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A CONSTRUCTION OF GENERALIZED HARISH-CHANDRA
MODULES WITH ARBITRARY MINIMAL ¢TYPE

IvAN PENKOV AND GREGG ZUCKERMAN

ABSTRACT. Let g be a semisimple complex Lie algebra and € C g be any algebraic
subalgebra reductive in g. For any simple finite dimensional &module V', we construct
simple (g, £)-modules M with finite dimensional &isotypic components such that V is a
E-submodule of M and the Vogan norm of any simple &-submodule V! C M,V’ 2 V,
is greater than the Vogan norm of V. The (g,£)-modules M are subquotients of the
fundamental series of (g, £)-modules introduced in [PZ2].

INTRODUCTION

The structure theory of infinite dimensional modules over finite dimensional semisim-
ple Lie algebras has its roots in the description of all finite dimensional representations.
Celebrated landmarks of the theory are the classification of simple Harish-Chandra
modules and the computation of the characters of simple highest weight modules (the
Kazhdan-Lusztig conjecture). A deep open problem in the structure theory of modules
over a complex semisimple Lie algebra g is the construction and eventual classification
of all simple generalized Harish-Chandra modules, see [PZ1]|. By definition, a simple
g-module M is a generalized Harish-Chandra module if M has finite dimensional iso-
typic components as module over some reductive in g subalgebra of g. Equivalently, a
simple generalized Harish-Chandra module is a simple g-module M for which the mul-
tiplicities of M as a g[M]-module are finite. The subalgebra g[M] C g is defined as the
set of all elements of g which act locally finitely on M, see [F] and [PZ1]. In [PSZ] we
have proved that, if the multiplicities of M as a g[M]-module are finite, then g[M] has
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a natural reductive part g[M],eq, and that M has finite type also as a g[M],eq-module,
i.e. the dimensions of all g[M],eq-isotypic components of M are finite.

Recently two considerable steps in the study of simple generalized Harish-Chandra
modules have been made. In [PSZ] we have described explicitly all possible subalge-
bras g[M]ea C g arising from simple generalized Harish-Chandra modules (these are
the primal subalgebras of g, see [PSZ]), and in [PZ2] we have classified all simple gen-
eralized Harish-Chandra modules M with generic minimal ¢-type. Here £ stands for
any algebraic reductive in g subalgebra ¢ with ¢ C g[M] such that M has finite dimen-
sional g-isotypic components. The latter result raises a natural question: for a fixed
reductive in g algebraic subalgebra £, what are the minimal €-types arising from simple
(g, £)-modules of finite type? In the case when the pair (g, ) is symmetric, it is known
from Vogan’s classification of Harish-Chandra modules that there is no obstruction for
a simple finite dimensional £-module to be the minimal £-type of a simple (g, £)-module.

The purpose of the present note is to give a simple proof of this fact by a direct
construction in the case of an arbitrary algebraic reductive in g subalgebra ¢ C g. Our
construction is based on the fundamental series of (g, £)-modules, introduced recently in
[PZ2], and extends the construction of a simple (g, ¢)-module with an arbitrary minimal

t-type given in [PZ1] for the case where £ is a principal sf(2)-subalgebra of g.

1. CONVENTIONS AND PRELIMINARIES

The ground field is C, and if not explicitly stated otherwise, all vector spaces and
Lie algebras are defined over C. By definition, N = {0,1,2,...}. The sign ® denotes
tensor product over C. The superscript * indicates dual space, and A'( ) and S'( )
denote respectively the exterior and symmetric algebra. By Z([) we denote the center
of a Lie algebra [, U([) stands for the enveloping algebra of [, and H ([, M) stands for
the cohomology of a Lie algebra [ with coefficients in an [-module M. The sign @&

stands for semidirect sum of Lie algebras (if [ = '@ [/, then [’ is an ideal in [ and
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" ~1/1).
If [ is a Lie algebra, M is an [-module, and w € [*, we put

MY :={m e M|{-m =w{)m ¥l € [}. We call M*“ a weight space of M and we say

that M is an l-weight module if

By suppiM we denote the set {w € I*| M*“ # 0}.

A finite multiset is a function f from a finite set D into N. A submultiset of f is a
multiset f’ defined on the same domain D such that f'(d) < f(d) for any d € D. For
any finite multiset f, defined on an additive monoid D, we can put py := % > f(d)d.

deD

If M is an [-weight module as above, and dim M < oo, M determines the finite multiset

chiM which is the function w +— dim M* defined on supp/M.

Let g be a fixed finite dimensional semisimple Lie algebra and ¢ C g be a fixed
algebraic subalgebra which is reductive in g. Fix a Cartan subalgebra t of £ and a
Cartan subalgebra b of g such that t C h. Note that, since £ is reductive in g, g is
a t-weight module. Note also that the R-span of the roots A of § in g fixes a real
structure on h*, whose projection onto t* is a well-defined real structure on t*. In what
follows, we will denote by ReA the real part of an element \ € t*. We fix also a Borel
subalgebra be C € with by D t. Then by = t 3 ng, where ng is the nilradical of be. We

set p := pchn,, and by W we denote the Weyl group of €.

Let (,) denote the unique g-invariant symmetric bilinear form on g* such that
(a,a) = 2 for any long root of a simple component of g. The form (, ) enables us
to identify g with g*. Then § is identified with h*, and £ is identified with €¢*. We
will sometimes consider (, ) as a form on g. The superscript L indicates orthogonal
space. Note that there is a canonical £-module decomposition g = € @ €. We also set

|||? := (k, k) for any & € b*.
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To any A\ € t* we associate the following parabolic subalgebra p) of g:

P,\Zb@(@ga),

aEAy
where Ay := {a € A | (Re\,a) > 0}. By my and n, we denote respectively the

reductive part of p) (containing h) and the nilradical of py. In particular py = my 3 ny,
and if A is bg-dominant, then pyN€ = be. We call py a compatible parabolic subalgebra. A
compatible parabolic subalgebra p = m 3 n (i.e. p = p, for some A\ € t*) is minimal if it
does not properly contain another compatible parabolic subalgebra. It is an important
observation that if p = m 3 n is minimal, then t C Z(m).

A t-type is by definition a simple finite dimensional ¢-module. By V(u) we will
denote a £-type with bg-highest weight p (p is then €-integral and bg-dominant).

For the purposes of this paper, we call a g-module M a (g, €)-module if M is isomor-
phic as a -module to a direct sum of isotypic components of ¢-types. We say that a
(g, )-module M is of finite type if dim Hom¢(V (1), M) < oo for every €-type V(u). We
say also that a &-type V is a t-type of M if dime Hom(V, M) # 0. If M is a (g, €)-module,
a B-type V(i) of M is minimal if the Vogan norm, i.e. the function u’ +— ||Rep’ + 2pl|?,
defined on the bg-highest weights p’ of all €&-types of M, has a minimum at pu. Any

simple (g, ¢)-module M has a minimal ¢-type.

Recall that the functor of €-locally finite vectors I'g ¢ is a well-defined left exact

functor on the category of (g, t)-modules with values in (g, £)-modules,

Te (M) = > M.
M’ CM,dim M'=1,dim U(€)- M’ < oo
By RTg := @ R'T¢¢ we denote as usual the total right derived functor of 'y ¢, see
i>0
[PZ1] and the references therein.

Let p = m 3 n be a minimal compatible parabolic subalgebra, E be a simple finite

dimensional p-module, p, := pen,n and pi := Pehy(nnet)- Set

F'(p, B) := R T (Do (Homy ) (U(g), E © AM™ " (n)))).
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By definition, F"(p, F) is the fundamental series of (g, t)-modules.

2. MAIN RESULTS

Theorem 1. Let V be any t-type. There exists a simple (g, t)-module of finite type M

such that V' is the unique minimal €-type of M.

The proof is based on the following construction. Let V = V(u) be a fixed ¢-type
and let p = m3 n be any minimal compatible parabolic subalgebra of g which lies in
Pu+2p- Let, in addition, FZ be any simple finite dimensional p-module on which t acts

via the weight u — 2p+ (E exists since t C Z(m)).

Theorem 2. Let s = dimng. The (g, 8)-module F*(p, E) is of finite type and is non-
zero. In addition, V is the unique minimal -type of F*(p, E') and dim Home(V, F**(p, E))
dim F.

Theorem 2 implies Theorem 1 as a module M whose existence is claimed by Theorem
1 can be constructed as any simple quotient of a g-submodule of F*(p, E) generated
by the image of any &-module injection V' — F*(p, F).

Theorem 2 is a direct corollary of the following five statements: two more general

propositions and three lemmas under the assumptions of Theorem 2.

Proposition 1. Let p = m>D n be any minimal parabolic subalgebra, E be any simple
finite dimensional p-module, and V (8) be a t-type of F*~(p, E) for some i € Z.

a) There exists w € Wy of length i (in particular, i € N) and a multiset

n. :=supp¢(n N €+) — N,

B ng

such that

w=w(d+p)—p—207 — Y _ npph,
B
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where w is the weight via which t acts on E. Furthermore, dim Home(V (8), F*~*(p, E))

1$ bounded by the integer

dimE (Y dim(S (nneh)E)),
L(w)=1

where £(w) = w(d+p) —p—w—2pL, and S (nNEL) is considered as a €-weight module.

Proposition 2. Under the assumptions of Proposition 1,

(1) > (~1)" dim Home(V (3), F*~'(p, E))

0<i<s

=) (—1)3‘(§: dim Hom((H? (n N €, V(8)), S™(n N 1) @ E @ ASmO0E) (y A gl))),

0<5<s m=0

and the inner sum on the right hand side of (1) is finite.

Propositions 1 and 2 are a modification of Theorem 6.3.12 and Corollary 6.3.13 in
[V], and their proofs follow exactly the same lines (an inspection of Vogan’s proofs
reveals that the symmetry assumption on (g, £) is not needed). Therefore, we refer the
reader to [V].

Proposition 1 implies that, for any minimal compatible parabolic subalgebra p and
for any simple finite dimensional p-module E, F"(p, E') (and thus F*(p, E)) is a (g, )-
module of finite type, and also that F(p, E) = 0 for i > s.

In the rest of this section we assume that p and F are as in Theorem 2.
Lemma 1. If V =V (u) is a t-type of F*~%(p, E), then i = 0.

Proof. Choose A € h* so that p = py. In particular, (Re),vy) > 0 for v € suppin. By
Proposition 1, there exist w € W; of length 4 and a multiset n.: supp¢(n N €+) — N

such that

w=wlp+p)—p—200 — Y. ngb
Besuppy (nNe+)
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In addition, w = p — 2px by hypothesis. Hence

w(p+p)—(n+p)= > ngp

BeEsupp¢(nNel)

On the other hand, since i + p is bg-dominant, there exists a multiset

m.: supp¢(nN€) — N such that (u+ p) —w(p+ p) = > mqa. Therefore
a€supp¢(nNg)

Z Mea O + Z ngB =0
a€supp¢(nNk) BEsupp¢(nNet)

and

Z ma (Re, a) + Z ng(Rel, 8) = 0.

a€supp¢(nNe) BEsuppe (nNeL)
Hence m, =ng =0 for all o, B, and w(p+ p) = p+ p. As p+ p is a regular weight of
L, w=idandi=0. O

Lemma 2. dim Hom¢(V, F*(p, E)) = dim E.

Proof. Lemma 1 enables us to rewrite (1) in the special case 6 = u as

dim Home (V' (n), F*(p, E))

= > (-1)9‘(% dim Hom((H? (n N €, V (1)), S™(n N e1) @ E @ AT (0 A ply)),

0<j<s m=0

and, by Kostant’s theorem, suppcH (n N €, V(p)) = {d(u+p) —p | 6 € Wi} and p

appears with multiplicity 1 in {6(u+ p) — p | & € We}. On the other hand,

supp (S (n N EL) ® E @ AT (n A pl))

—{u+ Y, ngBlngeN}

Besupp¢(nnet)

Since i + p is bg-dominant,

{6lutp)—pleeMm}c{u— > mea|maeN}
a€supp¢(nNe)
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This, together with the inequality (Re),~) > 0 Vv € supp¢n (see the proof of Lemma

1), allows us to conclude that
{(p+p)—ploeWedn{n+ D npBl={u}
Besupp (nNet)

Consequently,
Hom(H? (n M€,V (1)), S™(n N L) @ E @ AT™ENE) (nqgl)) £ 0
only for m = 0. This shows that

dim Home(V (), F*(p, E))

= dim Hom{(H'(n N &,V (1)), E @ AN (nqgb)) = dim E. O

Lemma 3. If V() is a t-type of F*(p, E) and § # p, then ||Red + 2p|| > ||Rep + 2p||.

Proof. By Proposition 1, and there exists a multiset n.: supp¢(nN€+) — N such that

d+p=pn+p+ Z ngf.

Besuppe(nnet)

Hence

0+2p=p+2p+ Z ngp.
Besupp (nNet)

Since p C pt2,, (Repu+2p, B) > 0 for all B € suppy(nNEL). In addition, § # x implies
I > ngB||* > 0. Therefore

B€supp (nNel)

IRed + 2p]1> = |[Rep + 2p|* + | > ngplP
Besupp (nnet)

+2 Z ng(Reu +2p, B) > ||Rep + 2p||>. O
BEsupp (nNel)
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3. DISCUSSION

An ultimate goal of the program of study laid out in [PZ1] is the classification of
simple generalized Harish-Chandra modules. Within this framework, Theorem 1 above
establishes the non-emptiness of the class of simple (g, )-modules of finite type with
a fixed minimal ¢-type V, where V is an arbitrary ¢-type. If V = V(u) is a generic
t-type (the definition, see [PZ2], involves certain inequalities on ), all modules in this
class are classified in [PZ2] and in particular are subquotients of F'*(p, E') generated by
the unique minimal ¢-type V of F'*(p, F) constructed exactly as in the present note as
subquotients of F*(p, F) generated by V. For a non-generic V', Theorem 2 yields an
interesting class of simple generalized Harish-Chandra modules which deserves further
study. It is known that in general, these modules do not exhaust all simple generalized
Harish-Chandra modules, as when the pair (g, ) is symmetric, or when ¢ is a Cartan
subalgebra of g, the classifications of simple (g, €)-modules in these two cases yield
modules which do not arise through our construction. For instance, in the latter case
no cuspidal modules, i.e., modules on which all root vectors act freely, are fundamental
series modules. On the other hand, there are symmetric pairs (g, ) for which our
construction yields all simple Harish-Chandra modules. This applies in particular to
pairs of the form (s @ s,s), where s is a simple Lie algebra and the inclusion s <— s © s
is the diagonal map. It is an interesting question whether for some general (non-
symmetric) pairs (g, £) the construction of this paper exhausts all simple (g, €)-modules

of finite type.
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