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GENERALIZED HARISH-CHANDRA MODULES
WITH GENERIC MINIMAL ¢TYPE

IvAN PENKOV AND GREGG ZUCKERMAN

ABSTRACT. We make a first step towards a classification of simple generalized Harish-
Chandra modules which are not Harish-Chandra modules or weight modules of finite type.
For an arbitrary algebraic reductive pair of complex Lie algebras (g, £), we construct, via
cohomological induction, the fundamental series F'(p, E) of generalized Harish-Chandra
modules. We then use F'(p, E) to characterize any simple generalized Harish-Chandra
module with generic minimal &type. More precisely, we prove that any such simple (g, £)-
module of finite type arises as the unique simple submodule of an appropriate fundamental
series module F*(p, E) in the middle dimension s. Under the stronger assumption that £
contains a semisimple regular element of g, we prove that any simple (g, €)-module with
generic minimal €type is necessarily of finite type, and hence obtain a reconstruction
theorem for a class of simple (g, £)-modules which can a priori have infinite type. We also
obtain generic general versions of some classical theorems of Harish-Chandra, such as the
Harish-Chandra admissibility theorem. The paper is concluded by examples, in particular
we compute the genericity condition on a &-type for any pair (g, €) with € ~ s£(2).

INTRODUCTION

The goal of the present paper is to make a first step towards a classification of
simple generalized Harish-Chandra modules which are not Harish-Chandra modules or
weight modules of finite type. This work is part of the program of study of generalized
Harish-Chandra modules laid out in [PZ]. Let g be a semisimple Lie algebra. A simple
generalized Harish-Chandra module is by definition a simple g-module with locally
finite action of a reductive in g subalgebra ¢ C g and with finite -multiplicities. In
the classical case of Harish-Chandra modules, the pair (g, ) is in addition assumed to
be symmetric. In a recent joint paper with V. Serganova [PSZ], we have constructed

new families of generalized Harish-Chandra modules; however, no general classification
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is known beyond the case when the pair (g, ) is symmetric and the case when ¢ is a
Cartan subalgebra of g. The first case is settled in the well-known work of R. Langlands
[L2], A. Knapp and the second named author [KZ], D. Vogan and the second named
author [V2], [Z], A. Beilinson - J. Bernstein [BB] and I. Mirkovic [Mi]; the second case
is settled in a more recent breakthrough by O. Mathieu [M]. Some low rank cases of
certain special non-symmetric pairs (g, %) (where £ is not a Cartan subalgebra) have

been settled by G. Savin [Sa].

In this paper, we consider simple generalized Harish-Chandra modules which have
a generic minimal g-type for some arbitrary fixed reductive pair (g, ) (the precise def-
initions see in Section 1 below). One of our main results is the construction of a series
of (g, ¥)-modules, which we call the fundamental series (it generalizes the fundamen-
tal series of Harish-Chandra modules), and furthermore the theorem that any simple
generalized Harish-Chandra module with generic minimal €-type is a submodule of the
fundamental series. We refer to the latter result as the first reconstruction theorem
for generalized Harish-Chandra modules. This theorem is based on new results on the
n-cohomology of a simple generalized Harish-Chandra module and on the vanishing
of cohomological induction except in the middle dimension (see Theorem 1 and 2 in
Section 1 below). Under a stronger assumption on the pair (g, ), we also prove a recon-
struction theorem for simple (g, £)-modules which may a priori have infinite type (we
refer to it as the second reconstruction theorem) and in particular a new generic general
version of Harish-Chandra’s admissibility theorem, see Theorem 4 and Corollary 2 in

Section 1.

Here is a very brief historical perspective. In the 1950’s, the classical Borel-Weil-
Bott theorem opened a new era in representation theory, relating the simple finite
dimensional representations of a semisimple Lie algebra g with the, possibly higher,

cohomology of homogeneous line bundles on the flag variety of a complex algebraic
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group G with Lie algebra g, [S], [Bo]. Soon thereafter, B. Kostant proved a version of the
Borel-Weil-Bott theorem in which the computation of sheaf cohomology was reduced to
Lie algebra cohomology, [Ko|. The work of R. Langlands and W. Schmid extended some
of the results of Borel-Weil, Bott, and Kostant to certain infinite dimensional Harish-
Chandra modules, [L1], [Sc|]. In a further step, cohomological induction emerged as
an infinitesimal counter-part to sheaf cohomology, and led to the construction of a
broader class of Harish-Chandra modules, [V2], [Z], [EW]. In contrast to the Borel-
Weil-Bott theorem, where every simple finite dimensional g-module appears as a higher
cohomology group, not every simple Harish-Chandra module appears as a submodule
of a module cohomologically induced from a proper compatible parabolic subalgebra
(the definition of a compatible parabolic subalgebra see in section 1 below). This
observation applies also to generalized Harish-Chandra modules, and therefore the
study of the fundamental series is only a first step towards a classification of simple
generalized Harish-Chandra modules. Moreover, the construction and characterization
of the fundamental series is merely a branch of a tree whose trunk is the classical

Borel-Weil-Bott theorem.

One more common feature of this present work with the work of Armand Borel is
that we study general (non-symmetric) reductive pairs (g, ), which have appeared in

Borel’s work on the topology of homogeneous spaces, [B].

The paper is organized as follows. In section 0 we fix the notation. In section 1
we present a minimum of background material and then state the main new results.
Theorems 1-4 and Corollaries 1-2. Sections 2 and 3 are the technical core of the paper;
in section 2 we prove Theorem 1, and in section 3 we prove all other results of section
1. Unfortunately, the proofs are not self-contained as our work relies heavily on the
machinery developed by D. Vogan in the course of his fundamental work [V2]. We

state all results in the generality we need them but we often refer to [V2] for the proof
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if it does not require essential modifications. Finally in section 4, we discuss some
particular cases in our construction, and in particular consider in more detail the case
when ¢ is a sf(2)-subalgebra. In this case, the genericity condition on a ¢-type reduces
to a simple explicit inequality.

Acknowledgement. We thank the referee for pointing out certain inaccuracies. The
first named author gratefully acknowledges support from the NSF, the Max Planck

Institute for Mathematics in Bonn and Yale University.

0. CONVENTIONS

The ground field is C, and if not explicitly stated otherwise, all vector spaces and
Lie algebras are defined over C. By definition, N = {0,1,2,...}. The sign ® denotes
tensor product over C. The superscript * indicates dual space. The sign & stands
for semidirect sum of Lie algebras (if [ = '@ [”, I’ is an ideal in [ and [" ~ [/I').
H (I, M) stands for the cohomology of a Lie algebra [ with coefficients in an l-module
M, and M' = HO(I, M) stands for space of l-invariants of M. A°( ) and S°( ) denote
respectively the exterior and symmetric algebra.

If [ is a Lie algebra, then U([) stands for the enveloping algebra of [ and Zy
denotes the center of U(l). We identify [-modules with U ([)-modules. It is well known
that if [ is finite dimensional and M is a simple [-module (or equivalently a simple U([)-
module), Zy(;y acts on M via a Zy(-character, i.e. via an algebra homomorphism
O : Zyy — C. By Z(I) we denote the center of the Lie algebra I.

If [is a Lie algebra, M is an [-module, and w € [*, we put
MY :={m € M|l-m = w()m V¢ € [}. We call M a weight space of M and we say

that M is an [-weight module if
M= M~
wel*

By suppiM we denote the set {w € [*|M* # 0}.
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A finite multiset is a function f from a finite set D into N. A submultiset of f is a
multiset f’ defined on the same domain D such that f'(d) < f(d) for any d € D. For
any finite multiset f, defined on an additive monoid D, we can put py := 3 > f(d)d.

deD

If M is an [-weight module as above, and dim M < oo, M determines the finite multiset

chiM which is the function w +— dim M* defined on supp/M.

1. STATEMENT OF RESULTS

1.1. Reductive pairs, compatible parabolics and generic ¢-types. Let g be a
finite dimensional semisimple Lie algebra and £ C g be an algebraic subalgebra which
is reductive in g. We fix a Cartan subalgebra t of £ and a Cartan subalgebra h of g such
that t C . (If (g,®) is a symmetric pair, then b is unique and is called a fundamental
Cartan subalgebra. An important feature of the general case we consider is that b is
no longer unique). By A we denote the set of h-roots of g, i.e. A = {suppyg}\{0}.
Note that, since t is reductive in g, g is a t-weight module. Therefore we can set
A¢ = {suppig}\{0}. Note also that the R-span of the roots of g fixes a real structure
on h*, whose projection onto t* is a well-defined real structure on t*. In what follows,
we will denote by Re the real part of an element A € t*. We fix also a Borel subalgebra
by C £ with by D t. Then by = t 3 ng, where ng is the nilradical of bg. We set p := pchn, -
The quintet g, b, &, be, t will be fixed throughout the paper. By W, we denote the Weyl
group of €.

As usual, we will parametrize the characters of Zy(4) via the Harish-Chandra ho-
momorphism. More precisely, if by is a given Borel subalgebra of g with by D b (bg
will be specified below), the Zi;(4)-character corresponding to x € h* via the Harish-

Chandra homomorphism defined by by will be denoted by 6,, (¢ is then the trivial

pchh bg
Zy(g)-character).
By (, ) we denote the unique g-invariant symmetric bilinear form on g* such that

(ar, ) = 2 for any long root of a simple component of g. The form (, ) enables us
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to identify g with g*. Then § is identified with h*, and £ is identified with €*. We
will sometimes consider (, ) as a form on g. The superscript L indicates orthogonal
space. Note that there is a canonical £-module decomposition g = & @ £+. We also set
|||? := (k, k) for any k € b*.

We say that an element A € t* is (g, €)-regular if (Re), o) # 0 for all 0 € A;. To any

A € t* we associate the following parabolic subalgebra py of g:

P,\Zb@(@ g%),

aEAy

where Ay = {a € A | (ReA,a) > 0}. By m, and n, we denote respectively the
reductive part of p (containing h) and the nilradical of p. In particular py = my D ny,
and if \ is bg-dominant, then py N € = ne. We call py a parabolic subalgebra compatible
with t, or simply a compatible parabolic subalgebra. A compatible parabolic subalgebra
p=m >3n (le. p=p, for some \ € t*) is minimal if it does not properly contain
another compatible parabolic subalgebra. It is an important observation that if p =
m 3 n is minimal, then t C Z(m). Furthermore, it is easy to see that a compatible
parabolic subalgebra py is minimal if and only if my equals the centralizer C(t) of t in
g, or equivalently if and only if X is (g, £)-regular.

A t-type is by definition a simple finite dimensional ¢-module. By V(u) we will
denote a t-type with be-highest weight p (p is then t-integral and bg-dominant). Let
V(p) be a t-type such that p+ 2p is (g, £) regular, and let p = m 3 n be the minimal
compatible parabolic subalgebra p,12,. Put py := penn. We define V(p) to be generic
if the following two conditions hold:

(1) (Rept +2p — pn, ) > 0 Va € suppng:

(2) (Rep +2p — pgs, ps) > 0 for every submultiset S of ch¢n.

1.2. (g,¢)-modules of finite type and minimal ¢-types. For the purposes of this

paper we will call a g-module M a (g, €)-module if M is isomorphic as a ¢-module to a
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direct sum of isotypic components of £-types. If M is a (g, £)-module, we write M [p] for
the V' (u)-isotypic component of M, and we say that V(u) is a &-type of M if M[u] # 0.
We say that a (g, €)-module is of finite type if dim M [u] # oo for every ¢-type V(u). We
will also refer to (g, )-modules of finite type as generalized Harish-Chandra modules.
Let O be the discrete subgroup of Z(£)* generated by suppyz)g. By M we denote
the class of (g, )-modules M for which there exists a finite subset S C Z(#)* such that
suppzeyM C S+ O¢. If M is a module in M, a -type V(i) of M is minimal if the
function u' — ||[Rep’ + 2p||? defined on the set {y/ € t* | M[u'] # 0} has a minimum
at pu. Any non-zero (g,)-module M in M has a minimal ¢-type. This follows from
the fact that the squared length of a vector has a minimum on every shifted lattice in

Euclidean space.

1.3. Existence of n-cohomology. Our first result in this paper is the following

analog of a theorem of Vogan, [V1], [V2].

Theorem 1. Let M be a module in M which has a generic minimal ¢-type V(u).

There is a vector space isomorphism

(3) (M) k @ A (n 0 EL)* 22 HT (n, M)#20n

where M 1= N4 2,, pr = Peh (nnet), and = dim(nN ¢4). Moreover,
Hi(n, M)"=2r7 =0

fori#r.

1.4. The fundamental series of generalized Harish-Chandra modules. Our
second result is the following construction of a new series of (g, ¢£)-modules of finite type

which we call the fundamental series of generalized Harish-Chandra modules. Recall
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that the functor of €-locally finite vectors I'g ¢ is a well-defined left exact functor on the
category of (g, t)-modules with values in (g, £)-modules,
Te (M) = > M.
M’ CM,dim M'=1,dim U (£)- M’ <oo
By RT%, = @ RiFg,t we denote as usual the total right derived functor of I'y ¢, see
[PZ] and the ;ezf(o)erences therein.

We need also the following “production” or “coinduction” functor from the category

of (p,t)-modules to the category of (g, t)-modules:
pTOgZ:(N) = I',o(Homy ) (U(g), N)).

The functor prog:: is exact.
We are now ready to state our second theorem, which constructs and describes the

fundamental series of (g, €)-modules of finite type F"(p, E).

Theorem 2. Letp =m 3 n be a minimal compatible parabolic subalgebra, E be a sim-
ple finite dimensional p-module on which t acts via the weight w € t*, py = Pehyn, Py 1=

Peh(nnet), and = w + 2pL. Set
F(p, FE):= R'F&t(prog::(E ® AM™m T (n))).

Then the following assertions hold under the assumptions that p = p,,12, and that 11 is
be-dominant, -integral and yields a generic €-type V().

a) F"(p, E) is a (g, €)-module of finite type in the class M, and Zy 4 acts on F"(p, E)
via the Zyg)-character 0,5 where p := pen,e for some fized Borel subalgebra b of g
with b D h,b C p and b Nt = be, and where v is the b-highest weight of E (note that
Vi=w).

b) Fi(p,E) =0 fori+# s :=dimng (equivalently s = dim(nN¢)).

¢) There is a €-module isomorphism

Fo(p, B)[p] = C"™F @ V(u),
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and V(u) is the unique minimal €-type of F*(p, E).

d) Let F*(p, E) be the g-submodule of F*(p, E) generated by F*(p, E)[u]. Then
F3(p, E) is the unique simple submodule of F*(p,E), and moreover, F*(p,E) is a
submodule of any g-submodule of F*(p, F).

e) For any non-zero g-submodule M of F*(p, E) there is an isomorphism of m-
modules

H' (n, M)* =2 E.

1.5. Reconstruction theorems. The results in this subsection constitute our main

results.

Theorem 3 (First reconstruction theorem). Let M be a simple (g,t)-module of
finite type with a minimal €-type V (p) which is generic. Then p := P 42, =M D 0 is
a minimal compatible parabolic subalgebra. Let w := p — 2p+ and E be the p-module
H"(n, M)“ with trivial n-action, where r = dim(nN€+). Then E is a simple p-module,
the pair (p, E') satisfies the hypotheses of Theorem 2, and M is canonically isomorphic
to F*(p, E) for s = dim(nN#g).

Corollary 1 (Generic version of a theorem of Harish-Chandra). There exist at
most finitely many simple (g, €)-modules M of finite type with a fized Zy (4 -character
such that a minimal €-type of M is generic. (Moreover, each such M has a unique

minimal €-type by Theorem 2, c).)

Proof of Corollary 1. By Theorems 2 and 3, if M is a simple (g, £)-module of
finite type with generic minimal €-type V' (u) for some p, then the Zy(4)-character of
M is 0,4 5. There are finitely many Borel subalgebras b as in Theorem 2, a); hence, if
6,45 is fixed, there are finitely many possibilities for the weight v (as 6,4, determines
v + p up to a finite choice). Therefore, there are a finitely many possibilities for the

p-module E, and hence there are finitely many possibilities for M. [
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Theorem 4 (Second reconstruction theorem). Assume that the pair (g,¥€) is reg-
ular, i.e. t contains a regular element of g. Let M be a simple (g, €)-module (a priori
of infinite type) with a minimal t-type V (u) which is generic. Then M has finite type,
and hence by Theorem 3, M is canonically isomorphic to F*(p, E) (where p, E and s

are as in Theorem 3).

Corollary 2. Let the pair (g, ) be regular.

a) There exist at most finitely many simple (g, t)-modules M with a fived Zy(g)-
character, such that a minimal €-type of M is generic. All such M are of finite type,
(and have a ungive minimal €-type by Theorem 2, c)).

b) (Generic version of Harish-Chandra’s admissibility theorem) Every simple (g, ¢)-

module with a generic minimal €-type has finite type.

Proof of Corollary 2 The proof of a) is as the proof of Corollary 1 but uses
Theorem 4 instead of Theorem 3, and b) is a direct consequence of Theorem 4. [

The proofs of Theorem 1-4 depend heavily on adaptations of certain important
results of D. Vogan [V2], from the case of a symmetric pair to the case of a general

reductive pair (g, £), and are presented in the following sections 2 and 3.

2. n-COHOMOLOGY

In this section we present the minimum material on n-cohomology necessary to
outline the proof of Theorem 1.
Let p = m @ n be a compatible parabolic subalgebra corresponding to an element

A € t* (i.e. p=p)) which we assume ¢-regular, and let M be a (g, €)-module in M.

Proposition 1. In the category of t-weight modules, there exists a bounded (not nec-

essarily first quadrant) cohomology spectral sequence which converges to H (n, M), with

EPY = H RO mne M) e V),
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where a runs over {0, ... ,n} for some n, R is a monotonic function on {0, ... ,n} with
values in N such that R(a) < a and R(n) =r, V, is a t-submodule of A™(®) (nNEL) for

every a, and V,, = A"(n N EL).

The spectral sequence whose existence is claimed in Proposition 1 is a version of
the Hochschild-Serre spectral sequence and is constructed explicitly by Vogan in [V2,
Theorem 5.2.2] under the assumption that the pair (g,£) is symmetric. However, as
this assumption is not used in the construction, we refer the reader directly to [V2].

Proposition 1 has the following corollary.

Corollary 3.

a) If M is a (g,%)-module of finite type, then H (n, M) is an (m,t)-module of finite
type. Moreover, if M is Zyq)-finite (i.e. the action of Zy ) on M factors through a
finite dimensional quotient of Zyg)) then H (n, M) is Zyw)-finite.

b) If p is a minimal compatible parabolic subalgebra and M is a (g, t)-module of finite

type which is in addition Zy g -finite, then H (n, M) is finite dimensional.

Proof. a) is a straightforward generalization of [V2, Corollary 5.2.4]. Part b) follows
from a) and from the observation that t C Z(m) whenever p is minimal. Indeed, as
H'(n, M) is an (m, t)-module of finite type and t C Z(m), H (n, M) considered as an
m-module is a direct sum of finite dimensional isotypic components. The fact that
H'(n, M) is Zy(m)-finite implies that there are only finitely many such components, i.e.

that dim H (n, M) < co. [

Corollary 4. For each Kk € t* we have a spectral sequence of vector spaces which
converges to H'(n, M)* and whose By -term is (E*")®, where E* is as in Proposition

1. Moreover, there are (edge) homomorphisms

(4) AT (e, M)ST @ AT (n 0B — HIFT (n, M),

(2

where t =n-+b—r.



12 IVAN PENKOV AND GREGG ZUCKERMAN

Proof. The fact that the spectral sequence of Proposition 1 is a spectral sequence in
the category of weight t-modules implies that it has a well-defined direct summand

consisting of k-weight vectors. Its corresponding EY *_term equals (EY ’b)“.

In [V2, 5.2] Vogan constructs (under the assumption that the pair (g, £) is symmetric)

linear maps (EJ"*)* — (E%?)* which in turn yield edge homomorphisms for the spectral

sequence with term (E{*)",

€L . .
T H (e, M) @ AT (Nt — B M)t D (BLh)~.
a+b=i+r
This construction extends to the more general case we consider, and we refer the reader

to [V2]. O

Proposition 2. Under the hypothesis of Theorem 1, (Ef”’b)“_zp‘1L = 0 for (a,b) #
(n,™ — n); therefore the spectral sequence from Corollary 4 for k = pu — 2py collapses

at the level Eq.

Proof. Let V(0) be a t-type such that
Hinne, V() @AM mneh)* £0

for some (i, j) # (0,7). Then, according to [V2, 5.4] there exist 0 € W, and a submulti-
set A of chy(nNE+) such that o(d+p)—p = p—2pa. Hence o(6+2p) = p+p—2pa+op =
w+2p— (2pa+p—op) = p+ 2p—2pp for an appropriate submultiset B of chn.

Furthermore, as V' (u) is generic, (Rep + 2p — pp, pp) > 0 by condition (2), and thus
[Red + 2p]|* = [lo(Red + 2p)||* = [[Rep + 2p[|* — 4(Rep +2p — pp, p) < |[Rep + 2p]*.
As V() is minimal in M, V(9) is not a &-type of M, and hence

Hi(nNEM) @ A (nnEh) )20 =
(H'( )
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.. . a,by— 925+ i j L\s\pu—2p>
for (4,5) # (0,7). Since (E{"”")**» C (H'(nNE€, M) A (nNE-)*)H= 2 n for
i=a+b— R(a) and j = R(a), we obtain
(B0 =0
for (a,b) # (n,r —n). O

Theorem 1 follows from Proposition 2 via the observations: first,

H' (n, M)* 20 = (D) (BQNP2 = @D (B0
a+b=1 a+b=1

and hence H'(n, M)"=2fw = 0 for i # r, and second, the desired isomorphism (3) is
nothing but the edge isomorphism «fy. O

3. CONSTRUCTION AND CHARACTERIZATION OF THE FUNDAMENTAL SERIES

In this section we prove Theorems 2-4. We have split the proof into several state-
ments, some of which are of interest by themselves. Throughout this section, p, E, p-, u1, w

and s are as in Theorem 2 (with the hypotheses of Theorem 2 holding) and are assumed

fixed.

Proposition 3. Let V(8) be a t-type of F*~'(p, E) for some i € Z.

a) There exists w € Wy of length i (in particular, i € N) and a multiset
n. := supp¢(n N €+) — N,
B ng
such that
(5) w=w(+p)—p—20y — > _npp.
B
Furthermore, the multiplicity of V() in F*~%(p, E) is bounded by the integer

dimE ) dim(S (nneh)s™)),
L(w)=1
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where £(w) is the t-weight w(d + p) — p —w — 2py in S (nNEL).
b) The equality

(6) > (1) dim Home (V (8), F*~*(p, E))

0<i<s

= > (-1)]’(% dim Hom((H? (n N &, V(5)), S™(n N &1) @ E @ AT (A ply))

0<j<s m=0

holds, and the inner sum on the right hand side of (6) is finite.

Proposition 3 is a modification of Vogan’s Theorem 6.3.12 and Corollary 6.3.13 in
[V2], and its proof follows exactly the same lines (an inspection of Vogan’s proofs reveals
that the symmetry assumption on (g, £) is not needed). Therefore, we refer the reader
to [V2].

Proposition 3 implies that F"(p, E) is a (g, €)-module of finite type, and also that
Fi(p, E) = 0 for i > s. Furthermore, Proposition 3 implies that F"(p, E) is in the class
M. To see this, one has to restrict (5) to Z(#) and notice that the one element set

{wz(e)} can be chosen as the finite set S that appears in the definition of the class M.

Proposition 4. Suppose V(6) is a t-type of F*~%(p, E) and
(7) (H(nNe V() @A (nneh)*) £0.

Then i = 0.

Proof. By Proposition 3, a) there exist w and n. such that (5) holds. Since § is dominant

with respect to be,

wd =0 — Z M O

a€supp¢(nNk)

for some m, € R, m, > 0. Thus we can rewrite (5) as

(8) d=p+p—wp+ Z Ma + Z ngp.

a€supp¢(nNe) B€supp¢ (nNel)
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On the other hand, assumption (7) implies via Kostant’s theorem, [Ko|, the existence
of an element o € W and a submultiset g. of ch¢(n N &%) such that

cB+p)—p—20m+ Y. g7 =w,
yEsupp (nNed)

or equivalently
9) c6+p)=wtpmtlon— D &),
yEsupp¢(nNeL)
as pn = p + py. Notice that
=Y. gy=0r— Y. d)
y€Esupp¢ (nNet) yEsupp (nNetl)
for an appropriate submultiset ¢’ of supp¢(n N €+). Moreover, the genericity condition
(1) on pu, rewritten in terms of w, reads (Rew + pn, ) > 0 for all & € supp¢(n N ¥).

Hence,

o (Rew + pn) = Rew + p, — Z Dol
aEsupp¢(nNk)

for some p, € R, p, > 0. Since w + 2pi is be-dominant, (Imw,a) = 0 for a €

supp¢(n N €), and hence 07! (Im w) = Im w. All of this allows us to rewrite (9) as

(10) S=wHpn—p— Y. paatpr— > g

aEsupp¢(nNk) ~yEsupp (nNed)

By comparing (8) and (10), we obtain

(11) p—wp+ Z Moo + Z ngpB

a€supp¢(nNk) B€E€supp¢(nnel)
== >, P-4y
aEsupp¢(nNk) Besupp¢(nnet)

Since (Rep 4 2p,n) > 0 for every n € suppn, (11) implies

(Rep + 2p, p—wp) < 0. As p—wp = > nqa for n, € N, we obtain (Reu +
a€supp¢(nnNe)

2p, p—wp) = 0, or equivalently p = wp. Therefore, w = id and, since 7 is the length of

w,1=0. [
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Proposition 5. (Analog of Frobenius reciprocity) For any (g,%)-module M there exist
two first quadrant cohomology spectral sequences (in the category of vector spaces) I and

IT with common limit Extg’tb(M, prog::(E ® AN (n))) and respective B -terms:

Iy" = Ext® (M, Fb(p, E)),

113" = Extg, (H™ " (n, M), E).

The proof is the same as the proof [V2, Proposition 6.3.2] and we omit it.

We are now able to complete the proof of Theorem 2, b). We have already shown
that F'(p, E) = 0 for i > s and now we will show that Fi(p, E) = 0 also for i < s.
Suppose F'(p, E) # 0 and let [y be the minimal integer with F'o(p, E) # 0.

Set M = Flo(p, E). Then

Homg ¢ (M, F"(p, E)) # 0,

and I3 ® =0 for a+b < lyp. Therefore the spectral sequence [ yields an isomor-
phism Ig’lo — 1% hence I%% # 0. As I and II have the same limit, @ I%° =

a+b:l0

@ II%b. Thus I1%-% £ 0 for some ag, by with ag + by = lp, and consequently
a+b:l0

(12) Exti (H¥™ "t (n, M), E) # 0.

By Corollary 3, b) D := H4mn=b (M) is a finite dimensional t-weight m-module.

D has a canonical decomposition as

@ C & B j

j=1
where C; are simple non-isomorphic (finite dimensional) modules over the semisimple
part mg, of m and B; are (finite dimensional not necessarily semisimple) Z(m)-modules.

Similarly, we can factor £ as C' ® B, where C' is a simple mgs-module and B is a 1-

dimensional Z(m)-module. By the Kunneth formula, [We],

Exty (D, E)= @  Exth (C;,C)@Exty (B, B).

1<j<z,p+q=a
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Furthermore, by Whitehead’s lemma, [We],

EXt;‘nss (Cj, C) =0

if C; and C are inequivalent. Thus (12) implies that C' ~ C}, for exactly one value jo
of j and

Exte (D, E) ~ @ Exth (G, O) @ Ext )
p+g=ao

The non-vanishing of Ext (Bj,, B

Jo»

Bj,, B).

) implies that the 1-dimensional Z(m)-module B
is a quotient of Bj,, and hence the m-module £ = C' ® B is a quotient of the m-module

D ~ C ® Bj,. Therefore we can now conclude that

(™0 (n, A1) 0.
As a next step, we apply the spectral sequence from Proposition 1 to show that
(H (nne, M), V(6) @ A'(nNE) )« #0,

and we complete the proof of Theorem 2, b) by applying Proposition 4 which yields
s—1lp=0,1ie. lp=s. O

Next we prove assertion ¢) of Theorem 2. Theorem 2, b) enables us to rewrite (6)
as

dim Home (V' (9), F*(p, E))

oo

> (=1)() dimHom(H(n e, V(p),S"(nNE") @ E® ABOOED) (A )Y,
0<j<s m=0

and, by Kostant’s theorem, suppiH (n N €, V(u)) = {6(p+p) —p | 6 € W} and p
appears with multiplicity 1 in {6(u+ p) — p | & € We}. On the other hand

suppe(S (n N &) ® E @ ATmE0) (n A pl))

={un+ > ngBlngeN}

BeEsupp (nNet)
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Since p = p,42,, (Rep +2p, a) > 0 Vo € suppyn; hence

{6(n+p)—plodeWeyc{u— Y. mpB|mgeN}

Besuppt(nnet)

Therefore,

{Gutp) —ploeWenint > }={uh

BEsupp (nNel)

and consequently
Hom(H? (n M€,V (1)), S™(nN L) @ E @ AT™ENE) (nqgl)) £ 0
only for m = 0. This shows that

dim Home (V' (), F*(p, E))
= dim Hom(H(n N &,V (1)), E @ AMmO0E) (4 A ¢l)) = dim E,
i.e. that V' (u) is a t-type of F'*(p, E') with multiplicity dim E.

Furthermore, if F*(p, E)[0] # 0 for some V(§),d # u, equality (8) holds with w = id

by Proposition 4, i.e.

0=p+ Z mao + Z ngp.

a€supp¢(nnt) BEsupp (nNeL)

Hence (Rep 4 2p, a) > 0 Vo € suppn implies
IRed + 2p]|* > | Rep + 2p]|?,

i.e. V(p) is the unique minimal type of F'*(p, E'). This completes the proof of Theorem
2,¢). O

Proposition 6. Let M be a (g,%t)-module. There exists a (not necessarily first quad-

rant) cohomology spectral sequence with Ea-term

By’ = Extl, (H™"(n, M), E)
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converging to

Ext2 3 (M, F*(p, E)).

If, in addition, M is a (g,€)-module of finite type on which Zy ) acts via a character,
the spectral sequence is a first quadrant spectral sequence (i.e. Eg’b =0 forb<0), and

. . 0.0 . . .
the corner isomorphism Ey° — E%9 yields an isomorphism

(13) Homg (M, F°(p, E)) ~ Homn (H" (n, M), E).

Proof. The existence is proved by essentially the same argument as in the proof of [V2,

Corollary 6.3.4] and uses Proposition 2 and Theorem 2, b). [

If M is a (g,t)-module of finite type which affords a Zy(g)-chracter, H'(n, M) is
finite dimensional by Corollary 3, b). Choose by to be the least possible integer with
Exty, (H""(n, M), E) # 0.

By the same argument as in the proof of Theorem 2, b), we conclude that
Hom, (H" % (n, M), E) # 0.

Thus Eg’bo # 0 and Ej b = 0 for b < by. Consequently Eg’bo ~ E%% and we deduce
that Extg?E(M ,F5(p, E)) # 0. This enables us to conclude that the spectral sequence
is a first quadrant spectral sequence as by > 0, and thus the corner isomorphism yields

the desired isomorphism (13). (Compare our proof with the proof of Theorem 6.5.9, f)
in [V2]) O

Corollary 5. If M is a submodule of F*(p, E), then (H"(n, M))“ # 0.

Proposition 7. Let M be a (g,%)-module with the property that M[d] = 0 for all 6
with ||Red + 2p||? < ||Rep + 2p||?. Then the isomorphism (3) holds, and in particular
M|u) # 0 if and only if H™ (n, M)* # 0.

Proof. The statement is a consequence of the proof of Theorem 1. [
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Proposition 8. For every submodule M C F*(p, E), M[u] # 0.

Proof. The statement is a direct consequence of Theorem 2, ¢), Corollary 5 and Propo-

sition 7. O

We are now ready to prove Theorem 2, d). We start with the remark that, if M
is any (g, €)-module of finite type, and M is its £-finite dual, i.e. My = T'go(M™),
then M[u]* is a t-isotypic component of M. Consider the (g, €)-module of finite type
M := F*(p, E) and note that Proposition 7 implies that F**(p, E); is generated by its
isotypic component M [u]*. Indeed, if X is the submodule of F*(p, E); generated by
M|p)*, and Y is the submodule of F**(p, E') orthogonal to X, then Y[u] = 0. Hence
Y =0 by Proposition 8, i.e. X = F*(p, E);.

Since F*(p, E); is generated by M [u]*, F*(p, E)* is of course finitely generated, and
as U(g) is a left Noetherian algebra, F*(p, E'); is a Noetherian g-module. Therefore
F3(p, E) is an Artinian g-module. Denote by F'*(p, E) the g-submodule of F*(p, E)
generated by F*(p, E)[u]. Then F'*(p, E) is both Noetherian and Artinian, and hence
by a standard argument in module theory, has finite length.

Let M; be a simple submodule of F'*(p, ). By (13), there is a non-zero m-module

map of H"(n, M;)“ onto E. By Proposition 7, there is an isomorphism
H(nne, M)* @ A"(nNeH)* = H"(n, M),
and hence dim H(n N €, M;)* > dim E. But we also know that
dim H'(nN¢, F¥(p, F)) = dim E,
by Theorem 2, c). Thus,
dim H'(nn¢, My)* = dim E

and hence

Mi[p] = F*(p, E)[u].
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We conclude that

Ml = Fs(p7E>7

and the proof of Theorem 2, d) is complete. [

The proof of Theorem 2, e) is similar.

We are now ready to prove Theorem 3. Since M is a simple (g, £)-module of finite
type, M is in the class M and Zy;(4) acts on M via a character. Therefore, by Corollary
3, H (n, M) is a finite dimensional t-weight m-module. By Theorem 1, H" (n, M)“ # 0.
Let E be any simple quotient of the m-module H "(n, M)¥. Consider E as a simple
p-module by letting n act trivially on E.

The fact that p is generic implies that the pair (p,E) satisfies the hypotheses of

Theorem 2. Thus F*(p, F) # 0 and there is a canonical isomorphism
(14) Homg (M, F*(p, E)) = Homy (H" (n, M), E).

Hence, the surjection H”(n, M) — E determines, via (14), a canonical g-module iso-

morphism

(15) M = F*(p, E).

Therefore, by Theorem 2, e) E' is isomorphic to H" (n, M), and the surjection
H" (n,M)¥ — E can be chosen as the identity map. This implies finally that the

isomorphism (15) is a canonical isomorphism
M = F*(p, E)

for E = H"(n, M)“, as required. [

Here is the proof of Theorem 4. The regularity of £ in g implies that m equals
the Cartan subalgebra f. Since M is simple, M affords a Zy4)-character, and the
Casselman-Osborne theorem, [CO], implies that U(h) = S"(h) acts on H (n, M) through
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a finite dimensional quotient ).. Let J be the radical of the algebra ). Since J is
nilpotent, for any non-zero @Q-module Z, Z/JZ # 0, and hence (by Zorn’s Lemma)
Z has a 1-dimensional quotient. By Theorem 1, H"(n, M)% is a non-zero -module
(possibly infinite dimensional). Let E be a 1-dimensional quotient of H" (n, M)*. The
pair (p, E) satisfies the hypothesis of Theorem 2 and hence F*(p, E) is non-zero, whereas
Fi(p, E) =0 for i # s.

By [V2, Corollary 6.3.4], we have a bounded spectral sequence with Fs-term
Extf (HW™mr =97 (n X)), E)
which converges to
Exti (X, F*(p, E))
for any (g, €)-module X. Set X = M in the above and recall that dimn — s = r. Our
spectral sequence becomes

Extg (H™"(n, M)*, E) = Ext&t"(M, F*(p, E)).

Following Theorem 6.5.9 and its proof in [V2], choose by to be the least possible
integer with

Exty (H™"(n, M), E) # 0.

Let I be the maximal ideal in @ which annihilates E. By elementary homological
algebra,
Exty (((H"™*(n, M)*)1, E) # 0

where the subscript I indicates localization at I. But then
E9* = Homy(H" ™" (n, M)*, E) # 0,

and by the assumption on by, Fy b= 0 for any b < bg. So Eg b0 o E%b and we deduce
that

Eth(,){%(M7 Fs(va)) 7£ 0.
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Thus, by > 0 and our spectral sequence is a first quadrant spectral sequence. The

corner isomorphism becomes
Homg (M, F(p, E)) = Homy (H" (n, M), E),

and by the choice of E, the right hand side is nonzero. Thus, M = F*(p, E). This

completes the proof of Theorem 4. [

4. DISCUSSION AND EXAMPLES

The results of this paper are well known when (g, £) is a symmetric pair. More pre-
cisely, in this case, Theorem 4 is the famous Harish-Chandra admissibility theorem and
holds without the genericity condition on V(u) (in addition, the regularity assumption
for (g,€) is automatic in this case), and Theorems 1-3 are results of Vogan and are
proved in [V2] under less restrictive conditions than the genericity of V(u).

In the case when ¥ = b is a Cartan subalgebra of g, there exists a classification
of simple (g, £)-modules of finite type, [M], and in principle the results of the present
paper can be derived from the classification. For instance, for ¢ = h, Theorem 3 claims
that a simple weight module of finite type M with generic minimal weight is a b-lowest
weight module, where the Borel subalgebra b = p is the minimal compatible parabolic
subalgebra of Theorem 3. Consequently, M is a highest weight module with respect to
the opposite Borel subalgebra (which contains ). Theorem 1 then becomes a statement
about the n-cohomology of maximal degree r = dimn, and via Poincaré-duality this is
equivalent to the obvious statement about the n-covariants of the simple highest weight
module. It seems however, that our genericity condition has not been previously singled
out as a sufficient condition for a simple weight module of finite type to be a lowest
(or highest) weight module. Finally, Theorem 4 does not follow from the classification
of simple weight modules of finite type, but in principle it could be derived from the

classification of all supports of simple weight modules of infinite type given in [DMP].
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The results of this paper are new in all cases when £ is not a symmetric or a Cartan
subalgebra of g. As a simple illustration, we will conclude the paper by a brief discussion
of the case when ¢ is an s/(2)-subalgebra.

(e,

If ¢ ~ s/(2), then dimt = 1, and for any a € A, = ap, where a := B

L > 0.
Moreover, p = w + 2p; = mp for m € N, and the genericity condition is equivalent to

the single inequality

</’L+2p_10ﬂ7:0> >O7

or to the inequality

dim V() =m +1 > p(h),

where h is the semisimple element of the canonical sf(2)-basis e, f,h in € with h €
b (recall that p := pcn,u). The integer p(h) depends on the pair (g,€) and can be
computed in the following way.

Write p = ¥r;«;, where «; € h* are the simple roots of b. The non-negative half-
integers r; are well-known, see [B]. Furthermore, a result of E. Dynkin, [D], states that
a;(h) € {0,1,2}, and that ¢ is a principal s¢(2)-subalgebra if o;(h) = 2 for all i. The

final inequality equivalent to the genericity of V(i) becomes
dimV(u) =m+1> Z a;(h)r;.
In particular, for a principal sf(2)-subalgebra it reads

(16) m+1>20) ).
If g = s¢(3) and ¢ is a principal sf(2)-subalgebra, the pair (g, ) is nothing but the

symmetric pair (sf(3), so(3)) and (16) is the inequality

m > 3,
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which is well-known to be the necessary and sufficient condition for the first recon-
struction theorem to hold. If g = so(5) and ¢ is a principal sf(2)-subalgebra, (16) is
equivalent to

m > 6,

and the case when m < 5 is the “smallest” case when the problem of classifying all

simple (g, £)- modules of finite type is still open.
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