The Combinatorics of W-Graphs Computational Theory of Real Reductive Groups Workshop University of Utah, 20–24 July 2009

JOHN STEMBRIDGE $\langle jrs@umich.edu \rangle$

1. What is a *W*-Graph?

Let (W, S) be a Coxeter system, $S = \{s_1, \ldots, s_n\}.$

For us, W will always be a finite Weyl group.

Let $\mathcal{H} = \mathcal{H}(W, S)$ = the associated Iwahori-Hecke algebra over $\mathbb{Z}[q^{\pm 1/2}]$.

$$= \langle T_1, \ldots, T_n \mid (T_i - q)(T_i + 1) = 0, \text{ braid relations} \rangle.$$

DEFINITION. An S-labeled graph is a triple $\Gamma = (V, m, \tau)$, where

- V is a (finite) vertex set,
- $m: V \times V \to \mathbb{Z}[q^{\pm 1/2}]$ (i.e., a matrix of edge-weights),
- $\tau: V \to 2^S = 2^{[n]}$.

NOTATION. Write $m(u \to v)$ for the (u, v)-entry of m.

Let $M(\Gamma) = \text{free } \mathbb{Z}[q^{\pm 1/2}]$ -module with basis V. Introduce operators T_i on $M(\Gamma)$:

$$T_i(v) = \begin{cases} qv & \text{if } i \notin \tau(v), \\ -v + q^{1/2} \sum_{u: i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$

DEFINITION (K-L). Γ is a *W*-graph if this yields an *H*-module.

NOTE: $(T_i - q)(T_i + 1) = 0$ (always), so W-graph \Leftrightarrow braid relations.

$$T_i(v) = \begin{cases} qv & \text{if } i \notin \tau(v), \\ -v + q^{1/2} \sum_{u: i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$
(1)

Remarks.

- Kazhdan-Lusztig use T_i^t , not T_i .
- Restriction: for $J \subset S$, $\Gamma|_J := (V, m, \tau|_J)$ is a W_J -graph.
- At q = 1, we get a W-representation.
- However, braid relations at $q = 1 \Rightarrow W$ -graph:

• If $\tau(v) \subseteq \tau(u)$, then (1) does not depend on $m(v \to u)$.

CONVENTION. WLOG, all *W*-graphs we consider will be **reduced**:

 $m(v \rightarrow u) = 0$ whenever $\tau(v) \subseteq \tau(u)$.

DEFINITION. A W-cell is a strongly connected W-graph.

For every W-graph Γ , $M(\Gamma)$ has a filtration whose subquotients are cells. Typically, cells are not irreducible as \mathcal{H} -reps or W-reps.

However (Gyoja, 1984): every irrep of W may be realized as a W-cell.

2. The Kazhdan-Lusztig W-Graph

 \mathcal{H} has a distinguished basis $\{C_w : w \in W\}$ (the Kazhdan-Lusztig basis). The left and right action of T_i on C_w is encoded by a $W \times W$ -graph

$$\Gamma_{LR} = (W, m, \tau_{LR})$$
:

- $\tau_{LR}(v) = \tau_L(v) \cup \tau_R(v)$, where $\tau_L(v) = \{i_L : \ell(s_i v) < \ell(v)\}, \quad \tau_R(v) = \{i_R : \ell(vs_i) < \ell(v)\}$
- \bullet *m* is determined by the Kazhdan-Lusztig polynomials:

$$m(u \to v) = \begin{cases} \mu(u, v) + \mu(v, u) & \text{if } \tau_{LR}(u) \not\subseteq \tau_{LR}(v), \\ 0 & \text{if } \tau_{LR}(u) \subseteq \tau_{LR}(v), \end{cases}$$

where $\mu(u, v) = \text{coeff. of } q^{(\ell(v) - \ell(u) - 1)/2} \text{ in } P_{u,v}(q) \ (= 0 \text{ unless } u \leq v).$

Remarks.

- Hard to compute $\mu(x, y)$ without first computing $P_{x,y}(q)$.
- Restricting Γ_{LR} to the left action (say) yields a W-graph Γ_L .
- The cells of Γ_L decompose the regular representation of \mathcal{H} .
- Every two-sided K-L cell C has a "special" W-irrep associated to it that occurs with positive multiplicity in each left K-L cell $\subset C$.
- In type A, every left cell is irreducible, and the partition of W into left and right cells is given by the Robinson-Schensted correspondence.

The representation theory connection (complex groups):

- K-L "Conjecture": $P_{w_0x,w_0y}(1)$ = multiplicity of L_y in M_x ,
- Vogan: $\mu(x, y) = \dim \operatorname{Ext}^1(M_x, L_y),$

where M_w =Verma module with h.w. $-w\rho - \rho$, L_w = simple quotient.

3. W-Graphs for Real Groups

There is a similar story for real groups:

Let $K = \text{complexification of the maximal compact subgroup of } G_{\mathbb{R}}$.

Irreps can be assigned to K-orbits on G/B (complex case: $W \approx B \setminus G/B$).

There are K-L-V polynomials $P_{x,y}(q)$ generalizing K-L polynomials.

The top coefficients $\mu(x, y)$ encode a W-graph structure Γ_K on $K \setminus G/B$.

Usually Γ_K will break into more than one component (block).

EXAMPLE. In the split real form of E_8 , the W-graph has 6 blocks, the largest of which has 453,060 vertices and 104 cells.

Cells for real groups often appear as cells of Γ_L . Not always.

EXAMPLE. $G_{\mathbb{C}}$ as a real group.

It has Weyl group $W \times W$; its $W \times W$ -graph is Γ_{LR} .

MAIN POINTS.

• The most basic constraints on these W-graphs are sufficiently strong that combinatorics alone can lend considerable insight into the structure of W-graphs and cells for real and complex groups.

• Sufficiently deep understanding of the combinatorics can yield constructions of W-cells without needing to compute K-L(-V) polynomials.

4. Admissible W-Graphs

Three observations about the W-graphs for real and complex groups:

- (1) They have nonnegative integer edge weights.
- (2) They are **edge-symmetric**; i.e.,

$$m(u \to v) = m(v \to u)$$
 if $\tau(u) \not\subseteq \tau(v)$ and $\tau(v) \not\subseteq \tau(u)$.

(3) They are bipartite. (If $\mu(u, v) \neq 0$, then $\ell(u) \neq \ell(v) \mod 2$.)

DEFINITION. A W-graph is **admissible** if it satisfies (1)-(3).

EXAMPLE. The admissible A_4 -cells:

All of these are K-L cells; none are synthetic.

QUESTION. Is every admissible A_n -cell a K-L cell? (Confirmed for $n \leq 9$.) CAUTION. McLarnan-Warrington: Interesting things happen in A_{15} . The admissible D_4 -cells (three are synthetic):

 $\mathbf{\tilde{0}}$

5. Some Interesting Questions

PROBLEM 1. Are there finitely many admissible W-cells?

- Confirmed for $A_1, \ldots, A_9, B_2, B_3, D_4, D_5, D_6, E_6, G_2$.
- What about $W_1 \times W_2$ -cells? More about this in Part II.

PROBLEM 2. Classify/generate all admissible W-cells.

PROBLEM 3. How can we identify which admissible cells are synthetic?

- Example: If Γ contains no "special" W-rep, then Γ is synthetic.
- Regard non-synthetics as closed under Levi restriction.

PROBLEM 4. Understand "compressibility" of W-cells and W-graphs.

• A given W-cell or W-graph should be reconstructible from a small amount of data. (Possible approaches: binding and branching rules.)

6. The Admissible Cells in Rank 2

Consider $W = I_2(p)$ (dihedral group), $2 \leq p < \infty$.

Given an $I_2(p)$ -graph, partition the vertices according to τ :

Focus on non-trivial cells: $\tau(v) = \{1\}$ or $\{2\}$ for all $v \in V$.

The edge weight matrix will then have a block structure: $m = \begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix}$. The conditions on m are as follows:

p = 2: m = 0.
p = 3: m² = 1 (i.e., AB = BA = 1).
p = 4: m³ = 2m.
p = 5: m⁴ - 3m² + 1 = 0.

Remarks.

- If we assume only \mathbb{Z} -weights, no classification is possible (cf. p = 3).
- Edge symmetry $\Leftrightarrow m = m^t$.
- When p = 3, edge weights $\in \mathbb{Z}^{\geq 0} \Rightarrow$ edge symmetry, but not in general.

THEOREM 1. A 2-colored graph is an admissible $I_2(p)$ -cell iff it is a properly 2-colored A-D-E Dynkin diagram whose Coxeter number divides p.

EXAMPLE. The Dynkin diagrams with Coxeter number dividing 6 are A_1 , A_2 , D_4 , and A_5 . Therefore, the (nontrivial) admissible G_2 -cells are

REMARK. The nontrivial K-L cells for $I_2(p)$ are paths of length p-2.

FACT (Vogan; cf. Problem 3). In a Levi restriction of type $B_2 = I_2(4)$, all nontrivial B_2 -cells in Γ_K are paths of length 2.

Proof Sketch. Let Γ be any properly 2-colored graph.

Let $\phi_p(t)$ be the Chebyshev polynomial such that $\phi_p(2\cos\theta) = \frac{\sin p\theta}{\sin\theta}$. Then Γ is an $I_2(p)$ -cell $\Leftrightarrow \phi_p(m) = 0$

 $\Leftrightarrow m$ is diagonalizable with eigenvalues $\subset \{2\cos(\pi j/p) : 1 \leq j < p\}$. Now assume Γ is admissible $(m = m^t, \mathbb{Z}^{\geq 0}$ -entries).

If Γ is an $I_2(p)$ -cell, then 2 - m is positive definite.

Hence, 2 - m is a (symmetric) Cartan matrix of finite type.

Conversely, let A be any Cartan matrix of finite type (symmetric or not). Then the eigenvalues of A are $2 - 2\cos(\pi e_j/h)$, where e_1, e_2, \ldots are the exponents and h is the Coxeter number. \Box

7. Combinatorial Characterization

What are the graph-theoretic implications of the braid relations?

THEOREM 2. An admissible S-labeled graph is a W-graph if and only if the following properties are satisfied:

- the Compatibility Rule,
- the Simplicity Rule,
- the Bonding Rule, and
- the Polygon Rule.

THE COMPATIBILITY RULE (applies to all W-graphs for all W): If $m(u \rightarrow v) \neq 0$, then

every $i \in \tau(u) - \tau(v)$ is bonded to every $j \in \tau(v) - \tau(u)$.

Necessity follows from analyzing commuting braid relations.

REFORMULATION: Define the compatibility graph Comp(W, S):

- vertex set $2^S = 2^{[n]}$,
- edges $I \to J$ when

 $I \not\subseteq J$ and every $i \in I - J$ is bonded to every $j \in J - I$. Compatibility means that $\tau : \Gamma \to \operatorname{Comp}(W, S)$ is a graph morphism. Compatibility graphs for A_3 , A_4 , and D_4

THE SIMPLICITY RULE:

Every edge $u \to v$ is either

- an **arc**: $\tau(u) \supseteq \tau(v)$ (and there is no edge $v \to u$), or
- a simple edge: $m(u \to v) = m(v \to u) = 1$

Necessity follows from Theorem 1.

THE BONDING RULE:

If $s_i s_j$ has order $p_{ij} \ge 3$, then the cells of $\Gamma|_{\{i,j\}}$ must be

- singletons with $\tau = \emptyset$ or $\tau = \{i, j\}$, and
- A-D-E Dynkin diagrams with Coxeter number dividing p_{ij} .

Necessity again follows from Theorem 1.

EXAMPLE. If $p_{ij} = 3$, then the nontrivial cells in $\Gamma|_{\{i,j\}}$ are $\{i\} - \{j\}$.

Equivalently (for bonds with $p_{ij} = 3$): if $i \in \tau(u)$, $j \notin \tau(u)$ then there is a unique vertex v adjacent to u such that $i \notin \tau(v)$, $j \in \tau(v)$.

REMARK. The Compatibility, Simplicity, and Bonding Rules suffice to determine all admissible A_3 -cells.

THE POLYGON RULE:

[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]

Define

$$V^{ij} := \{ v \in V : i \in \tau(v), \ j \in \tau(v) \},\$$
$$V^{i}_{j} := \{ v \in V : i \in \tau(v), \ j \notin \tau(v) \},\$$
$$V_{ij} := \{ v \in V : i \notin \tau(v), \ j \notin \tau(v) \}.$$

A path $u \to v_1 \to \cdots \to v_{r-1} \to v$ is alternating of type (i, j) if

$$u \in V^{ij}, v_1 \in V^i_j, v_2 \in V^j_i, v_3 \in V^i_j, v_4 \in V^j_i, \dots, v \in V_{ij}.$$

Set $N_{ij}^r(u, v) := \sum m(u \to v_1)m(v_1 \to v_2) \cdots m(v_{r-1} \to v)$ (sum over all *r*-step alternating paths of type (i, j)). Then:

$$N_{ij}^r(u,v) = N_{ji}^r(u,v) \quad \text{for } 2 \leqslant r \leqslant p_{ij}.$$

EXAMPLE. 3-step alternating paths

REMARK. The Polygon Rule is quadratic in the arc weights.

8. Direct Products

Does the classification of admissible $W_1 \times W_2$ -cells reduce to W_1 and W_2 ? Not obviously. Not all cells are direct products.

Let $\Gamma = (V, m, \tau_1 \cup \tau_2)$ be an admissible $W_1 \times W_2$ -graph.

FACT. Every edge $u \to v$ has one of three flavors:

- Type 1: $\tau_1(u) \not\subseteq \tau_1(v), \ \tau_2(u) = \tau_2(v)$
- Type 2: $\tau_1(u) = \tau_1(v), \ \tau_2(u) \not\subseteq \tau_2(v)$
- Type 12: $\tau_1(u) \supseteq \tau_1(v), \tau_2(u) \supseteq \tau_2(v)$

Type 2 edges (and no others) are deleted when restricting Γ to W_1 . Hence, τ_2 is constant on W_1 -cells.

KEY QUESTION. Are there no arcs **between** cells in the W_1 -restriction of a $W_1 \times W_2$ -cell Γ ?

True for two-sided K-L cells. If true for a general $W_1 \times W_2$ -cell Γ , then

- Type 12 edges cannot exist within Γ .
- Every W_1 -cell in Γ meets every W_2 -cell.
- Bounds the number admissible cells for $W_1 \times W_2$ in terms of W_1, W_2 .
- Every W_1 -cell in Γ has the same τ_1 -support.

Even if the answer is negative, something weaker is true.

FACT. The τ_1 -support of Γ equals the τ_1 -support of an admissible W_1 -cell.

9. A Strategy for Resolving the Key Question

Consider two properties of an arbitrary admissible W-graph $\Gamma = (V, m, \tau)$:

PROPERTY A. If Γ_1 and Γ_2 are cells of Γ such that $\Gamma_1 < \Gamma_2$ in the induced partial order, then $\tau(\Gamma_1) \neq \tau(\Gamma_2)$.

PROPERTY B. If Γ_1 and Γ_2 are cells of Γ such that $\Gamma_1 < \Gamma_2$ in the induced partial order and $\tau(\Gamma_1) = \tau(\Gamma_2)$, then there is a third cell Γ_3 such that $\Gamma_1 < \Gamma_3 < \Gamma_2$ and $\tau(\Gamma_3) \not\subseteq \tau(\Gamma_1) = \tau(\Gamma_2)$.

- (Easy) Property A implies Property B.
- Property B affirmatively resolves the Key Question.
- Property A holds for the left K-L graph Γ_L . False in general.
- Property B has been confirmed for all low-rank admissible cells.

N.B. If Property B holds for W_1 , then the Key Question has an affirmative answer for all $W_1 \times W_2$ -cells, for all choices of W_2 .

10. Support Families

It is natural to partition W-cells into families according to their τ -support. Any two left K-L cells either

- belong to the same two-sided cell, and
- have the same τ -support, and
- contain the same "special" W-irrep,

or

- belong to distinct two-sided cells, and
- have unequal τ -support, and
- have no W-irreducibles in common.

NOTE. The τ -support of an admissible W-cell

- need not match the τ -support of a left K-L cell, and
- need not contain a special W-irrep (a synthetic marker).

QUESTION. For each τ -support $\mathcal{T} \subset 2^S$, is there a W-irrep $\sigma = \sigma(\mathcal{T})$ such that every admissible W-cell with τ -support \mathcal{T} contains a copy of σ ?

Assuming the Key Question has an affirmative answer, if $\Gamma_1, \ldots, \Gamma_l$ are *W*-cells that appear in some admissible $W \times W'$ -cell for some W', then they must have a *W*-irrep in common.

11. Molecular Components of *W*-Graphs

Recall the Simplicity Rule: every edge $u \to v$ is either

- an **arc**: $\tau(u) \supseteq \tau(v)$ (and there is no edge $v \to u$), or
- a simple edge: $m(u \to v) = m(v \to u) = 1$

DEFINITION. A molecular component of an admissible W-graph Γ is a subgraph whose simple edges form a single connected component.

REMARK. All K-L cells in type A have only one molecular component.

A D_5 -cell with three molecular components:

Classification strategy: first classify molecules, then classify all of the ways they may be glued together into (admissible) cells.

12. Synthesizing Molecules

IDEA #1: We can "easily" generate S-labeled graphs that satisfy the Compatibility, Simplicity, and Bonding Rules. No arc worries. ISSUE: There are too many.

Need the Polygon Rule. Recall that it involves alternating (i, j)-paths:

(i,j)-----> (j)-----> ()

FACT. Let (u, v, r, i, j) be an instance of the Polygon Rule (initial point u, terminal point v, path length r). Then

- if r = 2 and there is $k \in \tau(v) \tau(u)$, or
- if r = 3 and there is $k, l \in \tau(v) \tau(u)$ such that k is not bonded to i and l is not bonded to j, or

• if $r \ge 3$ and there is $k \in \tau(v) - \tau(u)$ such that k is not bounded to i or j, then the resulting constraint is **linear** in weights of arcs.

An alternating path with only one arc can only involve the molecular components containing the two endpoints.

CONCLUSION: These instances of the Polygon Rule can be imposed **locally**. So: add the **Local** Polygon Rule as a constraint on molecular components.

13. Stable Molecules

DEFINITION. An S-labeled graph that satisfies the Compatibility, Simplicity, Bonding, and Local Polygon Rules is **molecular**.

- If it has only one molecular component, it is a **molecule**.
- If it occurs in some admissible W-graph, it is **stable**.

For $n \leq 9$, the A_n -molecules are precisely the K-L cells! There do exist unstable molecules. Sometimes infinitely many. But in all cases so far, they have manageable structure. The stable D_4 -molecules:

14. Binding Spaces

Given a list of (stable) W-molecules, what are all of the (stable) molecular graphs that can be obtained by binding them together?

Focus on pairs of molecules, say Γ_1 and Γ_2 .

Regard every inclusion $\tau(v_1) \supseteq \tau(v_2)$ as a potential arc $v_1 \to v_2$.

DANGER: Admissible graphs must be bipartite!

Work in a category of **molecules-with-parity**:

every vertex has a parity, edges connect vertices of opposite parity.

Molecules are connected, so each affords two parity choices.

NOTATION: $\Gamma \mapsto -\Gamma$ (parity-reversing operator).

DEFINITION. A **binding space** is the vector space $B(\Gamma_1 \to \Gamma_2)$ of weight assignments for arcs $\Gamma_1 \to \Gamma_2$ that satisfy the Local Polygon Rule.

- Depends only on the simple edges of Γ_1 and Γ_2 .
- In simply-laced cases (at least), there is no torsion.
- Often, dim $B(\Gamma_1 \to \Gamma_2) = 0$ or 1.
- Self-binding: $B(\Gamma \to \Gamma)$ (even), $B(\Gamma \to -\Gamma)$ (odd).

DEFINITION. A binding is **stable** if it occurs in some admissible *W*-graph.

NOTE. Each W-molecule Γ also has an **internal** binding space $B(\Gamma)$.

• $B(\Gamma)$ may be identified with an affine translate of $B(\Gamma \to \Gamma)$.

EXAMPLE. An E_6 -molecule with dim $B(\cdot) = 1$:

15. Binding Families

DEFINITION. The **bindability graph** BG(W) is the directed graph with

- vertices corresponding to W-molecules
- edges $\Gamma \to \Gamma'$ whenever dim $B(\pm \Gamma \to \pm \Gamma') > 0$.

Similarly, there is a **stable** bindability graph $BG_{st}(W)$.

Break BG(W) or $BG_{st}(W)$ into strongly connected components.

NOTE. Every admissible W-cell is obtained by binding together one or more W-molecules from some strongly connected component of BG(W).

- The same holds for $BG_{st}(W)$.
- This provides another natural way to partition W-cells into families.
- The resulting binding families of W-cells are partially ordered.
- For every admissible W-graph Γ , there is an order-preserving map

 $\phi(\Gamma): \{ \text{cells of } \Gamma \} \to \{ \text{binding families of } W\text{-cells} \}.$

QUESTIONS.

- Is $\phi(\Gamma_L)$ surjective (i.e., does every binding family contain a K-L cell)?
- Are the fibers of $\phi(\Gamma_L)$ unions of 2-sided cells?
- Is every binding family a union of support families?
- Are the binding families mutually orthogonal (as W-modules)?
- Is there a "special" molecule that occurs in every W-cell in a family?

Binding families of W-cells for $W = D_5$, D_6 , and E_6 .