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1. What is a W -Graph?

Let (W, S) be a Coxeter system, S = {s1, . . . , sn}.

For us, W will always be a finite Weyl group.

Let H = H(W, S) = the associated Iwahori-Hecke algebra over Z[q±1/2].

= 〈T1, . . . , Tn | (Ti − q)(Ti + 1) = 0, braid relations〉.

Definition. An S-labeled graph is a triple Γ = (V, m, τ ), where

• V is a (finite) vertex set,

• m : V × V → Z[q±1/2] (i.e., a matrix of edge-weights),

• τ : V → 2S = 2[n].

Notation. Write m(u → v) for the (u, v)-entry of m.

Let M(Γ) = free Z[q±1/2]-module with basis V .

Introduce operators Ti on M(Γ):

Ti(v) =

{

qv if i /∈ τ (v),

−v+q1/2
∑

u:i/∈τ(u) m(v → u)u if i ∈ τ (v).

Definition (K-L). Γ is a W -graph if this yields an H-module.

Note: (Ti − q)(Ti + 1) = 0 (always), so W -graph ⇔ braid relations.



Ti(v) =

{

qv if i /∈ τ (v),

−v+q1/2
∑

u:i/∈τ(u) m(v → u)u if i ∈ τ (v).
(1)

Remarks.

• Kazhdan-Lusztig use T t
i , not Ti.

• Restriction: for J ⊂ S, Γ|
J

:= (V, m, τ |
J
) is a WJ -graph.

• At q = 1, we get a W -representation.

• However, braid relations at q = 1 6⇒ W -graph:

1 1

22

12

• If τ (v) ⊆ τ (u), then (1) does not depend on m(v → u).

Convention. WLOG, all W -graphs we consider will be reduced:

m(v → u) = 0 whenever τ (v) ⊆ τ (u).

Definition. A W -cell is a strongly connected W -graph.

For every W -graph Γ, M(Γ) has a filtration whose subquotients are cells.

Typically, cells are not irreducible as H-reps or W -reps.

However (Gyoja, 1984): every irrep of W may be realized as a W -cell.



2. The Kazhdan-Lusztig W -Graph

H has a distinguished basis {Cw : w ∈ W} (the Kazhdan-Lusztig basis).

The left and right action of Ti on Cw is encoded by a W × W -graph

ΓLR = (W, m, τLR):

• τLR(v) = τL(v) ∪ τR(v), where

τL(v) = {iL : `(siv) < `(v)}, τR(v) = {iR : `(vsi) < `(v)}

• m is determined by the Kazhdan-Lusztig polynomials:

m(u → v) =

{

µ(u, v)+µ(v, u) if τLR(u) 6⊆ τLR(v),

0 if τLR(u) ⊆ τLR(v),

where µ(u, v) = coeff. of q(`(v)−`(u)−1)/2 in Pu,v(q) (= 0 unless u 6 v).

Remarks.

• Hard to compute µ(x, y) without first computing Px,y(q).

• Restricting ΓLR to the left action (say) yields a W -graph ΓL.

• The cells of ΓL decompose the regular representation of H.

• Every two-sided K-L cell C has a “special” W -irrep associated to it that

occurs with positive multiplicity in each left K-L cell ⊂ C.

• In type A, every left cell is irreducible, and the partition of W into left

and right cells is given by the Robinson-Schensted correspondence.

The representation theory connection (complex groups):

• K-L “Conjecture”: Pw0x,w0y(1) = multiplicity of Ly in Mx,

• Vogan: µ(x, y) = dim Ext1(Mx, Ly),

where Mw=Verma module with h.w. −wρ − ρ, Lw = simple quotient.



3. W -Graphs for Real Groups

There is a similar story for real groups:

Let K = complexification of the maximal compact subgroup of GR.

Irreps can be assigned to K-orbits on G/B (complex case: W ≈ B\G/B).

There are K-L-V polynomials Px,y(q) generalizing K-L polynomials.

The top coefficients µ(x, y) encode a W -graph structure ΓK on K\G/B.

Usually ΓK will break into more than one component (block).

Example. In the split real form of E8, the W -graph has 6 blocks, the

largest of which has 453,060 vertices and 104 cells.

Cells for real groups often appear as cells of ΓL. Not always.

Example. GC as a real group.

It has Weyl group W × W ; its W × W -graph is ΓLR.

Main Points.

• The most basic constraints on these W -graphs are sufficiently strong

that combinatorics alone can lend considerable insight into the structure of

W -graphs and cells for real and complex groups.

• Sufficiently deep understanding of the combinatorics can yield con-

structions of W -cells without needing to compute K-L(-V) polynomials.
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4. Admissible W -Graphs

Three observations about the W -graphs for real and complex groups:

(1) They have nonnegative integer edge weights.

(2) They are edge-symmetric; i.e.,

m(u → v) = m(v → u) if τ (u) 6⊆ τ (v) and τ (v) 6⊆ τ (u).

(3) They are bipartite. (If µ(u, v) 6= 0, then `(u) 6= `(v) mod 2.)

Definition. A W -graph is admissible if it satisfies (1)–(3).

Example. The admissible A4-cells:
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23

12 13 24 34

14

23
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All of these are K-L cells; none are synthetic.

Question. Is every admissible An-cell a K-L cell? (Confirmed for n 6 9.)

Caution. McLarnan-Warrington: Interesting things happen in A15.



The admissible D4-cells (three are synthetic):
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5. Some Interesting Questions

Problem 1. Are there finitely many admissible W -cells?

• Confirmed for A1, . . . , A9, B2, B3, D4, D5, D6, E6, G2.

• What about W1 × W2-cells? More about this in Part II.

Problem 2. Classify/generate all admissible W -cells.

Problem 3. How can we identify which admissible cells are synthetic?

• Example: If Γ contains no “special” W -rep, then Γ is synthetic.

• Regard non-synthetics as closed under Levi restriction.

Problem 4. Understand “compressibility” of W -cells and W -graphs.

• A given W -cell or W -graph should be reconstructible from a small

amount of data. (Possible approaches: binding and branching rules.)



6. The Admissible Cells in Rank 2

Consider W = I2(p) (dihedral group), 2 6 p < ∞.

Given an I2(p)-graph, partition the vertices according to τ :

12

1 2

φ

Focus on non-trivial cells: τ (v) = {1} or {2} for all v ∈ V .

The edge weight matrix will then have a block structure: m =

[

0 B
A 0

]

.

The conditions on m are as follows:

• p = 2: m = 0.

• p = 3: m2 = 1 (i.e., AB = BA = 1).

• p = 4: m3 = 2m.

• p = 5: m4 − 3m2 + 1 = 0.

...

Remarks.

• If we assume only Z-weights, no classification is possible (cf. p = 3).

• Edge symmetry ⇔ m = mt.

• When p = 3, edge weights ∈ Z>0 ⇒ edge symmetry, but not in general.



Theorem 1. A 2-colored graph is an admissible I2(p)-cell iff it is a properly

2-colored A-D-E Dynkin diagram whose Coxeter number divides p.

Example. The Dynkin diagrams with Coxeter number dividing 6 are A1,

A2, D4, and A5. Therefore, the (nontrivial) admissible G2-cells are

1

2

2

2 2

1

1 1

1

2

1 2 11 2

12 2 1 2

21

Remark. The nontrivial K-L cells for I2(p) are paths of length p − 2.

Fact (Vogan; cf. Problem 3). In a Levi restriction of type B2 = I2(4), all

nontrivial B2-cells in ΓK are paths of length 2.

Proof Sketch. Let Γ be any properly 2-colored graph.

Let φp(t) be the Chebyshev polynomial such that φp(2 cos θ) =
sin pθ

sin θ
.

Then Γ is an I2(p)-cell ⇔ φp(m) = 0

⇔ m is diagonalizable with eigenvalues ⊂ {2 cos(πj/p) : 1 6 j < p}.

Now assume Γ is admissible (m = mt, Z>0-entries).

If Γ is an I2(p)-cell, then 2 − m is positive definite.

Hence, 2 − m is a (symmetric) Cartan matrix of finite type.

Conversely, let A be any Cartan matrix of finite type (symmetric or not).

Then the eigenvalues of A are 2 − 2 cos(πej/h), where e1, e2, . . . are the

exponents and h is the Coxeter number. �



7. Combinatorial Characterization

What are the graph-theoretic implications of the braid relations?

Theorem 2. An admissible S-labeled graph is a W -graph if and only if

the following properties are satisfied:

• the Compatibility Rule,

• the Simplicity Rule,

• the Bonding Rule, and

• the Polygon Rule.

The Compatibility Rule (applies to all W -graphs for all W ):

If m(u → v) 6= 0, then

every i ∈ τ (u) − τ (v) is bonded to every j ∈ τ (v) − τ (u).

Necessity follows from analyzing commuting braid relations.

Reformulation: Define the compatibility graph Comp(W, S):

• vertex set 2S = 2[n],

• edges I → J when

I 6⊆ J and every i ∈ I − J is bonded to every j ∈ J − I.

Compatibility means that τ : Γ → Comp(W, S) is a graph morphism.



Compatibility graphs for A3, A4, and D4
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The Simplicity Rule:

Every edge u → v is either

• an arc: τ (u) ) τ (v) (and there is no edge v → u), or

• a simple edge: m(u → v) = m(v → u) = 1

Necessity follows from Theorem 1.

The Bonding Rule:

If sisj has order pij > 3, then the cells of Γ|
{i,j}

must be

• singletons with τ = ∅ or τ = {i, j}, and

• A-D-E Dynkin diagrams with Coxeter number dividing pij .

Necessity again follows from Theorem 1.

Example. If pij = 3, then the nontrivial cells in Γ|
{i,j}

are {i} {j}.

Equivalently (for bonds with pij = 3): if i ∈ τ (u), j /∈ τ (u) then there is a

unique vertex v adjacent to u such that i /∈ τ (v), j ∈ τ (v).

Remark. The Compatibility, Simplicity, and Bonding Rules suffice to

determine all admissible A3-cells.



The Polygon Rule:

[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]

Define

V ij := {v ∈ V : i ∈ τ (v), j ∈ τ (v)},

V i
j := {v ∈ V : i ∈ τ (v), j /∈ τ (v)},

Vij := {v ∈ V : i /∈ τ (v), j /∈ τ (v)}.

A path u → v1 → · · · → vr−1 → v is alternating of type (i, j) if

u ∈ V ij , v1 ∈ V i
j , v2 ∈ V j

i , v3 ∈ V i
j , v4 ∈ V j

i , . . . , v ∈ Vij .

Set N r
ij(u, v) :=

∑

m(u → v1)m(v1 → v2) · · ·m(vr−1 → v)

(sum over all r-step alternating paths of type (i, j)).

Then:

Nr
ij(u, v) = N r

ji(u, v) for 2 6 r 6 pij .

Example. 3-step alternating paths

i,j

i/j

u

j/i

v

j/i

i/j

Remark. The Polygon Rule is quadratic in the arc weights.



8. Direct Products

Does the classification of admissible W1 × W2-cells reduce to W1 and W2?

Not obviously. Not all cells are direct products.

Let Γ = (V, m, τ1 ∪ τ2) be an admissible W1 × W2-graph.

Fact. Every edge u → v has one of three flavors:

• Type 1: τ1(u) 6⊆ τ1(v), τ2(u) = τ2(v)

• Type 2: τ1(u) = τ1(v), τ2(u) 6⊆ τ2(v)

• Type 12: τ1(u) ) τ1(v), τ2(u) ) τ2(v)

Type 2 edges (and no others) are deleted when restricting Γ to W1.

Hence, τ2 is constant on W1-cells.

Key Question. Are there no arcs between cells in the W1-restriction of

a W1 × W2-cell Γ?

True for two-sided K-L cells. If true for a general W1 × W2-cell Γ, then

• Type 12 edges cannot exist within Γ.

• Every W1-cell in Γ meets every W2-cell.

• Bounds the number admissible cells for W1 × W2 in terms of W1, W2.

• Every W1-cell in Γ has the same τ1-support.

Even if the answer is negative, something weaker is true.

Fact. The τ1-support of Γ equals the τ1-support of an admissible W1-cell.



An admissible (K-L) B3 × B3-cell

36 26 16 26 36

3525152535

14 24 14

34



9. A Strategy for Resolving the Key Question

Consider two properties of an arbitrary admissible W -graph Γ = (V, m, τ ):

Property A. If Γ1 and Γ2 are cells of Γ such that Γ1 < Γ2 in the induced

partial order, then τ (Γ1) 6= τ (Γ2).

Property B. If Γ1 and Γ2 are cells of Γ such that Γ1 < Γ2 in the induced

partial order and τ (Γ1) = τ (Γ2), then there is a third cell Γ3 such that

Γ1 < Γ3 < Γ2 and τ (Γ3) 6⊆ τ (Γ1) = τ (Γ2).

• (Easy) Property A implies Property B.

• Property B affirmatively resolves the Key Question.

• Property A holds for the left K-L graph ΓL. False in general.

• Property B has been confirmed for all low-rank admissible cells.

N.B. If Property B holds for W1, then the Key Question has an affirmative

answer for all W1 × W2-cells, for all choices of W2.



10. Support Families

It is natural to partition W -cells into families according to their τ -support.

Any two left K-L cells either

• belong to the same two-sided cell, and

• have the same τ -support, and

• contain the same “special” W -irrep,

or

• belong to distinct two-sided cells, and

• have unequal τ -support, and

• have no W -irreducibles in common.

Note. The τ -support of an admissible W -cell

• need not match the τ -support of a left K-L cell, and

• need not contain a special W -irrep (a synthetic marker).

Question. For each τ -support T ⊂ 2S , is there a W -irrep σ = σ(T ) such

that every admissible W -cell with τ -support T contains a copy of σ?

Assuming the Key Question has an affirmative answer, if Γ1, . . . , Γl are W -

cells that appear in some admissible W × W ′-cell for some W ′, then they

must have a W -irrep in common.



11. Molecular Components of W -Graphs

Recall the Simplicity Rule: every edge u → v is either

• an arc: τ (u) ) τ (v) (and there is no edge v → u), or

• a simple edge: m(u → v) = m(v → u) = 1

Definition. A molecular component of an admissible W -graph Γ is a

subgraph whose simple edges form a single connected component.

Remark. All K-L cells in type A have only one molecular component.

A D5-cell with three molecular components:

3

124

12

125

35

4

34

3

124

125

35

4

23 13

24 14

25 15

35

45

Classification strategy: first classify molecules, then classify all of the ways

they may be glued together into (admissible) cells.



12. Synthesizing Molecules

Idea #1: We can “easily” generate S-labeled graphs that satisfy the

Compatibility, Simplicity, and Bonding Rules. No arc worries.

Issue: There are too many.

Need the Polygon Rule. Recall that it involves alternating (i, j)-paths:

i,j i j i

Fact. Let (u, v, r, i, j) be an instance of the Polygon Rule

(initial point u, terminal point v, path length r). Then

• if r = 2 and there is k ∈ τ (v) − τ (u), or

• if r = 3 and there is k, l ∈ τ (v) − τ (u) such that k is not bonded to i

and l is not bonded to j, or

• if r > 3 and there is k ∈ τ (v)− τ (u) such that k is not bonded to i or j,

then the resulting constraint is linear in weights of arcs.

An alternating path with only one arc can only involve the molecular

components containing the two endpoints.

Conclusion: These instances of the Polygon Rule can be imposed locally.

So: add the Local Polygon Rule as a constraint on molecular components.



13. Stable Molecules

Definition. An S-labeled graph that satisfies the Compatibility,

Simplicity, Bonding, and Local Polygon Rules is molecular.

• If it has only one molecular component, it is a molecule.

• If it occurs in some admissible W -graph, it is stable.

For n 6 9, the An-molecules are precisely the K-L cells!

There do exist unstable molecules. Sometimes infinitely many.

But in all cases so far, they have manageable structure.

The stable D4-molecules:
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14. Binding Spaces

Given a list of (stable) W -molecules, what are all of the (stable) molecular

graphs that can be obtained by binding them together?

Focus on pairs of molecules, say Γ1 and Γ2.

Regard every inclusion τ (v1) ) τ (v2) as a potential arc v1 → v2.

Danger: Admissible graphs must be bipartite!

Work in a category of molecules-with-parity:

every vertex has a parity, edges connect vertices of opposite parity.

Molecules are connected, so each affords two parity choices.

Notation: Γ 7→ −Γ (parity-reversing operator).

Definition. A binding space is the vector space B(Γ1 → Γ2) of weight

assignments for arcs Γ1 → Γ2 that satisfy the Local Polygon Rule.

• Depends only on the simple edges of Γ1 and Γ2.

• In simply-laced cases (at least), there is no torsion.

• Often, dim B(Γ1 → Γ2) = 0 or 1.

• Self-binding: B(Γ → Γ) (even), B(Γ → −Γ) (odd).

Definition. A binding is stable if it occurs in some admissible W -graph.



Note. Each W -molecule Γ also has an internal binding space B(Γ).

• B(Γ) may be identified with an affine translate of B(Γ → Γ).

Example. An E6-molecule with dim B(·) = 1:
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15. Binding Families

Definition. The bindability graph BG(W ) is the directed graph with

• vertices corresponding to W -molecules

• edges Γ → Γ′ whenever dim B(±Γ → ±Γ′) > 0.

Similarly, there is a stable bindability graph BGst(W ).

Break BG(W ) or BGst(W ) into strongly connected components.

Note. Every admissible W -cell is obtained by binding together one or more

W -molecules from some strongly connected component of BG(W ).

• The same holds for BGst(W ).

• This provides another natural way to partition W -cells into families.

• The resulting binding families of W -cells are partially ordered.

• For every admissible W -graph Γ, there is an order-preserving map

φ(Γ) : {cells of Γ} → {binding families of W -cells}.

Questions.

• Is φ(ΓL) surjective (i.e., does every binding family contain a K-L cell)?

• Are the fibers of φ(ΓL) unions of 2-sided cells?

• Is every binding family a union of support families?

• Are the binding families mutually orthogonal (as W -modules)?

• Is there a “special” molecule that occurs in every W -cell in a family?



Binding families of W -cells for W = D5, D6, and E6.

1: 1

2: 5

3: 4 4: 10

5: 5, 1.10, 2.10

6: 20

7: 6 8: 10

9: 20

10: 5, 1.10, 2.10

11: 4 12: 10

13: 5

14: 1

1: 1

2: 6

3: 5 4: 15

5: 10 6: 10

7: 9, 1.15, 2.15

8: 5, 25, 30, 40, 80

9: 10

10: 45

11: 40[1] 12: 40[1] 13: 16, 1.20, 2.20

14: 45

15: 10

16: 5, 25, 30, 40, 80

17: 9, 1.15, 2.15

18: 5

19: 10 20: 10

21: 15

22: 6

23: 1

1: 1

2: 6

3: 20

4: 15, 1.15, 2.15

5: 64

6: 24[1] 7: 60

8: 81[4]

9: 10, 50[2],
1.20, 2.20, 3.20, 6.20

10: 81[4]

11: 24[1] 12: 60

13: 64

14: 15, 1.15, 2.15

15: 20

16: 6

17: 1


