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Generalized Harish-Chandra Modules: A New Direction

in the Structure Theory of Representations

Ivan Penkov, Gregg Zuckerman

Abstract. Let g be a reductive Lie algebra over C. We say that a g-module M is a
generalized Harish-Chandra module if, for some subalgebra k ⊂ g, M is locally k-finite

and has finite k-multiplicities. We believe that the problem of classifying all irreducible
generalized Harish-Chandra modules could be tractable. In this paper, we review the

recent success with the case when k is a Cartan subalgebra. We also review the recent de-

termination of which reductive in g subalgebras k are essential to a classification. Finally,
we present in detail the emerging picture for the case when k is a principal 3-dimensional

subalgebra.

INTRODUCTION

Deep mathematical theories are usually rooted in a combination of ideas. It is also
true that the core of mathematics, whatever it may be, consists of theories which, due to
their complexity, have taken a long time to mature. Representation theory is a perfect
illustration of both of these statements. By the end of the 20th century, representation
theory has grown to an enormous subject, with many different aspects and with complex
relations to theoretical physics, and with flavors ranging from combinatorics, through
abstract algebra, algebraic geometry, homological algebra, to harmonic analysis and
mathematical physics.

A central part of the foundation of representation theory is the Cartan-Killing clas-
sification of finite dimensional complex simple Lie algebras, or equivalently of all con-
nected reduced Dynkin diagrams. Moreover, many other fundamental results which
have shaped the face of representation theory are also classifications. Strictly speaking,
the representation theory of Lie groups or Lie algebras starts with Cartan’s classifi-
cation of irreducible finite dimensional representations, i.e. with the classification of
integral dominant weights. One may say that the skeleton of representation theory con-
sists of several explicit results and classifications such as H. Weyl’s character formula,
the formula for the multiplicity of one Verma module in another (commonly referred to
as the Kazhdan-Lusztig conjecture) the classification of Harish-Chandra modules, the
classification of simple Lie superalgebras, the constructions of Kac-Moody algebras and
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quantum groups, etc. Some classification problems have been agreed upon to be unre-
alistic: a classical example is the problem of classifying all irreducible representations
of a simple Lie algebra of rank greater than 1.

We believe that in the last decade a combination of conceptual developments has led
to a possibility to restate this latter problem, in a more restrictive but still enormously
general way, and to turn it into a tractable problem. More precisely, let g be a fixed
complex reductive Lie algebra. We are interested in the problem of classifying all irre-
ducible g-modules M which have finite multiplicities as g[M ]-modules, where g[M ] ⊂ g

is the subalgebra of all elements of g acting locally finitely on M , i.e. g ∈ g[M ], if, for
any m ∈ M , the span 〈m, g · m, g2 · m, . . . 〉C is a finite dimensional subspace of M .

The purpose of the present paper is to provide a brief review of interrelated concepts
and results which have led to this problem, to describe the status quo, and to present
some recent new results. Clearly, Harish-Chandra modules play a central role in the
subject, but we do not present them in this paper. Two fundamental references on
Harish-Chandra modules are [V] and [KV]. We also omit all proofs given elsewhere in
the literature.
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Notational conventions

The ground field is C. We set Z+ := {n ≥ 0 | n ∈ Z}. By 〈 〉Z+
, 〈 〉R+

and 〈 〉C
we denote linear span over Z+,R+, or C. The superscript ∗ indicates dual space. If l

is a Lie algebra, Z(l) stands for the center of l, and if l is a Lie subalgebra in a fixed
Lie algebra g, C(l) and N(l) denote respectively the centralizer and the normalizer of
l in g. If l is reductive in g, C(l) is also reductive in g. The signs ⊂+ and ⊃+ stand for
semidirect sum of Lie algebras. If l is a reductive Lie algebra, we set lss := [l, l].

1. General discussion and statement of the problem

Let g be a reductive Lie algebra.

Theorem 1. Let M be any g-module. Then the set
g[M ] := {g ∈ g | g acts locally finitely on M} is a Lie subalgebra of g.

This result has been proved independently and by different methods by V. Kac in
[K] and by S. Fernando in [F]. We call g[M ] the Fernando-Kac subalgebra of M , cf.
[PSZ].
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Let k ⊂ g be a Lie subalgebra. We define a (g, k)-module M as a g-module M such
that k ⊂ g[M ]. A (g, k)-module M is strict if k = g[M ]. If M is a (g, k)-module and N is a
finite dimensional irreducible k-module (or a k-type for short), we define the multiplicity
[M : N ] as the supremum of the multiplicities [M ′ : N ] for all finite dimensional k-
submodules M ′ ⊂ N . We say that M is of finite type over k if [M : N ] < ∞ for any
N , and we say that M is of infinite type over k if [M : N ] 6= 0 implies [M : N ] = ∞ for
all N . In [PS2] the following important technical result is proved.

Proposition 1. Let M be an irreducible g-module and k be a reductive in g subalgebra
with k ⊂ g[M ]. Then k acts semisimply on M , and M has either finite or infinite type
over k. Therefore, there is a canonical isomorphism of k-modules

M ∼=
⊕

W∈k̂

Homk(W, M)⊗ W,

where k̂ is the set of equivalence classes of k-types, and the isotypic components
Homk(W, M) ⊗ W are either all finite dimensional or all infinite dimensional.

We say that a subalgebra l ⊂ g is of finite type if there exists an irreducible strict
(g, l)-module M of finite type over l.

A classical theorem of Harish-Chandra implies that if a subalgebra k equals the fixed
points of an involution on g (in this, the so-called symmetric case, k is necessarily
reductive in g), then any irreducible (g, k)-module has finite type over k. Assume g is
simple and k is symmetric. In this case the only possible subalgebras l with k ⊂ l ⊂ g are
parabolic, and it is easy to see that an irreducible (g, k)-module M is either a highest
weight module or a strict (g, k)-module, i.e. in the latter case g[M ] = k. For the purpose
of this paper, we define a Harish-Chandra module as a (g, k)-module of finite type over
a symmetric subalgebra k ⊂ g.

Classically Harish-Chandra modules are defined as (g, K)-modules, where K is a
subgroup of an algebraic group G and the Lie algebra k of K is a symmetric subalgebra
of the Lie algebra g of G. This definition is closely related to the above definition,
but is not equivalent to it. In the original definition, Harish-Chandra modules have
been classified by a monumental effort of several groups of mathematicians including
R. Langlands, D. Vogan, A. Beilinson, J. Bernstein and others. The literature on
the subject is enormous; see the texts [V] and [KV] (and the references therein) for a
presentation and discussion of the classification.

Harish-Chandra modules have their roots in physics and have been recognized to
be of fundamental importance because of their specific properties, in particular their
relation to unitarizability of representations, and not because of a clear understanding
of the place of Harish-Chandra modules among general g-modules. In our opinion,
such an understanding can be based on the notion of the Fernando-Kac subalgebra,
which was not part of the original theory. Moreover, this notion enables us to consider
Harish-Chandra modules and weight modules, two seemingly unrelated subjects, from
a single point of view.
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We define a generalized Harish-Chandra g-module to be a g-module M which has
finite type over a subalgebra of g[M ]. An example of a generalized Harish-Chandra
module is a weight module (the definition is recalled in subsection 2.1 below) with
finite weight multiplicities. The theory of weight modules has developed practically
independently with that of Harish-Chandra modules and has culminated in O. Math-
ieu’s classification of irreducible weight modules with finite weight multiplicities, [M].
We present a summary of Mathieu’s result in subsection 2.2.

We believe that the classification of Harish-Chandra modules, together with Math-
ieu’s classification suggest that the problem of classifying all irreducible generalized
Harish-Chandra modules (posed in slightly different terms in [PSZ]) could be tractable.
If that is the case, this classification problem could be the ultimate substitute for the
unrealistic problem of classifying all irreducible g-modules. Closely related problems
are as follows.

A. For a given subalgebra l ⊂ g of finite type, classify all irreducible (g, l)-modules
of finite type over l.

B. For a given subalgebra k ⊂ g, reductive in g and of finite type, classify all
irreducible (g, k)-modules M of finite type over k with g[M ]red = k.

C. For a given Fernando-Kac subalgebra l ⊂ g of finite type, classify all irreducible
strict (g, l)-modules of finite type over g.

No systematic solution of any of the above problems is known except in the cases
of Harish-Chandra modules and weight modules. In this paper we give a brief account
of some of the developments which have led naturally to those problems. In section 2
below, we present a summary of results on weight modules. In section 3, we summarize
some recent results of [PS2] and [PSZ] on the description of Fernando-Kac subalgebras
of finite type and related subjects. In particular we give an explicit description of any
reductive in g subalgebra k which is the reductive part of a Fernando-Kac subalgebra
l ⊂ g of finite type.

In section 4, we discuss the case when g is simple and k = sl(2) is a principal sl(2)-
subalgebra. As the principal sl(2)-subalgebra is never symmetric, unless g ∼= sl(2) or
sl(3), the corresponding (g, k)-modules of finite type over k are interesting objects of
study in the new theory of generalized Harish-Chandra modules. Their existence is
ensured by a result of [PSZ], see Theorem 4 below. A careful study of this result in
the case when k is a principal sl(2)-subalgebra, shows that the irreducible strict (g, k)-
modules M constructed in [PSZ] are in some sense generic, and not every given k-type
occurs in some module M .

In the present paper, we prove two new results: that any infinite dimensional irre-
ducible (g, k)-module of finite type over k is strict, and that any fixed k-type Z occurs in
some irreducible (g, k)-module as the k-type of minimal dimension. The second result
suggests that some aspects of Vogan’s theory of minimal k-types may carry over to
generalized Harish-Chandra modules.
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2. The case when h ⊂ g[M ]: irreducible weight modules

The case when h ⊂ g[M ] is an important case in which much more is known than in
the general case. Below we present a very brief survey of known results.

2.1. General invariants. In this subsection M is an arbitrary irreducible g-module
such that h ⊂ g[M ]. We do not assume that M is of finite type over g[M ] or over h.
Let ∆ denote the roots of g with respect to h, and ∆g[M ] denote the roots of g[M ] with
respect to h.

Note that if h ⊂ g[M ], then g[M ] has a unique reductive part g[M ]red (which is the
unique maximal reductive subalgebra of g[M ] and is automatically reductive in g), and
by Proposition 1, g[M ]red acts semisimply on M . Consequently, h acts also semisimply
on M and as an h-module M has the decomposition

(1) M =
⊕

ν∈h∗

Mν ,

where the weight spaces Mν := {m ∈ M | h ·m = ν(h) ·m, ∀h ∈ h} are all either finite
dimensional or infinite dimensional. A g-module which admits a decomposition (1) is
by definition a weight g-module. We set suppM := {ν ∈ h∗ | Mν 6= 0}. Let ΓM denote
the submonoid of 〈∆〉Z generated by ∆\∆g[M ]. We define the M -decomposition of ∆,
or the shadow decomposition of ∆ corresponding to M , to be the decomposition

(2) ∆ = ∆I
M ∪ ∆F

M ∪ ∆+
M ∪ ∆−

M ,

where

∆I
M := {α ∈ ∆ | α ∈ 〈ΓM 〉R+

,−α ∈ 〈ΓM 〉R+
},

∆F
M := {α ∈ ∆ | α /∈ 〈ΓM 〉R+

,−α /∈ 〈ΓM 〉R+
},

∆+
M := {α ∈ ∆ | α /∈ 〈ΓM 〉R+

,−α ∈ 〈ΓM 〉R+
},

∆−
M := {α ∈ ∆ | α ∈ 〈ΓM 〉R+

,−α /∈ 〈ΓM 〉R+
}.

In particular, the M -decomposition of ∆ is determined only by g[M ]. The decomposi-
tion (2) induces a decomposition of g,

g = (gI
M + gF

M ) ⊕ g+
M ⊕ g−M ,

where
gI

M := h ⊕ (
⊕

α∈∆I

M

gα), gF
M := h ⊕ (

⊕

α∈∆F

M

gα),

g±M :=
⊕

α∈∆±

M

gα.
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It follows from the main result of [DMP] that pM := (gI
M + gF

M ) ⊕ g+
M is a parabolic

subalgebra whose semisimple part is the direct sum [gI
M , gI

M ] ⊕ [gF
M , gF

M ].
Note that the shadow decomposition of ∆ corresponding to M depends only on

g[M ]. In general it is not true that the shadow decomposition reconstructs g[M ]. One
can only show that

g[M ] = (gF
M + (gI

M ∩ g[M ])) ⊕ g+
M ,

and the results of [PS2] and [PSZ] imply that there are irreducible weight modules with
the same shadow decomposition and different Fernando-Kac subalgebras, see subsection
3.3 below.

The shadow decomposition reconstructs “the shape” of suppM , more precisely it
reconstructs supp M up to adding the support of an arbitrary irreducible (finite di-
mensional) gF

M ⊕ g+
M -submodule of M . Indeed, a direct argument, see [PS1], shows

that
suppM = suppMF + ΓM ,

where MF is any irreducible gF
M ⊕ g+

M -submodule of M .
In general, irreducible weight modules M are not generalized Harish-Chandra mod-

ules (as they are not necessarily of finite type over g[M ]) and no classification of irre-
ducible weight modules is available. The following theorem provides a reduction, which
can be extended to a classification in the case when M has finite h-type.

Theorem 2. M has a unique irreducible pM -submodule M IF on which g+
M acts triv-

ially. Furthermore, there is an isomoprhism of (gI
M + gF

M )-modules M IF ≃ M I ⊗MF ,
where M I is an irreducible gI

M -module with gI
M = (gI

M )I
MI and MF is an irreducible

finite dimensional gF
M -module. Finally, M is the unique irreducible quotient of the

induced g-module U(g)
⊗

U(pM )

M IF .

The proof of Theorem 2 see in [DMP].
Theorem 2 reduces the study of an arbitrary irreducible g-module M with h ⊂ g[M ]

to the study of the irreducible gI
M -module M I . The latter module is a cuspidal gI

M -
module, which by definition means that its shadow decomposition is trivial in the sense
that ∆I = (∆I)I

MI . Cuspidal modules arise in Harish-Chandra module theory, for if g

is simple, any Harish-Chandra module M for which h ⊂ g[M ] and such that M is not
a highest (or a lowest) weight module, is necessarily a cuspidal g-module.

Mathieu’s classification result, which we describe in the next subsection, provides
an explicit classification of all cuspidal g-modules with finite dimensional weight spaces
(i.e. of finite type over h), and via Theorem 2 this yields a complete classification
of all irreducible generalized Harish-Chandra modules M such that h ⊂ g[M ] and
M has finite type over h. No classification of irreducible generalized Harish-Chandra
modules which have infinite type over h is known, except when they are Harish-Chandra
modules.

2.2 Fernando’s theorem and Mathieu’s classification. In [F], S. Fernando
constructed the shadow decomposition (2) of any irreducible weight module M of fi-
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nite type over h, proved Theorem 2 in that case, and showed that the Fernando-Kac
subalgebra of M is determined by the shadow decomposition via the formula:

g[M ] = gF
M ⊕ g+

M .

In particular, if M is cuspidal, and of finite type over h, we have g[M ] = h. Moreover, in
this case all weight spaces Mν are immediately seen to be of the same dimension d; by
definition, M is called then a cuspidal module of degree d. In [F] Fernando established
also the following key result.

Theorem 3. The reductive Lie algebra g admits an irreducible cuspidal weight module
of finite type over h if and only if all simple components of gss are of type A and C.

The further trivial observation that any irreducible cuspidal module over g is isomor-
phic to a tensor product of cuspidal irreducible modules over the simple components of
gss with a 1-dimensional module over the center of g, reduces the problem of classifying
all cuspidal irreducible g-modules of finite type over h to the same problem for the Lie
algebras sl(n + 1) and sp(2n). This latter problem was solved completely in Mathieu’s
breakthrough paper [M].

Mathieu’s main idea is that irreducible cuspidal weight modules come in coherent
families, each family being determined by a finite dimensional, irreducible represen-
tation of a corresponding maximal reductive root subalgebra. The classification then
reduces to describing a continuous parameter (the position of the module within the
family) and a mixed (partly continuous, partly discrete) parameter (the highest weight
of an irreducible representation of a reductive Lie algebra).

In the rest of this section g = sl(n + 1), sp(2n). Following Mathieu we call a
(reducible) weight g-module M =

⊕
ν∈h∗

Mν a coherent family of degree d if supp M =

h∗, dimMν = dimMµ = d, and for any u in the centralizer of h in U(g), the function
λ ∈ h∗ 7→ tr u |Mλ is a polynomial in λ. M is called semisimple if it is semisimple as
a g-module.

A fiber of the family M is a g-submodule M′ of the form
⊕

γ∈〈∆〉Z

Mx+γ for some

x ∈ h∗. Clearly M is the direct sum of all its fibers. By definition, M is an irreducible
coherent family if at least one fiber of M is irreducible (then necessarily almost any
fiber of M is irreducible, see Lemma 4.7 in [M]).

Mathieu’s result is that for each irreducible cuspidal weight module M of degree
d, there is a unique (up to isomorphism) semisimple coherent family M̃ of degree d

for which M is a fiber of M̃ . Furthermore, M̃ has a (non-unique) irreducible infinite
dimensional highest weight submodule L(λM ) (with respect to a fixed Borel subalgebra
of g) which necessarily has the property that the dimensions of its weight spaces are
bounded. More generally we will say that a weight module M has bounded multiplicities
if, for some ℓ, dim Mν < ℓ for all ν ∈ supp M .1

1Mathieu uses the term admissible weight module but, since this term is a synonym for a (g, k)-

module of finite type in Harish-Chandra module theory, we prefer the term weight module with
bounded multiplicities.
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The classification is based on three main facts:

- that L(λM ) determines M̃ up to isomorphism; in what follows we will write

also L̃(λM ) for M̃ ;

- that the correspondence L(x) 7→ L̃(x) is defined for any infinite dimensional
highest weight module L(x) with bounded multiplicities;

- that one can describe explicitly all weights x for which dimL(x) = ∞ and
L(x) has bounded multiplicities.

Here is, for instance, an explicit description of all such weights x for g = sp(2n). Fix
a basis ε1, . . . , εn of h∗ such that ε1−ε2, . . . , εn−1−εn, 2εn is a system of simple roots.

Proposition 2. ( [M], Lemma 9.1) Let g = sp(2n). If x =
∑
i

xiεi and

dim L(x) = ∞, then L(x) has bounded multiplicities if and only if xi ∈ Z + 1
2 and

x1 > x2 > . . . > xn−1 > |xn|.

For g = sp(2n) all weights x with the above property form a discrete set. For
g = sl(n + 1) this is no longer true and the description is slightly more complicated,
see [M].

Mathieu’s classification can now be stated from the opposite end as follows.

1. Determine the highest weights x of all infinite dimensional irreducible modules
L(x) with bounded multiplicities. Define two such weights x and x′ to be equivalent if

L̃(x) ≃ L̃(x′). Then the set of equivalence classes parametrizes all semisimple coherent
families. In particular, for g = sp(2n) two weights x = Σxiεi and x′ = Σx′

iεi as above
are equivalent if and only if x′

n = ±xn.

2. Let x̃ be the equivalence class of a weight x as in Step 1, and let M = L̃(x).
Describe the subset in h∗/〈∆〉Z for which the corresponding fibers on M are irreducible.
Mathieu gives an explicit combinatorial description of this set in terms of x̃ and shows
in particular that its complement (corresponding to reducible fibers) is always the union
of precisely n+1 codimension 1 subsets in h∗/〈∆〉Z for g = sl(n+1), and respectively n
codimension 1 subsets for g = sp(2n). In the latter case, the corresponding conditions
on η = (η1, . . . , ηn) ∈ h∗/〈∆〉Z are simply ηi /∈ Z + 1

2
.

3. Finally, in each case a weight x as above determines a natural maximal reductive
root subalgebra g′x ⊂ g for which the weight x is dominant. If g = sl(n + 1), then g′x
is always isomorphic to gl(n), while for g = sp(2n), we have g′x = o(2n). Furthermore,

the degree d of the coherent family L̃(x) is computed in terms of x and g′x as follows:

- for g = sp(2n), d = 1
2n−1 dim Lg′

x
(x + ε), where ε =

∑
i

εi;

- for g = sl(n + 1), d = dim Lg′
x
(x) unless the infinitesimal character of L(x)

is regular integral; in the latter case d is an alternating sum of dimensions of
finite dimensional g′x-modules.
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The details are in [M].

Mathieu’s classification has been generalized by D. Grantcharov [G] to the case of the
Lie superalgebra sl(n/1), and by I. Dimitrov [Di] to the case of the infinite dimensional
Lie algebra gl(∞).

3. Fernando-Kac subalgebras of finite type

A part of a future classification of irreducible generalized Harish-Chandra modules
should be a good understanding of their respective Fernando-Kac subalgebras. The
problem of classifying all Fernando-Kac subalgebras and all Fernando-Kac subalgebras
of finite type of a given reductive Lie algebra g has been addressed in the recent papers
[PS2] and [PSZ]. Below we present a summary of the results.

3.1. General Fernando-Kac subalgebras. Little is known about a general
description of Fernando-Kac subalgebras of irreducible g-modules which are not gener-
alized Harish-Chandra modules. In [PS2] the following two results are established.

1. An example of a subalgebra of sl(n) which is not a Fernando-Kac subalgebra is
constructed.

2. It is proved that any subalgebra l ⊂ g which contains a Cartan subalgebra of g

is a Fernando-Kac subalgebra. The proof is an explicit D -module construction which
provides a strict irreducible (g, l)-module L. This result, together with Theorem 8
below, implies that not every Fernando-Kac subalgebra is of finite type.

3.2. A description of primal subalgebras. In [PSZ] a primal subalgebra of g is
defined as a reductive in g subalgebra k for which there exists an irreducible generalized
Harish-Chandra module M such that k is a maximal reductive subalgebra of g[M ]. A
main result of [PSZ] is the following theorem.

Theorem 4. A reductive in g subalgebra k is primal if and only if k∩C(kss) is a Cartan
subalgebra of C(kss), or equivalently if C(k) = Z(k).

The proof of Theorem 4 is also an explicit D-module construction which yields an
irreducible generalized Harish-Chandra module M for which k is a maximal reductive
subalgebra in g[M ]; see Theorems 4.3 and 4.4 in [PSZ].

Theorem 4 gives an explicit description of all primal subalgebras of g. Indeed, recall
that all semisimple subalgebras of a semisimple, or equivalently reductive, Lie algebra
have been classified in the fundamental papers [D1] and [D2] of E. Dynkin. Then,
Theorem 4 implies that for any semisimple subalgebra k′ ⊂ g, the primal subalgebras
k with kss = k′ are precisely all direct sums k′ ⊕ hC(k′), where hC(k′) is any Cartan
subalgebra of C(k′). In particular, Theorem 4 implies that any semisimple subalgebra
of g is the semisimple part of a Fernando-Kac subalgebra of finite type. Another
corollary of Theorem 4 is that every maximal proper subalgebra l ⊂ g is a Fernando-
Kac subalgebra of finite type. For the proof, as well as for other related corollaries of
Theorem 4, see [PSZ].
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3.3. Fernando-Kac subalgebras of finite type. In general, the problem of
describing all Fernando-Kac subalgebras of finite type of a given reductive (or simple)
Lie algebra g is open. A complete description of all Fernando-Kac subalgebras of g is
known under various additional conditions. The following general theorem is proved in
[PSZ].

Theorem 5. Let l ⊂ g be a Fernando-Kac subalgebra of finite type.

1. N(l) = l; hence l is an algebraic subalgebra of g.

2. There is a decomposition l = nl⊂+ lred, unique up to an inner automorphism of l,
where lred is a (maximal) subalgebra of l reductive in g.

3. Any irreducible (g, l)-module M of finite type over l has finite type over lred, and
lred acts semisimply on M .

4. C(lred) = Z(lred) and Z(lred) is a Cartan subalgebra of C(lss).

5. l ∩ C(lss) is a solvable Fernando-Kac subalgebra of finite type of C(lss).

The following theorem provides a complete description of all solvable Fernando-Kac
subalgebras of finite type.

Theorem 6. A solvable subalgebra s ⊂ g is a Fernando-Kac subalgebra of finite type
if and only if s contains a Cartan subalgebra of g and its nilradical ns is the nilradical
of a parabolic subalgebra of g whose simple components are all of type A and C.

For the proof see Proposition 3.2 in [PSZ].
For g = gl(n), sl(n) the following theorem provides a complete description of all

reductive Fernando-Kac subalgebras of finite type.

Theorem 7. (Theorem 5.1 in [PSZ]) A reductive in g = gl(n), sl(n) subalgebra k is a
Fernando-Kac subalgebra if and only if it is primal. (An explicit description of primal
subalgebras is provided by Theorem 4).

For simple Lie algebras other than of type A, it is not known whether every primal
subalgebra is a Fernando-Kac subalgebra of finite type. The following proposition is
proved in [PS2] and provides a partial answer to this question.

Proposition 3. Let g be simple of type other than Bn, n ≥ 3, and F4. Then any
reductive root subalgebra (which is automatically primal by Theorem 4) is a Fernando-
Kac subalgebra of finite type.

We complete this section by a description of all Fernando-Kac subalgebras of finite
type of g = gl(n), sl(n) which are root subalgebras. Let g = gl(n), sl(n), h be a fixed
Cartan subalgebra, and l ⊃ h be a root subalgebra of g. Then l is determined by its
subset of roots ∆(l) ⊂ ∆. Let k = lred and l = k⊃+ n. Fix an arbitrary Borel subalgebra
b ⊂ g containing h and let N be any finite dimensional semisimple k-module. Denote by
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Sk(N) the set of weights of all k∩b-singular vectors in N , and put Ck(N) := 〈Sk(N)〉Z+
.

The following theorem is proved in [PSZ] (Theorem 5.8).

Theorem 8. A root subalgebra l = k⊃+ n = h of g = gl(n), sl(n) is a Fernando-Kac
subalgebra of finite type if and only if Ck(g/l) ∩ Ck(n) = {0}.

It is impossible not to notice that the condition in Theorem 8 is a generalization
of a parabolic or “triangular” decomposition: if k = h, it means precisely that n is
the complement of a parabolic subalgebra, cf. Theorem 6 above. It would be very
interesting to find the analog of Theorem 8 for a general simple Lie algebra.

Finally, note that Theorem 8 implies that any reductive root subalgebra k of g =
gl(n), sl(n) is a Fernando-Kac subalgebra of finite type. Furthermore, it is easy to
check that any strict (g, k)-module M is cuspidal and is necessarily of infinite type over
h unless k = h. In particular this shows, as claimed in subsection 2.1 above, that in
general the shadow decomposition of an irreducible g-module M does not determine
the subalgebra g[M ] ⊂ g.

4. A case when h 6⊂ g[M ]: a principal sl(2)-subalgebra

In this section, we consider a specific, yet broad enough, class of generalized Harish-
Chandra modules which has not been discussed in the literature.

According to Theorem 4, if g is simple and k ⊂ g is a simple subalgebra with
C(k) = 0, then k is primal. If, in addition, we know that any intermediate subalgebra
l, k ⊂ l ⊂ g, is reductive, Theorem 4 implies that k is itself a Fernando-Kac subalgebra
of finite type. An important example of such a situation is when k is a principal 3-
dimensional subalgebra. More precisely, for any simple g, an injective homomorphism
sl(2) → g is called principal if its image contains a regular nilpotent element. Principal
sl(2)-subalgebras of simple Lie algebras have been studied in detail by [D2] and [Ko]. In
particular, it is true that every intermediate subalgebra k ⊂ l ⊂ g (where k is a principal
sl(2)-subalgebra) is semisimple, see Proposition 5 below. Hence k is a Fernando-Kac
subalgebra of finite type, and certain irreducible strict (g, k)-modules of finite type have
been constructed in [PSZ]. In the present paper, we prove the following more detailed
result.

Theorem 9. Let g be simple, of rank greater or equal to 2, and k ⊂ g be a principal
sl(2)-subalgebra.

(i) Any infinite dimensional irreducible (g, k)-module of finite type over k is strict.

(ii) Let Z be a fixed k-type. There exists an irreducible infinite dimensional (and
thus strict) (g, k)-module X of finite type over k such that Z occurs in X with
multiplicity 1 and for any other k-type W which occurs in X, dimW > dim Z.

In the next subsection we prove (i). To prove (ii) we need to recall some basic facts
about a cohomological method of constructing (g, k)-modules. We do this in subsection
4.2. Finally, we present the proof of (ii) in subsection 4.3.
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4.1. A result about finite dimensional modules and its application to
generalized Harish-Chandra modules. J. Willenbring and the second named
author recently proved the following fact.

Proposition 4. Let k be an sl(2)-subalgebra of a semisimple Lie algebra s, none of
whose simple factors is isomorphic to sl(2). Then there exists a positive integer b(s),
such that for every irreducible finite dimensional s-module V , there exists an injection
of k-modules W → V , where W is an irreducible k-module of dimension less than b(s).

A more general statement will be proved in [WZ]. The proof uses invariant theory.
To relate Proposition 4 with the statement of Theorem 9 (i), we recall the notion of

a stem subalgebra. In a slight modification of the original terminology of [D2], a stem
subalgebra is defined in [PSZ] as a subalgebra s of a semisimple Lie algebra r which is
not contained in a root subalgebra of r. The following result is established in [D2] (see
p. 160).

Proposition 5. Let s ⊂ r be a stem subalgebra. Then any intermediate subalgebra s′,
s ⊂ s′ ⊂ r, is a semisimple stem subalgebra. If r is simple and l is a principal sl(2)-
subalgebra of r, then k is a stem subalgebra of r, and for any intermediate subalgebra
s′, no simple factor of s′ is isomorphic to sl(2).

Propositions 4 and 5 imply Theorem 9 (i). Indeed, consider any infinite dimensional
irreducible (g, k)-module M of finite type, where g is simple and k is a principal sl(2)-
subalgebra. By Proposition 5, g[M ] is a semisimple proper subalgebra of g, and no
simple factor of g[M ] is isomorphic to sl(2). Theorem 9 (i) is then equivalent to the
claim that k = g[M ]. Assume, to the contrary, that the inclusion k ⊂ g[M ] is proper.
Then M has finite type over g[M ], and as dimM = ∞, infinitely many g[M ]-types
occur in M . Now Proposition 4 implies that the multiplicity of some k-type W0 with
dim W0 < b(g[M ]) is infinite in M . This proves Theorem 9 (i).

4.2. Generalities on cohomological induction. Let t ⊂ k ⊂ g be a triple of re-
ductive Lie algebras such that t is reductive in both k and g and k is reductive in g. Let
C(g, k) (respectively, C(g, t)) be the category of (g, k)-modules (resp. (g, t)-modules)
which are semisimple as k-modules (resp. t-modules). Note that, by Proposition 1, ev-
ery irreducible (g, k)-module (resp. (g, t)-module) is an object of C(g, k) (resp. C(g, t)).
Furthermore, it is well known that

Γk,t : C(g, t) C(g, k)

V  ΣW⊂V,dim W=1,dimU(k)·W<∞ W

is a well-defined left exact functor. We denote by RiΓk,t its i-th right derived functor.
The following theorems summarize some important properties of the functors RiΓk,t.

Theorem 10. [EW] Let M be an object of C(g, t).

(i) RiΓk,t(M) = 0 for i > dim k − dim t.
(ii) If M has finite type over t, then RiΓk,t(M) is a (g, k)-module of finite type over

k for every i ≥ 0.
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(iii) If M has finite type over t, then for each i ≤ dim k − dim t, there is a natural
isomorphism of (g, k)-modules

RiΓk,t(M) ∼= (Rdim k−dim t−iΓk,t(M
∗
t ))∗k ,

where N∗ denotes the g-module dual to a g-module N , and N∗
t (respectively,

N∗
k ) stands for the maximal submodule of N∗ which is an object of C(g, t) (resp.,

C(g, k)).

Theorem 11. [V] Suppose M is an object of finite type in C(g, t) and W is an irre-
ducible finite dimensional k-module. Then

∑

i

(−1)i dimHomk(W, RiΓk,t(M)) =

∑

i

(−1)i dimHomt(W ⊗ Λi(k/t), M),

where Λi stands for i-th exterior power.

Finally, assume that t is abelian and let h be a Cartan subalgebra of g with h ⊃ t.
Fix a Borel subalgebra b ⊂ g with h ⊂ b and let M(λ) denote the Verma module
U(g)

⊗
U(b)

Cλ, where Cµ is the 1-dimensional h-module on which h acts via µ : h → C.

Then, for each i ≥ 0, we define the family of (g, k)-modules Ai(λ) by setting

Ai(λ) := RiΓk,t(M(λ)).

In general, Ai(λ) need not be of finite type over k as M(λ) may not be of finite type
over t. However, to ensure this latter condition, it suffices to assume that t contains
an element with strictly positive real eigenvalues in n := [b, b]. Under this assumption,
the construction of Ai(λ) is a close analog of a construction in Harish-Chandra module
theory known as cohomological induction, cf. [KV].

4.3. Proof of Theorem 9 (ii). Now let k ⊂ g be a principal sl(2)-subalgebra,
and {e, h, f} be a standard basis for k. Then h is a regular semisimple element in g,
and adh : g → g has even integral eigenvalues, since as a k-module g is isomorphic to a
direct sum of irreducible odd dimensional modules, see [D2]. We set ρk := α

2 , where α
is the root of k with root space 〈e〉C.

Let t := 〈h〉C. Then h := C(t) is a Cartan subalgebra of g with h ⊃ t. Define
the Borel subalgebra b̄ ⊃ h as the sum of all nonnegative eigenspaces of adh, and put
n̄ := [b̄, b̄]. Then n̄ = 〈e〉C + n̄ ∩ k⊥, where ⊥ stands for orthogonal complement with
respect to the Killing form on g. Furthermore, for any weight x of n̄ ∩ k⊥ as a module
over 〈h〉C, x(h) is a positive even integer. Finally, let b be the Borel subalgebra opposite
to b, i.e. b ∩ b̄ = h.
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Consider the (g, k)-modules A0(λ), A1(λ) and A2(λ) defined as above (by generalized
cohomological induction) for the fixed t, k, b and h. As the eigenvalues of ad−h on
n = [b, b] are positive, the g-modules A0(λ), A1(λ), A2(λ) have finite type over k. We
claim first that A0(λ) = 0 for any λ. Indeed, by definition A0(λ) = Γk,t(M(λ)) and thus
k, b ⊂ g[Γk,t(M(λ))]. Since k is a stem subalgebra, k and b generate g, i.e. g[A0(λ)] = g.
Hence A0(λ) = 0 as M(λ) has no nontrivial integrable g-submodules.

We claim next that A2(λ) = 0 for any nonintegral λ. This follows from Theorem 10
(iii), once we check that Γk,t(M(λ)∗t ) = 0. We easily see that M(λ)∗t = M(λ)∗h. Since λ

is nonintegral, M(λ) has no finite dimensional nontrivial quotient g-module and thus
M(λ)∗h has no nontrivial integrable g-submodule.

The following proposition is a statement about the structure of A1(λ) as a k-module
and is proved by a non-difficult computation based on Theorem 11. If µ ∈ t∗ is a
dominant integral weight for k, let W (µ) be the irreducible finite dimensional k-module
with highest weight µ. For ν ∈ t∗, let Pn̄∩k⊥(ν) be the multiplicity of ν in the symmetric
algebra on n̄ ∩ k⊥.

Proposition 6. For any dominant integral weight µ for k and for any non g-integral
λ ∈ h∗, we have

(3) dimHomk(W (µ), A1(λ)) = Pn̄∩k⊥(µ − λ |t +2ρk) − Pn̄∩k⊥(−µ − λ |t).

Note that if 0 6= λ(h) ∈ Z+, then the second term on the right hand side of (3)
vanishes. This leads to the following corollary.

Corollary 1. Suppose λ(h)− 2 = n ∈ Z+. Then W (nρk) occurs with multiplicity 1 in
A1(λ), and m ≥ n whenever W (mρk) occurs in A1(λ).

The proof of Theorem 9(ii) is now immediate. Let the highest weight of Z be nρk

for n ∈ Z+. Choose λ ∈ h∗ so that λ is not g-integral but such that λ(h) − 2 = n.
By Corollary 1, Z ∼= W (nρk) occurs with multiplicity 1 in A1(λ) and m > n whenever
W (mρk) occurs in A1(λ). Define X as an irreducible quotient of the g-submodule of
A1(λ) generated by Z. Then Z occurs with multiplicity 1 in X and m > n whenever
W (mρk) occurs in X .

As λ is not g-integral, the infinitesimal parameter of M(λ), and hence (see [V]) of
A1(λ) and X , is not integral. Thus X is infinite dimensional. �

Remark. If we fix n and set λ(h)−2 = n, then λ still has ℓ−1 complex parameters
(ℓ = dim h). It will be quite interesting to determine the g-module structure of A1(λ)
as λ varies continuously with λ(h) fixed. Will A1(λ) have finite length for all λ ? This
is known (see [V]) to be true if g = sl(3).
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Birkhäuser, Boston (1981).

[WZ] J. Willenbring, G. Zuckerman, Work in progress.

Department of Mathematics

Yale University

New Haven, CT 06520

E-mail Address: penkov@math.yale.edu

Permanent Address:

Department of Mathematics

University of California at Riverside

Riverside, CA 92521



16

Department of Mathematics

Yale University
New Haven, CT 06520

Email Address: gregg@math.yale.edu


