common.

NOTE. The 7-support of an admissible W-cell
e need not match the 7-support of a left K-L cell, and

e need not contain a special W-irrep (a synthetic marker).

QUESTION. For each T-support T C 2%, is there a W-irrep o = o(7T) such

that every admissible W -cell with T-support 7 contains a copy of o?

Assuming the Key Question has an affirmative answer, if I'y,...,I'; are W-
cells that appear in some admissible W x W’-cell for some W', then they

must have a W-irrep in common.



11. Molecular Components of W-Graphs
Recall the Simplicity Rule: every edge u — v is either
e an arc: 7(u) 2 7(v) (and there is no edge v — u), or

e a simple edge: m(u — v) =m(v —u) =1

DEFINITION. A molecular component of an admissible W-graph I' is a

subgraph whose simple edges form a single connected component.
REMARK. All K-L cells in type A have only one molecular component.

A Ds-cell with three molecular components:

A\
[/

AN
/7

Classification strategy: first classify molecules, then classify all of the ways

they may be glued together into (admissible) cells.



12. Synthesizing Molecules
IDEA #1: We can “easily” generate S-labeled graphs that satisfy the
Compatibility, Simplicity, and Bonding Rules. No arc worries.
IssuE: There are too many.

Need the Polygon Rule. Recall that it involves alternating (i, j)-paths:

---------- =D

Fact. Let (u,v,7,1,j) be an instance of the Polygon Rule
(initial point u, terminal point v, path length r). Then
e if r = 2 and there is k € 7(v) — 7(u), or
e if r = 3 and there is k,l € 7(v) — 7(u) such that k is not bonded to i
and [ is not bonded to j, or
e if r > 3 and there is k € 7(v) — 7(u) such that & is not bonded to i or 7,

then the resulting constraint is linear in weights of arcs.

An alternating path with only one arc can only involve the molecular
components containing the two endpoints.

ConNcLUSION: These instances of the Polygon Rule can be imposed locally.

So: add the Local Polygon Rule as a constraint on molecular components.



13. Stable Molecules

DEFINITION. An S-labeled graph that satisfies the Compatibility,
Simplicity, Bonding, and Local Polygon Rules is molecular.
e If it has only one molecular component, it is a molecule.

e If it occurs in some admissible W-graph, it is stable.

For n < 9, the A,,-molecules are precisely the K-L cells!
There do exist unstable molecules. Sometimes infinitely many.
But in all cases so far, they have manageable structure.

The stable Dj-molecules:

O @

® ©) ® 023 013 012




14. Binding Spaces
Given a list of (stable) W-molecules, what are all of the (stable) molecular
graphs that can be obtained by binding them together?
Focus on pairs of molecules, say I'y and I's.
Regard every inclusion 7(v1) 2 7(v2) as a potential arc vy — vs.
DANGER: Admissible graphs must be bipartite!
Work in a category of molecules-with-parity:
every vertex has a parity, edges connect vertices of opposite parity.
Molecules are connected, so each affords two parity choices.

NoTATION: T — —I' (parity-reversing operator).

DEFINITION. A binding space is the vector space B(I'y — I'3) of weight
assignments for arcs I'y — I'y that satisfy the Local Polygon Rule.

e Depends only on the simple edges of I'y and I's.

e In simply-laced cases (at least), there is no torsion.

e Often, dim B(I'y — I's) =0 or 1.

e Self-binding: B(I' — I') (even), B(I' — —I") (odd).

DEFINITION. A binding is stable if it occurs in some admissible W-graph.






15. Binding Families

DEFINITION. The bindability graph BG(W) is the directed graph with
e vertices corresponding to W-molecules
e edges I' — I'" whenever dim B(£I' — £+I") > 0.

Similarly, there is a stable bindability graph BG (WW).

Break BG(W) or BG4 (W) into strongly connected components.

NoOTE. Every admissible W-cell is obtained by binding together one or more
W-molecules from some strongly connected component of BG(W).
e The same holds for BGg(W).
e This provides another natural way to partition W-cells into families.
e The resulting binding families of W-cells are partially ordered.

e For every admissible W-graph I', there is an order-preserving map

d(T) : {cells of I'} — {binding families of W-cells}.

(QUESTIONS.
e Is ¢(I'y) surjective (i.e., does every binding family contain a K-L cell)?
e Are the fibers of ¢(I'L) unions of 2-sided cells?
e Is every binding family a union of support families?
e Are the binding families mutually orthogonal (as W-modules)?

e Is there a “special” molecule that occurs in every W-cell in a family?



Binding families of W-cells for W = D5, Dg, and Fjg.

17: 1

Go

15: 20

14: 15, 1.15, 2.15

13: 64

UU&‘/

0

11: 24[1] 12: 60

10: 81[4]

9: 10,
1.20, 2.20,

50(2],

11: 40[1] 13: 16, 1.20, 2.20 3.20,6.20

8: 81[4]

6: 24[1] 7: 60




