
RELATING REAL AND P-ADIC KAZHDAN-LUSZTIG POLYNOMIALS

LETICIA BARCHINI AND PETER E. TRAPA

Abstract. Fix an integral semisimple element λ in the Lie algebra g of a complex reductive
algebraic group G. Let L denote the centralizer of λ in G and let g(−1) denote the −1-
eigenspace of ad(λ) in g. Under a natural hypothesis (which is always satisfied for classical
groups), we embed the closure of each L orbit on g(−1) into the closure of an orbit of a
symmetric subgroup K containing L on a partial flag variety for G. We use this to relate the
local intersection homology of the latter orbit closures to the former orbit closures. This,
in turn, relates multiplicity matrices for split real and p-adic groups. We also describe
relationships between “microlocal packets” of representations of these groups.

1. introduction

The main result of this paper, Theorem 3.1, relates certain Kazhdan-Lusztig polynomials
that arise in the representation theory of real and p-adic groups. Since these polynomials
encode the multiplicities of irreducible representations in standard representation, we thus
relate these two kinds of multiplicities. Under favorable circumstances (which are always
satisfied for GL(n) and Sp(2n), for example), our results imply that the decomposition
matrix for certain unipotent representations of a split p-adic group is a submatrix (in a
variety of different ways) of the decomposition matrix for representations of a split real
group.

In more detail, suppose λ is a semisimple element in the Lie algebra g of a complex
reductive algebraic group G. Let L denote the centralizer in G of λ. Then, for c ∈ C×, L
acts with finitely many orbits on the c-eigenspace of ad(λ) [Vi]. Thus one can consider local
intersection homology Poincaré polynomials for the closures of L orbits. (An elementary
argument reduces matters to the case of λ integral and c = −1 and we will consider this
case henceforth; see Remark 2.8.) Lusztig [Lu4, Lu5] established a finite effective algorithm
to compute these polynomials. Roughly speaking, their values at 1 give multiplicities of
irreducible unipotent representations in standard representations of the split p-adic form of
the Langlands dual of G [Lu3].

On the other hand, let K denote the identity component of the fixed points in G of the
automorphism θ obtained by conjugation by exp(iπλ). Then K acts with finitely many
orbits on the partial flag variety P consisting of conjugates of the sum of the nonnegative
eigenspaces of ad(λ). Once again, one can consider local intersection homology Poincaré
polynomials. Vogan [Vo3] described a finite effective algorithm to compute them which has
been implemented in the software package atlas. Evaluating these polynomials at 1 gives
multiplicities of irreducibles in standard representation of the identity component of the split
real form of the Langlands dual of G [Vo4, ABV].

The algorithms of [Lu5] and [Vo3] are completely different. Nonetheless, Theorem 3.1
says that certain polynomials that they compute separately are the same. Under a certain
hypothesis (see (2.2)) we define a map ϵ, a kind of truncated exponential map, from the
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−1-eigenspace g(−1) of ad(λ) to P, and use it to define an injection of L orbits on g(−1)
to K orbits on P; see Definition 2.2. This gives rise to a restriction φ of irreducible local
K-equivariant local system on P to irreducible L equivariant local systems on g(−1). We
prove in Theorem 3.1 that

Pφ(ψ),φ(γ) = Pψ,γ ; (1.1)

here the polynomial on the left-hand side is relevant for p-adic group representations, and
the polynomial on the right-hand side is relevant for real group representations. In terms
of representation theory, φ can be thought of as matching an irreducible unipotent repre-
sentation of a split p-adic group with an irreducible Harish Chandra module for a split real
group, and (1.1) implies that their respective multiplicities in certain standard modules (also
matched by φ) are the same.

Equation (1.1) generalizes the main geometric result for GL(n) of Ciubotaru-Trapa [CiT];
see Remark 3.3. In Remark 3.4, we also give analogous results equating the p-adic poly-
nomials with Kazhdan-Lusztig polynomials arising from category O, generalizing results of
Zelevinsky [Z] for gl(n) to all classical groups.

There are several important hypotheses to highlight. As we indicated above, the existence
of the map ϵ depends on (2.2). As explained in Example 2.4, (2.2) always holds in the classical
groups, but Example 2.6 shows that it cannot hold in certain exceptional cases. Moreoever,
when (2.2) holds, the definition of ϵ depends on a certain choice of ordering of the set P in
Definition 2.2. Different choices lead to different maps ϵ, and therefore to different maps φ
on local systems. Nonetheless (1.1) hold for all such choices. In other words, depending on
the choices made, we possibly identify the p-adic polynomial on the left-hand side of (1.1)
with different instances of the real polynomial on the right-hand side. The dependence on
the choice of ordering is perhaps disappointing, since one might have hoped for a canonical
relationship. On the other hand, in practice different choices lead to different matchings
that reveal interesting nontrivial coincidences among the polynomials in question.

Note also that we have assumed K to be the identity component of the fixed points of θ.
This is perhaps unnatural from the point of view of representations of algebraic groups, and
requires explanation. If we had instead worked with the potentially disconnected K ′ = Gθ,
the orbits of K ′ on P can be reducible, and different irreducible components can contribute
to the local intersection cohomology in ways that make the left-hand side of (1.1) a summand
of the right-hand side. In any particular case, this is tractable to understand, but general
statements in the presence of this kind of disconnectedness are somewhat cumbersome. See
Remark 3.5.

Finally, in addition to matching local intersection homology polynomials, Theorem 3.1
shows that φ also matches microlocal geometric information. A number of interesting con-
sequences for ABV micro-packets of representations are sketched in Section 6.

2. matching of orbits

Let G be a complex connected reductive algebraic group with Lie algebra g. Fix a Borel
subalgebra b = t ⊕ n and fix a semisimple element λ ∈ t which is integral and weakly
dominant in the sense that the pairing of λ with any coroot for t in n is a non-negative
integer. (See Remark 2.8 for a discussion of the nonintegral case.) For each i ∈ Z, write

g(i) = {x ∈ g | [λ, x] = ix} ,
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the i-eigenspace for ad(λ). Set l equal to g(0), and let L denote the centralizer in G of l.
Then L acts with finitely many orbits on each g(i) [Vi].

Let

u =
⊕
i>0

g(i) and u =
⊕
i<0

g(i);

and

p = l⊕ u.

Thus p is a parabolic subalgebra containing b. Write P for the variety of conjugates of p.
Then P ≃ G/P where P = LU is the centralizer in G of p.

Let y(λ) denote exp(iπλ). Since λ is integral, the square of y(λ) is central. Conjugation
by y(λ) therefore defines an involution θ of G. Let K denote the identify component of its
fixed points. Note that the Lie algebra of K is

k =
⊕
i

g(2i)

and K contains L by definition.

Example 2.1. Let G = GL(n,C) and let t denote the diagonal Cartan subalgebra. After a
central shift, the integrality of λ implies that we may assume λ consists of integer entries.
Then K ≃ GL(p,C) × GL(q,C) where p is the number of even entries of λ and q is the
number of odd entries. The symmetric pair (G,K) corresponds to the real group U(p, q).
This is the setting of [CiT].

Next let G = Sp(2n,C) and let t denote the diagonal Cartan subalgebra in the standard
realization. For λ to be integral, either all of its entires are integers, or else they are all
integers shifted by 1/2. If λ consists of all half-integers, then K ≃ GL(n,C), corresponding
to the real group Sp(2n,R). If λ consists of all integers, then K ≃ Sp(p,C)×Sp(q,C) where
p is the number of even entries of λ and q is the number of odd entries. This case corresponds
to the real group Sp(p, q). □

Recall that our goal is to relate L orbits on g(−1) and K orbits on P. As mentioned in
the introduction, we do this using a kind of truncated exponential map. In order to define
the map, we need to introduce certain hypotheses which we now describe.

Let P denote a collection of parabolic subalgebras each of which properly contains p.
Choose an order on the elements of P and write

P = {p1, . . . , pℓ}.

For each i, write the Levi decomposition as pi = li ⊕ ui. Since pi contains p,

li ∩ u

is the nilradical of a parabolic subgroup of li. We will be interested in imposing the following
hypotheses on the collection P: first, that

li ∩ g(−1) ̸= {0}; (2.1)

and second that

g(−1) =
ℓ⊕
i=1

[li ∩ u] . (2.2)
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Definition 2.2. Fix an ordered collection P = {p1, . . . , pℓ} satisfying (2.1) and (2.2). (Such
a collection P always exists if G is classical, but need not always exist in the exceptional
cases; see Examples 2.3–2.7 below.) Define

ϵ : g(−1) −→ P
by writing x ∈ g(−1) as x1 + · · ·+ xℓ according to (2.2) and setting

ϵ(x) = exp(x1) exp(x2) · · · exp(xℓ) · p.
Fix an orbit O of L on g(−1). Since ϵ is L equivariant and since L ⊂ K, K · ϵ(O) consists
of a single K orbit which we call QO. The assignment

O 7→ QO (2.3)

defines an injection of L orbits on g(−1) into K orbits on P. Note that the definition of ϵ
(and hence QO) depends on the choice of ordering of the elements of P. Let

Y =
⋃
O
QO (2.4)

where O ranges over all orbit of L on g(−1). Thus, by definition, Y is the K saturation of
the image of ϵ. □

The next examples investigate some instances when (2.2) holds (or cannot hold).

Example 2.3. Suppose λ = ρ∨, the half-sum of the coroots corresponding to the roots of
t in n. As ρ∨ is regular, p = b. Let P denote the set of parabolic subalgebras are minimal
among those that properly contain b. If we enumerate the simple roots of t in n as α1, . . . , αℓ,
then we can enumerate P as p1, . . . pℓ with

pi = g−αi ⊕ b,

where g−αi is the root space for −αi in g. Thus

li ∩ u = g−αi

Since g(−1) is the span of the negative simple root spaces, P satisfies (2.1) and (2.2). This
is the setting of [BT]. □

Example 2.4. Suppose G is a classical group, and λ is an arbitrary (possibly singular)
integral element. Let P denote the set of parabolic subalgebras are minimal with respect to
the properties of: (1) properly containing p; and (2) having a levi factor that meets g(−1)
in a nonzero subspace. Then P always satisfies (2.1) and (2.2).

To see this, first take the case of G = GL(n,C), let b be upper-triangular matrices with t
the diagonal ones. Fix

λ = (

n1︷ ︸︸ ︷
a1, · · · , a1,

n2︷ ︸︸ ︷
a2, · · · , a2, . . . ,

nk︷ ︸︸ ︷
ak, · · · , ak) (2.5)

with each ai an integer, ai > ai+1 and n = n1 + · · · + nk. Then p consists of block-upper
triangular matrices with diagonal blocks of size n1, . . . , nk. Set

S = {j | aj − aj+1 = 1}.
The space g(−1) identifies with a subspace of block matrices just below the diagonal,

g(−1) ≃
⊕
j∈S

Matnj+1,nj (2.6)
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Aminimal parabolic pjcontaining p is obtained by enlarging the adjacent Levi factors gl(nj)⊕
gl(nj+1) to gl(nj + nj+1), and pj has nonzero intersection with g(−1) when j ∈ S. Thus
P = {pj | j ∈ S}. The element pj has

lj ∩ u

consisting of the block lower-triangular matrices in gl(nj + nj+1), namely Matnj+1,nj . Com-
paring with (2.6), one sees (2.2) holds. Note that λ = ρ∨ in the previous example is simply
the case when all block sizes are 1.

The other classical cases are similar. For example, suppose G = Sp(2n,C) and λ is as
in (2.5) in standard coordinates. Suppose all entries ai are half-integers (but not integers).
Then p has Levi factor gl(n1) ⊕ · · · ⊕ gl(nk). Once again we obtain a minimal parabolic
pj containing p by expanding adjacent factors gl(nj) ⊕ gl(nj+1) in the Levi factor for p to
gl(nj+nj+1), and pj meets g(−1) nontrivially if j ∈ S as defined above. Then P consists of
the pj for j ∈ S plus possibly one other element: if ak = 1/2, then P contains p◦ whose Levi
factor is gl(n1)⊕· · ·⊕gl(nk−1)⊕sp(2nk). If instead all entries of λ are nonnegative integers,
then p has Levi factor gl(n1)⊕· · ·⊕gl(nk) if ak ̸= 0 and gl(n1)⊕· · ·⊕gl(nk−1)⊕sp(2nk) if ak =
0. As before pj may be defined by collapsing adjacent Levi factors for j ∈ S, and this time if
k−1 ∈ S and ak = 0, define pk−1 to have Levi factor gl(n1)⊕· · ·⊕gl(nk−2)⊕sp(2(nk−1+nk)).
Once again one can easily verify that P = {pj | j ∈ S} satisfies (2.1) and (2.2). □

Example 2.5. Continuing the example of G = GL(n,C) in Example 2.4, if we order the
set P as described there, then one may quickly verify that for x ∈ g(−1),

ϵ(x) = (Idn + x) · p.
This is the map that is used in [CiT] to define O 7→ QO. But note that we may take any
ordering of the set P and thus define different maps O 7→ QO which will have the properties
that we describe in Theorem 3.1. □

Example 2.6. Let G be simple of type F4. Suppose λ is one-half the middle element of
a Jacobson-Morozov triple for the nilpotent orbit labeled in the Bala-Carter classification
by F4(a3). The weighted Dynkin diagram of this orbit (in the standard Bourbaki order) is
0200. Thus p is the maximal parabolic corresponding the long middle root on the Dynkin
diagram of F4. The opposite nilradical u is a three-step nilpotent algebra whose first step
is g(−1). Since p is maximal, the only possibility is for P to consist of a single algebra,
namely all of g. But we have already remarked that g∩u = ū properly contains g(−1). Thus
there is no choice of P that satisfies (2.2). □

Example 2.7. Let G be simple of type G2. Suppose λ is one-half the middle element of
a Jacobson-Morozov triple for the nilpotent orbit labeled in the Bala-Carter classification
by G2(a1). Thus p is the maximal parabolic corresponding to the short simple root. Its
nilradical properly contains g(−1), so once again there is no choice of P that satisfies (2.2).
However, u in this case is a two-step nilpotent algebra whose first step is g(−1). We will
give a related argument in Section 5 which handles this case. □

Remark 2.8. If λ is not integral, one can repeat the constructions above replacing G by
G(λ), the centralizer in G of exp(2iπλ). The Lie algebra of G(λ) is the sum of the integral
eigenspaces of ad(λ) and y(λ) is still an element whose square is central in G(λ). So the
definitions above carry over without change.

Note also that above we restricted attention to the L orbits on g(−1). One could instead
consider the orbits of L on an general eigenspace g(c) for c ∈ C×. Since the −1 eigenspace
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of ad(λ) is the c-eigenspace of ad(λ′) for λ′ = −λ/c, the study of L orbits on g(c) for λ is
equivalent to the study of L orbits on g(−1) for λ′. □

3. statement of main results

The goal of this section is to state Theorem 3.1 describing how O 7→ QO in Definition 2.2
preserves the singularities of the closure of O in a precise sense. In order to do so, we need
some notation.

3.1. Notation. Suppose X is a complex algebraic variety on which a complex algebraic
group H acts with finitely many orbits. Let C(H,X) be the category of H-equivariant
constructible sheaves onX.Write P(H,X) for the category ofH-equivariant perverse sheaves
on X.

Irreducible objects in both categories are parametrized by the set Ξ(H,X) consisting of
pairs (Q,V) with Q an orbit of H on X and V an irreducible H-equivariant local system
supported on Q. For γ ∈ Ξ(H,X), we write con(γ) and per(γ) for the corresponding
irreducible constructible and perverse sheaves.

By taking Euler characteristics, we identify the Grothendieck group of the categories
P(H,X) and C(H,X). In this way, we can consider the change of basis matrix,

[per(γ)] =
∑

ψ∈Ξ(H,X)

(−1)d(ψ) Cgψ,γ [con(ψ)]; (3.1)

here ψ = (Qψ,Vψ) and d(ψ) = dim(Qψ). The matrix (Cg(ψ, γ)) is called the geometric mul-
tiplicity matrix. Let Pψ,γ ∈ Z[q] denote the graded occurrence of con(ψ) in the cohomology
sheaves of per(γ). More precisely, define the coefficient of qi in Pψ,γ to be the multiplicity
of con(ψ) in the ith cohomology sheaves of per(γ). (In our applications below we will have
vanishing in odd degrees.) Thus, up to a sign,

Pψ,γ(1) = Cgψ,γ . (3.2)

Finally, given an H orbit Q on X, let mmic
Q denote the Z-valued linear functional on the

Grothendieck group of P(H,X) that assigns to an irreducible perverse sheave the multiplicity
of the conormal bundle to Q in its characteristic cycle. The notation is meant to indicate
that mmic

Q is a microlocal multiplicity.

3.2. Statement of Main Results. Let AL(x) denote the component group of the central-
izer in L of x ∈ g(−1), and let AK(ϵ(x)) denote the component group of the centralizer
in K of ϵ(x). Since ϵ is L equivariant, there is a natural map AL(x) → AK(ϵ(x)). Since
AK(ϵ(x)) is abelian (an elementary abelian 2-group) with only one-dimensional irreducible
representations, composition defines a map on irreducible representations,

AK(ϵ(x))̂ −→ AL(x)
̂. (3.3)

Fix γ = (QO,L) ∈ Ξ(K,Y ), with QO = K ·ϵ(x) for x ∈ g(−1). Then L is parametrized by an
irreducible representation of AK(ϵ(x)). By (3.3), this maps to an irreducible representation
of AL(x), and hence an irreducible local system L′ on O = L · x. Define

φ : Ξ(K,Y ) −→ Ξ(L, g(−1)) (3.4)

by

φ(QO,L) = (O,L′).
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More conceptually, this is just the pullback via ϵ of irreducible local systems from Y to
g(−1).

Theorem 3.1. Recall the setting of (2.3) and the definition of Y in (2.4). In particular,
recall that we assume that there exists a fixed ordered set of parabolic subalgebras P satisfying
(2.1) and (2.2) that is used to define ϵ : g(−1) → P. Recall the definition of φ of (3.4), and
of the geometric multiplicity matrices and intersection homology polynomials of Section 3.1.
Then for ψ, γ ∈ Ξ(K,Y ),

Pψ,γ = Pφ(ψ),φ(γ); (3.5)

in particular,
Cgψ,γ = Cgφ(ψ),φ(γ). (3.6)

Finally, fix O = L · x, QO = K · ϵ(x), and γ ∈ Ξ(K,Y ). The multiplicity of the conormal
bundle to QO in the characteristic cycle of per(γ) equals the multiplicity of the conormal
bundle to O in per(φ(γ)),

mmic
O (per(φ(γ))) = mmic

QO (per(γ)). (3.7)

Before turning to the proof in Section 4, we make a few remarks.

Remark 3.2. Theorem 3.1 is most powerful when the map φ is surjective for some choice
of P. In this case, every polynomial arising from the L orbits on g(−1) is matched with
a Kazhdan-Lusztig-Vogan polynomial. In Example 4.8 (extending Example 2.4), we sketch
that this is the case for some classical subgroups of GL(n,C). But note that there are some
cases in spin groups and exceptional groups, for example, where AL(x) is nonabelian, and
therefore has higher dimensional irreducible local systems as elements of Ξ(L, g(−1)). In
these cases, φ can never be surjective (even when a choice of P satisfying (2.1) and (2.2)
exists). □

Remark 3.3. When G = GL(n,C) and the choice of P (and its ordering) is the one
described in Example 2.5, then (3.6) in Theorem 3.1 is [CiT, Theorem 2.5]. □

Remark 3.4. We describe a version of Theorem 3.1 that replaces K orbits with P orbits,
and thus matches intersection homology polynomials for L orbits on g(−1) with classical
parabolic Kazhdan-Lusztig polynomials. Loosely speaking we replace every occurrence of
K with P . In more detail, assuming the existence of P, we can define a map that takes
O = L · x for x ∈ g(−1) to QO = P · ϵ(O) where ϵ is defined as in Definition 2.2. If we once
again set Y to be the union of all the various QO, then ϵ sends g(−1) to Y . Just as above,
we obtain a map

φ : Ξ(P, Y ) −→ Ξ(L, g(−1)).

The proof of Corollary 4.4 (see Remark 4.5) will apply to show O ≃ ϵ(O) is open and dense
in QO. This allows one to directly conclude

Pψ,γ = Pφ(ψ),φ(γ), (3.8)

and similarly match microlocal multiplicities. (See the argument and references in Section
4.2.) When G = GL(n,C) and the choice of ordering on P is as in Example 2.5 (so
ϵ(x) = Idn + x), (3.8) is exactly the main result of [Z].

Note, however, that there are no nontrivial local systems in Ξ(P, Y ). So there is no hope
in matching polynomials that arise for nontrivial local systems for L orbits on g(−1) with
classical Kazhdan-Lusztig polynomials; cf. Remark 3.2. This is a reason for using K orbits
in order to match more general polynomials for g(−1). □
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Remark 3.5. Set K ′ = Gθ as in the introduction; so K ′ is potentially disconnected. In the
setting of Theorem 3.1, we can copy the definitions above to define

φ′ : Ξ(K ′, Y ) −→ Ξ(L, g(−1)).

Fix ψ, γ ∈ Ξ(K ′, Y ) and write Qγ for K ′ orbit that is the support of γ. If we further assume
that Qγ is irreducible (which of course is automatic if K ′ is connected), then the proof of
Theorem 3.1 that we give below will show

Pψ,γ = Pφ′(ψ),φ′(γ) (3.9)

and that the analogous conclusion of (3.7) also holds. If we do not assume Qγ is irreducible,
then (3.9) can fail; see [BT, Remark 3.6] for a discussion of an example in SO(8). The one
place in the argument below that we need Qγ to be irreducible is to deduce the conclusion
of Corollary 4.4.

4. proof of theorem 3.1

4.1. Preliminary Results. As a first step toward Theorem 3.1, we showO 7→ QO preserves
dimensions; see Proposition 4.3 below. We start with some preliminaries, following the
approach of [BT] closely.

Lemma 4.1. In the setting of Theorem 3.1, if O = L · x is an orbit of L on g(−1), then

dim(ϵ(O)) = dim(O).

Proof. Since ϵ is L-equivariant, ZL(x) ⊂ ZL(ϵ(x)). So the result follows from the other
containment

ZL(x) ⊃ ZL(ϵ(x)). (4.1)

Write x =
∑

j xi with possibly some of xj ’s equal to zero. Because [g(−1), g(−1)] ⊂ g(−2),

there is a z ∈
⊕

k≤−2 g(k) so that

ϵ(x) := exp(x1)exp(x2) · · · exp(xℓ) · p
= exp(x1 + x2 + · · ·+ xℓ + z) · p
= exp(x+ z) · p.

If l ∈ L centralizes ϵ(x), it thus centralizes x+z. Since L preserves the grading of g =
⊕

k gk,
if l ∈ L centralizes x+ z, it must centralize x, and so (4.1) follows. □

Lemma 4.2. In the setting of Theorem 3.1, write P̄ = LŪ for the opposite parabolic sub-
group to P = LU . Then Ū ∩K acts freely on

[Ū ∩K] · ϵ(g(−1)).

Moreover, for all x ∈ g(−1),(
[Ū ∩K] · ϵ(x)

)
∩ ϵ(g(−1)) = ϵ(x).

In particular, ϵ is injective.

Proof. Suppose k ∈ Ū ∩K and x =
∑
xj ∈ g(−1) such that

k · exp(x1) exp(x2) · · · exp(xℓ) · p = exp(x1) exp(x2) · · · exp(xℓ) · p. (4.2)

The stabilizer in G of p is P and Ū ∩ P = 1. Thus (4.2) implies

k · exp(x1) exp(x2) . . . exp(xℓ) = exp(x1) exp(x2) . . . exp(xℓ),
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from which we conclude that k = 1, verifying the first assertion of the lemma. The second
assertion follows in a similar way. □

Proposition 4.3. In the setting of Theorem 3.1, let O be an orbit of L on g(−1) and define
QO as in (2.3). Then,

dim(QO) = dim(Q{0}) + dim(O). (4.3)

Proof. We first show that

dim(QO) ≤ dim(Q{0}) + dim(O). (4.4)

To see this, we factor ϵ as follows. Write Pi for the centralizer in G of pi. Define

X = K ×
K∩P

P1 ×
P
P2 ×

P
. . .×

P
Pℓ (4.5)

to be the quotient of K × P1 × . . .× Pℓ by the action

(p0, p1, . . . , pℓ) · (k0, y1, y2, . . . , yℓ) = (k0 p0, p
−1
0 y1 p1, p

−1
1 y2 p2, . . . , p

−1
ℓ yℓ).

Let K act on X via

k · [k0, y1, y2, . . . , yℓ] = [k k0, y1, y2, . . . , yℓ].

Then X comes equipped with a natural K-equivariant map

τ : X −→ P (4.6)

mapping

[k0, y1, y2, . . . , yℓ] 7→ k0y1 · · · yℓ · p.
Define an L equivariant map

ι : g−1 −→ X
mapping x = x1 + · · ·+ xℓ as

ι(x) = [1, exp(x1), exp(x2), . . . , exp(xℓ)].

Then, by definition, ϵ = τ ◦ ι and
QO = τ(K · ι(O)).

Thus

dim(QO) ≤ dim(K · ι(O)) ≤ dim(K/K ∩ P ) + dim(O).

Once we note that Q{0} = K · p ≃ K/K ∩ P , (4.4) follows.
We argue that the converse inequality holds. Since Ū ∩ K · ϵ(O) is contained in QO,

Lemma 4.2 implies

dim(QO) ≥ dim(Ū ∩K) + dim(ϵ(O)). (4.7)

By Lemma 4.1, we know that dim(ϵ(O)) = dim(O). Since Q{0} = K · p ≃ K/(K ∩ P ),

dim(Q{0}) = dim(Ū ∩K).

Thus, (4.7) becomes

dim(QO) ≥ dim(Q{0}) + dim(O),

as we wished to show. □

Corollary 4.4. [K ∩ P̄ ] · ϵ(x) is open and dense in K · ϵ(x).
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Proof. Since dim(Q{0}) = dim(K/(K ∩ P )) = dim(Ū ∩K), Lemma 4.2 and the dimension
count of Proposition 4.3 implies the result. □

Remark 4.5. We can repeat the analysis above with K replace by P (as in Remark 3.4).
In this case Q{0} is just the point p in P. Replacing K with P in the proofs of Proposition
4.3 and Corollary 4.4 implies that

dim(QO) = dim(O),

and ϵ(O) is open and dense in QO. □

4.2. Consequences of Corollary 4.4. Recall that the component group of the centralizer
in K of an element of P is an elementary abelian 2-group. Thus, every irreducible K-
equivariant local system on P is one-dimensional. In the setting of Corollary 4.4 and notation
for Y in (2.4), we thus obtain a restriction map,

φ1 : Ξ(K,Y ) −→ Ξ
(
K ∩ P̄ , [K ∩ P̄ ] · ϵ(g(−1))

)
. (4.8)

This is once again dual to the corresponding restriction of A-group representations as in (3.3).
By definition, if γ ∈ Ξ(K,Y ), then the constructible sheaf con(γ) restricts to con(φ1(γ)).
By the density statement, the intersection homology polynomials for K ∩ P̄ orbit closures
on [K ∩ P̄ ] · ϵ(g(−1)) match those for K orbits on Y . (This is part of the unicity of perverse
extensions. A discussion of such a statement can be found in the proof of Proposition 7.14(c)
and around Equation (7.16)(e) in [ABV].) More precisely, for ψ, γ ∈ Ξ(K,Y ),

Pψ,γ = Pφ1(ψ),φ1(γ);

in particular,

Cgψ,γ = Cgφ1(ψ),φ1(γ)
.

Finally, using the method of calculating of characteristic cycles via normal slices (sketched,
for example, at the bottom of page 186 and top of page 187 in [ABV]), one sees that the
microlocal multiplicities match: if O = K · ϵ(x), O′ = [K ∩ P̄ ] · ϵ(x) and γ ∈ Ξ(K,Y ),

mO′(per(γ)) = mO(per(φ1(γ)).

4.3. Induced bundles. The previous section relates the geometry of orbits of K on Y
to the orbits of K ∩ P̄ on [K ∩ P̄ ] · ϵ(g(−1)). In this section, we use an induced bundle
construction to relate these K ∩ P̄ orbits to L orbits on g(−1).

To begin, recall a general construction. Suppose H acts on a variety X with finitely many
orbits. Suppose H ⊂ H ′. The induced bundle

H ′ ×H X

is defined by quotienting H ′ × X by (h′h, x) ∼ (h′, hx) for all h ∈ H. See [ABV, Chapter
7], for example.

Proposition 4.6. In the setting of Section 3, the map

A : [K ∩ P̄ ]×L g(−1) −→ [K ∩ P̄ ] · ϵ(g(−1))

defined by

A(k, x) 7→ k ϵ(x)

is a K ∩ P̄ equivariant isomorphism.
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Proof. Clearly A is surjective and K ∩ P̄ equivariant. We prove that A is injective. Suppose
A(k1, x1) = A(k2, x2). Write k1 = n̄1 t1 with n̄1 ∈ [Ū ∩K] and t1 ∈ L ∩K. Similarly, write
k2 = n̄2 t2. Thus

n̄1t1ϵ(x1) = n̄2t2ϵ(x2).

Since ϵ is L equivariant, this implies

n̄1ϵ(Ad(t1)x1) = n̄2ϵ(Ad(t2)x2). (4.9)

By Lemma 4.2, n̄1 = n̄2 and

ϵ(Ad(t1)x1) = ϵ(Ad(t2)x2). (4.10)

Since ϵ is injective (Lemma 4.2), Ad(t1)x1 = Ad(t2)x2. We use this in the third equality
below to conclude,

(k2, x2) = (n̄2t2, x2) = (n̄2t2,Ad(t2)
−1Ad(t2)x2) = (n̄2t2,Ad(t2)

−1Ad(t1)x1)

∼ (n̄2,Ad(t1)x1) = (n̄1,Ad(t1)x1)

= (k1t
−1
1 ,Ad(t1)x1) ∼ (k1, x1).

Thus A(k1, x1) = A(k2, x2) implies (k1, x1) ∼ (k2, x2), and so A is injective as we wished to
show. □

Corollary 4.7. In the setting of Proposition 4.6, there is a is a natural correspondence of
L orbits on g(−1) and K ∩ P̄ orbits on [K ∩ P̄ ] · ϵ(g(−1)),

O = L · x 7→ O′ = [K ∩ P̄ ] · ϵ(x).

Write AL(x) for the component group of the centralizer of x in L, and similarly for AK∩P̄ (ϵ(x)).
Then the map L→ [K ∩ P̄ ] induces an isomorphism

AL(x) ≃ AK∩P̄ (ϵ(x)).

The resulting bijection

φ2 : Ξ(K ∩ P̄ , [K ∩ P̄ ] · ϵ(g(−1))) → Ξ(L, g(−1)) (4.11)

implements an identification of the geometric mulitplicity matrices and intersection homology
polynomials of Section 3.1. More precisely, for ψ, γ in Ξ(K ∩ P̄ , [K ∩ P̄ ] · ϵ(g(−1)))

Pψ,γ = Pφ2(ψ),φ2(γ) (4.12)

and, in particular,

Cgψ,γ = Cgφ2(ψ),φ2(γ)
. (4.13)

Finally, the microlocal multiplicities match,

mO′(per(γ)) = mO(per(φ2(γ)). (4.14)

Proof. According to [ABV, Proposition 7.14], there is a bijective correspondence of L orbits
on g(−1) and K ∩ P̄ orbits on the induced bundle [K ∩ P̄ ] ×L g(−1) with properties as
listed in (4.11)-(4.13), while [ABV, Proposition 20.1(e)] implies (4.14). Composing with the
isomorphism of Proposition 4.6 completes the proof. □
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4.4. Proof of Theorem 3.1. Once one observes that φ in Theorem 3.1 is simply the
composition of φ2 in (4.11) and φ1 in (4.8), the theorem follows by combining the results of
Section 4.2 and Corollary 4.7. □

Remark 4.8. Determining when φ is surjective requires case-by-case analysis, and we simply
record the results here for classical groups. If G = GL(n), then all local systems are trivial, so
φ is automatically surjective for any ordering of the set P defined in Example 2.4. As [BT,
Example 3.5] already indicates, for some choices of ordering of P, φ can fail to be surjective.
But there is always some choice for which φ is surjective. If G = Sp(2n), and λ consists of all
integers, there are again no nontrivial local systems, so surjectivity is automatic. If, however,
λ consists of half-integers, P in Example 2.4 sometimes contains a distinguished element
p◦. This element must appear first in the ordering on P in order for φ to be surjective.
The situation is similar for SO(n) where there is sometimes a distinguished element in the
set P defined in Example 2.4 which has a Levi factor component of the form so(n). Again,
this element must be taken first in the order on P in order for φ to be surjective. □

5. abelian and two-step case

In this section, we study a special class of examples that includes some cases (like Example
2.7) where there does not exist a set P satisfying (2.1) and (2.2). In these cases, we do not
need to truncate the exponential map. Alternatively, one can think of this section as a kind
of basic case, and the definition of ϵ in Definition 2.2 and some of the proofs of Section 4
as an induction using the bundle constructed in (4.5). This can be made precise, but isn’t
necessary for our purposes here.

Assume that the i-eigenspace g(i) is zero if |i| > 2. In other words, the nilradical of p is
either abelian or a two-step nilpotent Lie algebra. Under this hypothesis, we simply define

ϵ′ : g(−1) −→ P (5.1)

by
ϵ′(x) = exp(x) · p.

Using ϵ′ instead of ϵ in (2.3), for an L orbits O on g(−1) we define

Q′
O = K · ϵ′(O),

and Y ′ to be the union of the various Q′
O. As in (3.3), for x ∈ g(−1) we have a natural map

AK(ϵ′(x))̂ −→ AL(x)
̂, (5.2)

and hence a map
φ′ : Ξ(K,Y ′) −→ Ξ(L, g(−1)). (5.3)

We then have the following analog of Theorem 3.1.

Theorem 5.1. For ψ, γ ∈ Ξ(K,Y ′),

Pψ,γ = Pφ′(ψ),φ′(γ). (5.4)

Fix O = L · x, Q′
O = K · ϵ′(x), and γ ∈ Ξ(K,Y ′). Then

mmic
O (per(φ′(γ))) = mmic

Q′
O
(per(γ)).

This will follow in exactly the same way as Theorem 3.1 once we prove analogs of Lemma
4.2, Proposition 4.3 and Corollary 4.4.
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Lemma 5.2. The group Ū ∩K acts freely on

[Ū ∩K] · ϵ′(g(−1)).

Moreover, for all x ∈ g(−1), (
[Ū ∩K] · ϵ′(x)

)
∩ ϵ′(g−1) = ϵ′(x).

Proof. This follows as in the proof of Lemma 4.2. □

Proposition 5.3. Let O be the L orbit of x ∈ g(−1). Then,

dim(Q′
O) = dim(Q′

{0}) + dim(O). (5.5)

Proof. Let g = k⊕ s denote the Cartan decomposition. Because of our two-step assumption,
s = g(−1)⊕g(1), and k = g(−2)⊕l⊕g(2). The tangent space to Q′

O at q := ϵ′(x) = exp(x) ·p
identifies with g/(k+ q). If we fix a nondegenerate invariant form to identify g and g∗, then
then conormal space to Q′

O at q identifies with

[g/(k+ q)]∗,⊥ ≃ Ad(exp(x))ū ∩ s.

Since ū = g(−2)⊕ g(−1), x ∈ g(−1), and [gi, gj ] ⊂ gi+j ,

Ad(exp(x))ū ∩ s = ker(ad(x)|g(−1)).

The dimension of P is simply dim(ū). On the other hand, dim(P) equals the the sum of the
dimension of Q′

O and the dimension of the conormal space to Q′
O at q. Thus

dim(ū) = dim(Q′
O) + ker(ad(x)|g(−1)).

So

dim(Q′
O) = dim(ū)− ker(ad(x)|g(−1))

= dim(g(−2)) +
[
dim(g(−1))− ker(ad(x)|g(−1))

]
= dim(g(−2)) + dim(O).

To complete the proof, note that Q{0} = K · p has dimension equal to that of k/(k ∩ p) ≃
g(−2). □

Corollary 5.4. [K ∩ B̄] · ϵ′(x) is open and dense in K · ϵ′(x).

Proof. This now follows in the same way as Corollary 4.4. □

With Corollary 5.4 in hand, we can argue as in the proof of Theorem 3.1 to establish Theorem
5.1. We omit the details.
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6. remarks on abv micro-packets

To conclude, we sketch some consequences related to micro-packets of representations.
Part of our motivation is to explain the appearance of the Kashiwara-Saito singularity dis-
covered by Cunningham-Fiora-Kitt [CFK].

Fix λ integral and semisimple as above. According to the [Vo4] (reinterpreted in [ABV,
Theorem 1.24]), Ξ0(K,Y ) parametrizes a subset of irreducible representations with infinites-
imal character λ of various real forms G′

R of the Langlands dual group G∨. (In order to think
of λ as an infinitesimal character for G′

R, we view λ ∈ h as an element of (h∨)∗ for the dual
Cartan subalgebra h∨ ≃ h∗.) Write πR(γ) for the irreducible representation corresponding
to γ ∈ Ξ(K,Y ), and let ΠY denote all of the representations of the form π(γ).

Fix aK orbit Q on Y . Following [ABV, Definition 19.15] define a subset ΠgR(Q) of ΠY con-
sisting of those πR(γ) such that the conormal bundle to Q occurs in the characteristic cycle
of per(γ). The subset ΠgR(Q) is called a micro-packet. Arthur packets are defined in [ABV,
Definition 22.6] as certain special kinds of micro-packets arising from Arthur parameters.

Meanwhile, if we assume further that λ is hyperbolic, then according to Lusztig’s classifi-
cation of unipotent representation of graded affine Hecke algebras ([Lu1, Lu2, Lu3]), the set
Ξ(L, g(−1)) parameterizes certain unipotent representations of the split F = Qp form G′

F
of the Langlands dual group G∨. (The subset Ξ0(L, g(−1)) consisting of irreducible local
systems of Springer type parametrizes irreducible unramified representations of G′

F .) Write
πF (γ) for the irreducible unipotent representation of G′

F corresponding to γ ∈ Ξ(L, g(−1)).
Fix an L orbit O on g(−1). Just as above, we can define a micro-packet ΠgF (O) consisting of
those πF (γ) such that the conormal bundle to O occurs in the characteristic cycle of per(γ).
Vogan has proposed a definition of Arthur packets as a certain special kind of micro-packets
in the p-adic case. See [Vo] and [CFMMX].

Because φ preserves microlocal multiplicities according to Theorem 3.1, we conclude that
φ of (3.4) maps micro-packets for real groups into micro-packets for p-adic groups. More
precisely, fix ΠgR(QO) ⊂ ΠY . Then{

πF (φ(γ)) | πR(γ) ∈ ΠgR(QO)
}

(6.1)

is contained in micro-packet for G′
F parametrized by O; if φ is surjective, then this will be

the entire packet.

For example, consider G = GL(n,C). In [BST], we found occurrences of the Kashiwara-
Saito singularity in K orbits on P, and deduced the existence of reducible characteristic
cycles. In the notation above, this gives examples of micro-packets of the form ΠgR(Q) with
more than one element for GL(n,R). From the proof of Theorem 3.1, one immediately
deduces the occurrence of the Kashiwara-Saito singularity in the closure of an L orbit on
g(−1), and the existence of micro-packets for GL(n, F ) with more than one element, as
discovered by [CFK]. (It seems plausible that all of the interesting examples in [CFK] are
accounted for by matching with the real case as the choice of ordering on P varies.) In any
event, since the theory in the real case is better developed, it is interesting to study other
classical p-adic cases from this viewpoint. We would like to return to this elsewhere.

Finally, one especially interesting class of micro-packets for real groups are the special
unipotent Arthur packets of [ABV, Chapter 27]. The construction of (6.1) applied to spe-
cial unipotent packets for real classical groups should give rise to what one might call special
unipotent packets for split p-adic classical groups. It would be interesting to compare this no-
tion with the definition recently given by Ciubotaru, Mason-Brown, and Okada in [CiMBO].
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