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BOUNDED GENERALIZED HARISH-CHANDRA MODULES
IVAN PENKOV AND VERA SERGANOVA

ABSTRACT. Let g be a complex reductive Lie algebra and ¢ C g be any reductive
in g subalgebra. We call a (g, £)-module M bounded if the ¢&-multiplicities of M are
uniformly bounded. In this paper we initiate a general study of simple bounded
(g, t)-modules. We prove a strong necessary condition for a subalgebra € to be
bounded (Corollary [6]), i.e. to admit an infinite-dimensional simple bounded
(g, €)-module, and then establish a sufficient condition for a subalgebra £ to be
bounded (Theorem [52)). As a result we are able to classify all maximal bounded
reductive subalgebras of g = sl(n).

In the second half of the paper we describe in detail simple bounded infinite-
dimensional (g, s1(2))-modules, and in particular compute their characters and min-
imal sl(2)-types. We show that if sl(2) is a bounded subalgebra of g which is not
contained in a proper ideal of g, then g ~ sl(2) @ sl(2),sl(3), sp(4); alltogether, up
to conjugation there are five possible embeddings of s1(2) as a bounded subalgebra
into g as above. In two of these cases sl(2) is a symmetric subalgebra, and many re-
sults about simple bounded (g, sl(2))-modules are known. A case where our results
are entirely new is the case of a principal sl(2)-subalgebra in sp(4).

1. INTRODUCTION

In recent years several constructions of generalized Harish-Chandra modules have
been given, [PS1], [PSZ], [PZ1], [PZ2], [PZ3], and a classification of such modules with
generic minimal &-type has emerged, [PZ2]. Recall that if g is a finite dimensional
Lie algebra and ¢ C g is a reductive in g subalgebra, a g-module M is a (g,#®)-
module of finite type if as a £-module M is isomorphic to a direct sum of simple
finite dimensional -modules with finite multiplicities. In the present paper we study
(g, £)-modules with bounded ¢-multiplicities, or as we call them, bounded generalized
Harish-Chandra modules.

There are two important cases of generalized Harish-Chandra modules on which
there is extensive literature: the case when ¢ is a symmetric subalgebra (Harish-
Chandra modules) and the case when § is a Cartan subalgebra (weight modules). In
the latter case there is a complete description of simple bounded modules, [M]. In the
former case several constructions of simple bounded modules are known, but there is
still no complete description of all such modules in the literature, see the discussion
in Section [@ below.

2000 Mathematics Subject Classification. Primary 17B10, Secondary 22E46.
1


http://arXiv.org/abs/0710.0906v1

2 IVAN PENKOV AND VERA SERGANOVA

Our main interest in this paper is the case when £ is neither a symmetric nor a
Cartan subalgebra, and our first main result is that, if there exists an infinite di-
mensional simple bounded (g, ¢£)-module, then ry < b, where b is the dimension of
a Borel subalgebra of £ and ry is the half-dimension of a nilpotent orbit of minimal
positive dimension in the adjoint representation of g. This limits severely the possi-
bilities for €. Our second main result is an explicit geometric construction of simple
bounded generalized Harish-Chandra modules, which in particular gives a sufficient
condition for a subalgebra £ C g with 74 < b¢ to be bounded.

As an application we clasify all bounded reductive maximal subalgebras ¢ in g =
sl(n) and give examples of non-maximal reductive bounded subalgebras of sl(n). We
also classify the reductive bounded subalgebras of all semisimple Lie algebras of rank
2.

The second part of the paper is devoted to a detailed analysis of the case when
t C g is an sl(2)-subalgebra not contained in a proper ideal fo g. Here g must have
rank 2 and, up to conjugation, there are 5 possibilities for embeddings of sl(2) which
yield bounded subalgebras: sl(2) as a diagonal subalgebra of sl(2) @ sl(2), sl(2) as a
root subalgebra or a principal sl(2) subalgebra of sl(3), and sl(2) as a root subalgebra
corresponding to a short root or as a principal subalgebra of sp(4). We give an explicit
description of all simple bounded (g, ¢£)-modules in each of the above cases: in some
of them the results are known, in some they are new. The most interesting new case
is the case of a principal sl(2)-subalgebra of g = sp(4).
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Zuckerman who has supported us on several occasions with valuable advice. David
Vogan, Jr. has also generously shared his knowledge of Harish-Chandra modules with
us, and A. Joseph and D. Panyushev have pointed out useful references. We thank
T. Milev for reading the manuscript carefully and checking some of the calculations.
Finally, we acknowledge the hospitality and support of the Max-Planck Institute for
Mathematics in Bonn.

2. NOTATION

All vector spaces, Lie algebras and algebraic groups are defined over C. The sign
® stands for ®¢. S, is the symmetric group of order n, and S°(-) and A'(-) denote
respectively symmetric and exterior algebra. By g we denote a finite dimensional Lie
algebra, subject to further conditions; U = U(g) denotes the enveloping algebra of g,
and Zy stands for the center of U. The filtration (C = U(g)o) C U(g):1 C U(g)2 C ...
is the standard filtration on U = U(g). If M is a g-module, then

g[M] := {g € g|dimspan{m,g-m,g* m,...} <oco}.

It is proven by V. Kac, [K2], and by S. Fernando [F] that g[M] is a Lie subalgebra
of g. We call g[M] the Fernando-Kac subalgebra of M. If M" C M is any subspace
of a g-module M, by AnnM’ we denote the annihilator of M’ in U(g). If £ is a Lie
subalgebra of g, we put M*:={m € M|g-m =0 Vg € t}.
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If o is an automorphism of g and M is a g-module, M? stands for the g-module
twisted by o. If g is a reductive Lie algebra, ( , ) stands for any non-degenerate
invariant form on g*.

If X is an algebraic variety, Ox is the sheaf of regular functions on X, 7x is the
tangent and cotangent bundle on X, Qx is the bundle of forms of maximal degree on
X, and Zx denotes the sheaf of linear differential operators on X with coefficients
in @ X

3. PRELIMINARY RESULTS

Lemma 3.1. Let {V;} be a family of vector spaces whose dimension is bounded by
a positive integer C, and let R be any associative subalgebra of [ [, EndV;. Then any
simple R-module has dimension less than or equal to C'.

Proof. The Amitsur - Levitzki Theorem, [AL], yields the equality

Z SigIl(S)IS(l) - Ts(20) = 0

SES>c
for any x1,...,x9c € R. Let W be a simple R-module. Assume dimW > C' + 1, fix
a subspace W’ C W with dim W’ = C' + 1, and choose ¥y, ..., y2c € End(WW’), such
that Zsesw sign(s)ys() - - - Yseey # 0. By the Chevalley-Jacobson density theorem,
[Fal, there exist x1,...,z9c € R such that

x; - w = y;(w)

for all ¢ and any w € W’. Hence

Z sign(s)ys(l) < Yseeey = 0.

SESac
Contradiction. O
Lemma 3.2. Let £ be a semisimple Lie algebra and C' be a positive integer. There

are finitely many non-isomorphic finite dimensional €-modules of dimension less or
equal than C.

Proof. Let M, be a simple finite dimensional €-module with highest weight ;1 with
respect to a fixed Borel subalgebra by C €. Recall that

: (1 +p )
dim M, = lpepn, ———,
T )
where A, is the set of roots of by and p := %ZQGA+ a. If w > (' at least for
a,p
one o, then dim M, > C. But the number of all weights 1 such that % <C
) P

for all « € A, is finite. Hence the number of modules M, of dimension less or
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equal than C'is finite. Therefore the number of all finite dimensional &-modules with
dimension less or equal than C' is finite. O

In what follows, £ C g will denote a reductive in g subalgebra. By definition, the
latter means that g is a semisimple £-module. For the purpose of this paper, we call
a g-module M a (g, ¥)-module if € C g[M] and M is a semisimple ¢-module. For any
(g, €)-module M,

M=FVveM,
r€ Ry

where Ry is the set of isomorphism classes of simple finite dimensional ¢-modules, V"
denotes a representative of r € Ry, and M" := Hom,(V", M). In addition, each M"
has a natural structure of a U(g)* - module. The following is a well known statement,
[Dix| [Prop. 9.1.6], whose proof we present for the convenience of the reader.

Lemma 3.3. If M is a simple (g, £)-module, then M" is a simple U(g)* - module for
each r.

Proof. Let 0 # w, w' € M". By the density theorem ([Fa]), for any v € V" there
exists x € U(g) such that z- (v@w) =v@w'. Ift € ¢, then 2t- (VW) =t-vw =
tr- (v ®w), hence [¢,2] C Ann(V" ® w). Since Ann(V" ® w) is -invariant under the
adjoint action, and since U(g) is a semisimple ¢ -module, we can write x = y + z with
z € Ann(V" @ w) and y € U(g)*. Therefore y - w = w', i.e. M" is a simple U(g)* -
module. O

Lemma 3.4. Let M be a (g, €)-module with M, # 0 for finitely many r € R.
(a) Then g[M] + g* = g.
(b) If in addition g is simple and M is finitely generated, then M is finite dimen-
sional.

Proof. (a)Let g = P, g; be a decomposition of g into a sum of simple ¢-modules.
It suffices to prove that g; C g[M] for every non-trivial ¢-module g;,. Assuming that
the Borel subalgebra by C ¢ is fixed, let x; be a non-zero be- singular vector of g;.
For any by - singular vector m € M, z! - m is a by - singular vector for any [ € N. If
g; is not a trivial &-module, all non-zero vectors of the form ! - m generate pairwise
non-isomorphic simple £-submodules of M. Hence, ! - m = 0 for large | whenever
g; is non-trivial. Since M is generated as a -module by be-singular vectors, we have
z; € g[M], and moreover g, C g[M] as & C g[M].

(b) Note that the subalgebra g generated by all non-trivial ¢-submodules g; is an
ideal in g. On the other hand, by (a), g C g[M]. The simplicity of g yields now
g = g[M]. Hence M is finite dimensional as it is finitely generated. O

4. FIRST RESULTS ON BOUNDED MODULES AND BOUNDED SUBALGEBRAS

Recall (see the Introduction) that a (g, €)-module M has finite type if M" is finite
dimensional for all » € R, and that a (g, ¥)-module of finite type is a generalized
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Harish-Chandra module according to the definition in [PZ1] and [PSZ]. Any (g, £)-
module M of finite type is also automatically a (g, ¥')-module of finite type for any
intermediate subalgebra ¢, ¢ C ¥ C g[M]. Note also that &€ + g* C g[M]. If g
is reductive, then for any proper reductive in g subalgebra £, there exist infinite
dimensional simple (g, £)-modules of finite type over €. A stronger statement is proved
in [PZ2]. A (g,%)-module is bounded if, for some positive integer Cyy, dim M" < Cy
for all r € Ry, and is multiplicity free if dim M" < 1 for all r € Rj.

Theorem 4.1. Let g = @ g;, where g; are simple Lie algebras, let ¢ C g be a
reductive in g subalgebra, and let M be a simple bounded (g,%)-module. Then
gt =@, ¢, and g; C g[M| whenever g} is not abelian. Furthermore, M ~ M'®M" for

some simple finite dimensional g’ := @ gi-module M' and some simple bounded
9;Cg[M]
(g",t")-module M", where g" :== € g; and ¢ :=tng".
giZa[M]

Proof. The equality g* = @, g} follows directly from the definition of g*. In
addition, each subalgebra g! is reductive in g;, hence s; := [g}, g¥] is semisimple. Set
s := P, s;. Consider the decomposition

M= v em
r€Ry

Since the dimensions of M" are bounded, Lemmas and imply that at most
finitely many simple s-modules M" are non-isomorphic. Hence, M considered as a
(g,5)-module satisfies the condition of Lemma 34l Thus g[M] + g° = g. Note that
the trivial s-submodule g° of g has a unique s-submodule complement a. Moreover,
a C g[M] by Lemma 34l In addition, as we already noted in the proof of Lemma
3.4 (b), the subalgebra of g generated by a is an ideal in g. Since s C a, we have
®D.. .0 9: C g[M], i.e. we have proved that g; C g[M] whenever g} is not abelian.

We prove next that M = M’ ® M”. Since ¢’ C g[M], there is a simple finite
dimensional g’-submodule M’ of M. Set M" := Homy(M', M). Clearly M" is a
g’-module, and there is a non-zero homomorphism of g-modules

O: MM — M,
D(m' @ ) :=p(m'), m' e M.
Since M is simple, ® is surjective. To prove that ® is injective, fix a nonzero vector
me M. Ifpy, ..., 0, € M" are linearly independent, the vectors ¢1(m), ..., @,(m) €
M are linearly independent, as the contrary would imply that ¢1(m’), ..., p,(m’) are
linearly dependent for any m’ € M (since m generates M'), which is contradictory.
Since p1(m), ... p,(m) are linearly independent, the sum ) . ;(M’) is direct, hence

no non-zero vector of the form ). ¢;(m}) for m, € M belongs to the kernel of ®.
This implies ker ® = 0. The irreducibility of M now yields the irreducibility of M".
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To see that M"” is a bounded (g”, €’)-module it suffices to notice that M is a bounded
(9,9 ®¥")-module as £ C g’ @ ¢ and that the multiplicity of M’ ® V™" in M equals
the multiplicity of V™" in M” for any r” € Re/. O

In the rest of this section and in Sections[Bland [6 below, g is a reductive Lie algebra
unless further restrictions are explicitly stated. We call € a bounded subalgebra of g
if there exists an infinite dimensional bounded simple (g, £)-module. Theorem [A.]]
suggests also the following stronger notion: a bounded subalgebra € of g is strictly
bounded, if there exists an infinite dimensional bounded simple (g, £)-module M such
that g[M] contains no simple ideal of g. Clearly, if g is simple, a subalgebra ¢ is
bounded if and only if it is strictly bounded.

Corollary 4.2. If ¢ is a strictly bounded subalgebra of a reductive Lie algebra g,
then gt C g is an abelian subalgebra.

Theorem 4.3. Let C' be a positive integer and M be a simple bounded (g,¢%)-
module with dim M"™ < C for all r € Rs. Let N be a simple (g,%)-module with
AnnN = AnnM. Then N is also bounded and dim N" < C for all r € Ry.

Proof. Set Uy := U(g)/AnnM and Zy := (Uyp)*. The (g, t)-module M deter-
mines an injective algebra homomorphism

Zy — ] End(M7),
r€ Ry
and dim M" < C for all ». By Lemma B.3] N" is a simple Z;-module for any r.
Therefore, by Lemma B.I, dim N" < C. O
Recall that, for any simple g-module M, its Gelfand-Kirillov dimension GKdimM &
Z> is defined by the formula

GKdimM = T 084 (U(g)n - 0)

n—00 logn

for any non-zero v € M, [KL] [p. 91]. Recall also that the associated variety X
of M is the nil-variety in g* of the associated graded ideal in S*(g) of AnnM. We
next prove an explicit bound for dim X,; by dim#£ + rk¢ for any simple bounded
(g, €)-module M. For this purpose we will use the well known inequality

GKdimM > dlm2XM,

see [KLJ [p. 135].

Theorem 4.4. Let M be a simple bounded (g, )-module. Then
(4.1) GKdimM < b,

where by := M

2
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Proof. Fix a Cartan subalgebra hy C £ and a Borel subalgebra by C € with he C by.
Note that by = dim bg. Fix also r € Re with M" # 0 and let py € by be the be -highest
weight of V7. Set
for n € Z>q. It suffices to prove that there exists a polynomial f(n) of degree by such
that dim M,, < f(n).

Let 1v4q,..., v, be the bg-highest weights of all simple ¢-submodules of g. Put v :=

> vi- Then, if V,, is the simple finite dimensional ¢-module with be- highest weight
p, Home(V,, M,,) # 0 implies

(4.2) < nv+ o

where < is the partial order on h; determined by be. The cardinality of the set of
all integral- be-dominant weights p satisfying (4.2)) is bounded by some polynomial
g(n) of degree rké. Weyl’s dimension formula implies that the dimension of V) is
bounded by a polynomial h(n) of degree equal to the number of simple roots of b.
If dim M" < C, then
dim M,, < Ch(n)g(n).

(I

The inequality (4.1]) is very much in the spirit of A. Joseph who was the first to
establish the equality dim# = 2dim X, in the particular case when £ is a Cartan
subalgebra of g and M is a simple bounded (g, €)-module, [J].

Corollary 4.5. Let M be a bounded simple (g, ¥)-module. Then

2

In the remainder of the paper GG will be a fixed reductive algebraic group with Lie
algebra g. Denote by ry the half-dimension of a nilpotent orbit of minimal positive
dimension in g. If g is simple, such an orbit is unique. It coincides with the orbit of
a highest vector in the adjoint representation, and

< b.

((tkg=n for g =sl(n+ 1),sp(2n)
2n—2  for g =so(2n+1)
2n —3  for g =so(2n)
. 3 for g= G2
s = 8 for g= F4
11 for g = Eg
17 for g = E7
[ 29 for g = Es.

Corollary 4.6. If ¢ is a bounded subalgebra. Then
(43) g S bg.
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Ifg=g,® ... ® g, is a sum of simple ideals and € C g is strictly bounded, then
(4.4) Tgy + o +1g < be.

Proof. X, is a closed G-invariant subvariety of the nilpotent cone in g. Since
M is infinite dimensional, the dimension of X, is positive. Hence diLQXM > rg, and
#3) follows from Corollary .5 If ¢ is strictly bounded, then there exists a simple
bounded (g, £)-module M such that g[M] does not contain g; for all i = 1,...;s. This
implies that X, Ng; #0 for all i =1, ..., s, and hence dim% >7rg + ..+ O

Example 4.7. Corollary .6l implies that if € ~ sl(2) is a strictly bounded subalgebra
of a semisimple Lie algebra g, then there are only following three choices for g:

(4.5) g ~sl(2) &sl(2), g~sl(3), g~sp4).

As we show below, up to conjugation there are five possible embeddings sl(2) — g
(with g in (4.3)) whose image is a bounded subalgebra.

Example 4.8. This example shows that the inequality ry < b¢ together with the
requirement that g® is abelian are not sufficient for a reductive in g subalgebra £ to
be bounded. Let g = sl(n+ 1) and € = so(n) C g for n > 5, where the natural
sl(n + 1)-module decomposes as a t-module as V' & C, V being the natural so(n)-
module. Then ry =n and by = "("4_1) + 1 [2], hence ry < be. In addition, dim g* =1,
therefore g* is abelian. We will show that nevertheless £ is not a bounded subalgebra
of g.

Note first that as a -module g contains two copies of V' which are gt-eigenspaces
with opposite eigenvalues, therefore we can fix an element ¢ € g* such that its corre-
sponding eigenvalues are +1. This allows us to fix non-zero be- singular vectors x,y €
g with [t,z] =z, [t,y] = —y. Then it is easy to check that [z,z] = [y, z] = [t, 2] = 0.

Let M be an infinite dimensional simple bounded (g, ¢)-module. We claim that
g[M] contains span{z, z} or span{y, z}. Indeed, let m be a be-singular vector in M of
t-weight 0. If y, z ¢ g[M], all vectors of the form (2%4°)-m for a,b € Zsq are linearly
independent bg-singular vectors in M. Then if the weight of y is k, the weight of
z is equals 2k and the multiplicity of the weight nx + n in span{(z®y®) - m}apez-,
is at least [2]. Since all vectors of span{(2°y’) - m}apez., are be-singular, M has
unbounded ¢-multiplicities, and we have a contradiction. This implies y € g[M] or
z € g[M].

Arguing in the same way, we obtain x € g[M] or z € g[M]. If x,y € g[M], then
z = |z,y] € g|M]. If z € g[M], but x,y ¢ g[M], we repeat the above argument for the
pair (x,y) instead of (z,z) under the assumption that m is be-singular vector with
z-m = 0. Then all vectors {(z4") - m}apez-, for a,b € Zsq are linearly independent
be-singular vectors and M has unbounded €-multiplicities, which is a contradiction.

Without loss of generality we can therefore assume that z, z € g[M]. The subalge-
bra p C g generated by &, x, 2, ¢ is a maximal parabolic subalgebra whose semisimple
part g’ is isomorphic to sl(n). Note also that g’-V = V. Let M, be a finite dimensional
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g’ submodule of M with highest weight ;¢ and highest weight vector 0 # m € M,
with respect to a fixed Borel subalgebra b’ C g’. Then y" - m is a b’-singular vector
for any n, and y" - m # 0 for any n since y ¢ g[M]. This shows that for any n
the multiplicity of M, ,. in M is non-zero, where € is the b’-highest weight of the
g-module V.

We claim that this implies that M is a (g, £)-module of infinite type. Indeed, for
any positive n

Homy (S™V ®@ M,,, My i) = Homg (S™(V), M @ My ne) # 0.
However, for any even n S™(V') contains a trivial £-constituent. Therefore
(M; © M)t = Home(M,, M) 7 0.

Since M|, has finitely many simple €-constituents, there is a simple €-constituent V" of
M,, such that Hom¢(V", M, e) # 0 for infinitely many n. That implies dim M" = oo.
Contradiction.

We conclude this section by a brief discussion of the action of the translation functor
on bounded (g, £)-modules. For any & € h*, denote by UX®) the quotient of U(g) by
the two sided ideal generated by the kernel of the character x(§) : Zy — C via which
Zy acts on the Verma module with b-highest weight £ — p. Let now &£, € h* be two
weights with the same stabilizer in the Weyl group W and such that the difference
n—¢ is a g-integral weight. Assume furthermore that (&, &) € Zsog <= (1, &) € Zx
and (&, &) € Z<y <= (n,&) € Z<o for any root « of b ( as usual, & = (j;‘;) ). There
is a unique simple finite dimensional g-module E such that n — £ is its extremal
weight. It is well known, see [BG] and [Z], that the translation functors

T UX®) —mod — UX™ —mod

M — U @y (M®E),
T§ :UX™ —mod — UX® —mod

M — U eyq (M E),

are mutually inverse equivalences of categories. It will be important for us that the
image of a bounded (g, £)-module under the translation functor is clearly a bounded

(g, €)-module. Therefore, if %%‘(f) (respectively, ‘Bﬁ(")) is the full subcategory of
UX® —mod (resp., of UX( — mod ) whose objects are bounded generalized (g, £)-
modules, T, 5" and T 5 induce mutually inverse equivalences of the categories ‘Bé‘@) and

%g(n).
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5. A CONSTRUCTION OF BOUNDED (g, £)-MODULES

Let 2¢ be the sheaf of twisted differential operators on G/B as introduced in [BBJ.
Recall that if (£, ) # 0 for any o € A, then I'(G/B, 2¢) = UX®. Furthermore, if
(&, &) ¢ Zi<o for any root « of b = LieB, then the functors

I': 2% —mod ~ UX® —mod

D¢ @px -1 UX® —mod ~ 2% — mod

are mutually inverse equivalences of categories. Here 2¢ —mod denotes the category
of sheaves of left Z%-modules on G/B which are quasicoherent as sheaves of & =
O¢/p-modules, [BB].

Note that if £,n € b* satisty (£, &) ¢ Z<o, (n,&) ¢ Z<o for any root « of b, and
¢ —n is a g-integral weight, then the translation functor

T UM —mod ~» UX® — mod

coincides with the composition I'o(O(§ — 1) ®g )0 (2" @yn -), where (£ —n) stands
for the invertible sheaf on G/B on whose geometric fibre at the point B € G/B the
Lie algebra b acts via the weight w,,(§ —7), w,, being the element of maximal length
in the Weyl group W,. This yields a geometric description of the translation functor
T.

fWe need one more basic Z-module construction. For any parabolic subgroup
P C G there is a well-known ring homomorphism U(g) — I'(G/P, Z¢/p) which

extends the obvious homomorphism g — I'(G/ P, Zg,p). Therefore the functor
I': Y¢/p —mod — I'(G/P, Z¢/p) — mod

can be considered as a functor into U(g)-mod.

Let Z be a smooth closed subvariety of G/P, and let (Z¢/p — mod )? be the full
subcategory of Zg,p-mod with objects Z,p-modules supported on Z as sheaves.
Furthermore, denote by Zx. 7 the (Zg,p, Z7)-bimodule ((Z¢/p ®og,r 25 p)12) Po,
Q. A well-known theorem of Kashiwara [K] claims that the functor

ix : D7 —mod ~ (Zg/p —mod )?

F — @X<—Z ®gZ F

is an equivalence of categories. In addition, it is easy to see that I'(G/P,i,07) is an
infinite dimensional g-module whenever dim Z < dim G/ B.
Next, we recall the following result.

Theorem 5.1. ([VK] [Thm.2]) Let K be a reductive algebraic group and By be a
Borel subgroup of K. Then, for any (finite dimensional) K-module V' such that Bg
has an open orbit in V', the symmetric algebra S"(V') is a multiplicity free K-module.
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A K-module V is called spherical if it satisfies the condition of Theorem [G.11
Moreover, assume now that K is a reductive proper subgroup of our fixed reductive
algebraic group G, and let P C G be a proper parabolic subgroup such that @) :=
K N P is a parabolic subgroup in K. Let )y be a reductive part of (). There is a
closed immersion

K-P=K/Q— G/P.

Since P is Q-stable, Q acts in the fiber Np ~ g/(€® p) at the point P of the normal
bundle N of K/Q in G/P.

The following result is one of the key observations in this paper.

Theorem 5.2. If Np is a spherical Qo-module, then I'(G/P,ix Ok ) is an infinite
dimensional multiplicity free (g, ¥)-module.

Proof. Recall that i~'ix Ok q has a natural Ok qg-module filtration with succes-
sive quotients

A (N) QoK /0 SZ(N)

(A stands here for maximal exterior power). Moreover, i~ 'ix Ok q is K-equivariant,
and at the point P, the above filtration induces a ()-module filtration and thus also
a Qo-module filtration of the fiber (i 'ix Ok q)p with successive quotients

(5.1) A" (Np) @c S'(Np).

Theorem implies that the direct sum of all modules (5.1I) for ¢ > 0 is a multi-
plicity free Qo-module. The Bott-Borel-Weil Theorem implies therefore that I'( K/Q,
Do (A" (N) @p,, S'(N))) is a multiplicity free K-module. Since as a K-module
['(G/P,ix0Ok/q) is asubmodule of (K /Q, @,5(A"* (N)®s,,,S'(N))), T(G/P,ix Ok q)
is itself K-multiplicity free.O

We would like to point out that it is relatively straightforward to generalize Theo-
rem to the case when Ok is replaced by a K-equivariant line bundle on K/Q.
This more general theorem should play an important role in a future study of bounded
(g, £)-modules with central characters different from that of a trivial g-module. In the

present paper we discuss this construction briefly in a very special case, see Lemma
9.14] below.

6. ON BOUNDED SUBALGEBRAS

Theorem leads to the following results about bounded subalgebras.

Corollary 6.1. Let K C G C GL(V) be a chain of reductive algebraic groups,
and let V! C V' be a 1-dimensional space whose stabilizers in G and K are parabolic
subgroups P C G and Q C K. Then, if (V')*®(g-V'/%- V") is a spherical QQy-module,
then ¢ is a bounded subalgebra of g.
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Proof. We identify G/P with the G-orbit of V' in P(V'). Then K/Q is identified
with the K-orbit of V" in P(V'). Moreover (7 p)v: = (V') ®@g-V', (Tx/0)v: = (V') ®
£V’ and hence Np is identified with ((Zg/p)v'/(Tx/p)v:) = (V' )* @ (g-V'/E- V).
Therefore the claim follows from Theorem O

Corollary 6.2. Let K be a reductive subgroup in G[/(f/) such that V is a spherical
K-module. Then LieK is a bounded subalgebra of gl(V @C), where LieK is embedded
in gl(V @& C) via the composition LieK C gl(V') C gl(V @ C).

Proof. One sets V := V & C and applies Corollary to the chain K C G :=
GL(V) with the choice of V' as the fixed one dimensional subspace C C V. Then
(VYe(g-V/e-V)=Vasg - V' =V, £V =V.0O

All faithful simple spherical modules of reductive Lie groups are listed in [K1] [Thm.
3]. This list provides via Corollary a lot of examples of bounded subalgebras of
gl(n).

Before we proceed to applications of Corollary [6.1], let us briefly discuss what is
known in the cases when ¢ is a symmetric or a Cartan subalgebra of g. In the
first case, there is the celebrated classification of Harish-Chandra modules, see [V1],
[KV] and the references therein. In addition, bounded Harish-Chandra modules have
been studied in detail in many cases, and the corresponding very interesting results
are somewhat scattered throughout the literature. It is an important fact that every
symmetric subalgebra of a semisimple Lie algebra is bounded, and this follows from a
combination of published and unpublished results, communicated to us by D. Vogan,
Jr. and G. Zuckerman.

More precisely, if the pair (g, €) is Hermitian, i. e. if ¢ is contained in a proper
maximal parabolic subalgebra, any simple highest weight Harish-Chandra module
is bounded. This follows from results of W. Schmid, [Sch|. If g is simply laced,
then (published and unpublished) results of D. Vogan, Jr. imply that any symmetric
subalgebra € C g is bounded. In all remaining cases, the boundedness of a symmetric
subalgebra follows from the existence of a simple ladder module (this is a special
type of multiplicity free (g, )-module, see the proof of Theorem [1]), or a bounded
degenerate principal series module, or a bounded Zuckerman derived functor module.
The corresponding results can be found in [V1], [V3], [BS], [GW], [Str], and [EPWW].
A systematic study of bounded Harish-Chandra modules would be very desirable but
is not part of this paper.

In the case when ¢ = h is a Cartan subalgebra of g the simple bounded (g, £)-
modules have played a quite visible role in the literature on weight modules. Here it
is easy to check that, if g is simple, (43]) is satisfied only for g ~ sl(m), sp(n). This
observation, made by A. Joseph in the 1980’s, easily implies that a Cartan subalgebra
is a bounded subalgebra of a simple Lie algebra g if and only if g ~ sl(m),sp(n).
Furthermore, the works of S. Fernando, O. Mathieu and others, see [M], [E] and
the references therein, have lead to an explicit description of all simple bounded
(g, h)-modules for g = sl(m),sp(n), see [M] for comprehensive results.
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We now proceed to direct applications of Corollary [6.I} we classify all bounded
reductive subalgebras ¢ C sl(n) which are maximal as subalgebras, and give examples
of bounded non-maximal subalgebras of sl(n).

Theorem 6.3. Let g =sl(n). A proper reductive in g subalgebra € which is maximal
as a subalgebra of g is bounded if and only if it satisfies the inequality (4.3), i.e. iff
bg >n — 1.

We need the following preparatory statements. For a simple Lie algebra £ we denote
by wy, ..., wre the fundamental weights of €, where for the enumeration of simple roots
we follow the convention of [OV]. Furthermore, in what follows we denote by V) the
simple finite dimensional €-module with highest weight .

Lemma 6.4. Let £ be a simple Lie algebra and V' be a simple £ module. Assume

that
i K
(6.1) dimV — 1 < dm ekt

Then V' is trivial, or we have the following possibilities for € and V':
(1) t= Sl(m)7 V= wa Vwm,p Vw27 Vwmfza ‘/2w17 ‘/2wm717

(2) £ =so(m) orsp(m), V=1V,

(3) e=so(m),5<m<100rm=11,V =V, ., foroddm,V =V, . and
V=V, forevenm,

(4) = G2, V= un

(5) E= F4, V= un

(6) €= FEg, V=V, orV,,

(MY t=FE;,, V=V,.

Proof. We start with the observation that (A, ;) = k € Zs( implies dim V), >
dim Vj,,. This follows immediately from Weyl’s dimension formula. Therefore it
suffices to find all fundamental representations for which the inequality (6.1) holds.

Let ¢ = sl(m). The dimensions of the fundamental representations are (') for
k=1,...,m — 1. The condition

m mm+1) 1,
< - 7 = _
(k)_ 5 2(d1m?+rk?)+1

is equivalent to (6.I]) and implies & = 1,2, m — 2,m — 1. Obviously, dim Va,,, , =
dim V4, is greater than w On the other hand, dim V5, = dimV,,, , = m(rr2L+1 )
Hence (1).

Let £ = so(m), m = 2p. We may assume m > 8. The inequality (6.I]) is equivalent

to

dim V < p? + 1.
The dimensions of the fundamental representations are (T,?) fork <p—2and2°r~1 It
is not hard to check that for an arbitrary p the inequality holds only for V, ; moreover

it holds for V, _,, Vi, if p=14,5,6.
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Let € = so(m), m = 2p + 1. The inequality (6.I]) is equivalent to
dimV < p* +p+1,

and holds for V,, for any p, and for V, if p < 4.
Let ¢ = sp(m),m = 2p. Assume p > 3. The inequality is the same as in the

previous case, but
. _(?p 2p
dlmvwk_(k) (k_Q).

One can check that here the inequality holds only for k£ = 1. This proves (2) and (3).
The cases (4)-(7) can be checked using the tables in [OV]. O

Lemma 6.5. Let € and V' be as in Lemma [6.4. The following is a complete list of
pairs &,V such that V has no non-degenerate t-invariant bilinear form:

(1) t= Sl(m)7 V=V, Voo vs Vi (m > 5): Viom-a (m > 5): Vawss Vaw,, 15

(2) £=s0(10), V=V, or V,;

(3) e=FEs, V=V, orV,.

Proof. If V is not self-dual, the Dynkin diagram of £ admits an involutive au-
tomorphism which does not preserve the highest weight. Moreover, in the case of
so(2p), p must be odd. These conditions reduce the list of representations in Lemma
to the list in the Lemma. O

Proof of Theorem According to E. Dynkin’s classification [D] [Ch.1.], if
t C g = sl(n) is a reductive in g subalgebra which is maximal as a subalgebra of g,
one of the following alternatives holds:

(i) € is simple, the natural sl(n)-module V is a simple £-module with no non-
degenerate invariant bilinear form, or £ = so(n) and sp(n).

(ii) € ~ sl(r)®sl(s) withrs = n, and V ~ S, ®S,, where S, and S, are respectively
the natural modules of sl(r) and sl(s).

If (i) holds, then € ~ so(n),sp(n) or £ is among the Lie algebras listed in Lemma
6.5, where g is identified with sl(V'). Consider first the case ¢ ~ sp(n), n = 2p. To
show that € is bounded in g, we apply Theorem [F.2lwith G/ P being the Grassmannian
of p-dimensional subspaces in C" and K /@ being the Grassmannian of Lagrangian
subspaces in C". Then @y = GL(p) and Np is the exterior square of the natural
representation. The Qop-module Np is spherical, [KIJ.

We now consider the remaining cases of (i), which can all be settled using Corollary
6.1 Note that, if € is embedded into sl(n) via a simple ¢-module or via its dual,
the corresponding embeddings are conjugate by an automorphism of sl(n), hence it
suffices to consider only one such embedding. The list of Lemma[6.5 reduces therefore
to the following cases, in which all Qo-modules are spherical, [K1J:

t=slk), V=V, Qo~SL2)x GL(k—2) and (V')*® (V/€- V") is isomorphic
to the tensor product of the exterior square of the natural representation with the
determinant representation of GL(k — 2), the action of SL(2) being trivial;
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-t =slk), V = Vau,, Qo ~ GL(k — 1) and (V')* ® (V/€- V') is isomorphic to
the tensor product of the symmetric square of the natural representation with the
determinant representation of GL(k — 1);

-t =5s0(10), V =1V,,, Qo = GL(5) and (V')*® (V/€- V") is isomorphic to the tensor
product of the natural representation of GL(5) with the determinant representation
of GL(5); the case V' =V, can be reduced to the case V =V, by dualization;

t=FEs, V=1V, then Qy = SO(10) x C* and (V')* ® (V/€- V') is isomorphic to
the natural 10-dimensional representation of SO(10), and the action of the center of
(0o is not trivial.

The only remaining case in (i) is when ¢ = so(n), Qo ~ SO(n — 2) x C* and
(V"* @ (V/e- V') is a one-dimensional non-trivial, hence spherical, QQo-module.

If (ii) holds, then € ~ sl(r)@sl(s) for some rs with rs = n, and we claim that in this
case all pairs r, s with rs = n yield a bounded subalgebra €. To see this, fix V' of the
form S| ® S, for some 1-dimensional spaces S, C S,, S, C Ss. Then @y is isomorphic
to GL(S,/S.) x GL(Ss/S.) and g-V'/¢- V' =V/e- V' ~ (S,/S]) @ (Ss/S.). Since
the action of GL(r —1) x GL(s—1) on V' is given by the inverse of the determinant,
(V)*® (V/&- V') is isomorphic as a GL(r — 1) x GL(s — 1)-module to S,_; X Ss_;
twisted by the determinant. This representation is spherical, [KIJ. O

We give now three more examples of bounded subalgebras of sl(n) which are not
maximal in the class of reductive subalgebras of sl(n).

(i) Let ¢ ~sl(k+ 1), k > 2. The t-module V :=V,, &V, defines an embedding
t C g =sl(V), and Corollary [61implies that € is a bounded subalgebra of g. Indeed,
choose V' to be a 1-dimensional subspace V' C V,,, and note that the conditions of
Corollary 6.1l are satisfied. In this case Qg ~ GL(k) and (V')*®(V/€- V') is isomorphic
to AF(Sy) @ (A*(Sy) @ S}), Sk being the natural Qg-module. A straightforward
calculation shows that this representation is spherical.

(ii) Consider the embedding ¢ = so(7) C g = sl(8), where the natural sl(8)-module
restricts to the 8-dimensional spinor representation of so(7). Corollary implies
that € is a bounded subalgebra of g. Here V = C¥ G = SL(V), K = Spin(7) and
V' is a Bg-stable line, where By is a fixed Borel subgroup of K. Then g- V' =V
and dim#€ -V’ = 7, hence dim(g - V'/¢- V') = 1. Since Q) acts non-trivially on
(V') @ (V/e- V'), the latter Qop-module is spherical.

(ili) Let € = Go C g =sl(7). Then again, Corollary [6.1] implies that € is a bounded
subalgebra. The argument is similar to the argument in (ii) as dimg- V/¢- V' = 1.

We conclude this section by the following conjecture which is supported by all the
empirical evidence collected in this paper.

Conjecture 6.6. Let € C g be a reductive in g subalgebra. Then € is bounded if and
only in there exists a simple infinite dimensional multiplicity free (g,¥€)-module.
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7. THE RANK 2 CASE

In this section we list all bounded pairs (g, £), where g is a semisimple Lie algebra
of rank 2, and we fix notation used in the subsequent sections.

Theorem 7.1. Let g be a semisimple Lie algebra of rank 2 and ¥ C g be a reductive
in g bounded subalgebra. The following is a complete list of such pairs.

(1) g ~ sl(2) ®&sl(2): & ~ gl(2), ¢ ~ sl(2) is a diagonal subalgebra, or £ is any
toral subalgebra;

(2) g ~sl(3): ¢ is a root subalgebra isomorphic to sl(2) or gl(2), ¢ is a principal
sl(2)-subalgebra, or ¢ is a Cartan subalgebra;

(3) g ~sp(4): & ~sl(2) ®sl(2), € ~ gl(2), € ~ sl(2) is a root subalgebra corre-
sponding to a short root, ¢ is a principal sl(2)-subalgebra, or £ is a Cartan
subalgebra;

(4) g~ Gy: £ ~5sl(3), ~sl(2) ®sl(2), or &~ gl(2).

Proof. The inequality (£3) implies that a 1-dimensional toral subalgebra is not
bounded in all cases but (1). In (1) any 1-dimensional toral subalgebra t is bounded
as the outer tensor product of a Verma module over a suitable ideal of g with the
trivial module of the complementary ideal of g is always bounded as a (g, t)-module.

Similarly, ([4.3]) implies that a Cartan subalgebra is not bounded in Gs. In all other
cases it is well known to be bounded, see for instance [E].

If € ~ sl(2) then ¢ is not bounded in Gy again by (43), and if ¢ is an ideal of
g = sl(2) @ sl(2), it is not bounded by Theorem Il Furthermore, if £ ~ sl(2) is a
root subalgebra of g = sp(4) corresponding to a long root, then £ is not bounded by
Corollary For the remaining five possible embeddings of sl(2) into a Lie algebra
of rank 2, the image £ is always a bounded subalgebra. This follows for instance from
the explicit description of bounded (g, £)-modules which we present in Sections 8-11
of this paper.

For any embedding of gl(2) into a Lie algebra g of rank 2, g 2 G5, any generalized
Verma module, corresponding to a parabolic subalgebra p which contains the image
t of gl(2), is a bounded (g, £)-module.

Consider next the case € ~ sl(2) @ sl(2) C g for g = sp(4) or G5. Here the pair
(¢, g) is symmetric. In [VI] and [V3] ladder (g, €)-modules are constructed. Fix a
Borel subalgebra by C €. By definition, a ladder module M has the £ decomposition
M = ®n€Z>o V,4ns, Where p is some integral be-dominant weight and 3 is the by-
highest weight of g/€. Clearly, a ladder module is multiplicity free and hence bounded.
Moreover, it remains bounded with respect to any gl(2)-subalgebra of £. Hence any
image of gl(2) in sp(4) or G is bounded.

The only remaining case is g = G, € ~ sl(3). To show that ¢ is bounded we use
Corollary with V being the 7-dimensional Go-module. Then as a £-module V is
isomorphic to V,,, & V; & C. One can fix a Borel subalgebra b C g so that there



BOUNDED GENERALIZED HARISH-CHANDRA MODULES 17

exists a b-invariant one-dimensional subspace V' C V. Then Qy ~ GL(2) and
(V) ®(g-V'/e- V') = A*(S2) @ (S: ® C)

is a spherical (Qg-module. O

In the rest of this paper g will be of rank 2, and € will be isomorphic to sl(2). By
Vi we denote the k+ 1—dimensional ¢-module, and we write ¢(M) for the ¢-character
of any semisimple (€, €)-module M of finite type over ¢:

(M) =) (dim M*)z*.

k>0

By definition, ¢(M) is a formal power series in z. The minimal ¢-type of M is V,
where t € Zso is minimal with M* # 0. A (g, €)-module of finite type M is even
(respectively, odd) if M* =0 for all t € 1+ 27Z (resp. t € 27).

Let C((z)) be the algebra of Laurent series and C((z))" be the span of vectors in
C((2)) of the form 27427772 for j € Z (C((z))’ is not a subalgebra). Note that C((z))’
is a complement to the subspace C[[z]] of C((z)). In what follows we denote by 7
the projection onto the second summand in the direct sum C((2)) = C((2)) & C[[z]],
and we set 2P @ 27 1=, P72k for p > g and 2P ® 29 := 27 ® 2P for p < q.

Lemma 7.2.

(a) Forany f(z
(b) For any (¢,

) € C((2)) and any j € Z, 7(f(2)(2+277)) = w(x(f(2)(z/ +277))).
t)-module M of finite type over ¢

c(M®@V;) =mn(c(M) Z'zi_zk),

for all 1 € N.

Proof.

(a) It suffices to check that for any ¢(z) € C((2)), ¢¥(2)(z? +277) € C((2))’, and
this is obvious.
(b) It suffices to check that, for any s € Zx

7T(ZS ®( Z Zi—2k)) _ Z Z5+i—2k’

0<k<i li—s|
<k=i 0<k< o

which is also obvious.

O
Finally, by I'y we denote the functor of €-finite vectors:

I'y : g — mod ~ (g, ) — mod,

M — {m € M| dim(U(¢) - m) < oo}.
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8. CLASSIFICATION AND £-CHARACTERS OF SIMPLE (sl(2) & sl(2),sl(2))-MODULES

The simplest possible case among the 5 cases of Example [£.7]is when g = sl(2) @
sl(2) and ¢ C g is the diagonal subalgebra. In this case all simple (g, €)-modules
are bounded and are moreover multiplicity free. This follows, for instance, from the
algebraic subquotient theorem, see [Dix], Ch. 9. These (g, ¥)-modules are histori-
cally among the first examples of (g, £)-modules studied. They have been classified
already in 1947 by Gelfand and Naimark |[GN|] and by Bargmann [B], and have been
constructed also by Harish-Chandra around the same time, [HC]. A fundamental
more modern and much more general reference is the article [BG], where however
this explicit example is not written in detail. In the present section we give a quick
self-contained description of all simple (g, €£)-modules based on the approach of [BG].

Lemma 8.1. Let ©,Qy € U(g) be the Casimir elements of the two sl(2)-direct
summands of g, and Q C U(¢) C U(g) = U be the Casimir element of £. Then 2y,
and ) generate U(g)".

Proof. Straightforward computation. A more general result is proved by F. Knop
in [Knl]. O

Corollary 8.2. Every simple (g, )-module is multiplicity free.

Lemma 8.3. IfV,, is the minimal ¢-type of a simple infinite dimensional (g, €)-module
M, then

(8.1) (M) = 2"+ 2" 4 2" 4

Proof. To prove (81]) it suffices to show that V,,, V,,1o, V.14, etc. are precisely all
t-types of M. The absence of other ¢-types follows from the fact that as a £-module
g is isomorphic to V5 & V5, hence when acting by g on V.9 one can only obtain
E-constituents of (Va2 ® Va) ® Viqas, ie. Vigoio1), Vasoi and Vi yo@q1). To show that
for each ¢ > 0 V,,y9; is a t-constituent of M, note that if V,,9; were not a constituent
of M, then when acting by g on V,, 15— for £ > 1 one would not be able to obtain
a constituent of the from Vo4 for 7 > 1. Hence M would turn being finite
dimensional, a contradiction. O

Lemma 8.4. Let M be a simple (g, t)-module with minimal ¢-type V. Then the
central character of M equals x(a,a) for some a € C.

Proof. Since g ~ ¢®¢, the g-module U ®y ¢ Vj is isomorphic to U(€). The latter is
endowed with a U ~ U(%) ® U(#)-module structure via left multiplication by elements
of U(%) ® 1 and right multiplication by elements of 1 ® U(€). Moreover, the action of
2, and €, coincides on U(¥). Since M is a quotient of the g-module U(£), the action
of 21 and €2y coincides on M, hence the Lemma. O

Lemma 8.5. Let M be a simple (g,¢)-module. Then the central character of M
equals x(a,a + n) for some a € C and some n € Z. Moreover, the parity of n equals
the parity of k where Vj, is the minimal ¢-type of M.
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Proof. Let M have central character x(«, ). Consider the g-module M & (V,XV},),
where the g = € @ £-module V5 X V}, is endowed with a g-module structure via the
isomorphism g ~ ¢®¢. Then Home(Vy, M ®@(VoRV})) # 0, hence a simple subquotient
of M ® (Vo X V) has central character x(a,a) for some a. On the other hand, the
central characters of all simple subquotients of M ® (VX V}) are of the form y(«, 5—n)
for n running over the set of weights of V,. Therefore @« = a,  —n = a, i.e. the
Lemma follows. O

Lemma 8.6. For any central character x, up to isomorphism there is at most one
infinite dimensional simple (g, £)-module with this central character.

Proof. Let M', M" be two simple (g, £)-modules with central character y. Then,
by Lemma [8.3] for some m Homg(V,,, M’) = Hom(V,,,, M") = C. Therefore M’ and
M" are isomorphic to simple quotients of the g-module U ®z,u(¢) Vi, Where Zy acts
on V,, via the central character y. The fact that U* C ZyU(¢) (Lemma BI) implies
that Home(V,,, U ®z, (e Vim) = C for every m > 0. Hence U ®z,u () Vin has a unique
proper maximal submodule, and in this way also a unique simple quotient. Therefore
M ~ M". O

In the rest of this section we will normalize the central characters considered
as x(a,a —n) for n € Zsq, where the notation a,b is shorthand for the weight
aWieft, + bwright, Wietr (respectively, wyigne) being the fundamental weight of the first
(respectively, second) direct summand of g. If @ € Z, we assume in addition that
a>0and a —n < 0. By M, denote the Verma module over £ with highest weight
¢ — 1. Note that for a,a — n as above, Hom¢(M,, M,_,) is a g-module with central
character x(a,a — n). Define

Wa,a—n = FE(Hom(C(Maa Ma—n))-
Theorem 8.7.

(a) Fix a € C\Z«y and n € Zsq such that a —n < 0 for integer a. The g-
module W, ,_,, is the unique (up to isomorphism) simple infinite dimensional
(g, €)-module with central character x(a,a — n).

(b) c(Wagmn) = 2" + 2"F2 + 2" 4
Proof. Note that to compute the ¢-character of I'y(Home (M, M,_,)) it suffices
to compute Hom(V},,, Hom¢(M,, M,_,,)) for all m € Z>,. However,
Homy(V,,,, Home (M, M,—p,)) = Home(M,, My, @ V7)),

and C f 27,
orm—n
Homy(Ma, Moy @ V,5,) = { 0 otherwfse -
Hence
c(Waaon) = 2" +2"T2 42" 4
The simplicity of W, 4_, follows from the observation that if simple, W, ,_,, would
have a finite dimensional subquotient, but there is no finite dimensional g-module
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with central character x(a,a—n) fora € C\Z or a = 0. If a € Z, the finite dimensional
g-module with central character x(a,a — n) is isomorphic to V,_1 ®'V,,_,_; whose &-

character is 2”72 4+ 2"* 4+ ... 4+ 2I"72%=2 " and hence it can not be a subquotient of
Wa,a—rr U

9. CLASSIFICATION AND £-CHARACTERS OF SIMPLE BOUNDED
(s1(3),sl(2))-MODULES

Throughout this section g = sl(3) and ¢ ~ sl(2) C g.

9.1. The root case. In this subsection we fix a Cartan subalgebra h C g and simple
roots ay, as € h* which define a Borel subalgebra b™ C g. We also fix £ to be the sl(2)-
subalgebra generated by the root spaces gt®'. There are two parabolic subalgebras
containing ¢ and bh: p™ := (h+€) dg2 BgmT2 p~ = (h+€) Pg 2 dg “ 2. Note
that b C p™ and define b~ to be the Borel subalgebra with simple roots oy, —a; — .
Then b~ C p~. In addition, we fix generators h; € [g*, g~ ] and denote by wj;, for
i = 1,2, the corresponding dual basis of h*. Then pp+ = wy + wa, Pp- = W1 — 2ws.

Lemma 9.1. Let M be a simple bounded infinite dimensional (g, ¢)-module. Then
g[M] = p*.

Proof. Since h C g* @ €, we have h C g[M]. Put My := {m € M|g™ -m = 0}
and choose generators x and y of the respective root spaces g=*? and g*'*te2. A
straightforward computation shows that for any i, j € Z>g, (z'y’) -v € My if v is any
non-zero vector in My such that hy - v = v(hy)v for some v € (h N €)*. Therefore the
assumption that =,y ¢ g[M] implies that the multiplicity of V,4;; is at least i + 7,
which contradicts the boundedness of M. Hence g=*2 € g[M] or g**t*2 € g[M], and
consequently g[M] = p*. O

Let F fb be the simple finite dimensional p*-module with b*-highest weight aw; +
bwsy. Define Lib as the unique simple quotient of U(g) ®@upe) Ffb. Then Lib are
bounded (g, £)-modules, and the existence of an isomorphism Lib ~ L}, implies
dim Lib < 00.

Theorem 9.2. Let, as above, £ ~ sl(2) be a root subalgebra of g = sl(3).
(a) Any infinite dimensional bounded (g, ¢)-module is isomorphic either to L;fb
for a € Z>o, b € C\Zxg or to L, for a € Z>g, —a —b € C\Zxo.
(b)
(9.1) c(Lib) =1+2z+-Faz" '+ (a+1)(*+ 2T +..))
for all a > 0 and for those b which do not satisfy the conditions —b € Z>,,

a+b € Zs_, for L:[,b, and respectively the conditions a+b € Zso, —b € Z>_,4
for L_,.
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(¢) If =b € Zsy, a+be Zs_4, then
(92) e(Lf)=2""422"+ -+ (a+b+ 12"+ (a+b+2)(z" + 2T+ ...),
and if a +b € Z>y, —b € Z>_1, then
(9.3) o(Lyy) = 2Tl 9,0 L (1= 0) 2T (2= b) (2 2T ).

Proof. Let M be a simple infinite dimensional bounded (g, ¢£)-module. Then, by
Lemma 011 g[M] = p*. If g]M] = pT, let M™ be a simple finite dimensional p*-
submodule of M. Then M* ~ F, for some a € Zx and some b € C, and there is an
obvious surjection of g-modules U(g) ®y p+) F,, — M. Hence M is isomorphic to the
unique simple quotient L}, of U(g) @y ) F,,. However, L}, is finite dimensional
iff b € Z>, therefore (a) follows for the case when g[M] = p*. The case g[M] = p~
is obtained by replacing b with —a — b which corresponds to the replacement of the
simple root ay of bt by the simple root —a; — g of b™.

Statements (b) and (c) follow from a non-difficult reducibility analysis for the in-
duced module U(g) @ (p+) Ffb. Note first of all that che(U(g) ®u =) Ffb) is always
given by the right-hand side of (0.1). Indeed as &-modules g/p* and F fb are isomor-
phic respectively to V; and V,, therefore

c(U(g) QU (pt) F;,:b) =c(S(V) ®@V,).

A straightforward computation shows that ¢(S(V}) ® V,) is nothing but the right
hand side of (@.1]).

We claim now that U(g) ®up) Ffb is irreducible precisely when b does not satisfy
the respective conditions stated in (b). Consider first the case of p™. Then U(g) @y p+)
F, is irreducible if and only if there exists w € W\W; such that

(94) (w((a + 1)(4)1 + (b + 1)w2) — (w1 + u)g))(hl) c ZZO
and
(9.5) (w((a+ 1ws + (b+ Dwsy) — (w1 + we)) = aw; + bws — mya; — Moz

for some my,my € Z>o. The only non b-dominant solution of (0.4) and (0.3) is
W = Waytay a0d —b € Zsg,a +b € Zs_1. Moreover, in the latter case Lib ~
(U(9) ®up+) Fyy) /Ly _4_y, where ¢(LT, , _,_,) is given by the right hand side of
[@I) with a replaced by —b — 2. An immediate computation shows that ¢(L],) is
given in this case by the right hand side of ([@.2]), therefore (b) and (c) are proved for
the case of p™. The case of p~ is obtained by interchanging the parameter b in (0.2))
with —a —b. O

Corollary 9.3. Let g and € be as above.

(a) The minimal ¢-type of a simple bounded infinite dimensional (g,¢)-module
can be arbitrary. The multiplicity of the minimal €-type is always 1.
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(b) The following is a complete list of multiplicity free simple infinite dimensional
(g, €)-modules:
— Lar’b for b € C\Z>y,
— Ly, for —b € C\Zx,,
— Lzb fora+b= -1, —b € Z>,,
- L;,b for b = 1, a—l—bGZZQ.

9.2. The principal case. Let now £ be a principal sl(2)-subalgebra of g = sl(3).
The pair (g,€) is well known to be symmetric and the simple (g, £)-modules have
been studied extensively, see for instance [Fo] and [Sp]. In principle one should be
able to identify all simple bounded modules in the known classification of simple
Harish-Chandra modules. However, we propose an alternative approach which leads
directly to all bounded simple (g, £)-modules and their £-characters. This is the first
case in which the richness of the theory of bounded (generalized) Harish-Chandra
modules becomes apparent.

We keep the notations b, b™, oy, ap from Subsection By L., we denote the
simple g-module with b*-highest weight (@ — 1)w; + (b — 1)ws, by V,,, we denote
the simple finite dimensional g = sl(3)-module with b*-highest weight pw; + qws
(p,q € Z>p), and x(a, b) stands for the central character of L,;. By A we denote the
Weyl algebra in the indeterminates t, z, y.

We first describe the primitive ideals of all simple bounded (g, £)-modules.

Lemma 9.4. Let M be an infinite dimensional bounded simple (g, ¢)-module. Then
AnnM = AnnL,,, where dim L, = 00, a € Z~g, b € Z~o or a + b € Zy.

Proof. By Duflo’s Theorem AnnM = AnnL,;. By Theorem 4.4 GKdimZL,; < 2.
A straightforward computation shows that this latter condition is equivalent to the
condition on (a,b) in the statement of the Lemma. O

Corollary 9.5. If B is not empty, then x = x(u+ 1 —n,n + 1) for some n € Zx,
where u € C\Z,,_1 or u = —2.

Note that the natural embedding of gl(3) into A maps the center of gl(3) to the line
CE for E := t9, + 20, + y0,, and that the adjoint action of the central element E on
A defines a Z-grading A := @,., A;. We define the (associative) algebra D" as the
quotient of Ay by the ideal generated by E — u. The embedding of g — A induces a
surjective homomorphism +, : U(g) — D". It is not difficult to show that if u € Z,
D" is isomorphic to the algebra of globally defined differential endomorphisms of
the line bundle @p2(u) (P? being the projective space with homogeneous coordinates

(z,y,2)).
Lemma 9.6. Consider D" with its adjoint g-module structure. Then

D" ~ B Vi

m>0
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Proof. Let C = A’ Cc A' C --- C A denote the standard filtration of A. A direct
computation shows that as a g-module AT'/AT~! is isomorphic to
Vm,O ® ‘/O,m - @?zovkp-
After factorization by E — u, one obtains
(D)™ /(D)™ = Vi
(I
It is not difficult to see that the restriction of ~, to U(¥) is injective. Slightly

abusing notation we identify U(£) with its image in D*. We will use the following
expression for the standard basis E, H, F of &

(9.6) E =10, + 20y, H = 2t0, — 2y0,, F = 220, + 2y0,.
Lemma 9.7. The centralizer of ¢ in D" coincides with the center of U(¢¥) C D"

Proof. As V. = 0 for odd m and V., = C for even m it is clear that the
centralizer of € in D" is generated by the quadratic Casimir element €2 € V;p O

Corollary 9.8. Every (D", ¢)-module is multiplicity free. For any non-negative
m, there exists at most one (up to isomorphism) simple (D", ¢)-module M with
Hom(V,,, M) # 0.

Proof. The first statement follows from Lemma via Lemma [3.3] The proof of
the second statement is very similar to the proof of Lemma 8.6l O
We now introduce the functors

Ind: D* —mod < A —mod
M — A®u, M,

Res, : A—mod <— D" —mod
M +— D"®a, M.

Obviously, Res, o Ind = idpu_p0q -

Lemma 9.9.
Annlyi1p =AnnL_y_y 410 =Annly _, o foru¢Z
ker Yu = AnnL—u—l,u+2 = AIIIILL_u_Q for u € Zz_l
AnnLuH,l = AIIIIL_u_l’u_,_Q for u € ZS—Q

Proof. First we prove that ker~y, C AnnL,; with a,b as in the statement. Note
that Res, (t“C[t*!, x,y]) contains a submodule generated by ¢ isomorphic to L,y 1,
Res, (x“C[t*!, 2% y]) /Res, (z“Clt, 2%, y]) contains a submodule with highest vector
t~ 12" isomorphic to L_,,_1 412 and Res, (y"C[t*!, 2% y*!]) /(Res, (y"C[t*!, z, y*'])
Res, (y“Cl[t, %!, y*1])) contains a submodule with highest vector ¢!z ~'y*™2 isomor-
phic to Ly _,_o. Hence ker v, C AnnL, ;. Next we see from Lemma[9.6/that all proper
two-sided ideals of D" have finite codimension. Thus, v,(AnnL, ) is either 0 or has

+
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finite codimension in D*. The latter is impossible because L, is infinite-dimensional.
Hence kervy, = AnnL,;. O

Since the eigenvalues of ady in U(g) are all even, every simple (g, £)-module is
either odd or even.

As follows from Lemma [0.9] all simple bounded (g, £)-modules with central char-
acter x(u + 1,u) are (D" €)-modules. This allows us to first classify the simple
(D", ¢)-modules and then use translation functors to classify the bounded simple
modules with arbitrary possible central character, see Corollary [0.5.

Note that the functor Ind maps (D, £)-mod into (A, €)-mod, the latter being the

full subcategory of A-modules with semisimple action of ¢ := ¢ & CE.

Lemma 9.10. For any simple (D", t)-module M there exists a simple (A, )-module
M with Res, (M) ~ M.

Proof. Let N be a maximal proper A-submodule of Ind(M). Then Res,(N) 2 M

as M generates Ind(M). Therefore Res,(N) = 0 and one defines M as Ind(M)/N.
O

Set f := z?—2ty, A := §2—20,0, and note that f, A~€ At. For every fixed p € C,we
put R? := fPC[t,z,y, f~']. Then clearly R? is an (A, €)-module and Res,(RF) = 0 if
u — 2p ¢ Z. Otherwise,

Clfe@mfoHo® T Ha®... for u —2p € 27

0.7) Res,(R") =1 101
( ) es( ) {CfQHl@f2H3®f2H4® foru—2p€22+1>

where H,, denotes the space of homogeneous polynomials of degree n in Cl[t,z,y]
annihilated by A (as a ¢-module H,, is isomorphic to V3,).

Lemma 9.11. )
(a) Foru ¢ Z and for u = —1,—2, Res,(R?) and Res,(R"%") are simple D*-modules.
(b) For u € 2Z>y, Res,(R"2") is a simple D"-module and there is an exact sequence

(9.8) 0 — Vio — Res,(R2) — I, — 0

for some simple D"-module I, .
(c) Foru € 14270, Res,(R?) is a simple D"-module and there is an exact sequence

u+1

0— Viyo— Res, (2 )—1,—0

for some simple D*“-module I, .
(d) For u € 2Z<_, Res,(R?) is a simple D*-module and there is an exact sequence

u+1

0— I, o—Resy(R2)— Vo340

for some simple D*“-module I .



BOUNDED GENERALIZED HARISH-CHANDRA MODULES 25

u+1

(e) For u € 1+ 2Z<_4, Res,(R 2 ) is a simple D“-module and there is an exact
sequence

0—Io— Res,(R2) — Vi34 — 0
for some simple D“-module 1.

Proof. The isomorphism (0.7)) yields
(9.9) c(Resy(R%)) =1+2"+28+..., c(Resy(R7))=2"+20+204. .

Thus, if Res, (R?) (respectively Res,(R"2")) is not simple it has a unique simple finite
dimensional submodule or a unique simple finite dimensional quotient. By Lemma
the latter can happen only if u € Z>( or u € Z<_3. Hence (a).

Let u € 2Zs. Then Res,(R?) contains Res,(Clt,z,y]) ~ Vo as a finite dimen-
sional simple submodule, hence ([@8). The g-module Res,(R“*" ) has the same central
character as Res,(R?) and, since V, is not a subquotient of Res,(R"Z") by (@.9),
Res,(R"2") is a simple D"-module. Hence (b).

As A(f_%) =0, f~2 generates a proper A-submodule M C f%(C[t, x,y, f71. A di-
rect computation shows that dim Res, (M) = oo for any u € 1+2Z>_5. Furthermore,
the only finite dimensional module, whose central character coincides with that of
D" is Vi _3_,,. Therefore one necessarily has

0— ]:,0 — Res,(R?) — Vo—3-u—0

where I} := Res,(M). Res,(R"Z") is simple by the same reason as in (b). Hence

(e).
(c) and (d) are similar to (b) and (e). O
For any u € C we define now I, (respectively, I ) as the unique simple infinite

dimensional constituent of Res,(R?) (resp., Res,(R")).

Corollary 9.12. Every simple even infinite dimensional (D", )-module is isomorphic
to 1=,

Proof. For every fixed u and any sufficiently large m € 2Z> (such that V,, is not
a t-type of Vo or Vy_3_, for u € Z), Lemma implies Homg(V;,, IX) # 0. The
statement follows now from Corollary [0.8. O

Lemma 9.13. If u ¢ 3 + Z, then every (D", t)-module is even.

Proof. Assume that M is an odd simple (D*, €)-module and u ¢ § + Z. Let M
be as in Lemma 0.0, A; denote the localization of A in f, Mf =Ar R4 M. First,
we claim that if u ¢ % + Z, then My # 0. Indeed, My = 0 implies that f acts locally

nilpotently on M. Then M° := kerf is a -submodule of M and a straightforward
calculation using (Q.6) shows Q0 = 2(E + 3)(E + 2)p0. Thus Home(V;,, M°) # 0
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only if 2(d + 3)(d + 2) = m; + m or equivalently (d + 2)? = (2Z1)2) where d is the
eigenvalue of E on M°. Since d € u+Z, u ¢ 3 + Z implies M° = 0.

Our next observation is that M ¢ is an odd (A, £)-module and that ¢ does not act
locally nilpotently on M ¢. Indeed, if ¢ acts locally nilpotently, by €-invariance z
and y act locally nilpotenly, and therefore f acts locally nilpotently. Contradiction.
Therefore M ¢ is a submodule of its localization in ¢, M ¢+ Furthermore, for some
odd m there exists a non-zero vector v € Mﬁt such that H -v = mv, £-v = 0 and
E - v = uv. The expressions for £, H and E imply

—(u + m/2)ty + ma?/2 (u—m/2)x B
17 —F v, Oyv = — v.

Thus, every vector in M 1.+ can be obtained from v by applying elements of C[t*!, z,y, f ],
ie. M;, = C[t=', z,y, fJv. Tt is not difficult to see that v = 5 £ satis-
fies the above relations. The A;;module C[t*!,z,y, f~!]v is simple and free over
C[t*', z,y, f~']. Hence My, ~ C[t*',z,y, f~|v and it is obvious that M;, has no

non-zero £-finite vectors. As we pointed out above, M § C M #t. Therefore M s =0.
O

We now turn to odd simple (D", )-modules.

(m/2 —u)t

v = v, 0,0 =

Lemma 9.14. Let u € % + Z. Up to isomorphism, there exists exactly one odd
simple (D", ¢)-module J, . Moreover,

2—2u 6—2u 10—2u
I +z +z +... foru<0
(9.10) c(Jqu) = { A2 4 842u 4 J1242u L forg s ()

Proof. Let P C G = SL(3) be the maximal parabolic subgroup whose Lie algebra
p equals b ® g, K C G be the algebraic subgroup with Lie algebra £, and Z be
the closed K-orbit on G/P ~ P?. Then Z ~ P! and the embedding i : Z — P?
is a Veronese embedding of degree 2. It is not difficult to verify that the relative

tangent bundle 7p of the projection p : G/B — G/P is a Og/p-submodule of the

u+1 Jwi1+wa

twisted sheaf of differential operators 9 Furthermore, the direct image

p*(.@(“+1)w1+w2/Ip), where Zp is the left 1deal in @lutDwitws generated by 7p, is a

G/B G/B
well defined twisted sheaf of differential operators on GG/P. We denote this sheaf by
9((;11+1)w1+w2
/P

Our next observation is that, similarly to the equivalence of categories i4 discussed
in Section A Kashiwara’s theorem yields an equivalence of categories

i% : Oz2(2u) ®oy,p Dayp @og,p Oz(—2u) — mod — (.@éu/;l “rter _ mod ),

where (.@é"/;l)wﬁw — mod )Z denotes the full subcategory of .@g/;l)wﬁm— mod

supported on Z, and 0z (2u) is the line bundle on Z with Chern class 2u. Therefore
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we can put
Juo =T (P? i O7(2u)).

It is clear that J, ¢ is a (g, €)-module, and furthermore, using the fact that N' ~ &4(4)
and the filtration on i €'z (2u) with successive functors analogous to (5.1]), one easily
verifies that ¢(J, o) is given by the right-hand side of (@.I0). Since there are no finite
dimensional modules with central character x(u+1,1) for u € 1 +7Z, J, ¢ is a simple
g-module.

It remains to prove that every simple odd (D", £)-module is isomorphic to J, o for

some u € 5 + Z. Let M be a simple odd (D", £)-module and M be a simple (A, ¥)-
module such that Res,(M) = M. Then by the proof of Lemma M; = 0. For
every be-highest vector v € Res, (M) there exists k such that f*-v = 0. Let v have
weight m. Then by the relation (d + 5)? = ()2 from the proof of Lemma 0.14]
"L — +(u+2k+ 2), as Eff - v = (2k 4 u) f* - v. Without loss of generality we may

2
assume that m is very large and then 241 = (u+2k+2). Therefore Homg(V;,, M) # 0
implies m = 2u+4k+4. Hence if M and M’ are two odd (D, £)-modules one can find
m such that Homg(V,,, M) # 0, Home(V,,,, M’) # 0. But then M ~ M’ by Corollary
08 O

Let M be some A-module with semisimple E-action. Consider the U(g)-modules

M®™ := M @ S™(span{x,y,t}) for n € Zsy, together with the linear operators

d:M™ — M©-D
d = t®0+1®0,+y®0,
§: MM — Mt

b = O@t+0,Qx+0,®y.

It is straightforward to check that d, E®1—1®E and § form a standard sl(2)-triple.
Let ResS(M(k)) be the eigenspace of the operator E® 1 +1® E in M® _ Then
obviously d and ¢ induce operators

d: Res,(M™) — Res,(M™)
§: Resy(M™ V) —  Res, (M™),

and elementary sl(2) representation theory implies that if s ¢ Z, s <n—1or s > 2n,
then d is surjective, ¢ is injective, and

(9.11) Res,(M™) = kerd @& imé.

For any (D*, €)-module M choose a simple (A, )-module M such that Res, (M) = M
(in fact M is unique).
Let T"(M) := Resypn(M™) Nkerd. If u # —1,0,...,n — 1, (@10) implies

(9.12) (T™(M)) = c(ReSysn(M™)) — c(Resypn (M),
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Lemma 9.15. Let M be a bounded simple (D", ¢)-module. Assume that u #
—1,0,...,n—1. Then T"(M) is a simple (g, ¥)-module with central character x(u+
1—n,n+1).

Proof. Lemma implies that M is a (g, £)-module with central character x(u +
1,1). Therefore M ® S™(span{z,y,t}) has constituents with central character y(u +
1+n—2k1+k), k=0,...,n, and imd has constituents with central character
xX(u+1+n—-2k14+k), k=0,...,n—1. Thus, T7"(M) is a direct summand of
M & S™(span{x,y,t}) with central character x(u +1—mn,n+ 1).

Our restrictions on w imply that the weights (v + 1)w; + wo and (v — n + 1wy +
(n+ 1)wy belong to the same Weyl chamber and have the same stabilizer in the Weyl
group. Hence, T" is nothing but the translation functor

(u—n4+1Dwi+(n+1)w2s | qyx(u+1,1) x(u—n+1,n+1)
T(u—l—l)wl—l—zjg ’ : SBE - SBE :
Therefore T™ is an equivalence of categories, in particular 7" (M) is simple. O
We put for u # —1,0,...,n—1

I;,fn = T"(J;EO),
Ju,n = Tn(Jup)

Theorem 9.16. Let M be a simple bounded infinite dimensional (g, £)-module with
central character y. Then
(a) if x=x(u+1—n,n+1) foru ¢ Z,

M~ I, forug¢ 1+7Z
I Jun foruei+7°

(b) if x =x(u+1—n,n+1) for u € Zs,,
M ~I* I

—n—3,u—n’ ~u,n’

(c) if x =x(~=1—-n,n+1),
M~ TJ*

—2,n;
(d) if x = x(0,n + 1),
M >~ (I%,)7,
where T stands for the outer automorphism 7(X) = — X" for any X € g.

Proof. By Corollary [0.5 every simple bounded (g, £)-module has central character

x of the form x(u+1—n,n+1) for some n € Z>q and some u € {C\Z,,_1 } U{—2}.
_ p(u—n41wi+(n+1)ws
- T(u—l—l)wl—l—wg

‘B;‘(UH_"’"H). If u ¢ Z, 3+ Z then ‘Bé‘(uﬂ’l) has two non-isomorphic simple objects,
and, if u € % + Z, %f(uﬂ’l) has three non-isomorphic simple objects. This implies
(a).
If wu€ Zso, w>n, we have x = x(u+1—n,n+1) = x((—n —3)+1— (u—
n), (u—n)+ 1), hence in this case B¢ has 4 non-isomorphic simple objects: I3, and

. . : 41,1
Moreover, T™ is an equivalence of the categories %ﬁ(" ) and
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[j: (1,1

—n—3,u—n"

This proves (b). If n = —2, By is equivalent to By ) and has two simple
objects, I fzm, which proves (c¢). Finally if w = n— 1, the automorphism 7 establishes

an equivalence between BX " and BT hence (d). O

Lemma 9.17. For a € Z>,, define

P a—2
pn(a, z) == T ® (Vo) — T ® c(V-1,0)-
For a € Z>, define
24 Za+2
/{n(aw Z) = 1— 24 ® C(Vn,O) - 1 — 4 ® C(Vn—l,O)'
Then
ZCL Z[l—2(z4 + 28 + . + Z4p)
(9.13) popla 2) = + L ,
241424+ -+ 2%P)
(9.14) pap+1(a, z) = 1_ .2 )
a la=4] 4 ... 4 ,la—4p|
z Z + + z
(9.15) Kop(a, z) = T + [~ ,
la=2[ 4 ... 4 sla—4p—2|
(9.16) Fapia(a,2) = —— T2

1 — 22

Proof. Since V,, o = S™(Vi), and since S" (Vi) is isomorphic as a €-module to
S™(Vs,), we have

c(Vapo) =1+ Aaa Z2p’
c(Vapy1,0) = 228 2
Recall that 29 ® 2% = m(2% 3°=" 26=2) (Lemma [Z2(b)). Therefore
i=2k i=2k—2
2022 S 22 o2 S 22
=0 i=0

2 K %2 _ _
1 — 24 1—Z4®Z T 1 — 24

Za—2(z2k+2 + z2k> za—2+2k
( 1— 24 ) 1— 22
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=2k ' i=2k—2 ,
. oi2 Za( Z z2k—2z o 22 Z Z2k—2—2z)
=0 i=0

1 — 24 1 — 24 1 — 24

Za(z—2k +Z2_2k) a2k Z\a—2k\
< 1—24 ) (1—22) 1—22
The above identities imply (Q.13)-(@.16). O

Theorem 9.18.
(a) Let u ¢ Z, 3 + Z. Then

C(Ltn) = Hn(ov Z>7 C(Iu_,n> = :un(27 Z)'
(b) Let u € 3+ Z. Then

c(Jun) = k(44 2u,z) foru
c(Jun) = pn(2 —2u,2z) foru

(¢) Let u € 2Z>o. Then

Z2u+4 _ 22
C(IJ,O) = 1 C(Iu,o) =15
c(I;,) = kn(2u+4,2), ¢

(d) Let w e 1+ 2Zs,. Then

_ 2u+4
c(Lo) = 1= c(Ino) = 5=

c(Ir,) = kn(0,2), c(l,) = r(2u+4,z2).
(e) Let u € 2Z<_5. Then

(f) Let u € —1 —+ 2Z§_1. Then

(L) = 5 c(I0) = 17

1—2%

e(Iin) = 1n(=2 = 2u,2), e(I,) = (2, 2).
(8)

c(I%y,) = e((I%,)7) = £n(0, 2),
c(I2s,) = c((I25,,)7) = pin(2, 2).

Proof. Using (@.12)) one obtains the identities

(9.17) o(I£,) = eIy @ Vao) = (110 ® Vi10),
‘ C(Ju,n) = C(Ju,O X VmO) - C(Ju-i-l,o ® Vn—LO)-
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The theorem is a straightforward corollary of (O.I7). Indeed, let us prove (f). In this
case

—2u—2 —2u—4
+y_ % + _ %
(L) = 1 _ A (L 10) = 1
N Z—2u—2 Z—2u—4 .
o(Ifn) = 777 @ cVao) = 777 @ c(Var0) = pin(=2 = 20, 2);
_ Z—2u—4 1
c(Ly_1p) = 14 0(13_1,0) Tl
2
_ z
C([u,n) = 1_ 4 ® C(Vmo) - 1_ A &® C(Vn_LO) = ,un(2, Z)

In all other cases the arguments are similar. O

Corollary 9.19.

(a) The minimal ¢-type can be any V), but its multiplicity is always 1.
(b) For sufficiently large i ¢;(M) = c¢;14(M) for any simple bounded (g, ¥)-module,
and for sufficiently large j there are the following -multiplicities:

C4j([ui,2p+1) = C4j+2(11:1t72p+1) =p+1,
C4j(];—,2p) =p+1, C4j+2([;,2p) =D,
cajr2(Ly0y) =0+ 1, c45(L,5,) = p,

Cajr1(Juzpi1) = cajis(Juoprr) =p+1,
Cajrou(Juzp) = Dy Cajroura(Juzp) = p + 1.

(¢) The only multiplicity free simple infinite dimensional (g, €)-modules are I, Ju0,
Iy Juns (I25,)"

The complete list of multiplicity free simple (g, )-modules has been first found
by Dj. Sijacki, see [S] and the references therein for a historic perspective on this
problem.

10. CLASSIFICATION OF SIMPLE BOUNDED (sp(4),sl(2))-MODULES

In this section we classify all simple bounded (g, £)-modules, where g = sp(4) and
t is a principal sl(2)-subalgebra or a sl(2)-subalgebra corresponding to a short root.
We fix a Cartan subalgebra h C g and write the roots of g as {£2¢;, £2¢y, £e; €5}
Our fixed simple roots are €; — €9, 2¢5, and p = 2¢; + €5. By ey, es, hy, ho, f1, fo we
denote the Serre generators of g associated to our choice of simple roots, [OV]. We
define two sl(2)-subalgebras of g: one with basis e, hy, fi and one with basis e; +2e,,
3hy +4ho, 3 f1 +2f5. The first one is the root subalgebra corresponding to the simple
root €; — €3, and the second one is a principal sl(2)-subalgebra. In Sections [I0 and
[l we denote by £ any one of these two subalgebras, referring respectively to the root
case and to the principal case when we want to be specific. We set by := b€, where
b is the Borel subalgebra generated by e;, ea, hi, he. By Lgp we denote the simple
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b-highest weight g-module with highest weight ae; +bes —p = (a—2)e; + (b—1)es, by
Vap We denote the simple finite-dimensional g-module with highest weight ae; + bes,
and x(a, b) is the central character of L.

Lemma 10.1. Let dim L,j = 0o and GKdimL,;, < 2. Then a > |b| and a,b € %+Z.

Proof. Let A = ae; + bey. If (N ) ¢ Z- for all positive roots «, then L, is a
Verma module and therefore its Gelfand-Kirillov dimension equals 4. If (A, &) € Z~
for exactly one positive root, then one has the following exact sequence

0 — Ly,n) = My — Ly — 0,

where w, denotes the reflection in a. A straightforward computation shows that
in this case GKdimL, = 3. Therefore GKdimL, < 2 implies the existence of two
positive roots o and 3 such that (\, &), (\,3) € Zso. One can see immediately
that at least one of these roots, say «, is simple. If N, denotes the quotient of
M, by the submodule generated by a highest vector with weight w,(\) — p, then
GKdimN, = 3. The condition GKdimZL, < 2 implies the reducibility of Ny which in
turn implies (\, %) € Zso for the positive root v orthogonal to cv. That leaves only
two possibilities for A\: A is either regular integral or A\ satisfies the conditions of the
Lemma.

It remains to eliminate the case of a regular integral non-dominant \. By using the
translation functor we may assume without loss of generality that A belongs to the
Weyl group orbit of p. That leaves four possibilities for A\: 2¢; — €3, € — 2€9, €1 + 2¢9,
—€1 + 265. Let p; and po be the parabolic subalgebras obtained from b by joining
€2 — €1 and —2¢5 respectively. It is not difficult to verify the existence of embeddings

Ly 1 — Ul(g) QU (py) Fgl,l, Ly 2 — Ul(g) QU (py) F 2,-1

L12_)U()®U(p2)F221> L12_>U()®UP2)F122a

where F}, (respectively, F7,) is the finite dimensional p;-module (resp., pp-module)
with b- hlghest weight ae; + bes — p. Therefore the Gelfand-Kirillov dimension of
any of the above four simple modules equals the Gelfand-Kirillov dimension of the
corresponding parabolically induced module, i.e. 3. The proof is now complete. O

Corollary 10.2. Let M be a simple bounded infinite dimensional (g,%)-module.
Then AnnM = AnnL,y, for some a,b with a > |b], a,b € 1 + Z. In particular, x(a,b)
is the central character of M.

Proof. By Duflo’s theorem, AnnM = AnnL,; for some a,b. It is known that
%dim Xp,, = GKdimL, ;, thus GKdimM > GKdimZ, ;. On the other hand,
GKdimM < 2 = b,. Hence GKdimZ,; < 2, and Lemma [I0.1] applies to L, ;. O

33)

Corollary 10.3. Let a,b € £ +Z, a > |b|. Then %?(a’b) is equivalent to ‘B?(
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Proof. The weights £ = ae; + be; and n = %61 + %62 satisfy all assumptions of

Section [l hence Tg and T ,§ are mutually inverse equivalences of ‘Bé‘(a’b) and ‘Bﬁ(%’%).
O

Our next step is to describe the quotient algebra U(g)/ AnnLs 1. In this section
we denote by A the Weyl algebra in two variables, i.e. the algebra of differential
operators acting in C[z,y]. We introduce a Zy-grading, A := Ay & A;, by putting
degz = degy = degd, = degd, := 1 € Zy. It is well known that there exists a
surjective algebra homomorphism

k:U(g) — Ao

such that
y° o2
k(er) = 20y, kK(ex) = 5 k(f) = y0u, K(f2) = _797

1
k(hi) = 20y —y0y, k(h2) =y0, + 3"

The kernel of x equals AnnL 5.1 Furthermore, x(¥) is spanned by £ := z0,, F' := y0,,
H := 29, —yd, in the root case, and respectively by F := zd,+y?, F := 320,+y0,+2,
H := 3yd, — 0; in the principal case.
31

The problem of describing all simple modules in %§(2’2) is equivalent to the problem
of describing all simple (Ag, £)-modules, i.e. all simple locally x(£)-finite Ag-modules.
The following lemma reduces this problem to a classification of all simple (A, €)-
modules.

Lemma 10.4. Every simple (A, ¢)-module M is a Zo-graded A-module, i. e. M =
Moy® M, where My and M; are simple (Ag, €)-modules. Furthermore, M = A® 4, My,
and the Zs-grading on M is unique up to interchanging M, with M.

Proof. The element H (as defined above separately for the root case and for the
principal case) acts semisimply on M with integer eigenvalues. We define M (respec-
tively, M;) as the direct sum of H-eigenspaces with even (resp., odd) eigenvalues. It
is obvious that M = M, & M, that M, and M; are simple Ay modules, and that
M = A®a, My. Since My and M, are non-isomorphic as Aj-modules, the uniqueness
follows from the fact that a decomposition of M as an Apg-module into a direct sum
of two non-isomorphic Ap-modules is unique. O

Remark. More generally, if € is a subalgebra of g’ = sp(2m) such that the
centralizer of € in the Weyl A’ algebra of m indeterminates is abelian, every (A’, ¢')-
module is a multiplicity free (g’,¥)-module whose primitive ideal is a Joseph ideal.
F. Knop has classified all such subalgebras ¥, [Kn2|], which makes us optimistic that
this idea can eventually lead to a classification of simple bounded (g, #)-modules.

Let Fou: A — A be the automorphism defined by
Fou(z) := 9,, Fou(y):=09,, Fou(d,):=—z, Fou(d,):=—y
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If M is an A-module, we denote by M the twist of M by Fou.

Theorem 10.5. In the root case, any simple (A, ¥)-module is isomorphic to Clz, y]
or C[z, y]™u.

Proof. Let M be a simple (A, £)-module. Then there exists 0 # v € M such that
E-v=0,ie. 20, -v=0. Hence either x or 9, act locally nilpotently on M.

Assume first that J, acts locally nilpotently on M. Then 0, € [ 0,] also acts
locally nilpotenly on M. Let A* be the abelian subalgebra in A generated by 0., d,,.
One can find 0 # w € M such that A" - w = 0, and hence

M=~Agu C=Clr,y.

If = acts locally nilpotently on M, one considers M™" and reduces to the previous
case.O

Corollary 10.6. In the root case, up to isomorphism, there are exactly four simple
(g, €)-modules with central character x(2,1). As ¢-modules two of these modules are
isomorphic to

WweVveoVid... |
and the other two are isomorphic to

VieVzeVsae...

Theorem 10.7. In the principal case, up to isomorphism, there exist exactly two
simple (A, €)-modules and they have the following €-module decompositions:

VoeVse Vs Vod..., ViV, Vi Vipd...

Proof. Note that £ is a maximal subalgebra of g. Hence, every element g € g\ acts
freely on a simple (A, £)-module M. In particular, 2% acts freely on M, and therefore
x acts freely on M. Let A, be the localization of A in z, and M, := A, ® 4 M. Then
M C M,. Fix 0#m € M with E-m =0 and H - m = Am for a minimal A\ € Zx,.
Since E = 29, + y* and H = 30, + y9, + 2, we have

2 3 —
8y~m:—y—-m,8m-m:< Y —|—>\ 2)-m.

x 32 3z

Therefore, M, = C [z, 27!, y] - m. Set

uy:=x 3 exp [ =—|.
3z

Then it is easy to see that M, is isomorphic to Fy := C [z, 27!, y] uy and that Fy =
Frrs. Hence, M, is isomorphic Fy, F; or F.

Next we calculate I'y (F)). Note that the space of be-singular vectors in F) is
spanned by the family w3k, k € Z of solutions to the differential equation

E-u=z0,(u) + y*u = 0.
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If \ € Zsg, then F2*! .y, is again a bg-highest vector of weight —\ — 2. There-
fore FM' . uy = cu_y_o for some constant c¢. On the other hand, u_,_, € F, iff
A= (=A=2)=2\+2€3Z or A\ = 3k + 2. Hence F 1! .uy, =0 for A = 3k or
A =3k+1. Thus, I'y (Fp) is generated by ugy, for k& > 0, T’y (F7) is generated by ugg1
for £ > 0, and we have the €-module decompositions

FCe(Fo) Vo Vs VedVo@ ..., Te(F)=2ViaV, eV Vi®d. ...

Let us prove that I'y (Fy) and I'y (F;) are simple A-modules. Indeed, let N be a
proper submodule of ['¢(Fy). If uy € N, then uyi3, = xFuy € N for all positive
k. Choose the minimal A such that uy, € N. Then the quotient module has a
decomposition V\_3@®- - - @V, hence it is finite dimensional. Since A has no non-zero
finite dimensional modules, this is a contradiction. The case of I'y(F7) is very similar.
In this way we obtain that, if M, = Fy or Fi, then M is respectively isomorphic to
Fg (fo) or Fg (fl)

Finally, we show that I'y (F3) = 0. It is sufficient to check that there is no non-zero
v € Fy with F'-v =0 and
(10.1) H-v=(=3k—2)vfor k € Zsy.

Indeed, then v would be a solution of the differential equation
YUy = Vyy-

Since v € Fy,

3
B Y
v =g (z,y)exp <—£)

for some ¢ (z,y) € C [z, 27!, y] such that
2
Yy Yy
3yge = g,y — 22 g, — 22 4.
Yyg Gyy - Gy :L’g

As g (x,y) is homogeneous with respect to H, we may assume without loss of gener-
ality that

!
g(zy) = by,
=0

where s € Z>o, p € Z, b; € C, by = 1. The equation on the highest term with respect
to x gives the condition

(9; (ys) =0,
or, equivalently, s = 0,1. But H-g = 3p+s+2)g, hence H-v = (3p+s+2)-v.
Therefore
H-v=03p+2)vor H-v=3p+3)uv,
and (I0.)) does not hold.O
Theorem [10.7] together with Lemma [10.4] yield the following.
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Corollary 10.8. In the principal case, up to isomorphism, there are exactly four sim-
ple (g, &)-modules with central character x(2,1). They have the following £-module

202
decompositions:

(10.2) Vo@VedVia®..., Vi V:dVisd..., Vad V@ Visd..., VidVigdVigd. ...

11. &-CHARACTERS OF SIMPLE BOUNDED (sp(4), sl(2))-MODULES

11.1. The root case. In this case, the four simple modules of Corollary [10.6 are
nothing but the simple highest weight modules L% e L% 1 and their respective

restricted duals L' ,, L’ 1, l.e. the simple b-lowest weight modules with lowest

1y

272 2

weights (=2, —1) and (—5, 1). Therefore, by Corollaries T0.2[I0.3 we conclude that

all simple bounded (g, 8)-modules are precisely L., and the lowest weight modules

L', _,, where a > |b| € 34Z. Since ¢(Lqp) = (L, _,), it suffices to compute ¢(La),
for a,b as above.

The h-character of L, is given by the formula
(@t — )y =y )
(z—2 )y —y ey —aly )ty —ay™t)’

€1+€2

€1—€2 .
where z = e~ 7,y =e 2z . We rewrite (ILI) as

(111) Ctha,b =

xa—b o xb—a ya—b o yb—a B o o
(11.2) ( (:L’—x_lsgy—y_l) )y 21— 2%y )" Y1 — 27 %y~ H 1
Next we note that
(11.3) (1—2%y )1 — a2y~ ?) Zy (2 + 2 ),
k=0

and use the expression
LR = (k1)

F=at P = -
Tr—x

to rewrite the right-hand side of (IT.3)) in the form

[e.e] - - 1 [e.e] -
Zy 2k(z2k _ k=2 4t (_l)k) _ . Zz%y 2k
k=0 1+y k=0

Now (IL.2) becomes

chyLay = ey Y=yt 1 iz%y—%
’ y—y ' 14y

To find the €-character of Ly, we set y = 1:

a+b ., =
(11.4) e(Lop) = == b 1®;z2k.
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Thus, equation (II.4]) implies the following result.
Theorem 11.1.

(a) If a — b is even and a + b is odd, then

b
c(Lap) = @t (2z4+422 +-- -+ (a— b)z“_b_1 + (a — b)z“_bJrl +...).
(b) If a — b is odd and a + b is even, then
_a+tb 2 4 oy a—b-1 1y .a—b+l
c(Lap) = (1+32+52"+---+(a—0b)z + (a—b)z +...).

2

(c) In the case (a) the minimal ¥-type is Vi and its multiplicity is a + b. In the
case (b) the minimal ¢-type is Vo and its multiplicity is “tb.
(d) For sufficiently large i,

(a2 4 62)(1 4 (_1)a+b—i>
1 .
(e) Lgy is t-multiplicity free if and only if a = hence the only simple multiplicity

free (g,%)-modules are those with central character x( i.e. the four g-
modules from Corollary [10.8.

¢i(Lap) = civo(Lays) =

2’5)

11.2. The principal case. We now proceed to calculating the £-characters of all
simple bounded (g, £)-modules where g = sp( ) and ¢ is the principal subalgebra of
g fixed in Section [IOl In this case, let M 1 and M3} 31 denote the simple bounded

(g, €)-modules with central character x(2, 2) and respectlve t-module decomp081t10ns
VooV @Vie®... and Vi@ Vr @ Vig @ ... Weset M, = Tt (M) for

ae1+bes
a,b€ 3 +7Z,a>1b|,s€{0,1}, and M:, :==0for a,be 5+ Z,a < b, s € {0, 1} By
V4 we denote the simple finite dimensional g = sp(4)-module with b-highest weight
per+qex (p,q € Lo, p 2 q).

Lemma 11.2. We have

(11.5) Vip @ Mgy~ Mg,y @ Mgy @ Mgy, & Mgy,

and, for a # |b| + 1,

(11.6) Vin @ Mgy > My g 50 @ Mgy @ Mgy © Mgy © Mg_q-1
Ifa=b+1,b> 0, then

(11.7) Vin®@ Mgy My @ My @ My,

and ifa=—b+1,b<0, then
(11.8) Vipn @ Mg, = My i1 @ Mgy © My g4

a
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Proof. Let us first prove (IL3). Let ./, := .@g’/@ ®uxtan M, be the localization
of M,y on G/B. Then as a sheaf of U-modules V) o ® ., has a filtration of length
4 with the following associated factors given in increasing order:

O(—€1) @ My, O(—€2) Qg My, Ole2) Rp My, O€1) ¢ My,

Note that Z; acts via a character on any of the four associated factors, and that these
characters are pairwise distinct. Therefore, as a sheaf of U-modules, Vi o @ .Z,, is
isomorphic to the direct sum

(O(=e1) ®0 M,) & (0(=€2) @0 M) & (O(2) R0 My,) & (O(€1) @ M),
Now we calculate I'(G/B, V1o ® ;). If a=0+1,b> 0, then
(G/B,0(—e) @ M;y) =T (G/B, O(&2) @ My,) =0
as there are no bounded modules with these central characters. Similarly, if a =
—b+1, b <0, then
D(G/B,0(—6) ®@¢ MA,;,) =T(G/B, O(—¢3) @¢ My,) = 0.

In all other cases

['(G/B, 0(+6) ®¢ ///;b) = M;:I:l,bv

[(G/B, O(+€) @p Myp) = My iy
Thus, (ILH) is established.

Consider (ILG). Then as a sheaf of U-modules V1 ; ® ., has a filtration of length
5 with the following associated factors given in increasing order:

O(—€1 — &) Qo My, Ole1—€2) @o My, b

ﬁ(—El +€2) ®g %;b, 6(61 +€2) ®0 ‘%;,b‘
Note that Z;; acts via a character on any of the five associated factors, and that these

characters are pairwise distinct if a # |b| + 1. Therefore the proof of (IT1.6]) is very
similar to that of (I35l

Let now a = b+ 1. Then ., and O(—€, + €2) ®4 A, both afford the central
character x(a,b). Thus, as a sheaf of U-modules, Vi, ® .#;, is isomorphic to the

direct sum
!

(11.9) (O(—€e1 — &) @p My,) © (O — ) Qo My,) & (My,) @
D (O(e1 + &) ®o M)
where for ( j7b)/ we have an exact sequence
0— M7, — ( [f’b), — O(—€1+ &) Qg M, — 0.

We will show that I'(G/B, (#4,)") = 0. It suffices to show that the tensor product
Vig ® M, has no simple constituent with central character x(a,b). Indeed, from
(I15), we see that Vo ® Vip® M3, has exactly two simple constituents affording
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the central character x(a,b) and that both these constituents are isomorphic to M ,.
Recall that

Vip®@Vig=Vao® Vi@ Vop.
Clearly, Vo o® M, = M;,. Furthermore, V5 is the adjoint representation and there-
fore the very g—m’odule structure on M3, defines a non-trivial intertwining operator
Voo @ My, — M;,. Thus, Voo ® M, must have a constituent isomorphic to M,
and consequently Vi1 ® M; , has no simple constituent affording the central character
x(a,b). By taking the global sections of the direct sum (I1.9) we obtain (II.7). The
case a = —b + 1, which leads to (IL.§)), is similar. O

Lemma 11.3. There is the following ¥-module decomposition

(11.10) Mj s 2 Vi @ Vor, @ Vise o @ ... .
Proof. By (I1.3),

1
2

M(§)1®V1,02M(§]1@Mg_1-
272 272 27 2
As a t-module, V; ¢ is isomorphic to V3. Hence M3 ; ® Vi has a E-module decompo-
272
sition
2V o Vs @ ...
3 1

Since x(2,—1) = x(2,1), MY _, must have one of the four ¢-module decompositions
27 2

(I0.2), and hence ([ILEH) implies (ITI0) for s = 0. Similarly, M3, ® Vi has the
272
t-module decomposition V5 & 2V, & ..., which implies (ITI0) for s = 1. O
We set now ¢f ,(2) := c¢(M:,) for a,b € 5+ Z,a > |b|, s € {0,1} and extend the
definition of ¢ ,(2) to arbitrary pairs a,b € 5 + Z by putting

(11.11) Pap(2) = —ppa(2) = =92, _o(2) = 02, _4(2).
Lemma 11.4. For all a,b € § + Z and s € {0, 1},
77(902,17(23 +z+z21+277) = Poe1p T Parip T Papr1 T Pab1

(@ap(2 + 27 F 1427+ 27) = Ohiipn + Pamipnr + st + Pimrp T 00w
(the projection 7 is introduced in Section [7).

Proof. Both equalities are straightforward corollaries of Lemma and Lemma
7.2 (b) if one takes into account the isomorphisms of ¢-modules V; o ~ V5 and V;; ~
Vi O

We define now ¢ ,(2) € C((2)) via the conditions:

(c1) Zb(z)(zg +z+z24+27%) = Va1p(2) + 5 _14(2) + 5 00 (2) + 05,1 (2),

(c2) Z,b(z)(z4 +24+1422427%) = ar1p+1(2) T Vapp1(2) + a1 pia(2) +
Va1p-1(2) + 5 4(2),

(€3) Yap(2) = =5 ,(2) = =92, _,(2) = ¥2, ,(2),
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s 3+s

() = =

1 — 267

(cd) 05 1 (2) = —

272 1 — 267

Vs 1

27 2
Theorem 11.5. The Laurent series v} ,(z) exists and is unique. Moreover,
(11.12)

Z5+s(z3a+b _ Za+3b _ Z—a—3b + Z—3a—b) _ 26+s(z3a—b _ Z—a+3b _ Za—3b + Z—3a+b)

Yap(2) = (1—2%)%(1—2*)(1 =29

Proof. We show first that v ,(2) is unique if it exists. By (ILII)) ¥ ,(2) is
determined by 13 ,(2) for a > |b]. Assume, by induction on a, that ] ,(2) is unique
for all @ < ag, |b] < a. Then equation (c1) determines 5 ,,,(2), and equation (c2)

determines ¥5 ;o (2) and ¥ 11 .04 1(2)-
To prove the existence of 1;,(2), it suffices to verify that the right-hand side

of (ITI2) satisfies all conditions (c1)-(c4). This is a direct calculation, which is
simplified by the observation that both Laurent polynomials

Z3a+b _ Za+3b _ Z—a—3b + Z—3a—b

Y

Jla=b _ —a+3b _ a=3b | —3atb

satisfy (c1),(c2) and (¢3). The condition (c4) is satisfied only by the entire expression.
O

Corollary 11.6.
@Z,b = 7T(¢Z,b)-

Corollary 11.7. Any simple bounded (g, ¥)-module is either even or odd. More
precisely, M, is even if a + b+ s is even, and M, is odd if a + b+ s is odd.

In the calculations below we use binomial coefficients (Z), for which we always
assume (Z) = 0 if s or k are not integers.

Lemma 11.8.
1 - n
(1= 222(1— (1 —25) ;7(”)22 ’
where
1 n+3\ n+ 2 n+1\ n (="  Bn)
V) = 1 {119( ; ) 179( ; )+109( ; ) 25<3)] i+
and
0 n=1(mod3)
Bn):==< 1 n=0 (mod 3)
—1 n=-1 (mod 3)
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Proof. The statement follows from the identity

1 119 — 17922 + 109z — 25z6+ 1 N 1+ 22
(1—22)2(1 — 24)(1 — 26) 144(1 — 22)4 16(1+ 22)  9(1+ 22 + 24)°
O

Corollary 11.9. Let

I (e R
_7<”_(_a—23b+5)—5)+7<n—(—3a—2b+5)—5)_
_7<n—(3a—26+6)—$)+7<n—(—a+23b+6)—8>+
+7(”_(a—2b+6)—3)_v(n—(—3a2b+6)—s).

Then
Ci(Mcf,b) = 52,&;@) - 5Z,b(_i —2).

Proof. The statement follows directly from Theorem [I1.5] Corollary [11.6] and
Lemma [T.8 O

Corollary 11.10. For any simple bounded (g, %)-module M, ¢;(M) = ¢;+¢(M) for
sufficiently large v € N.

Proof. The given (g,€)-module M is isomorphic to Mg, for some a,b € % + Z,
s € {0,1}. For sufficiently large i, 6;,(—i —2) = 0, hence ¢;(M) = d;,(i). The
explicit formula for v(i) from Lemma implies that ¢; ,(i + 6n) is a polynomial
in n. Since this polynomial is a bounded function, it is necessarily a constant. O

For large enough values of i, Corollary enables us to write c;(M;,), 1 € Zg.
Here are simple explicit expressions for cz(M; ;).

1 if 3|2a,3 1 2b
Theorem 11.11. Let 0, := ¢ —1 if3|2b,312a
0 in all other cases
Then
a? — b?

S 1 a
eres(M2s) = G0+ (1) (S5 4 2

s s 1 a+b a2 - b2
Cm( a,b) = C@( a,b) = 6(1 - (_1) ) 9 O

Cm(Ma,b) = CM(Ma,b) = 6(1 + (_1) ) 9 —0Oapb |
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i 1 " a’ —b?
eres(M2s) = 51 (1) (S5 4 20

Proof. Let {&}icz, denote the standard basis in C°. Set
Boo =Y a(Msy)&

i€ 76

for a,b e % +Z, a > |b]. Extend 3}, to all a,b € % + Z by putting

@Z,b = _ag,a = _as—b,—a = Sps—a,—b’
and let S, T : C® — C° be the linear operators
S(&) =26z + &t & T(§) =263+ 265
Then @;, , satisfy the following version of conditions (c1)-(c4):
(c5) S(?Z,b) = ?Z—i—l,b + @Zﬁﬂ + @Z—lﬁ + @Z,b—b_
06; T(@ap) = Pos1psr + 902—1,1&1 + Potib-1 T Po1b-15
)

(
(C7 @Z,b = _Gg,a = _Gs—b,—a = Sps—a,—b’
(c8

Pii1=6&, ©i_1=E&m
27 2

[N

1
2
Denote by w a primitive sixth root of unity. Then {rn; := Z wE§5}26Z6 is an eigen-
JE€Zgs

basis for S and 7. Put
(a® —v?)
2
Rab = Oabllz,  Miap = Tabll7
M = (1) 00pnz,  5ap = (1) o015
Using the identity

a’ — b?)

nﬁ,a,b = U ng,a,b = (_1)a+b( 2 3,

(U2b + w—2b _ w2a _ w—2a
3 Y
one can easily check that n; , , satisfies (c5)-(c7). The linear combination

Pap = é > O s

gEZa

Ogb =

satisfies the condition (c8), hence its coefficients in the basis {&} equal ¢; (M;,). O

Corollary 11.12. The following is a complete list of multiplicity free simple (g, £)-
modules: M;i%, ;i%, g’i%, ;ig, s € {0,1}.
Proof. A straightforward computation based on Theorem IT.TTlshows that c;(M; ) €

- . . . 3 1 5 3 5 1
{0,1} for i € Zg iff (a,b) is one of the pairs (§,j:§), <§,j:§), <§,j:§), and
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7.5
<§, j:§ . Then, using Corollary [T1.9 one verifies that all modules M; , for (a,b) as
above are indeed multiplicity free. O

Theorem 11.13.

(a) The minimal ¢-type of any even (respectively, odd) bounded simple (g, ¥)-
module M equals Vy, Vo or Vy (resp., V; or V3).

(b) If M is an even (respectively, odd) simple module in X% then co(M)

atb atb axb atb
+ € or D + € (resp., 3 +e€or

(resp., c1(M)) equals +¢) for

some € with |e| < 1.

Proof. (a) Note that for any bounded (g, £)-module M, ¢;(M) equals the constant
term of the Laurent polynomial z7*(1 — 2%*2)¢(M). Hence ¢;(M) + c3(M) equals
the constant term in the Laurent expansion of (271(1 — 2%) + 273(1 — 28))c(M). A
straightforward calculation shows that for M = M, the latter is nothing but the
constant term of the Laurent series

Z3a+b+2+s _ Za+3b+2+s _ Z—a—3b+2+s + Z—3a—b+2+s _ Z—3a+b+3+s+
(1—22)°
+Za—3b+3+s + Z—a+3b+3+s _ Z3a—b+3+s
(1 —22)3

Using the identity

(11.13) ﬁ - g (” ; 2) e

we obtain
(11.14)

—3a—b+2—s —a—3b+2—s a+3b+2—s 3a+b+2—s
aorraoz) == ("3 )-(C 3 )5 )+ )

3a—b+1—s —a+3b+1—s a—3b+1—s —3a+b+1l—s
_ 2 2 2 _ 2
() )5 )-Cs)

where we set (é) =0 for | ¢ Z>o.
This expression is a piecewise polynomial function which equals identically zero
whenever M7, is even, i.e. when a + 0+ s is even. In fact, the right hand side of

(ITI4) turns out to be very simple as an explicit calculation shows that, for a +b+ s
odd,

a+ (—1)**1b .
(11.15) o= { 5 for a +(—1)*3b >0 .
a+ (—1)%b for a + (—=1)%3b < 0
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Since a > |b], the right hand side of (II.15)) is never 0, i.e. the minimal £-type of Mg,
is V4 or V3 whenever a + b + s is odd.

A similar analysis proves that the minimal E-type of M, is V, Va2, or V; whenever
a+ b+ s is even. Indeed, in this case

ab = Co(Mgy) + ca(Mg,) + ca(MZ)
equals the constant term of the Laurent series
(1—2°)+ 2721 = 2% + 2741 — 2'%)e(M)
Using the identity

(1—2%)+272(1 =25 + 2741 — 219 1 (7+4z2+z4 1 )

(1= 222(1 = 29 (1 = 2) T\ 0—2p 1+
—a — b—l—s)_

as well as the identity (IT.I3), we calculate
s —3a—b—1-s
¢, = 9( : ) 9(
_9<a+3b—1—3)+9<3a+b—1—s)_
_9<3a—b—2—s)+0<—a+36—2—8>+
a—3b—-2—s —3a+b—2-5
W) (),

3, 3 7 (=1)n
where 0(n) := Zn2+§n+§+( 8)

for n € Zy and 6(n) := 0 otherwise. Further

calculations show:
at+(—1)5T1p—1

(1L16) e, = % (a+ (=1)"*10) + (—1) - 2

3 (a+ (—1)°b) for (—=1)*a+3b<0
under the assumption that a+b+ s is even. Since the right-hand side of (IT.1G]) never
equals 0, we obtain that e;, # 0 under the same assumption. Hence the minimal
t-type of any even simple bounded (g, ¢£)-module equals Vy, V3, or V.

(b) To compute co(M) we use the identity

for (—1)°a+3b>0

1—22 1
(1=222(1—-2Y(1-20)  (1-22)(1 241 -25)
A7 — 5222 + 1724 1 2— 22—z
20— 2P 81122 91—




BOUNDED GENERALIZED HARISH-CHANDRA MODULES 45

which yields

3a—b—5—s (—a—3b—5—s
CO(Mj,b) = ( )—7( 5 )—
<a+3b—5—s) ,<3a+b—5—s)
+7 -
2
<3a—b 6—8) ,<—a+36—6—s)
+7 5 +

a—Bb 6—s ,(—3a+b—6—s
g 5 )

where 1) )
oo n_ n 94 -1)"  o'(n
Y i=ptetm Tt T

=15 51

for n € Zs¢ and +'(n) = ¢’(n) := 0 otherwise. Similarly, using the identity
271 - 2% 4 (8—7z2+2z4 1+22—2z4)

(=221 —1)(1—20) o122 ol —29)

we obtain

< a—b— —a—3b— -5

alnz) = v (=) )-
<a+36 4—5) ,,<3a—|—b 4—5)
<3a—b—5—s) ,,( —a+ 3b— 5—8)

—7 + v +
3b—5—s 3a+b— -5

+7" — 9" )

where , ( )
" _n n 8 n
7(n).—6+6—|—9+ 5
w | —2 n=—1(mod 3)
o'(n) = { 1 n# —1(mod 3)
for n € Z>o and 7"(n) = 0"(n) := 0 otherwise. Using the expressions for co(M, ;)
and ¢1 (M ,) we notice that the terms CL" 4 oln)

8
e with |e| < 1. Thus, a direct computation implies

and UNS”) will give a contribution

at+(=1)%b s
s ———4¢€ fora+(—1)3b<0
CO(Ma,b) = { a—(G 1)%b ( )

T‘I'E fora+(—1)s3b>0 ’
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. U 4 e fora+ (—1)*3b > 0
Cl( ab): a—i—(ﬁl)sb

: et CU% ¢ for a+ (—1)*3b < 0.
O

Corollary 11.14. For a+b > 24, the minimal E-type of M, equals Vy (respectively,
Vi) if a+ b+ s is odd (resp., even).

Corollary 11.15. A simple (g, )-module with minimal ¢-type V; for ¢ > 5 is un-
bounded.

Note that all simple (g, €)-modules of finite type over £ with minimal ¢-type V; for
i > 6 are classified in [PZ2]. In particular it is proved, [PZ2], that if M is a (g, £)-
module with minimal €-type V; for ¢ > 6, then M is necessarily of finite type over £
and ¢;(M) = 1. Recently G. Zuckerman and the first named author have shown that
this holds also for ¢ = 5, and Theorem (b) implies that the statement is false
for+ < 1.
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