The Combinatorics of W-Graphs

Computational Theory of Real Reductive Groups Workshop University of Utah, 20-24 July 2009

> John Stembridge 〈jrs@umich.edu〉

1. What is a W-Graph?

Let (W, S) be a Coxeter system, $S=\left\{s_{1}, \ldots, s_{n}\right\}$.
For us, W will always be a finite Weyl group.
Let $\mathcal{H}=\mathcal{H}(W, S)=$ the associated Iwahori-Hecke algebra over $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$.

$$
\left.=\left\langle T_{1}, \ldots, T_{n}\right|\left(T_{i}-q\right)\left(T_{i}+1\right)=0, \text { braid relations }\right\rangle .
$$

Definition. An S-labeled graph is a triple $\Gamma=(V, m, \tau)$, where

- V is a (finite) vertex set,
- $m: V \times V \rightarrow \mathbb{Z}\left[q^{ \pm 1 / 2}\right]$ (i.e., a matrix of edge-weights),
- $\tau: V \rightarrow 2^{S}=2^{[n]}$.

Notation. Write $m(u \rightarrow v)$ for the (u, v)-entry of m.
Let $M(\Gamma)=$ free $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$-module with basis V.
Introduce operators T_{i} on $M(\Gamma)$:

$$
T_{i}(v)=\left\{\begin{array}{cl}
q v & \text { if } i \notin \tau(v), \\
-v+q^{1 / 2} \sum_{u: i \notin \tau(u)} m(v \rightarrow u) u & \text { if } i \in \tau(v) .
\end{array}\right.
$$

Definition (K-L). Γ is a W-graph if this yields an \mathcal{H}-module.
Note: $\left(T_{i}-q\right)\left(T_{i}+1\right)=0$ (always), so W-graph \Leftrightarrow braid relations.

$$
T_{i}(v)=\left\{\begin{array}{cl}
q v & \text { if } i \notin \tau(v), \tag{1}\\
-v+q^{1 / 2} \sum_{u: i \notin \tau(u)} m(v \rightarrow u) u & \text { if } i \in \tau(v) .
\end{array}\right.
$$

Remarks.

- Kazhdan-Lusztig use T_{i}^{t}, not T_{i}.
- Restriction: for $J \subset S,\left.\Gamma\right|_{J}:=\left(V, m,\left.\tau\right|_{J}\right)$ is a $W_{J \text {-graph. }}$.
- At $q=1$, we get a W-representation.
- However, braid relations at $q=1 \nRightarrow W$-graph:

- If $\tau(v) \subseteq \tau(u)$, then (1) does not depend on $m(v \rightarrow u)$.

Convention. WLOG, all W-graphs we consider will be reduced:

$$
m(v \rightarrow u)=0 \text { whenever } \tau(v) \subseteq \tau(u)
$$

Definition. A W-cell is a strongly connected W-graph.
For every W-graph $\Gamma, M(\Gamma)$ has a filtration whose subquotients are cells.
Typically, cells are not irreducible as \mathcal{H}-reps or W-reps.
However (Gyoja, 1984): every irrep of W may be realized as a W-cell.

2. The Kazhdan-Lusztig W-Graph

\mathcal{H} has a distinguished basis $\left\{C_{w}: w \in W\right\}$ (the Kazhdan-Lusztig basis). The left and right action of T_{i} on C_{w} is encoded by a $W \times W$-graph

$$
\Gamma_{L R}=\left(W, m, \tau_{L R}\right)
$$

- $\tau_{L R}(v)=\tau_{L}(v) \cup \tau_{R}(v)$, where

$$
\tau_{L}(v)=\left\{i_{L}: \ell\left(s_{i} v\right)<\ell(v)\right\}, \quad \tau_{R}(v)=\left\{i_{R}: \ell\left(v s_{i}\right)<\ell(v)\right\}
$$

- m is determined by the Kazhdan-Lusztig polynomials:

$$
m(u \rightarrow v)=\left\{\begin{array}{cl}
\mu(u, v)+\mu(v, u) & \text { if } \tau_{L R}(u) \nsubseteq \tau_{L R}(v) \\
0 & \text { if } \tau_{L R}(u) \subseteq \tau_{L R}(v)
\end{array}\right.
$$

where $\mu(u, v)=$ coeff. of $q^{(\ell(v)-\ell(u)-1) / 2}$ in $P_{u, v}(q)(=0$ unless $u \leqslant v)$.
Remarks.

- Hard to compute $\mu(x, y)$ without first computing $P_{x, y}(q)$.
- Restricting $\Gamma_{L R}$ to the left action (say) yields a W-graph Γ_{L}.
- The cells of Γ_{L} decompose the regular representation of \mathcal{H}.
- Every two-sided K-L cell C has a "special" W-irrep associated to it that occurs with positive multiplicity in each left K-L cell $\subset C$.
- In type A, every left cell is irreducible, and the partition of W into left and right cells is given by the Robinson-Schensted correspondence.

The representation theory connection (complex groups):

- K-L "Conjecture": $P_{w_{0} x, w_{0} y}(1)=$ multiplicity of L_{y} in M_{x},
- Vogan: $\mu(x, y)=\operatorname{dim} \operatorname{Ext}^{1}\left(M_{x}, L_{y}\right)$,
where $M_{w}=$ Verma module with h.w. $-w \rho-\rho, L_{w}=$ simple quotient.

3. W-Graphs for Real Groups

There is a similar story for real groups:
Let $K=$ complexification of the maximal compact subgroup of $G_{\mathbb{R}}$.
Irreps can be assigned to K-orbits on G / B (complex case: $W \approx B \backslash G / B$).
There are K-L-V polynomials $P_{x, y}(q)$ generalizing K-L polynomials.
The top coefficients $\mu(x, y)$ encode a W-graph structure Γ_{K} on $K \backslash G / B$. Usually Γ_{K} will break into more than one component (block).

Example. In the split real form of E_{8}, the W-graph has 6 blocks, the largest of which has 453,060 vertices and 104 cells.

Cells for real groups often appear as cells of Γ_{L}. Not always.
Example. $G_{\mathbb{C}}$ as a real group.
It has Weyl group $W \times W$; its $W \times W$-graph is $\Gamma_{L R}$.
Main Points.

- The most basic constraints on these W-graphs are sufficiently strong that combinatorics alone can lend considerable insight into the structure of W-graphs and cells for real and complex groups.
- Sufficiently deep understanding of the combinatorics can yield constructions of W-cells without needing to compute K-L(-V) polynomials.

4. Admissible W-Graphs

Three observations about the W-graphs for real and complex groups:
(1) They have nonnegative integer edge weights.
(2) They are edge-symmetric; i.e.,

$$
m(u \rightarrow v)=m(v \rightarrow u) \text { if } \tau(u) \nsubseteq \tau(v) \text { and } \tau(v) \nsubseteq \tau(u) .
$$

(3) They are bipartite. (If $\mu(u, v) \neq 0$, then $\ell(u) \neq \ell(v) \bmod 2$.)

Definition. A W-graph is admissible if it satisfies (1)-(3).
Example. The admissible A_{4}-cells:

(1234)

All of these are K-L cells; none are synthetic.
Question. Is every admissible A_{n}-cell a K-L cell? (Confirmed for $n \leqslant 9$.)
Caution. McLarnan-Warrington: Interesting things happen in A_{15}.

The admissible D_{4}-cells (three are synthetic):

5. Some Interesting Questions

Problem 1. Are there finitely many admissible W-cells?

- Confirmed for $A_{1}, \ldots, A_{9}, B_{2}, B_{3}, D_{4}, D_{5}, D_{6}, E_{6}, G_{2}$.
- What about $W_{1} \times W_{2}$-cells? More about this in Part II.

Problem 2. Classify/generate all admissible W-cells.
Problem 3. How can we identify which admissible cells are synthetic?

- Example: If Γ contains no "special" W-rep, then Γ is synthetic.
- Regard non-synthetics as closed under Levi restriction.

Problem 4. Understand "compressibility" of W-cells and W-graphs.

- A given W-cell or W-graph should be reconstructible from a small amount of data. (Possible approaches: binding and branching rules.)

6. The Admissible Cells in Rank 2

Consider $W=I_{2}(p)$ (dihedral group), $2 \leqslant p<\infty$.
Given an $I_{2}(p)$-graph, partition the vertices according to τ :

Focus on non-trivial cells: $\tau(v)=\{1\}$ or $\{2\}$ for all $v \in V$.
The edge weight matrix will then have a block structure: $m=\left[\begin{array}{cc}0 & B \\ A & 0\end{array}\right]$.
The conditions on m are as follows:

- $p=2: m=0$.
- $p=3: m^{2}=1$ (i.e., $A B=B A=1$).
- $p=4: m^{3}=2 m$.
- $p=5: m^{4}-3 m^{2}+1=0$.

Remarks.

- If we assume only \mathbb{Z}-weights, no classification is possible (cf. $p=3$).
- Edge symmetry $\Leftrightarrow m=m^{t}$.
- When $p=3$, edge weights $\in \mathbb{Z}^{\geqslant 0} \Rightarrow$ edge symmetry, but not in general.

Theorem 1. A 2-colored graph is an admissible $I_{2}(p)$-cell iff it is a properly 2-colored A-D-E Dynkin diagram whose Coxeter number divides p.

Example. The Dynkin diagrams with Coxeter number dividing 6 are A_{1}, A_{2}, D_{4}, and A_{5}. Therefore, the (nontrivial) admissible G_{2}-cells are
(1)
(2)

Remark. The nontrivial K-L cells for $I_{2}(p)$ are paths of length $p-2$.
FACT (Vogan; cf. Problem 3). In a Levi restriction of type $B_{2}=I_{2}(4)$, all nontrivial B_{2}-cells in Γ_{K} are paths of length 2.

Proof Sketch. Let Γ be any properly 2 -colored graph.
Let $\phi_{p}(t)$ be the Chebyshev polynomial such that $\phi_{p}(2 \cos \theta)=\frac{\sin p \theta}{\sin \theta}$.
Then Γ is an $I_{2}(p)$-cell $\Leftrightarrow \phi_{p}(m)=0$
$\Leftrightarrow m$ is diagonalizable with eigenvalues $\subset\{2 \cos (\pi j / p): 1 \leqslant j<p\}$. Now assume Γ is admissible ($m=m^{t}, \mathbb{Z} \geqslant 0$-entries).

If Γ is an $I_{2}(p)$-cell, then $2-m$ is positive definite.
Hence, $2-m$ is a (symmetric) Cartan matrix of finite type.
Conversely, let A be any Cartan matrix of finite type (symmetric or not).
Then the eigenvalues of A are $2-2 \cos \left(\pi e_{j} / h\right)$, where e_{1}, e_{2}, \ldots are the exponents and h is the Coxeter number.

7. Combinatorial Characterization

What are the graph-theoretic implications of the braid relations?
THEOREM 2. An admissible S-labeled graph is a W-graph if and only if the following properties are satisfied:

- the Compatibility Rule,
- the Simplicity Rule,
- the Bonding Rule, and
- the Polygon Rule.

The Compatibility Rule (applies to all W-graphs for all W): If $m(u \rightarrow v) \neq 0$, then every $i \in \tau(u)-\tau(v)$ is bonded to every $j \in \tau(v)-\tau(u)$.
Necessity follows from analyzing commuting braid relations.
Reformulation: Define the compatibility graph $\operatorname{Comp}(W, S)$:

- vertex set $2^{S}=2^{[n]}$,
- edges $I \rightarrow J$ when
$I \nsubseteq J$ and every $i \in I-J$ is bonded to every $j \in J-I$.
Compatibility means that $\tau: \Gamma \rightarrow \operatorname{Comp}(W, S)$ is a graph morphism.

Compatibility graphs for A_{3}, A_{4}, and D_{4}

$$
1 \xrightarrow{a} 2 \xrightarrow{b} 3
$$

The Simplicity Rule:
Every edge $u \rightarrow v$ is either

- an arc: $\tau(u) \supsetneq \tau(v)$ (and there is no edge $v \rightarrow u$), or
- a simple edge: $m(u \rightarrow v)=m(v \rightarrow u)=1$

Necessity follows from Theorem 1.

The Bonding Rule:
If $s_{i} s_{j}$ has order $p_{i j} \geqslant 3$, then the cells of $\left.\Gamma\right|_{\{i, j\}}$ must be

- singletons with $\tau=\varnothing$ or $\tau=\{i, j\}$, and
- $A-D-E$ Dynkin diagrams with Coxeter number dividing $p_{i j}$.

Necessity again follows from Theorem 1.
Example. If $p_{i j}=3$, then the nontrivial cells in $\left.\Gamma\right|_{\{i, j\}}$ are $\{i\}-\{j\}$.
Equivalently (for bonds with $p_{i j}=3$): if $i \in \tau(u), j \notin \tau(u)$ then there is a unique vertex v adjacent to u such that $i \notin \tau(v), j \in \tau(v)$.

Remark. The Compatibility, Simplicity, and Bonding Rules suffice to determine all admissible A_{3}-cells.

The Polygon Rule:

[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]
Define

$$
\begin{aligned}
V^{i j} & :=\{v \in V: i \in \tau(v), j \in \tau(v)\}, \\
V_{j}^{i} & :=\{v \in V: i \in \tau(v), j \notin \tau(v)\}, \\
V_{i j} & :=\{v \in V: i \notin \tau(v), j \notin \tau(v)\} .
\end{aligned}
$$

A path $u \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{r-1} \rightarrow v$ is alternating of type (i, j) if

$$
u \in V^{i j}, v_{1} \in V_{j}^{i}, v_{2} \in V_{i}^{j}, v_{3} \in V_{j}^{i}, v_{4} \in V_{i}^{j}, \ldots, v \in V_{i j}
$$

Set $N_{i j}^{r}(u, v):=\sum m\left(u \rightarrow v_{1}\right) m\left(v_{1} \rightarrow v_{2}\right) \cdots m\left(v_{r-1} \rightarrow v\right)$
(sum over all r-step alternating paths of type (i, j)).
Then:

$$
N_{i j}^{r}(u, v)=N_{j i}^{r}(u, v) \quad \text { for } 2 \leqslant r \leqslant p_{i j} .
$$

Example. 3-step alternating paths

Remark. The Polygon Rule is quadratic in the arc weights.

8. Direct Products

Does the classification of admissible $W_{1} \times W_{2}$-cells reduce to W_{1} and W_{2} ? Not obviously. Not all cells are direct products.

Let $\Gamma=\left(V, m, \tau_{1} \cup \tau_{2}\right)$ be an admissible $W_{1} \times W_{2}$-graph.
Fact. Every edge $u \rightarrow v$ has one of three flavors:

- Type 1: $\tau_{1}(u) \nsubseteq \tau_{1}(v), \tau_{2}(u)=\tau_{2}(v)$
- Type 2: $\tau_{1}(u)=\tau_{1}(v), \tau_{2}(u) \nsubseteq \tau_{2}(v)$
- Type 12: $\tau_{1}(u) \supsetneq \tau_{1}(v), \tau_{2}(u) \supsetneq \tau_{2}(v)$

Type 2 edges (and no others) are deleted when restricting Γ to W_{1}. Hence, τ_{2} is constant on W_{1}-cells.

Key Question. Are there no arcs between cells in the W_{1}-restriction of a $W_{1} \times W_{2}$-cell Γ ?

True for two-sided K-L cells. If true for a general $W_{1} \times W_{2}$-cell Γ, then

- Type 12 edges cannot exist within Γ.
- Every W_{1}-cell in Γ meets every W_{2}-cell.
- Bounds the number admissible cells for $W_{1} \times W_{2}$ in terms of W_{1}, W_{2}.
- Every W_{1}-cell in Γ has the same τ_{1}-support.

Even if the answer is negative, something weaker is true.
FACt. The τ_{1}-support of Γ equals the τ_{1}-support of an admissible W_{1}-cell.

An admissible (K-L) $B_{3} \times B_{3}$-cell

9. A Strategy for Resolving the Key Question

Consider two properties of an arbitrary admissible W-graph $\Gamma=(V, m, \tau)$:
Property A. If Γ_{1} and Γ_{2} are cells of Γ such that $\Gamma_{1}<\Gamma_{2}$ in the induced partial order, then $\tau\left(\Gamma_{1}\right) \neq \tau\left(\Gamma_{2}\right)$.

Property B. If Γ_{1} and Γ_{2} are cells of Γ such that $\Gamma_{1}<\Gamma_{2}$ in the induced partial order and $\tau\left(\Gamma_{1}\right)=\tau\left(\Gamma_{2}\right)$, then there is a third cell Γ_{3} such that $\Gamma_{1}<\Gamma_{3}<\Gamma_{2}$ and $\tau\left(\Gamma_{3}\right) \nsubseteq \tau\left(\Gamma_{1}\right)=\tau\left(\Gamma_{2}\right)$.

- (Easy) Property A implies Property B.
- Property B affirmatively resolves the Key Question.
- Property A holds for the left K-L graph Γ_{L}. False in general.
- Property B has been confirmed for all low-rank admissible cells.
N.B. If Property B holds for W_{1}, then the Key Question has an affirmative answer for all $W_{1} \times W_{2}$-cells, for all choices of W_{2}.

10. Support Families

It is natural to partition W-cells into families according to their τ-support.
Any two left K-L cells either

- belong to the same two-sided cell, and
- have the same τ-support, and
- contain the same "special" W-irrep,
or
- belong to distinct two-sided cells, and
- have unequal τ-support, and
- have no W-irreducibles in common.

Note. The τ-support of an admissible W-cell

- need not match the τ-support of a left K-L cell, and
- need not contain a special W-irrep (a synthetic marker).

Question. For each τ-support $\mathcal{T} \subset 2^{S}$, is there a W-irrep $\sigma=\sigma(\mathcal{T})$ such that every admissible W-cell with τ-support \mathcal{T} contains a copy of σ ?

Assuming the Key Question has an affirmative answer, if $\Gamma_{1}, \ldots, \Gamma_{l}$ are W cells that appear in some admissible $W \times W^{\prime}$-cell for some W^{\prime}, then they must have a W-irrep in common.

11. Molecular Components of W-Graphs

Recall the Simplicity Rule: every edge $u \rightarrow v$ is either

- an arc: $\tau(u) \supsetneq \tau(v)$ (and there is no edge $v \rightarrow u$), or
- a simple edge: $m(u \rightarrow v)=m(v \rightarrow u)=1$

Definition. A molecular component of an admissible W-graph Γ is a subgraph whose simple edges form a single connected component.

Remark. All K-L cells in type A have only one molecular component.
A D_{5}-cell with three molecular components:

Classification strategy: first classify molecules, then classify all of the ways they may be glued together into (admissible) cells.

12. Synthesizing Molecules

Idea \#1: We can "easily" generate S-labeled graphs that satisfy the Compatibility, Simplicity, and Bonding Rules. No arc worries.

Issue: There are too many.
Need the Polygon Rule. Recall that it involves alternating (i, j)-paths:

Fact. Let (u, v, r, i, j) be an instance of the Polygon Rule (initial point u, terminal point v, path length r). Then

- if $r=2$ and there is $k \in \tau(v)-\tau(u)$, or
- if $r=3$ and there is $k, l \in \tau(v)-\tau(u)$ such that k is not bonded to i and l is not bonded to j, or
- if $r \geqslant 3$ and there is $k \in \tau(v)-\tau(u)$ such that k is not bonded to i or j, then the resulting constraint is linear in weights of arcs.

An alternating path with only one arc can only involve the molecular components containing the two endpoints.

Conclusion: These instances of the Polygon Rule can be imposed locally.
So: add the Local Polygon Rule as a constraint on molecular components.

13. Stable Molecules

Definition. An S-labeled graph that satisfies the Compatibility, Simplicity, Bonding, and Local Polygon Rules is molecular.

- If it has only one molecular component, it is a molecule.
- If it occurs in some admissible W-graph, it is stable.

For $n \leqslant 9$, the A_{n}-molecules are precisely the K-L cells!
There do exist unstable molecules. Sometimes infinitely many.
But in all cases so far, they have manageable structure.
The stable D_{4}-molecules:

14. Binding Spaces

Given a list of (stable) W-molecules, what are all of the (stable) molecular graphs that can be obtained by binding them together?

Focus on pairs of molecules, say Γ_{1} and Γ_{2}.
Regard every inclusion $\tau\left(v_{1}\right) \supsetneq \tau\left(v_{2}\right)$ as a potential arc $v_{1} \rightarrow v_{2}$.
DANGER: Admissible graphs must be bipartite!
Work in a category of molecules-with-parity:
every vertex has a parity, edges connect vertices of opposite parity.
Molecules are connected, so each affords two parity choices.
Notation: $\Gamma \mapsto-\Gamma$ (parity-reversing operator).
Definition. A binding space is the vector space $B\left(\Gamma_{1} \rightarrow \Gamma_{2}\right)$ of weight assignments for arcs $\Gamma_{1} \rightarrow \Gamma_{2}$ that satisfy the Local Polygon Rule.

- Depends only on the simple edges of Γ_{1} and Γ_{2}.
- In simply-laced cases (at least), there is no torsion.
- Often, $\operatorname{dim} B\left(\Gamma_{1} \rightarrow \Gamma_{2}\right)=0$ or 1 .
- Self-binding: $B(\Gamma \rightarrow \Gamma)$ (even), $B(\Gamma \rightarrow-\Gamma)$ (odd).

Definition. A binding is stable if it occurs in some admissible W-graph.

Note. Each W-molecule Γ also has an internal binding space $B(\Gamma)$.

- $B(\Gamma)$ may be identified with an affine translate of $B(\Gamma \rightarrow \Gamma)$.

Example. An E_{6}-molecule with $\operatorname{dim} B(\cdot)=1$:

15. Binding Families

Definition. The bindability graph $\mathrm{BG}(W)$ is the directed graph with

- vertices corresponding to W-molecules
- edges $\Gamma \rightarrow \Gamma^{\prime}$ whenever $\operatorname{dim} B\left(\pm \Gamma \rightarrow \pm \Gamma^{\prime}\right)>0$.

Similarly, there is a stable bindability graph $\mathrm{BG}_{\text {st }}(W)$.
Break $\mathrm{BG}(W)$ or $\mathrm{BG}_{\mathrm{st}}(W)$ into strongly connected components.

Note. Every admissible W-cell is obtained by binding together one or more W-molecules from some strongly connected component of $\mathrm{BG}(W)$.

- The same holds for $\mathrm{BG}_{\mathrm{st}}(W)$.
- This provides another natural way to partition W-cells into families.
- The resulting binding families of W-cells are partially ordered.
- For every admissible W-graph Γ, there is an order-preserving map

$$
\phi(\Gamma):\{\text { cells of } \Gamma\} \rightarrow\{\text { binding families of } W \text {-cells }\} .
$$

Questions.

- Is $\phi\left(\Gamma_{L}\right)$ surjective (i.e., does every binding family contain a K-L cell)?
- Are the fibers of $\phi\left(\Gamma_{L}\right)$ unions of 2-sided cells?
- Is every binding family a union of support families?
- Are the binding families mutually orthogonal (as W-modules)?
- Is there a "special" molecule that occurs in every W-cell in a family?

Binding families of W-cells for $W=D_{5}, D_{6}$, and E_{6}.

