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Chapter 1

Background

In Chapter 1 we gather background material on linear algebra and Lie algebras that may get used
in the lectures.

1.1 Linear algebra

The theory of Lie algebras is heavily based on a few core results in linear algebra. This section
details some of those results. Throughout we assume that vector spaces are over the complex
numbers C.

1.1.1 Bilinear forms

This subsection should be skipped for now and used as a reference.
The Cartan-Killing form on a Lie algebra plays an important technical role. It is a symmetric,

bilinear form on the Lie algebra (viewed as a vector space).
Let V denote a vector space over C. A symmetric, bilinear form is a map V × V → C, writ-

ten as (v, w) for v, w ∈ V . Bilinear means it is linear in each factor and symmetric means that
(v, w) = (w, v). Once we choose a basis for V , any bilinear form can be expressed in terms of matrix
multiplication as

(v, w) = vTAw,

where v and w are written as column vectors and where A is an n×n matrix with n = dim(V ). The
bilinear form is symmetric if and only if A is a symmetric matrix.

Usually we only care about bilinear forms up to a change of basis (much as happens for linear
transformations). This amounts to classifying symmetric matrices up to transformation of A into
BTAB, where B is an invertible matrix (why?). Now any symmetric matrix can be conjugated to
a diagonal matrix by an orthogonal matrix (why?) and recall that orthogonal matrices B satisfy
B−1 = BT . Hence any symmetric, bilinear forms can be written using a diagonal matrix after
choosing the basis for V appropriately. Next, considering BTAB where A and B are diagonal, we
can remove any perfect square divisor of the entries of A. In other words, over C the matrix A is
equivalent to a diagonal matrix where every entry is 0 or 1.
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6 CHAPTER 1. BACKGROUND

Exercise 1.1.

1. Show that the number of zeros and ones obtained from this process is determines and is
uniquely determined by A. In other words, the number of inequivalent symmetric bilinear
forms over C is equal to n+ 1, where n is the dimension of V .

2. What is the situation for classifying symmetric, bilinear forms over the real numbers R? (this
is Sylvester’s Theorem)

Often we are interested in non-degenerate forms. This means that if (v, w) = 0 for all w ∈ V ,
then v = 0. Note that this implies the matrix A above is equivalent to the identity matrix, i.e. there
are no zeros. Note that over C, there are vectors which are orthogonal to themselves, once the
vector space has dimension at least two. For example, taking the usual form on C2, then v = (1, i)
satisfies (v, v) = 0. On the other hand, it is still the case that the orthogonal space to a subspace still
has the expected dimension. Namely,

Proposition 1.1.1. Let V be vector space of dimension n with a non-degenerate, symmetric, bilinear form.
Let U ⊂ V be a subspace of dimension m. Define the orthogonal space

U⊥ := {v ∈ V | (v, u) = 0 for all u ∈ U}.

Then U⊥ has dimension n−m.

Proof. For each u ∈ U , consider the linear map Tu : V → C given by Tu(v) := (v, u). These are just
elements of the dual vector space V ∗ of linear maps from V to C. Notice that U⊥ is in the kernel of
each Tu, so we can in fact consider Tu as an element in (V/U⊥)∗. Since the form is non-degenerate, if
u is nonzero, then Tu cannot be the zero element of (V/U⊥)∗; otherwise, (v, u) = Tu(v) = Tu(v̄) = 0
for all v ∈ V , a contradiction. Here, v̄ denotes the image of v in V/U⊥.

Notice that the bilinearity of the form means that Tau1+bu2 = aTu1 + bTu2 where a, b ∈ C. This
and the fact that Tu is nonzero whenever u is nonzero implies that the map U → (V/U⊥)∗ given by
u→ Tu is an injective linear map. This gives the inequality m ≤ n− dim(U⊥), or

dim(U⊥) ≤ n−m.

On the other hand, choose a basis u1, u2, . . . , um of U . Then U⊥ is the intersection of the kernels
of the Tui

. Each kernel has dimension n− 1 and so the intersection of m such subspaces must have
dimension at least n−m.

The two inequalities mean that dimU⊥ must be n−m.

Exercise 1.2. Fix a non-degenerate symmetric, bilinear form on V . Define the orthogonal group
O(V ) to be the set of linear transformations g : V → V that preserve the form, i.e.

O(V ) := {g | (v, w) = (g.v, g.w) for all v, w ∈ V.

1. Show that O(V ) is a subgroup of GL(V ), the group of invertible linear endomorphisms of V .

2. Suppose that we have another non-degenerate symmetric, bilinear form (·, ·)′ on V and define
O′(V ) using this form. Show that O(V ) and O′(V ) are conjugate subgroups of GL(V ). In
particular, they are isomorphic. (Hint: use the classification of such forms over C).
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1.1.2 Jordan decomposition

Recall that a matrix A is nilpotent if Ak = 0 for some positive integer k. A matrix A is called
semisimple if A has a basis of eigenvectors, i.e. A is diagonalizable 1.

Theorem 1.1.2 (Jordan decomposition for matrices). The Jordan decomposition says that every matrix
A can be written uniquely as

A = N + S

where N is nilpotent, S is semisimple, and N and S commute.
Moreover, there is another important property that is often used in Lie theory: a subspace U satsifies

A(U) ⊂ U if and only if S(U) ⊂ U and N(U) ⊂ U .

The Jordan decomposition can be proved directly or it can be deduced from the Jordan canonical
form of a matrix. The latter says that A is similar to a block diagonal matrix built out of Jordan
blocks 

µ 1 . . . 0 0 0
0 µ 1 . . . 0 0
0 0 µ 1 . . . 0
· · ·
0 . . . 0 0 µ 1
0 0 . . . 0 0 µ

 ,
where µ is an eigenvalue ofA. Moreover the Jordan blocks that appear determine and are uniquely
determined by the similarity class of A. In other words, A and B are conjugate under GL(V ) if and
only if they have the same Jordan blocks in their Jordan decomposition.
Exercise 1.3. In this exercise, we examine the nilpotent matrices, up to conjugation.

1. Show that a nilpotent matrix has only 0 as an eigenvalue and then use the Jordan canonical
form to show that each conjugacy classes of nilpotent n× n matrices corresponds to a unique
partition of n.

2. Suppose that N is a nilpotent n×n matrix with Jordan blocks of size λ1 ≥ · · · ≥ λk. Compute
the rank of Nk in terms of the partition [λi].

1.2 Some key facts about Lie algebras

We will use the notation g for a Lie algebra. Recall that a Lie algebra is a vector space, which is
equipped with a product [ · , · ], called the bracket. The bracket is bilinear and antisymmetric. It
also satisifies the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

for all X,Y, Z ∈ g.
The prototypical Lie algebra is the endomorphisms of a vector space V , equipped with the

bracket
[X,Y ] = XY − Y X,

1Over a non-algebraically closed field, we would say that A is semisimple if it is diagonalizable over the algebraic closure
of the field
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where the product on the right is composition of endomporphisms (i.e. usual matrix multiplication
if we choose a basis of V ). This Lie algebra is denoted gl(V ) or gln(C) if we pick a basis of V . The
trace zero matrices are also a Lie algebra, denoted sl(V ) or n(C).

For X ∈ g, we write adX for the linear map adX : g → g given by adX(Y ) = [X,Y ]. Then the
Jacobi identity says that adX is a derivation, i.e.

adX([Y,Z]) = [adX(Y ), Z] + [Y, adX(Z)].

Moreover, since adX ∈ gl(V ), we have a map g→ gl(V ) given byX → adX and this map is actually
a homomorphism of Lie algebras: it is a linear map and also satisfies

ad[X,Y ] = [adX , adY ],

where the bracket on the left is computed in g and the bracket on the right side is in gl(V ) where it
equals adX adY − adY adX . The fact that X → adX is a homomorphism is equivalent to the Jacobi
identity.

Exercise 1.4. Verify that X → adX is a homomorphism of Lie algebras.

Exercise 1.5. Write gX for the centralizer of X in g. Write [g, X] for the set of elements of the form
[Y,X] for Y ∈ g. Show that

dim(gx) + dim([g, X]) = dim g

(Hint: relate gX and [g, X] to the image and kernel of adX .)

1.2.1 Cartan-Killing form and semisimplicity

In the classification of Lie algebras, a key technical role is played by the Cartan-Killing form. This is
defined to be the symmetric, bilinear form on g given by (X,Y ) = tr(adX adY ). This is symmetric
by properties of trace and bilinear since ad is linear. We use the notation κ(X,Y ) for the Killing
form.

The Killin form is invariant with respect to g in the following sense:

κ([X,Y ], Z) = κ(X, [Y,Z]).

The following is the heart of the first month of a course in Lie algebras:

Theorem 1.2.1. The following are equivalent for a Lie algebra:

1. The Cartan-Killing form is non-degenerate.

2. g is semisimple, meaning that there are no nonzero solvable ideals in g

3. g is a direct sum of simple subalgebras, where a Lie algebra is simple means that it contains no proper
nonzero ideals.

Using this theorem and the theory of root systems (among other tools), the simple Lie algebras
can be classified into one of four infinite families An, Bn, Cn, or Dn, or 5 exceptional Lie algebras
G2, F4, E6, E7 or E8. The Lie algebra sln(C) of traceless n× n matrices is labeled by An−1.
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1.2.2 Jordan decomposition

The Jordan decomposition carries over to semisimple Lie algebras. An element S ∈ g is called
semisimple if adS is semisimple (as a linear map from the vector space underlying g to itself).
Similarly, N ∈ g is nilpotent if adN is nilpotent.

Theorem 1.2.2 (Jordan decomposition for g). For X ∈ g we can write X uniquely as

X = Xs +Xn

where Xs ∈ g is semisimple, Xn ∈ g is nilpotent and [Xs, Xn] = 0.

The element Xs is called the semisimple part of X and Xn is called the nilpotent part of X .

The decomposition has two important properties:

• It behaves well under Lie algebra homomorphisms: if φ : g→ g′ is a Lie algebra homorphism,
then

φ(X)s = φ(Xs)

and
φ(X)n = φ(Xn).

• It coincides with the usual Jordan decomposition in gl(V ). In other words, whether we think
of X ∈ gl(V ) as an element of the Lie algebra gl(V ) and use Theorem 1.2.2 or we think of it as
a regular old matrix and use Theorem 1.1.2, we get the same decomposition.
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Chapter 2

Jacobson-Morozov Theorem

2.1 sl2(C)

The semisimple Lie algebra of smallest dimension is sl2(C), the 2× 2 matrices of trace zero. It is of
dimension three, with a basis given by

E =
[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
.

These elements satisfy the relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (2.1)

Notice that E and F are nilpotent matrices and so also nilpotent elements of sl2(C). And H is
a semisimple matrix and a semisimple element of sl2(C). Or we could have seen this directly by
writing the matrix for adH in terms of the (ordered) basis E,H,F of g:

adH =

2 0 0
0 0 0
0 0 −2

 .
Exercise 2.1. Write the matrices of adE , adF in terms of the basis E,F,H . Write the Cartan-Killing
form using this basis and show that it is non-degenerate. This shows that sl2(C) is semisimple.

On the other hand, it is easy to show that sl2(C) is simple directly. Here’s the sketch, let I be
an ideal. Then adH(I) = I and so adH restricted to I is semisimple (a fact from linear algebra). So
I must be a sum of eigenspaces for H . Now use the action of E and F to show that if I is proper,
then it must be zero.

2.2 Representations of sl2(C)

The Lie algebra sl2(C) and its representations are the central building blocks in Lie theory. Recall
that a representation of g is a Lie algebra homomorphism from g to gl(V ) for some vector space V .
This amounts to finding matrices e, h, f ∈ gl(V ) satsifying the relations in 2.1.

The classification of representations of sl2(C) has two components:

11
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• Every representation is the direct sum of irreducible representations (this is true for all semisim-
ple Lie algebras over the complex numbers).

• There is a unique irreducible representation (up to isomorphism) of dimension n for each
positive integer n.

2.3 The irreducible representation of dimension n

Let’s now explicitly construct the irreducible representations of sl2(C). Consider the n×n nilpotent
matrix

e =


0 1 . . . 0 0 0
0 0 1 . . . 0 0
0 0 0 1 . . . 0
· · ·
0 . . . 0 0 0 1
0 0 . . . 0 0 0

 .

Next we seek a semisimple h such that [h, e] = 2. If we try to find h that is diagonal, we see that

h =


k 0 . . . 0 0 0
0 k − 2 0 . . . 0 0
0 0 k − 4 0 . . . 0
· · ·
0 . . . 0 0 k − 2n+ 4 0
0 0 . . . 0 0 k − 2n+ 2

 .

Exercise 2.2. Verify the above calculation for h. Show that if [e, f ] = h, then h must have trace zero.
Show that k = n− 1 makes the trace of h equal to zero.

Next to find f with [h, f ] = −2f , we have that f must take the form

f =


0 0 . . . 0 0 0
a1 0 0 . . . 0 0
0 a2 0 0 . . . 0
· · ·
0 . . . 0 an−2 0 0
0 0 . . . 0 an−1 0

 .

Exercise 2.3. Show that [e, f ] = h is satisfied exactly when ai = i(n− i). Thus we have constructed
a representation of sl2 of dimension n. Verify that this is indeed an irreducible representation of
sl2(C).

Notice the following corollary of our construction:

Corollary 2.3.1. For every nilpotent matrix e ∈ gln(C), there exists h, f ∈ gln(C) satisfying the relations
2.1. This shows that every nilpotent matrix can be embedded in a copy of sl2(C) sitting inside of gln(C)

Proof. If we can do this for a nilpotent matrix e, then we can also do this for any conjugate geg−1

where g ∈ GLn(C). This is because we can conjugate h and f by g and obtain the necessary
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matrices. Hence we might as well take e to be in Jordan form. But for each Jordan block, we figured
out the appropriate h and f above. If we do this for each block and put the blocks together, we get
the relevant matrices h and f for e.

For example, if

e =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


(built from two Jordan blocks), then

h =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


and

f =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


work to satisfy the requirements of the corollary.

2.4 Jacobson-Morozov Theorem

The corollary in the previous section holds in general for a semisimple Lie algebra g:

Theorem 2.4.1 (Jacobson-Morozov). Given a nilpotent element e ∈ g, there exists h, f ∈ g satisfying the
relations 2.1. In other words, e belongs to a copy of sl2(C) sitting inside of g as a subalgebra.

One proof of this use the result for gln(C). Another proof to be sketched in the lectures is by
induction on the dimension of g.
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Chapter 3

Classifying nilpotent orbits

The standing assumption is that g is semisimple. Our goal in these lectures is to classify the orbits
of nilpotent elements in g under the action of the group G (of connected automorphisms of g). We
can think of G either as an algebraic group (algebraic variety with a compatible group structure) or
a Lie group (manifold with compatible group structure).

3.1 Dynkin-Kostant classification

To classify the nilpotent G-orbits (that is, the nilpotent elements up to the action of G), we use the
Jacobson-Morozov theorem: Let Ahom denote the G-conjugacy classes of Lie algebra homomor-
phisms from sl2(C) to g. That is, two homomorphism φ, φ′ are conjugate if we there exists g ∈ G
such that φ = phi′ ◦Ad(g), where Ad(g) denotes the automorphism of g determined by g.

Let H = [ 1 0
0 −1 ] and E = [ 0 1

0 0 ] be elements of sl2(C) as before.
Consider the map Ω : Ahom → {nilpotent G-orbits in g} given by Ω(φ) = Ad(G)φ(E). This is a

bijection: surjectivity is just the Jacobson-Morozov theorem and injectivity follows from a theorem
of Kostant.

Let Υ : Ahom → {semi-simple G-orbits in g} be the map Υ(φ) = Ad(G)φ(H). A theorem of
Mal’cev shows that Υ is injective.

Conclusion: nilpotent orbits in g are parametrized by the image of Υ. This set was completely
determined by Dynkin. The classification of nilpotent orbits in terms of these semisimple elements
is called the Dynkin-Kostant classification.

Pick a basis of simple roots {α1, . . . , αn} for the root system of g with respect to a Cartan subal-
gebra h. Assume that h ∈ h belongs to a conjugacy class in the image of Υ. By using the action of
the Weyl group, we can assume that αi(h) ≥ 0 for all i. Attaching these n numbers to the Dynkin
diagram of g is what we call the weighted Dynkin diagram of the corresponding nilpotent orbit
O.

A few facts:

• αi(h) are integers. This follows from the representation theory of sl2(C).

• Moreover, αi(h) ∈ {0, 1, 2, }. This is one way to prove there are a finite number of nilpotent
orbits.

15



16 CHAPTER 3. CLASSIFYING NILPOTENT ORBITS

• Let gi denote the i-eigenspace for adh. Then another consequence of the representation theory
of sl2(C) is that:

dim(O) = dim g− (dim g0 + dim g1).

The dimension of gi can be computed from the weighted Dynkin diagram of O.

For example, in G2 we find (using techniques discussed later) that there are 5 nilpotent orbits.
Their weighted Dynkin diagrams are

0 => 0, 0 => 1, 1 => 0, 2 => 0, 2 => 2

and the dimensions of these orbits are
0, 6, 8, 10, 12.

It is a general fact that orbits in g always have even dimension.

3.2 Bala-Carter Theorem

to be continued....



Chapter 4

Classical groups

4.1 Parametrizing orbits by partitions

4.2 Partial order on orbits
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