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Abstract

We study cohomological induction for a pair (g,€), g being an infinite dimensional
locally reductive Lie algebra and £ C g being of the form €y + Cy(¥y), where & C g is
a finite dimensional reductive in g subalgebra and Cy(¥y) is the centralizer of & in g.
We prove a general non-vanishing and ¢-finiteness theorem for the output. This yields in
particular simple (g, £)-modules of finite type over £ which are analogs of the fundamental
series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study
explicit versions of the construction when g is a root-reductive or diagonal locally simple
Lie algebra.
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1 Introduction

A locally reductive Lie algebra is defined as a union U,ez. gy, of nested finite dimensional
reductive Lie algebras g,, C g,+1 such that each g, is reductive in g, 1 1. The class of locally
reductive Lie algebras is a very natural and interesting class of infinite dimensional Lie
algebras, and no classification is known. There are two (intersecting) subclasses of locally
reductive Lie algebras which are relatively well-understood, see Subsection 2.3t the root-
reductive Lie algebras, [DP], [B], and the locally simple diagonal Lie algebras, [BZh]|.
For instance, the Lie algebra gf(oo) of infinite matrices with only finitely many non-zero
entries is root-reductive, and the Lie algebra gf(2°°), defined as the union Uy,ez.,g¢(2")
via the injections

gl(2") < g™
A 0
A — <O A> ,
is diagonal. Both of the above classes of Lie algebras yield explicit examples of the general
construction of this paper.

Representations of direct limit Lie groups have been studied for quite a considerable
time now, [Hal, [Ne], [O1], [02], [NO], [W], [NRW], however the theory of direct limit
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group representations has not been related in a systematic way to modules over the direct
limit Lie algebra. In our opinion, this problem deserves further investigation.

In this paper we restrict ourselves to representations of locally reductive Lie algebras
g and we initiate the study of (g, ¢)-modules of finite type over €. More specifically,
we provide a construction of such modules when £ is the form & + Cy(€) for a finite-
dimensional reductive in g subalgebra €, (Cy(-) denotes centralizer in g). If g is root-
reductive, such subalgebras £ may equal the fixed vectors of an involution on g, hence
(g, £)-modules of finite type generalize Harish-Chandra modules. Our main construction is
a generalization of the fundamental series for subalgebras € C g of the form & = €, +Cy(¥o),
cf. [PZ2]. We use the derived functor of the functor of locally finite £-vectors. Its output
is automatically endowed with a (g, £)-module structure. Our finiteness result is based on
a general finiteness theorem for cohomological induction which asserts €-finiteness of the
output provided the input is € N m-finite, m being the reductive part of the compatible
parabolic subalgebra. A main technical observation of this paper is that one can construct
reasonably large classes of parabolically induced modules which are £ N m-finite, both
when g is root-reductive and when g is a diagonal. This is based on the stabilization of
the branching multiplicities of certain tensor representations of classical Lie algebras of
increasing rank.

Our main interest is in constructing simple (g, ¢£)-modules M which in addition to being
of finite type are also strict, i.e. for which £ coincides with the subalgebra of g consisting
of all elements g € g which act locally finitely on M (the Fernando-Kac subalgebra of M ).
In particular, we provide sufficient conditions for strictness of the modules constructed.

The theory of (g, £)-modules for locally reductive Lie algebras g is still in its infancy and
many questions remain off limits for this paper. This concerns for instance the problem of
unitarizability of the (g, £)-modules we construct. Another very interesting problem is to
describe the locally reductive subalgebras ¢ C g which admit strict simple (g, ¢)-modules of
finite type. Our paper deals with subalgebras of the form €, + Cy(¥y), and hence not with
the case when £ = b is a splitting Cartan subalgebra of s/(c0), so(c0) and sp(co). In fact,
strict simple (g, h)-modules of finite type exist only for sf(oc) and sp(c0), and for sf(c0),
and I. Dimitrov has been working on their classification, [Di]. Finally, we would like to
point out that the idea of studying direct limits of cohomologically induced modules was
first suggested by A. Habib in [Hal] and that this idea has been an inspiration for us.

Acknowledgement. We thank G. Olshanskii for helpful comments and J. Willen-
bring for a detailed discussion of Proposition 2.1l G. Zuckerman acknowledges the hospi-
tality and support of the Jacobs University Bremen.

2 Preliminaries

2.1 Conventions

All vector spaces and Lie algebras are defined over C. If p is a positive integer and W is

a vector space or a Lie algebra, we set WP :== Wa...aW. T (W) = @, T*(W) is
p times

the tensor algebra of W. The superscript * indicates dual space, and ® = ®¢. If g is a

Lie algebra, Zg stands for the center of g, Cy(«r) stands for the centralizer in g of a subset

a C g, U(g) stands for the enveloping algebra and Zy (4 stands for the center of U(g).

The sign @& denotes semidirect sum of Lie algebras. A subalgebra ¥ C g is reductive in



g if under the adjoint action of &, g is a semisimple £-module. If [ is any subalgebra of g
and M is an [-module, we denote the induced module U(g) @y M by ind{M. If I' is a
finite dimensional Lie algebra, by Vi (\) we denote the simple finite dimensional ['-module
with highest weight A\. When we write a vector space W as Upez. W, we automatically
assume that W,, C W, 41 for n € Z~g.

2.2 A stabilization result

Proposition 2.1 Let s, be a sequence of classical finite dimensional simple Lie algebras
of rank n and of fixed type A, B,C or D. Denote by V,, the natural s,-module. Then, for
any fized a,b,c,k € Z~q the length of the s,-module T*(V.* @ (V.¥)> @ C°) stabilizes when
n — oo (here C stands for the trivial 1-dimensional s,-module).

Proof. This result is a relatively straightforward corollary of the results in [HTW], and
we describe the argument only very briefly. Assume that s, = sf(n + 1), let b, be the
diagonal subalgebra, b, be the upper-triangular subalgebra, and €1 — €92,...,6, — €11
be the standard basis in hy. We will view any b,-dominant weight \ = E?:Jrll Aig; of
Sp, A1 > -0 > Ap, Nj € Z as a by p-dominant weight of s, by inserting k zeroes in
the non-increasing sequence A\; > --- > A,y1 so that the remaining sequence remains
non-increasing. Therefore, for a fixed ng and a b,,-dominant weight A\ as above, the s,-
module V;, (A) is well defined for n > ng. The first fact needed in the proof of Proposition
2.1l is that for fixed a,b,c, k, there is an integer ng such that all simple constituents of
X, = TFV2 @ (V)P @ C°) are of the form V;, (A) for n > ng, where A runs over a finite
set of by, -dominant weights of s,,,. This is proved by a straightforward induction on k.

All that remains to show now is that for each V; (\) with A as above,
dim Homs, (V5,, (A), X,,) stabilizes when n — oo. This can also be done by induction
on k. The case Kk = 1 is obvious, so we can assume that the statement is true for
1,2,...,k. Then, in order to prove the Proposition for k£ + 1, it suffices to show that
dim Homs, (V;, (M), X;, ® V,,) and dim Homs,, (Vs (A), X, ® V,*) stabilize for n — oo. Note
that

dim Homg,, (Vs, (A), X, ® V) = dimHoms,, (Vs, (A) @ VI, X)),

dim Homg, (V;,, (N), X;, ® V) = dim Homs,, (Vs, (A) @ Vi, Xn).
The statement follows now from the induction assumption and from the key formula 1.2.1
in [HTW] which implies that
for an independent on n finite set of weights X' only (respectively,

Homsn(‘/ﬁn ()\”)7 ‘/Sn()\) ® Vn) # O

for an independent on n finite set \” only), and that dim Homg, (Vs,(N'), Vs, (A) @ V,F)
(resp., dim Homg, (Vi (\), Vs, (A) ® V,,)) stabilizes for n — oo. The reader will easily fill
in the details.

For s, of types B,C, D the argument is essentially the same and uses formulas 1.2.2
and 1.2.3 in [HTW]. O



2.3 Locally reductive Lie algebras

We defined locally reductive Lie algebras in the Introduction. In the rest of this paper,
when writing g = Upez.,8n for a locally reductive Lie algebra g, we will always assume
that the g,’s form a chain

g1 Cg C...Cgr Cognt1 C ... (1)

of finite dimensional reductive Lie algebras such that each g, is reductive in g,11.

An important but quite restrictive class of locally reductive Lie algebras are the root-
reductive Lie algebras. They have the form U,cz.,gn, where the chain (1) satisfies the
requirement that each inclusion g, C g,11 is a root homomorphism, i.e. maps a Cartan
subalgebra of g,, into a Cartan subalgebra of g,+1 and any root space of g, into a root
space of g, 1. A most natural example of a root-reductive Lie algebra is the Lie algebra
gl(00), defined via the chain (i) C gf(i + 1) of upper left-hand corner embeddings.

A Lie algebra s is locally simple if s = Upez. 5, where s, are simple Lie algebras (in
this case s, is automatically reductive in s,,41), in particular a locally simple Lie algebra
is locally reductive. Up to isomorphism, there are three simple infinite dimensional locally
simple root-reductive Lie algebras: sf(o0), so(co) and sp(oc). They are defined by obvious
chains of inclusions which are root-homomorphisms (in the case of so(co) there are two
natural choices: ... C s0(2i) C so(2i+2) C ... and ... C so(2i + 1) C so(2i +3) C
..., however these yield isomorphic locally simple Lie algebras). The following structure
theorem has been proved in [DP].

Theorem 2.2 Let g be a root-reductive Lie algebra.

(a) The exact sequence
0—lg.g] ~g—a:=g/[g.g] =0

splits, hence g is isomorphic to the semidirect sum [g, g|& a (a being an abelian Lie alge-
bra).

(b) lg, 9] is isomorphic to a direct sum of at most countably many copies of
sl(00), s0(00), sp(c0), as well as of simple finite dimensional Lie algebras.

A more general and very interesting class of locally reductive Lie algebras which are
not necessarily root-reductive are the diagonal Lie algebras. By definition, a chain (1) of
classical finite dimensional Lie algebras is diagonal, if for any n, the natural representation
of gn41 is isomorphic to a direct sum of copies of the natural representation of g, of its
dual and of the trivial representation. Locally simple diagonal Lie algebras have been
classified up to isomorphism in [BZh|. In the present paper, we will restrict ourselves to
the simplest subclass of diagonal Lie algebras gf¢(p©) defined below, however our results
should extend without significant difficulty to general diagonal Lie algebras. Let 61,6-, ...
be an infinite sequence of integers greater than 1. We denote by © the formal product
616> ... and, for each p € Z>1, we define the Lie algebra g¢(p©) (for p = 1 we write simply
g¢(0)) as the union of the following diagonal chain

94(p) C gt(pbr) C gl(phrbe) C ...

where, for n € Z>q, g¢(ph163 . .. 0,_1) is embedded into gf(pb ... H,) by repeating a matrix
A€ gl(phy...0,_1) 0, times along the main diagonal in g¢(pb; ...60,). The locally simple
diagonal Lie algebra sf(p©) is defined in the same way with gf(pb; ...#0,) replaced by
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s€(pby ...0,). The reader will check immediately that gf(p©) = Zype) © sl(pO©), the
center Zy ) being 1-dimensional. The Lie algebra gf(2°°) (see the Introduction) is the
simplest example of a Lie algebra of the form gf(p©) (here p =2 = 0,,,n € Z~y).

2.4 (g,%)-modules

If g is a locally reductive Lie algebra and M is a g-module, the Fernando-Kac subalgebra
g[M] C g consists of all elements g € g which act locally finitely on M, see [F], [DMP]
and the references therein.

If g is locally reductive and ¢ C g is a Lie subalgebra, we call a g-module M a (g, ¢)-
module if ¢ C g[M]. In other words, M is a (g,¥)-module if for any m € M and any
n € Zso the ¢,-submodule of M generated by m is finite-dimensional. We call a (g, €)-
module M strict if € = g[M]. Sometimes we use the term €-integrable g-module as an
equivalent to (g, €)-module.

Furthermore, we define a (g,€)-module M to be of finite type if the following two
conditions hold:

- every finitely generated E-submodule M’ of M has finite length as a £-module;

- for every fixed simple integrable ¢-module L, the multiplicity of L as a subquotient of
M’ is bounded when M’ runs over all finitely generated -submodules of M. If a (g, £)-
module M is not of finite type, we say that M is of infinite type. A generalized Harish-
Chandra module is a finitely generated g-module M such that M is a (g, €)-module of
finite type for some Lie subalgebra & C g.

Note that given any integrable ¢-module E, the induced g-module ind{FE is a strict
(g, £)-module, however in general (and more specifically, for € = €, + Cy(¥y) as in Section
Bl below) 1ndgE has infinite typl Therefore for the construction of strict simple (g, €)-
modules of ﬁmte type, one needs more sophisticated techniques than ordinary induction.
As we show below, cohomological induction is an ideal tool for this purpose.

Here are two examples illustrating the notions of a (g, ¢)-module of finite and of infinite
type in the extreme case of an integrable g-module.

Proposition 2.3 Let s = Uyez_ 5, be any infinite dimensional locally simple Lie algebra
and €y C 51 be a finite dimensional subalgebra of s1. Let M be any non-trivial integrable
s-module. Then M is an (s,¥%)-module of infinite type.

Proof. Note first that dim M = oo. This follows from the fact that all s,, have no non-
trivial common finite dimensional module since dims,, tends to oo when n — oo. Now,
assume to the contrary that M is an (s, ¢y)-module of finite type. Then M is a (s,s,)-
module of finite type for any s,,. We claim that this contradicts a result of Willenbring and
Zuckerman. Indeed, Theorem 4.0.11 in [WZ] implies that if the difference of dimensions
dim s, —dim s is sufficiently large, then there is a finite number of simple finite dimensional
s1-modules W1, ..., W, such that any simple finite dimensional s,, module contains some
W, as a sj-submodule. It is an immediate consequence of this fact that any infinite
dimensional (s, s,,)-module of finite type is an (s, s1)-module of infinite type as some W;

! An interesting case when ind{ F has finite E-type is as follows. Using results of [NP] it is easy to construct an
embedding gf(o0) ~ € C g ~ gf(c0), so that g/t is isomorphic as a E-module to natural ¢-module V (i.e. to the
union of natural ¢,-modules V,,, where ¢, ~ gf(n)). Then ind{C ~ S"(g/t) ~ S (V), and it is easy to see that
the symmetric algebra is a multiplicity free &-module, i.e., in particular, indj has finite type as a (g, €)-module.



will appear with infinite multiplicity. This contradiction shows that our assumption was
false, i.e. M is an (s, p)-module of infinite type. O

Let now g = g¢(p©) where © = 0105 ... with 0,, > 1 for all n € Z~(, and let & := g1 =
gl(p). Set &, =ty + Cy, (¥) for g, = gl(pbi ...0,—1), and ¢ := U,z t,. Then, as it is
easy to check, Cy, (£9) = g€(01 ...0,,—1), and the inclusion Cy, (£9) C Cy, ., (o) is nothing
but the 6,-diagonal inclusion. Hence ¢ >~ g/(p) + g¢(O).

Proposition 2.4 The adjoint representation of gf(p©) is a Cy(ty)-module of finite length
and thus, in particular, a (g€(p®), €)-module of finite type.

Proof. The statement follows from the observation that for each n, the adjoint rep-
resentation of gl(pb; ...60,—1) considered as a Cy,(¢) = g(6; ...0,_1)-module is a sub-
module of T2 (VY & (V,*)P), where V,, is the natural g¢(6; . ..6,_1)-module. By Proposition
211 the length of T?(V;Y @ (V,¥)P) as an s£(0; ... 6,,_1)-module stabilizes for n — oo, hence
the length of gl(pb; ...60,—_1) considered as a Cy, (¢)-module is bounded for n — oco. The
reader will check immediately that this implies that the adjoint module of gf(p®) has
finite length as a Cy(€p)-module. O

2.5 The Zuckerman functor

In this Subsection g is any Lie algebra and ¢ C g is a finite dimensional subalgebra which
acts locally finitely and semisimply on g. For instance, if g = U,g, is locally reductive
and ¢ C g, is a reductive in g, subalgebra for some n, the above condition is satisfied.

By C(g,¥) we denote the category of all (g, #)-modules which are semisimple over ¢.
For any reductive in € subalgebra m’ C ¥, we consider the left exact functor

PE’,m’ : C(gam/) - C(gael)

M — FE/7mI(M) = Z X .
XCM,Xe0b(C(g,¥))

The category C(g,m’) has sufficiently many injectives and hence one can introduce the
right derived functor R Ty nv. This functor is known as the Zuckerman functor.

A well known property of the Zuckerman functor which we use below is that if Zy (g
acts via a fixed character on M, then Zp g acts via the same character on R Ty o (M).
The following two propositions discuss some further fundamental properties of the functor
R.Fél’m/ .

Proposition 2.5

(a) (restriction principle). Let ¢’ C g be an arbitrary Lie subalgebra of g such that ¥ C g'.
Then the diagram of functors

R‘FE/ m/
C(ga m/) — C(ga E/)

/l /R‘Felym/ )
C(g ,m)—>C(g 7E)7

whose vertical arrows are restriction functors, is commutative.



(b) Let UY(¥) := Ty o (Home (U (¥),C)). Then U°(¥') is a U(¥)-bimodule, and for any M
in C(¥',w) there is a natural isomorphism of ¥ -modules

RTyw(M)= H ¥ m', MU Y))

(here we apply R Tew to objects of C(¥,m’) by setting g’ =¥, see (a)).
(¢) Let M be an inductive limit lim M; of modules M; in C(¥,m’). Then

R'Fg/7m/(M) = hi}nR'Fg/’m/(Mi).
Proof.

(a) It suffices to show that an injective object I in C(g, m’) is also injective in C(g',m’). If
Q is an arbitrary object in C(g’,m’), then U(g) @y (g @ is an object in C(g,m’), and the
functor

Q— U(g) ®ug) Q

is exact. The natural isomorphism Homg(U(g) ®p gy @, 1) = Homy(Q,I) shows that
I represents an exact functor in C(g’,m’). Therefore I is injective in C(g/,m’), and (a)
follows.

(b) This statement is a rephrasing of the isomorphism (4.5) in [EW].
(c) For any M in C(¥',m’), we use the standard complex for relative Lie algebra cohomol-
ogy:
C (¢, m', M @ U°(¢)) = Homuy (A (¢/m'), M @ U°(¥)).
As ¥ is finite-dimensional, we have an isomorphism
C(¢,w', M @ U(¥)) > lim C" (¢, m', M; @ U (),
and the fact that cohomology commutes with inductive limits implies (c). O

Proposition 2.6 (comparison principle). Suppose ¥ = €' @€ is a decomposition into
two ideals, and let m” be a reductive in €' subalgebra. Set m' :=wm" ®€”. Then for any
(g, m')-module M, there is a natural isomorphism of g-modules

R.FE’,m’(M) ~ R.FE",mN(M)' (2)

Lemma 2.7 Under the assumptions of Proposition [2.0, let I be an injective object in
C(g,m’). Then
Rtrg//7m//(1) =0 fort>0.

Proof of Lemmal[2Z.7l As a ¢-module I can be decomposed as @ (J\KVpr (N)), where
A runs over all dominant integral weights of ¢ and where the Jy’s are (¢, m”)-modules.
We claim that each Jy is injective in C(¢”,m”). Indeed, by the proof of the restriction
principle (Proposition [Z5(a)) I is injective in C(&,m’), hence for each A\, Jy ® Vi (A) is
injective in C(¢, m'). Therefore J, is injective in C' (¢, m”).

By Proposition 2.5|(b)

R T (1) = H (¢, ", 1 0 U°(¢")),

and thus (since relative Lie algebra cohomology commutes with direct sums), it suffices
to show that

H'(¢",m”, (J\® Ver (X)) @ U°(¥") = 0 3)
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for ¢t > 0. However,
HY(E, " (Jy R Ve (A) @ UO(F")) =
= H!E® m" J,RU(E")) K Ve (N) =
= RtFE//7m//(J)\) |Z| ‘/E’"()‘) = O

since J) is injective in C'(¢”,m”), and the Lemma follows. O

Proof of Proposition By Lemma 27, any C(g, m’)-injective resolution of M
is I'gr wr-acyclic hence it can be used both for the computation of RTy n (M) and of
R Ty o (M). This yields the natural isomorphism (). O

3 The Construction

Let g = U,g, be a locally reductive Lie algebra and ¢, C g; be a finite dimensional
subalgebra reductive in g (equivalently, in g;). Fix a Cartan subalgebra ty in ¢. For
any g, we have the notion of a ty-compatible parabolic subalgebra of g,,: by definition this

is a parabolic subalgebra p,, C g, of the form @ (gn)] , where h, is a semisimple
o,Rec>0

element of ty, o runs over the eigenvalues of h,, in gn, and (g,)] are the corresponding
eigenspaces. We call a subalgebra p C g a tg-compatible parabolic subalgebra if, for all n,
p N g, is a tg-compatible parabolic subalgebra of g, and n,, = n,+1 N g,, where n,, is the
nilradical of p,,. It is possible (but not required) that there is a semisimple element h € ty
such that p= @ g¢7.

o,Rec>0

One can always choose decompositions p,, = m,®n, where, for each n, m,, is a reduc-
tive in g, subalgebra such that m,; N g, = m,. This yields a decomposition p = m>dn,
where m = U,m,, and U,n,. By definition, n is the nilradical of p and m is a locally
reductive subalgebra of g. In what follows, we consider the decomposition p = mD n fixed
and define n as the union U,n,, where for each n, g, = n, & m,, & n, is the canonical
m,-module decomposition. In this way, n is of course an integrable m-module.

Let ¢ := €& + Cy(ty). Then &, = £ + Cy,(8) is reductive in g for each n. Note
that ENm = mo + Cy(€y), where mg := € Nm. Our goal is to construct nontrivial
(g, )-modules by starting with a nontrivial (m,& N m)-module E and then applying a
functor of cohomological induction type. We first extend E to a p-module by setting
n-E = 0. We then consider the induced module M (p, E) := indpE. This is an integrable
m N €-module. Indeed, the equality of m-modules g = n & m & n implies via the Poincaré-
Birkhoff-Witt theorem that M (p, E) has an m-module filtration with associated graded
equal to S'(n) ® E. Both S"(n) and E are integrable m N ¢-modules, thus M (p, F) is also
m N E-integrable.

We now set A(p, E) := R°T'¢, my(M(p, E)), where s := %dim(éo/mo). By definition
A(p,E) is a (g, ¢)-module, but as we show below A(p, F) is in fact a (g, €)-module. We
also set A(pg, E) := Rsfgmm(indf,%E), where pg := £y Np and we regard E as a module
over my + Cy(€) and indg%E as a €y + Cy4(€g) module. By Proposition 2.5(a) there is a
functorial morphism of £3-modules

\I/E : A(po,E) — A(p,E)

Knapp and Vogan [KV] call ¥y the bottom layer map. In the present paper, we call
any g-subquotient of A(p, ) generated by vectors in im¥ g a bottom layer subquotient of
Alp, E).



Note that my N Cy(€) = Zy,. Therefore, if by, is a fixed Borel subalgebra of mg, we
can decompose E as

D Viwo (v) Buz,) EV

where we consider E) := Hompy, (Vin, (v), E) as a Cy(€p)-module and v runs over all by, -
dominant integral weights of my.

Fix now a Borel subalgebra by of €, such that by N my = by,,. This defines two Weyl
group elements: the element we, € Wy, of maximal length with respect to bg, and the
element wy, € Wiy, of maximal length with respect to by N mg. For any by, -dominant
£p-integral weight v, we set

Vo -1
Vo= wéoome(V+Pbo)_Pbo7

where py, is the half-sum of the bg-positive roots of &.

Lemma 3.1 The ¢-module A(po,E) is t-integrable and is isomorphic to
D Ve, (V) gU(ZeO) E!', where as above v runs over all dominant integral weights of
v

Vv

my, and where Vg, (1Y) := 0 whenever v¥ is not by-dominant and integral for €.

Proof. This statement is a direct corollary of the Bott-Borel-Weil theorem proved in
[EW], see [EW], Proposition 6.3]. O
The following theorem is our main result.

Theorem 3.2
(a) A(p, E) is a (g,€)-module.
(b) If M(p,E) is an (m, & N m)-module of finite type, then A(p,E) is a (g,%)-module of
finite type.
(c) Assume E = U, E,, where each E, is an (m,, tNm,)-module on which Zy, acts via a 1-
dimensional representation. Then the bottom layer map Vg is an injection. Assume that

for some v, E!] #0 and vV is dominant integral for &. Then Homg, (Ve,(vY), A(p, E)) =
E!'. Hence A(p, E) has a simple bottom layer subquotient.

(d) Assume E = U,E, where each E, is an (m,,€ N m,)-module with ZU(mn)—chamcter,
that A(p, E) # 0, and that for some N the Zy(4y -character of indgN En is not regular
integral. Then some bottom layer subquotient of A(p, E) is not an integrable g-module. If
in addition, ¥ is a mazimal subalgebra of g, then some simple bottom layer subquotient of

A(p, E) is a strict (g, €)-module.

(e) Under the assumptions of (c) assume further that m = Cy(to) and that E is simple.
Then to acts via weight p € t on E, p" is dominant integral for t, and there is an
isomorphism of € = €y + Cy(t)-modules

A(po, E) ~ Vi, (1) X (e, E".
where E" equals E considered as a Cy(¥y)-module. Furthermore, ¥ yields an isomor-

phism between the t-modules A(po, E) and Vi, (") @ Homy, (Ve, (1), A(p, E)).

(f) If, under the assumptions of e), im¥ g is a simple €-submodule of A(p, E), then A(p, E)
has a unique simple bottom layer subquotient. A sufficient condition for the simplicity of
1m¥ g is the inclusion m C €.



Proof.

(a) By construction, M (p, E) is a (g,€ N m)-module. Since mN€ D Cy(ty), M(p, E) is an
integrable Cy(€g)-module. Let M denote the restriction of M(p, E) to & by Proposition
2F(a) A(p, E) is isomorphic as a t-module to R*T'g, m, (M). By the Poincaré-Birkhoff-Witt
Theorem, the &-module M has an increasing filtration with associated graded

Gr M = P ind(S'(¢;N1) ® E), (4)
tEZZo

where £ is a fixed £y-module complement of €, in g. O
Lemma 3.3 R Ty, u,(Gr M) is a graded integrable €-module.

Proof of Lemma [3.3l Decompose the mg + Cy()-module S'(¢§ N 1) @ E as
EB Vino () My (z,,) Xut

for some Cy(ty)-modules X, ;. Observe that each X, is an integrable Cy(¥y)-module. We
obtain a £-module isomorphism

Gr 01 = @) indf, (Voo (V) Rz, Xort) -

v,t

For each v, let G;, be a resolution of indg% Vino () by T, mo-acyclic (8, mp)-modules. We
can compute R Dy o (Gr M) as

H (T g (D Gy B24,) Xot))

v,t

which is isomorphic as a &-module to

EB H (Fko,mo (G;/,t)) ‘ZU(ZEO) Xut

v,t

and hence to
EB R Te,mo (Ving (V) Xy (ze,) Xt (5)

Therefore R Ty, m,(GrM) is an integrable ¢&-module. This proves the Lemma. O

To complete the proof of (a) note that, by Proposition 2.5(c), R T'¢, m, commutes with
inductive limits. Since furthermore, C4(£) acts by €-endomorphisms on M, R T, m, (M)
has an increasing filtration of €y + Cq4(€g)-modules induced by the filtration on M. An
obvious induction argument using the fact that R'Fgo,mO(GrM ) is a t-integrable module
(Lemma [B3) implies that R T, m,(M) is filtered by E-integrable modules, and hence is
itself £-integrable. This proves (a).

(b) Suppose M (p, E) is of finite type over €N m = mg + Cy(ty). We can rewrite (@) as

Gr M = P (ind) Vo (v)) Ryy(z,,) Yo
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with each Y, = &;X,; an integrable Cy(€y)-module. Since indi% Vi (v) is a (€9, mp)-
module, we conclude that every Y, is of finite type over Cy(¢y). Combining (&) with
Lemma [3.3] we obtain

R°Tg mo (GrM) @wo ) Rur(zy) Yo (6)

The right hand side of (@) is of finite type over ¢ as each Y, is of finite type over Cy(¥p)
and Vi, (V' V) 2 Vi, (V"V) for v/ # V", Finally, the fact that R°Ty, m,(GrM) is of finite
type over € implies that R*I'g, m, (M) is of finite type over €. Indeed, this follows from the
observation, that since R°I'g) , commutes with inductive limits,

Gr(R*Tymy (M) 2 R°T'ty,my (GrM), (7)

where the left hand side of () refers to the filtration of R*Tgy my (M) induced by the
filtration on M. This proves (b).

(¢c) The theory of the bottom layer map in the finite dimensional case is elaborated by
Knapp and Vogan in [KV) Ch.V, Sec.6]. There the authors assume that they are working
with a symmetric pair. However, a careful examination of Theorem 5.80 in [KV] reveals
that the assumption that £y is symmetric in g,, is not needed; hence our hypothesis on
E,, implies that ¥, is an injection from A(po, Ey) to A(pn, En) = RT¢y m,(indp? E,,) for
each n. Furthermore, we have an injection of 1ndg” E, to ind? Lﬁ n+1 which induces a
gn-module homomorphism ¢, : A(py, E,) — A(an, Eny1).

On the other hand, we have a canonical ¢-module homomorphism x,, : A(pg, E,) —
A(po, En+1) induced by the inclusion of E,, into E, ;. Moreover, the diagram

\IjEn+l
A(po, En—l—l) - A(pn—l—la En—l—l) (8)
TXn T‘Pn
Vg,
A(p07 En) A(pna ETL)

is commutative, and Vg, and Wg,, , are injections. Consider the inductive limit homo-
morphism
lim U, : lim A(po, ) — lim A(py,, Ey,).

By Proposition 25(c) Vg = lim ¥, is an injection.

Assume now that for some v, E// # 0 and v" is dominant integral for €. For
sufficiently large n, Ej, := HommO(Vmo(V),En) is always nonzero. The fact that
Homg, (Ve, (vY), A(pn, Ep)) = Homg, (Ve, (vY), A(po, Er)) (JKV], Theorem 5.80]), together
with the fact that g = lim ¥, , implies

Homy, (Ve,(v"), A(p, E)) = E;,

as required. In particular, the bottom layer In¥p C A(p, E) is non-zero. Finally, to
construct a simple bottom layer quotient of A(p, E) it suffices to consider a simple quotient
of a cyclic module U(g) - v, where v € Im¥g. This proves (c).

For the proof of (d) we need the following lemma.

Lemma 3.4 Suppose F' is an integrable mg-module. FExtend F to a po-module so that
ng- F'=0. Then if i < s, R'Tg m,(ind F) = 0.

11



Proof of Lemma 3.4l According to Proposition 2.5(b) we need to show that
H'(t, mp, (ind2 F') ® U%(%g)) = 0

for i < s. Since U(fy) is a semisimple integrable &-module, it is enough to show that
Hi(kg, mp,V ® indg%F ) =0 for ¢ < s and for any simple finite-dimensional £;-module V.
By Poincaré duality for relative Lie algebra cohomology we must show that

Has—i(to, mp, V ® ind0 F) = 0
for ¢ < s. It is well known that
V ®ind? F = ind® (V ® F).
So we must show that
Has—i(E0, mo, ind (V & F)) =0

for i < s. But Shapiro’s Lemma implies that the above homology is isomorphic to
Hssi(po,mp, V ® F'), and the latter vanishes for i < s because dim(py/mgp) = s. The
Lemma follows. O

d) Consider the short exact sequence
( q
0— indE%En — indg%EnH — indg% (Ent1/En) — 0.

It yields a long exact sequence for R Ty, m,. Lemma[3.4limplies that each x,, is an injection.
Therefore, by the commutativity of diagram (&), ¢, o U, is an injection for each n, and
hence the maps ¢, o ¥g, induce an injection

in : A(po, En) — A(p, E)

for each n.

Fix a value of N so that A(pg, En) # 0, and so that the Z (4, )-character of indgN En
is not regular integral. Fix a nonzero vector v € A(po, En), let A, be the g-submodule
generated by ¥ := Wg(iy(v)) (note that 0 # 0), and let A] be a simple quotient of A,.
We claim that A! is not g-integrable. To see this consider the image A; y in A of the
gn-submodule U(gy) - o C A(p, E). The commutativity of the diagram

A(po, E) —Z—~ A(p, E)

o]

A(po, Ex) —2 A(pw, E)

implies that A;%N is isomorphic to a subquotient of A(pn, Ey). Since Zy(q,) acts by
one and the same character on indgx Ex and on A(py, En), A;}7 N is a gy-module with a
central character which is not regular integral, and is thus not an integrable gy-module.
This implies that A/ itself is not an integrable g-module.

(e) Note that, under our assumptions, mg = tg. As ty C Zn, to acts via weight p on E,
and moreover, E = C, My (g, o) E” where C,, is the 1-dimensional typ-module corresponding

to u. Lemma Bl yields now (3), and (c) implies that Ug is an isomorphism between
A(po, E) and V, (1) @ Homy, (Ve, (1), A(p, E)).
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(f) Assume in addition that im¥g is a simple £-module. Let A% denote the g-submodule
of A(p, E) generated by im¥ g, and let A® be the sum of all g-submodules X of A# with
Homg, (Vg, ("), X) = 0. Then (e) together with the €y-semisimplicity of A(p, E) imply
that A% is a maximal proper g-submodule of A#, and hence A# /A$ is the unique bottom
layer subquotient of A(p, E).

Finally, the inclusion m C ¢ yields m = Cy(tg) C & + Cy(ty) which implies that
m =ty + Cy(8y). As tg is abelian, E” is a simple Cy(¥y)-module, and the isomorphism (3]
of (e) implies that A(pg, E) is a simple £-module. Therefore (by (c¢)) im¥ g is isomorphic
to A(po, F), and is thus a simple ¢-module. O

In the spirit of [PSZ] we call a locally reductive subalgebra [ C g of a locally reductive
Lie algebra g primal, if there exists a simple strict (g, [)-module M such that [ is a maximal
locally reductive subalgebra of g[M]. Using Theorem [B.2] one can prove that certain
subalgebras [ are primal, for instance a subalgebra ¢ = £, + Cy(€y) is primal whenever
there exists an m-module E satisfying the assumption of Theorem B.2[(d). Below we show
the primality of ¢ in some special cases.

4 The case g = g/(pO)

To illustrate our main result in the specific case of g = ¢g¢(p©), fix the exhaustion g =
Ungl(pb1 ...60,—1) as in Subsection 23] Let & C g1 = ¢¢(p) be any reductive in gy
subalgebra which contains a gi-regular element h, and such that the p-dimensional natural
gl(p)-module CP is simple as a €y-module. For instance, &y may equal g¢(p), sf(p) or a
principal sf(2)-subalgebra of sf(p). Let ty := Cy,(h). We define p as the ty-compatible

parabolic subalgebra & g7.
o,Rec>0

Lemma 4.1
(a) mNg, ~gl(0...0,-1)P.
(b) Cy, (%) ~ gl(01...6,_1) is the diagonal subalgebra in gl(61 ...60,—1)P.

Proof. As an Cy, (h)-module, the natural representation V;, of g¢(pb; ... 0,—_1) decom-
poses as a direct sum of p isotypic components each of dimension 61 ...6,_1. This yields

(a).
As a ty-module V,, decomposes as a direct sum of 0y ...6,,_1 copies of the simple
to-module CP. This implies (b). O
Corollary 4.2
(a) m = Cqy(to) = gt(©)";
(b) €=t +gl(0), & Ngl(O) C Zyye);
(c) if &g = gl(p), then t ~ gl(p) + g£(©) is a mazimal proper subalgebra of gf(p®).
We now construct a class of simple gf(0)-modules. Let V;, denote the natural repre-
sentation of gf(0; ...0,_1). Fix ng > 1 and let V(\,,) be the simple finite dimensional
gl(0; ...0,,_1)-module with highest weight \,, = (A!,... A01Ono-1) Xi > X+l Define

n’ =n/(Apy—1) as the largest index for which the entry PT non-negative; if A\! < 0, we
put n’ = 0. To A\, we assign the following highest weight of g€(6; ... 0y,):

Anort = (AL XY, 0,0,...,0, AV A0t
———

01...0n (Gno +1—1)times

13



Lemma 4.3 There is a natural injection of gl(61 .. .0p,—1)%"0 -modules
V(ng)"0 = V(Ang 1),
and hence a diagonal injection of g€(6; . ..0,—1)-modules
V(An) = V(Ans1)
for any n > ng.

Proof. The natural injection V;,,° — Vp 41 induces a natural injection of
gl(0y ... 0p,) 0+ -modules

T (Vog ® Vi )P0t — T (Vg1 © Vil 11)
which in turn induces an injection
V(o)™ = V(Ang41)
as required. O

Corollary 4.4 For every ng and any dominant integral weight An, of g€(01 ...0n,-1),
V(Any) is a simple gf(©)-module defined as the direct limit lim V(\,), where V/(A,) is

nzng

embedded diagonally into V(Ap+1) according to Lemmal[4.3

Let now A,1. ..)\ng be p dominant weights as in Corollary [£4l Assume that the
ordering of the weights is compatible with n, i.e. that the h value of any root g; —¢;,7 < j,
of g1 = g¢(p) has non-negative real part. Define E as V()\n(l)) X... X V(Ang) with trivial
action of n.

Proposition 4.5 M(p, E) = indpE is an (m, € Nm)-module of finite type.

Proof. It suffices to show that Gr M (p, E) is an (m, £ Nm)-module of finite type. As
a m-module Gr M (p, F) is isomorphic to S"(n) ® E, and is in particular a weight module
over the Cartan subalgebra ty of &y. This subalgebra acts via a single weight on E and
via arbitrary sums of p-negative tp-weights on S"(fn). Since each tg-weight of S"(n) occurs
only in finitely many symmetric powers of n, it suffices to show that each fixed tensor
product S'(n) ® E is a €N m-module of finite length. Notice that E is a direct limit
lim E, such that each E, is a Cy,(8) ~ ¢¢(0:...0,_1)-submodule of a fixed
n>max(nd,...nH)
tensor power TF(VY @ (V*)P). Hence S'(in,) ® E, is also contained in a fixed tensor
power TF(VY @ (V;¥)P). Proposition 21l now implies that, for each n, St(n,) ® E, is a
Cq(%9) N gnp-module of finite length, hence S*(n) ® E is a £ N m-module of finite length.
The Proposition follows. O
Note now that the assumptions of Theorem B.2le) apply to the case we consider.
Therefore, to ensure that A(p, F) is non-zero, it suffices to ensure that the weight pu"
is integral €p-dominant. An easy computation shows that the weight p is nothing but
the weight (Z )\2(1), Z)‘i%’ . Z)\ilg) of g1, restricted to ty. Let &y = gf(p). Then the
1 1 1

regularity and £y-dominancy condition on p" are equivalent to the condition
PR BEFE NP PRI
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Note furthermore, that our choice of weights )\né, e ,)\ng allows for the possibility

the Zy (g, )-character of indngN to be non-regular for some IV, and hence in the latter
case, no irreducible bottom layer quotient of A(p, F) is g-integrable. Since ¢y = g4(p),
t is a maximal proper subalgebra of gf(p©). This implies (via Theorem B.2(d)) that
whenever A(p, F) is not integrable, any irreducible bottom layer quotient of A(p, E) is a
strict (g, )-module. In particular, ¢ = g¢(p) + g¢(©) is a primal subalgebra of g¢(p®©).
Finally, Lemma [41] (a) and (b) imply that the condition m C ¢ from Theorem [B2(f)
holds only when p = 1. However, in this case s = 0, hence the claim of (f) is trivial.
Nevertheless, there is an interesting non-trivial case in which Theorem (f) applies:
this is when Ay = ... = )‘ng* = 0 and A,» # 0. In this latter case E" is clearly a

simple Cy(tp)-module. Furthermore, as it is easy to see, for large n the Zy(4,)-character
of indy E,, is integral but not regular, hence the (g, £)-module A(p, E) has a unique strict
simple subquotient.

5 The root-reductive case

~

Let now g be a simple infinite dimensional root-reductive Lie algebra, ie. g =
sl(00), so(00), sp(c0). Fix an exhaustion g = U,g,, where g, C gp41 is a root injec-
tion of the form si(i) C sf(i+1), so(i) C so(i+2), or sp(2i) C sp(2i+2), for g isomorphic
respectively to sf(00), so(c0) or sp(co). Then each g, is reductive in g and Cy(gn) ~ g
for g o~ so(c0), sp(o0), and Cy(gn) =~ g¢(c0) for g = sf(cc0). Moreover, for a fixed n, the
subalgebra g, @ Cy(g,) has the property that its intersections with g, for all n’ > n are
symmetric subalgebras.

We fix next a reductive in g; subalgebra £y C g1, a Cartan subalgebra ty C £, and
a tp-compatible parabolic subalgebra p = m®n, and let mg = m N €. For instance, for
g ~ sl(c0), p can be a maximal proper subalgebra of g, whose intersection with g, for
n > 1 equals a maximal parabolic subalgebra of g, containing Cj,(g1). Note that

my @ Cy(g1) C ENm. (9)

Let F = U,FE,, where, for n large enough, each F, is a simple m,-submodule of a
tensor power T*(V,2 @ (V)P @ C°) for fixed k,a,b, ¢ (when g ~ so(cc), sp(cc), there is an
isomorphism V,, >~ V,*).

Proposition 5.1 M (p, E) is an (m, €N m)-module of finite type.

Proof. According to (@), it suffices to show that M (p, E) is an my @ Cy(g1)-module of
finite type. The argument is very similar to that in the proof of Proposition Consider
GrM(p, F) ~ S (n) ® E and note that only finitely many t,-weights occur in E, and that
each typ-weight of S"(n) will occur only in finitely many symmetric powers of n. Hence
it suffices to show that each fixed tensor product S*(n) ® E is a Cy(g1)-module of finite
length. However, a direct verification based on the definition of g; shows that for each
n > 1,aNg, is a Cy(g1) Ngn-submodule of a fixed tensor power T*(V,¢@ (V;¥)? @ C), where
Vy, is the natural representation of Cy(g1) N gn, and a,b, c € Z~o. Hence, for each fixed ¢,
St(nNg,) ® E, is a submodule of an analogous fixed tensor power, and by Proposition
211 S'(n) ® E is a Cy(g1)-module of finite length. O

In the remainder of this section we concentrate on the case ¥y = gi, assuming that
g1 is non-abelian. In this case ¢, = (g1 ® Cy(g1)) N gn is a symmetric subalgebra of g,
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for n > 2 and the existing literature on Harish-Chandra modules enables us to prove a
stronger version of our main result under slightly different conditions on the compatible

parabolic subalgebra p and the p-module E. More precisely, let p equal € gf for some
o>0

real diagonal matrix h € ty, and m := Cy(h). Then m is the direct sum of a reductive in

£y subalgebra m’ and an infinite dimensional subalgebra m” isomorphic to gf(o0), so(oo)

or sp(o0). Note that m” D Cy(8)) and that (m,, €, Nm,) is a symmetric pair for each n.

Theorem 5.2 For g and ¢ as above, let the p-module E satisfy the condition of Theorem
[Z2(c). In addition, assume that, for some N € Z>o, En is a simple finite dimensional
my-module such that A(pn, EN) is a simple strict (gn, €x)-module with non-zero bottom
layer. Let v € A(p, E) be a non-zero vector in the image of the bottom layer of A(pn, EN)
(the existence of v follows from Theorem[3.3(c)) and let X, be a simple quotient of U(g)-v.
Then

(a) Xy is a strict (g,€)-module;

(b) if, for all n, E, has finite length as a (&, N m,)-module, X, = U, (X,), where each
(Xy)n is a Harish-Chandra (g, €,)-module.

Proof.

(a) Let m: U(g) - v — X, be the projection which defines X,, and let s : A(pn, En) —
A(p, E) be the functorially induced map of (gn,€x)-modules. By our assumptions, (7 o
k)(v) # 0and as A(pn, En) is simple, mok # 0 is injective. It follows that gn[A(pn, En] 2
g[X]Ngn. Since gn[A(pn, En)] = €x and is a (g, £)-module we conclude that g[X]Ngy =
En.

The inclusion g[X] D ¢ implies the following possibilities for g[X]. If g = so(c0), sp(c0)
g[X] equals ¢ or g as ¢ is a maximal subalgebra of g, and if g = sf(c0) there are four
possibilities for g[X]: g, the two opposite parabolic subalgebras gt containing €, and
the subalgebra ¢. However, in all cases the only possibility compatible with the equality
g[X] Ngn =ty is g[X] = & This proves (a).

(b) Define X,, as the image of the functorial map of A(p,, Ey,) to X. We have A(p,, E,,) =
R5Tgy mo (indp” Ey,), &, = €& + Cg, (80), and &, N m, = mg + Cy, (€). The comparison
principle yields an isomorphism of (g, ¢,)-modules

A(Pm En) = Rsrén,fnﬂmn (mdngn)

Since (m,,, ¢,Nm,,) and (g, ¢,) are finite dimensional symmetric pairs, any (g,, €, )-module
(respectively (m,, €, Nm,))-module) of finite length is also of finite type, and hence is a
Harish-Chandra module. Moreover, results in [KV, Ch.V] imply that if E, has finite
length, then A(p,, E,,) likewise has finite length. Hence X, itself has finite length, i.e. is
a Harish-Chandra module. O

It is easy to construct (m,¢ N m)-modules E which satisfy both the assumptions of
Proposition [5.1] and Theorem To satisfy the assumption of Theorem [(.2] we can
take E to be the union U, FE,, of finite dimensional simple m,-modules under appropriate
inclusions of m,-modules F,, — FE, ;1. For a fixed N, we can take E (for instance En =
Cx, y » see Theorem [6.11 below) so that A(pwn, En) is simple with non-zero bottom layer. It
is also clear that each E,, can be chosen to be a simple submodule of T#(V¢ @ (V;¥)? @ C°)
for some fixed a,b,c,k € Z>p. Indeed, one can fix a,b,c, k so that the already chosen
my-module Ey be a submodule of T#(VZ & (V)" ® C¢) and then, for n > N, recursively
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choose E,, as a simple submodule of T*(V,2 @ (V,*)* @ C) for which there is an injection
of m,,_i-modules F,, 1 — E,. Such a module E,, clearly exists.

Corollary 5.3 If g = sl(00),s0(c0), sp(c0) and € = g1 where g1 is not abelian, then
t =8 D Cy(ko) is a primal subalgebra of g, and moreover there exists a simple strict (g, )-
module X of finite type such that X = U,X,, where X,, are Harish-Chandra (g,,% N gy)-
modules.

6 Appendix: The Fernando-Kac subalgebra of a
Vogan-Zuckerman module

Our aim in this appendix is to relate some of the basic literature on applications of coho-
mological induction with Section [l of this paper. More precisely, we recall the definition
of a class of Harish-Chandra modules known as the Vogan-Zuckerman modules, [VZ], and
compute the Fernando-Kac subalgebra of a Vogan-Zuckerman module.

Let g be a finite dimensional reductive Lie algebra (over C), £ be a symmetric subal-
gebra of maximal rank, t be a Cartan subalgeba of £ and let p be a t-compatible parabolic
subalgebra of g. Fix a Levi decomposition p = m®n of p with t C m, and also a t
compatible Borel subalgebra b C p. Then b N ¢ is a Borel subalgebra of £ and b Nm is a
Borel subalgebra of m. Relative to b, let wg be the longest element in the Weyl group of t
in g; relative to b N'm let wy, be the longest element in the Weyl group of t in m. Finally,
let A\p := wg 0o wyl(pp) — pp. Note that )‘pl[m,m] = 0, so that A\, defines a one-dimensional
p-module C,,.

The induced g-module indg(CAp and the (g, ¢)-module A, := RSFg,mm(indgCAp) have
the same central character as the trivial g-module. (Here, as usual, s = 3 dim(¢/¢ N'm).)
More generally, if F' := Vg(j\) and \ := wg 0wt (X + pp) — pe, then the induced g-module
indg(Vm(S\)) and the (g, £)-module Ay(F) := Rsfamm(indg(Vm(S\)) have the same central
character as F. We call Ay(F') the Vogan-Zuckerman module attached to the pair (p, F).
(This definition can be extended to the case rank £ < rank g, but we do not consider this
generalization here.)

Theorem 6.1
(a) The bottom layer of Ay is simple, in particular non-zero.

(b) Ap(F) is a simple (g,%)-module, which is infinite dimensional if p is proper in g.

Proof.

(a) By Lemma 3.1} the bottom layer of A, is isomorphic to Vg(/\l\g/). This implies that the
bottom layer of Ay is simple if non-zero. To ensure that it is indeed non-zero, we need to
verify that )\g is dominant with respect to €. This follows from [VZ, Section 3|, where it
is established that Vg(\y) is a non-zero constituent of the e&-module A"(¢+).

(b) For the simplicity of Ay(F') see Theorem 8.2 on p. 550 in [KV]. When p is proper,
it is shown in [VZ, Section 2] that A, has a non-trivial &-submodule. Since A, has the
central character of the trivial g-module, dim A, = co. By using the translation functor
one shows that A,(F') is likewise infinite dimensional. O

From now on we assume that [g, g] is simple and that p is proper in g. We want
a formula for the Fernando-Kac subalgebra associated to Ay(F). If € is maximal in g,
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clearly Ap(F) is a strict (g,€)-module under our assumptions. If £ is not maximal, then
its orthogonal complement ¢+ C g is reducible as a -module: - = t @ t, where t and t
are abelian subalgebras of g, and ot and £t are parabolic subalgebras of g. Moreover,
there are precisely four subalgebras of g containing & ¢ t¢D ¢, t¢D7, g.

Theorem 6.2 Assume [g,g] is simple, € is not mazximal and p is proper in g.
(a) g[Ap(F)] =tDr iftNn=0.
(b) glAp(F)] =ttt iftNn=0.
(c) glAp(F)] =t if tNn and TNn are both nonzero.

The proof of Theorem [6.2]is based on a lemma relating g[Ay] with Homg(A (vt @), 4p),
where A~ stands for bigraded exterior algebra. Set ¢ := dimtNn and b := dimt N n.
Then, according to the key Proposition 6.19 of [VZ], Hom¢(A (t @), Ap) is concentrated
in bidegrees of the form (a + j, b+ j).

Lemma 6.3

(a) g4y =tDr e a=0.

(b) g[Ap) =Dt = b=0.

(c) glAp] =t a#0 and b#0.
Proof of Lemma [6.3l

(a) g[Ap] = €D if and only if there exists a simple finite dimensional ¢&-module V' such
that A, is isomorphic to the unique irreducible quotient L(¢®t, V') of ind?eBtV. But the
central character of Ay is trivial and this constrains V' to a finite set: V' must be a £-type
in A'(t). Hence, g[A,] = €Dt implies Homg(A' (%), Ap) # 0 which in turn implies a = 0.
Conversely, suppose a = 0. Let, for some simple finite dimensional &-module V', the
V-isotypic subspace Ay[V] of Ay be in the bottom layer of A,. Theorem 2.5 in [VZ] gives
a necessary condition for a simple £&-module V' to occur in the restriction of A, to €. This

condition implies that ¢ - Ay[V] = 0. Hence A, = L(¢Dt, V).
(b) Repeat proof of (a) but substitute t for t.

(c) Follows from the combination of (a) and (b) and the statement above about
Homg(A(t @), Ap). O

Proof of Theorem First we reduce to the case F' = C, A = 0: for any F' we have
a pair of translation functors ¢y and v such that Ay(F) = ¢y (A4p) and Ay = 5 (Ap(F))
(see [KV], Ch.VIL,Thm.7.237]). Since ¢)(Ay) is a direct summand of F ® A, we have
g[Ap(F)] 2 g[Ap]. Likewise, ¥\(Ap(F)) is a direct summand of F* @ Ap(F). Hence,
a[Ap] 2 g[Ap(F)]. Thus, g[Ap(F)] = g[4,]. O

Example. Let g = sl(n) withn =p+q, p > 1 and ¢ > 0, and ¢ = s(gl(p) @ gl(q)),
the traceless matrices in the subalgebra gl(p) ® gl(q) embedded in the standard fashion in
gl(n). We have ¢ = sl(p) ® gl(q), where gl(q) is embedded as the centralizer of sl(p) in g.
Let t C £ be the diagonal matrices; t is a Cartan subalgebra of € and of g. Choose any real
nonzero matrix h € tNsl(p) and let p be the t-compatible parabolic subalgebra associated
to h € t. The subalgebra ¢ is not maximal and we have a triangular decomposition
g=t®EtPT, where v and t are nonzero simple €-submodules of g. Furthermore, since h
has both positive and negative diagonal values, p Nt # 0 and p Nt # 0. Therefore, for
any simple finite dimensional g-module F', Theorem [6.2(c) implies that A,(F) is a strict
simple (g, £)-module.
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