Spherical unitary representations for split groups

Dan Ciubotaru

1. Basic examples.
 1.1 Graded Hecke algebra of type A_1
 1.2 $SL(2, \mathbb{R})$

2. Generalization.
 2.1 Graded Hecke algebra
 2.2 Split real groups

 3.1 Relevant W-types
 3.2 Explicit description

1 Basic examples

1.1 Graded Hecke algebra of type A_1

Let $\mathbb{H} = \mathbb{H}(A_1)$ be the algebra generated over \mathbb{C} by s and α subject to the relations

\[
\begin{align*}
 s^2 &= 1 \\
 s \cdot \alpha + \alpha \cdot s &= 2.
\end{align*}
\]

Denote $\mathbb{A} = \text{Sym}(\mathbb{C}\alpha)$. As a \mathbb{C}-vector space $\mathbb{H}(A_1) = \mathbb{C}Z/2Z \otimes \mathbb{A}$, where $Z/2Z = \{1, s\}$.

The algebra \mathbb{H} has a \ast-operation defined on generators by

\[
\begin{align*}
 s^\ast &= s \\
 \alpha^\ast &= -\alpha + 2s.
\end{align*}
\]

We say that an \mathbb{H}-module U is hermitian (unitary) if it admits a hermitian form (positive definite) \langle , \rangle such that

\[
\langle x \cdot u_1, u_2 \rangle + \langle u_1, x^\ast \cdot u_2 \rangle = 0, \quad x \in \mathbb{H}, \ u_1, u_2 \in U.
\]

(The characters of \mathbb{A} are determined by the action of α.) Let \mathbb{C}_ν denote the character of \mathbb{A} on which α acts by ν.

Define the principal series

\[
X(\nu) = \mathbb{H} \otimes_\mathbb{A} \mathbb{C}_\nu, \quad \nu \geq 0.
\]
Consider the element
\[r_\alpha = s \cdot \alpha - 1. \]

Lemma 1.1.1. The element \(r_\alpha \) satisfies the following relations
\[\alpha \cdot r_\alpha = r_\alpha \cdot (-\alpha) \text{ and } s \cdot r_\alpha = r_\alpha \cdot (-s). \]

Then we immediately have the following result.

Proposition 1.1.2. The map \(A(\nu) : X(\nu) \to X(-\nu) \), given by
\[A(\nu)(x \otimes 1_\nu) = x \cdot r_\alpha \otimes 1_{-\nu}, \]
is an intertwining operator.

It is a general fact that an invariant hermitian form on a module is equivalent with an intertwining operator between the module and its hermitian dual.

As a \(\mathbb{Z}/2\mathbb{Z} \)-representation,
\[X(\nu) = \text{triv} \oplus \text{sgn} = \text{span}\{(1 + s) \otimes 1_\nu, (1 - s) \otimes 1_\nu\}. \]

Note that \((1 + s) \cdot r_\alpha = (1 + s)(\alpha - 1)\) and \((1 - s) \cdot r_\alpha = (1 - s)(-\alpha - 1)\). So the hermitian form corresponding to \(A(\nu) \) has matrix
\[
\begin{pmatrix}
 a_{\text{triv}}(\nu) & 0 \\
 0 & a_{\text{sgn}}(\nu)
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
 0 & \frac{1 - \nu}{1 + \nu}
\end{pmatrix},
\]
where \(a_{\tau}(\nu) \) denote the normalized operators on \(\mathbb{Z}/2\mathbb{Z} \)-types. (The normalization is such that on the trivial \(\mathbb{Z}/2\mathbb{Z} \)-type, the operator is identically 1.)

In conclusion, \(X(\nu), \nu \geq 0 \), has a unique quotient \(L(\nu) \), which is unitary for \(0 \leq \nu \leq 1 \). (At \(\nu = 1 \), \(L(1) = \text{triv} \).)
1.2 \textbf{SL}(2, \mathbb{R})

Let G be the group $SL(2, \mathbb{R})$, $B = AN$ the Borel subgroup (A is the maximal split torus) and $K = SO(2)$ the maximal compact subgroup. Then $\hat{K} \cong \mathbb{Z}$.

Consider the spherical principal series

$$X_B(\nu) = Ind^G_B(e^\nu \otimes 1), \ \nu \geq 0.$$

(In Prof. Trapa’s table, this is denoted by $P_+(\nu)$.) The Langlands quotient $L(\nu)$ is unitary for $0 \leq \nu \leq 1$. ($L(1)$ is the trivial representation.) Recall that as a K-representation,

$$X_B(\nu)|_K = \sum_{m \in \mathbb{Z}} (2m).$$

There is an (integral) intertwining operator

$$A(\nu) : X_B(\nu) \to X_B(-\nu),$$

which is normalized so that it is identically 1 on the trivial K-type. One can compute the restriction of $A(\nu)$ on each \hat{K}-type. Since the K-types are one-dimensional, these restrictions are scalars. A classical computation shows that these scalars are

$$A_{(2m)}(\nu) = \frac{1 - \nu}{1 + \nu} \cdot \frac{3 - \nu}{3 + \nu} \cdot \ldots \cdot \frac{2|m| - 1 - \nu}{2|m| - 1 + \nu}.$$

Remark. Note that

$$A_{(2)}(\nu) = a_{\text{sgn}}(\nu) = \frac{1 - \nu}{1 + \nu},$$

and the (unitary) complementary series is the same in the two cases.
2 Generalization

2.1 Graded Hecke algebra

Let $(\mathcal{X}, \Pi, \check{\mathcal{X}}, \check{\Pi})$ be a based root datum, with Δ the roots and $\check{\Delta}$ the coroots, W the Weyl group. Set $\mathfrak{a} = \mathcal{X} \otimes \mathbb{Z} \mathbb{C}$ and $\check{\mathfrak{a}} = \check{\mathcal{X}} \otimes \mathbb{Z} \mathbb{C}$. Similarly, define $\mathfrak{a}_\mathbb{R}, \check{\mathfrak{a}}_\mathbb{R}$.

Definition 2.1.1. (Lusztig) The graded Hecke algebra is the vector space $H = \mathbb{C}W \otimes \Lambda$, where $\Lambda = \text{Sym}(\check{\mathfrak{a}})$, subject to the commutation relation

$$s_\alpha \cdot \omega = s_\alpha(\omega) \cdot s_\alpha + \omega(\check{\alpha}), \quad \text{for all } \alpha \in \Pi, \omega \in \check{\mathfrak{a}}.$$

As in the A_1 case, H has a $*$-operation, so it makes sense to define hermitian and unitary modules.

Remark. The problem of classifying the unitary representations with Iwahori fixed vectors of split p-adic groups can be reduced to the problem of identifying the unitary dual of graded Hecke algebras H.

Some facts about H:

1. (Bernstein,Lusztig) The center of H is Λ^W.

2. All simple H-modules are finite dimensional, and the central characters are parametrized by W-orbits in \mathfrak{a}.

3. The H-modules have a Kazhdan-Lusztig classification.

4. (Barbasch-Moy) For every $w \in W$, with reduced expression $w = s_{\alpha_1} \ldots s_{\alpha_m}$, one can define the element $r_w = r_{\alpha_1} \ldots r_{\alpha_m}$, which does not depend on the reduced decomposition.
Let $X(\nu) = \mathbb{H} \otimes_{\mathbb{A}} \mathbb{C}_\nu$ be the principal series. Assume $\nu \in \mathfrak{a}_\mathbb{R}$ is dominant, i.e., $\langle \alpha, \nu \rangle \geq 0$, for all $\alpha \in \Pi$.

Definition 2.1.2. The \mathbb{H}-module U is called spherical if $\text{Hom}_W[\text{triv}, U] \neq 0$.

The spherical modules (with real central character) are precisely the (unique) Langlands quotients $L(\nu)$ of $X(\nu)$ with ν dominant.

Let w_0 be the longest Weyl group element. Define the (Barbasch-Moy) intertwining operator

$$A(\nu) : X(\nu) \rightarrow X(w_0 \nu), \quad x \otimes 1_\nu \mapsto x \cdot r_{w_0} \otimes 1_{w_0 \nu}.$$

Then $L(\nu)$ is hermitian if and only if $w_0 \nu = -\nu$. Assume this is the case.

If (τ, V_τ) is a W-type, $A(\nu)$ defines hermitian operators

$$a_\tau(\nu) : \text{Hom}_W[V_\tau, X(\nu)] \rightarrow \text{Hom}_W[V_\tau, X(-\nu)]$$

$$a_\tau(\nu) : (V_\tau)^* \rightarrow (V_\tau)^*,$$

by the Frobenius reciprocity. Normalize them so that $a_{\text{triv}}(\nu) = \text{Id}$. The normalization factor is $(-1)^{|\Delta^+| \prod_{\alpha \in \Delta^+} (1 + \langle \alpha, \nu \rangle)}$.

Proposition 2.1.3. A spherical parameter ν is unitary if and only if $w_0 \nu = -\nu$ and $a_\tau(\nu)$ is positive semidefinite for all $\tau \in \hat{W}$.

If w_0 has a reduced decomposition $w_0 = s_1 s_2 \cdots s_n$, then the operators $a_\tau(\nu)$ have a decomposition

$$a_\tau(\nu) = a_{\tau,1}(w_1 \nu) \cdot a_{\tau,2}(w_2 \nu) \cdots a_{\tau,n}(w_n \nu),$$

where $w_i = s_{n-i+1} \cdots s_n$. Each simple operator $a_{\tau,i}(\nu)$ is induced from an $\mathbb{H}(A_1)$-operator and corresponds to a simple root α_i. Explicitly,

$$a_{\tau,i}(\nu) = \begin{cases} 1 & \text{on the (+1)-eigenspace of } s_{\alpha_i} \text{ of } V_\tau^* \\ \frac{1 - \langle \alpha_i, \nu \rangle}{1 + \langle \alpha_i, \nu \rangle} & \text{on the (+1)-eigenspace of } s_{\alpha_i} \text{ of } V_\tau^* \end{cases}.$$
2.2 Split real groups

Let $B = AN$ be a Borel subgroup, A maximal split torus, K maximal compact. Set $M = A \cap K$. As before, let $X_B(\nu)$ denote the spherical principal series $X_B(\nu) = Ind_B^G(e^{i\nu} \otimes 1)$, where $\nu \in a^*_R$, and ν is dominant.

There is a (Knapp-Zuckerman) normalized intertwining operator

$$A(\nu) : X_B(\nu) \to X_B(-\nu).$$

The Langlands quotient $L(\nu)$, which is spherical, is hermitian if and only if $w_0\nu = -\nu$. If this is the case, for every K-type (μ, V_μ), $A(\nu)$ induces operators:

$$A_\mu(\nu) : Hom_K[V_\mu, X_B(\nu)] \to Hom_K(V_\mu, X_B(-\nu))$$

$$A_\mu(\nu) : (V_\mu^*)^M \to (V_\mu^*)^M,$$

by Frobenius reciprocity. The normalization is such that $A_{triv}(\nu) = Id$.

The Weyl group $W = N_G(A)/A \cong N_K(A)/M$, so for every K-type (μ, V_μ), the space $(V_\mu^*)^M$ is naturally a W-type. Denote it by $\tau(\mu)$.

The Barbasch-Vogan idea of petite K-types is to identify a class of K-types μ such that the operators

$$A_\mu(\nu) = a_{\tau(\mu)}(\nu).$$

(As it will follow from the calculation, the Weyl group operators are for the Hecke algebra of the dual root datum.)
The operator $A(\nu)$, and consequently $A_\mu(\nu)$, have a (Gindikin-Karpelevič) decomposition into operators $A(s_\alpha, \nu)$ relative to a reduced decomposition of w_0.

For each simple root of A in G, consider the root homomorphism $\Psi_\alpha : SL(2, \mathbb{R}) \to G$. Via Ψ_α, the compact group $SO(2)$ embeds into K. Therefore, the K-type (μ, V_μ) has a decomposition into $\Psi_\alpha(SO(2))$ isotypic components:

$$V_\mu = \bigotimes_{j \in \mathbb{Z}} V_\mu(j).$$

The action of M preserves $V_\mu(j) + V_\mu(-j)$ and it has fixed vectors if and only if j is even. On the space of M-fixed vectors of $V_\mu(2m) + V_\mu(-2m)$, as in the $SL(2, \mathbb{R})$ case, the operator $A_\mu(s_\alpha, \nu)$ is

$$A_\mu(s_\alpha, \nu) = \prod_{1 \leq j \leq |m|} \frac{2j - 1 - \langle \check{\alpha}, \nu \rangle}{2j - 1 + \langle \check{\alpha}, \nu \rangle}.$$

Definition 2.2.1. A K-type (μ, V_μ) is called petite if for every simple root α, the decomposition of V_μ into $\Psi_\alpha(SO(2))$-types contains only the representations (j), $|j| \leq 3$.

The following result is an immediate consequence.

Proposition 2.2.2 (Barbasch, Vogan). If (μ, V_μ) is a petite K-type, then $A_\mu(\nu) = a_{\tau(\mu)}(\nu)$, where the second operator is the Hecke algebra of \check{G}.

The condition of being petite is very restrictive. For example, for a group G, few W-types occur in $\tau(\mu)$ for μ petite K-types.

Barbasch identified all the petite K-types (and their corresponding W-types) for split real groups. There are also extensions of this idea: nonspherical principal series (Barbasch-Pantano), nonlinear covers of split real groups (Adams-Barbasch-Paul-Trapa-Vogan), $U(p, q)$ (Barbasch).

Example. If $G = SL(n, \mathbb{R})$, $K = SO(n)$, $W = S_n$, examples of petite K-types are $\mu = (2, 2, \ldots, 2, 0, \ldots, 0)$, $k \leq \left\lfloor \frac{n}{2} \right\rfloor$, which has $\tau(\mu) = (n - k, k)$.

8
3 The spherical unitary dual

3.1 Relevant W-types

Let us return to the setting of the Hecke algebra H. We need to determine the spherical unitary dual of H. In addition, in order to be able to use the calculations for real split groups, one must find a set of relevant W-types which detect unitarity and come from petite K-types.

Let g denote the complex Lie algebra attached to H. Recall that by the Springer correspondence, to every nilpotent orbit O in g, one attaches a subset of \widehat{W}. If $e \in O$, define the height of O to be

$$ht(O) = \max\{\ell \geq 0 : ad(e)\ell \neq 0\}.$$

Definition 3.1.1. A W-type τ is called relevant if the nilpotent orbit O corresponding to τ in the Springer’s correspondence has height $ht(O) \leq 4$.

Then we have the first form of the answer for the spherical unitary dual problem.

Theorem 3.1.2. A spherical parameter ν for the Hecke algebra H is unitary if and only if $a_\tau(\nu)$ is positive semidefinite for all relevant W-types τ.

This result was proved in the classical cases by Barbasch, in the exceptional cases by Barbasch-C.

Theorem 3.1.3 (Barbasch). Every relevant W-type comes from a petite K-type of the split real group.

Corollary 3.1.4. A spherical parameter ν for the real split group G is unitary only if it is unitary for the Hecke algebra associated to \tilde{G}.

For classical real split groups this condition is also sufficient, as proved by Barbasch.
3.2 Explicit description

We are still in the setting of the graded Hecke algebra \mathbb{H}.

Definition 3.2.1. A spherical parameter ν is called generic if the principal series $X(\nu)$ is irreducible.

The module $X(\nu)$ is reducible if and only if $\langle \alpha, \nu \rangle = 1$, for some positive root α.

Let us denote by SU_0 the set of unitary spherical generic parameters. This set can be described explicitly (combinatorially).

Theorem 3.2.2. The set of unitary spherical generic parameters SU_0 is a union of k simplices (alcoves) in the dominant Weyl chamber, where:

- A_n: $k = 1$
- B_n: $k = \lfloor (n-1)/2 \rfloor$
- C_n: $k = 1$
- D_n: $k = \lfloor (n-2)/2 \rfloor$
- G_2: $k = 2$
- F_4: $k = 2$
- E_6: $k = 2$
- E_7: $k = 8$
- E_8: $k = 16$.

Note that the root systems above refer to the Hecke algebra, so they are the dual root systems of the split real group.
Let \mathcal{O} be a nilpotent orbit in \mathfrak{g}. Any $e \in \mathcal{O}$ can be embedded into a Lie triple $\{e, h, f\}$. The centralizer of the Lie triple in \mathfrak{g} is a reductive Lie subalgebra. Denote it by $\mathfrak{z}(\mathcal{O})$.

To every dominant spherical parameter $\nu \in \mathfrak{a}_\mathbb{R}$, one can attach uniquely a nilpotent orbit \mathcal{O} in \mathfrak{g}. The orbit \mathcal{O} is the unique G-orbit meeting the 1-eigenspace of $ad(\nu)$ in a dense orbit. (It is the orbit attached in the Kazhdan-Lusztig classification to the Iwahori-Matsumoto dual of the spherical module parametrized by ν.)

One partitions the spherical unitary dual into pieces $CS(\mathcal{O})$ parametrized by nilpotent orbits. Note that by definition $CS(0) = SU_0$.

Let Exc denote the following set of nilpotent orbits:

$$Exc = \{ A_1\tilde{A}_1, A_2A_1, A_4A_2A_1, A_4A_2, D_4(a_1)A_2, A_32A_1, A_23A_1, 4A_1 \}.$$

(The notation is as in the Bala-Carter classification.)

Then the spherical unitary dual of \mathbb{H} can be described as follows.

Theorem 3.2.3 (Barbasch,Barbasch-C.).

1. If $\mathcal{O} \notin Exc$, then
 $$CS(\mathcal{O}) = SU_0(\mathfrak{z}(\mathcal{O})).$$

2. If $\mathcal{O} \in Exc$, and $\mathcal{O} \neq (4A_1 \subset E_8)$, then $CS(\mathcal{O}) \subsetneq SU_0(\mathfrak{z}(\mathcal{O})).$

3. If $\mathcal{O} = (4A_1 \subset E_8)$, then $CS(\mathcal{O}) \supseteq SU_0(\mathfrak{z}(\mathcal{O})).$