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BOUNDED GENERALIZED HARISH-CHANDRA MODULES

IVAN PENKOV AND VERA SERGANOVA

Abstract. Let g be a complex reductive Lie algebra and k ⊂ g be any reductive
in g subalgebra. We call a (g, k)-module M bounded if the k-multiplicities of M are
uniformly bounded. In this paper we initiate a general study of simple bounded
(g, k)-modules. We prove a strong necessary condition for a subalgebra k to be
bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded
(g, k)-module, and then establish a sufficient condition for a subalgebra k to be
bounded (Theorem 5.2). As a result we are able to classify all maximal bounded
reductive subalgebras of g = sl(n).

In the second half of the paper we describe in detail simple bounded infinite-
dimensional (g, sl(2))-modules, and in particular compute their characters and min-
imal sl(2)-types. We show that if sl(2) is a bounded subalgebra of g which is not
contained in a proper ideal of g, then g ≃ sl(2) ⊕ sl(2), sl(3), sp(4); alltogether, up
to conjugation there are five possible embeddings of sl(2) as a bounded subalgebra
into g as above. In two of these cases sl(2) is a symmetric subalgebra, and many re-
sults about simple bounded (g, sl(2))-modules are known. A case where our results
are entirely new is the case of a principal sl(2)-subalgebra in sp(4).

1. Introduction

In recent years several constructions of generalized Harish-Chandra modules have
been given, [PS1], [PSZ], [PZ1], [PZ2], [PZ3], and a classification of such modules with
generic minimal k-type has emerged, [PZ2]. Recall that if g is a finite dimensional
Lie algebra and k ⊂ g is a reductive in g subalgebra, a g-module M is a (g, k)-
module of finite type if as a k-module M is isomorphic to a direct sum of simple
finite dimensional k-modules with finite multiplicities. In the present paper we study
(g, k)-modules with bounded k-multiplicities, or as we call them, bounded generalized

Harish-Chandra modules.
There are two important cases of generalized Harish-Chandra modules on which

there is extensive literature: the case when k is a symmetric subalgebra (Harish-
Chandra modules) and the case when h is a Cartan subalgebra (weight modules). In
the latter case there is a complete description of simple bounded modules, [M]. In the
former case several constructions of simple bounded modules are known, but there is
still no complete description of all such modules in the literature, see the discussion
in Section 6 below.
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Our main interest in this paper is the case when k is neither a symmetric nor a
Cartan subalgebra, and our first main result is that, if there exists an infinite di-
mensional simple bounded (g, k)-module, then rg ≤ bk, where bk is the dimension of
a Borel subalgebra of k and rg is the half-dimension of a nilpotent orbit of minimal
positive dimension in the adjoint representation of g. This limits severely the possi-
bilities for k. Our second main result is an explicit geometric construction of simple
bounded generalized Harish-Chandra modules, which in particular gives a sufficient
condition for a subalgebra k ⊂ g with rg ≤ bk to be bounded.

As an application we clasify all bounded reductive maximal subalgebras k in g =
sl(n) and give examples of non-maximal reductive bounded subalgebras of sl(n). We
also classify the reductive bounded subalgebras of all semisimple Lie algebras of rank
2.

The second part of the paper is devoted to a detailed analysis of the case when
k ⊂ g is an sl(2)-subalgebra not contained in a proper ideal fo g. Here g must have
rank 2 and, up to conjugation, there are 5 possibilities for embeddings of sl(2) which
yield bounded subalgebras: sl(2) as a diagonal subalgebra of sl(2) ⊕ sl(2), sl(2) as a
root subalgebra or a principal sl(2) subalgebra of sl(3), and sl(2) as a root subalgebra
corresponding to a short root or as a principal subalgebra of sp(4). We give an explicit
description of all simple bounded (g, k)-modules in each of the above cases: in some
of them the results are known, in some they are new. The most interesting new case
is the case of a principal sl(2)-subalgebra of g = sp(4).

Acknowledgement. This paper has been written in close contact with Gregg
Zuckerman who has supported us on several occasions with valuable advice. David
Vogan, Jr. has also generously shared his knowledge of Harish-Chandra modules with
us, and A. Joseph and D. Panyushev have pointed out useful references. We thank
T. Milev for reading the manuscript carefully and checking some of the calculations.
Finally, we acknowledge the hospitality and support of the Max-Planck Institute for
Mathematics in Bonn.

2. Notation

All vector spaces, Lie algebras and algebraic groups are defined over C. The sign
⊗ stands for ⊗C. Sn is the symmetric group of order n, and S ·(·) and Λ·(·) denote
respectively symmetric and exterior algebra. By g we denote a finite dimensional Lie
algebra, subject to further conditions; U = U(g) denotes the enveloping algebra of g,
and ZU stands for the center of U . The filtration (C = U(g)0) ⊂ U(g)1 ⊂ U(g)2 ⊂ . . .
is the standard filtration on U = U(g). If M is a g-module, then

g[M ] :=
{

g ∈ g| dim span{m, g ·m, g2 ·m, . . . } <∞
}

.

It is proven by V. Kac, [K2], and by S. Fernando [F] that g[M ] is a Lie subalgebra
of g. We call g[M ] the Fernando-Kac subalgebra of M . If M ′ ⊂ M is any subspace
of a g-module M , by AnnM ′ we denote the annihilator of M ′ in U(g). If k is a Lie
subalgebra of g, we put M k := {m ∈M |g ·m = 0 ∀g ∈ k}.
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If σ is an automorphism of g and M is a g-module, Mσ stands for the g-module
twisted by σ. If g is a reductive Lie algebra, ( , ) stands for any non-degenerate
invariant form on g∗.

If X is an algebraic variety, OX is the sheaf of regular functions on X, TX is the
tangent and cotangent bundle on X, ΩX is the bundle of forms of maximal degree on
X, and DX denotes the sheaf of linear differential operators on X with coefficients
in OX.

3. Preliminary Results

Lemma 3.1. Let {Vi} be a family of vector spaces whose dimension is bounded by
a positive integer C, and let R be any associative subalgebra of

∏

i EndVi. Then any
simple R-module has dimension less than or equal to C.

Proof. The Amitsur - Levitzki Theorem, [AL], yields the equality
∑

s∈S2C

sign(s)xs(1) . . . xs(2C) = 0

for any x1, . . . , x2C ∈ R. Let W be a simple R-module. Assume dimW ≥ C + 1, fix
a subspace W ′ ⊂ W with dimW ′ = C + 1, and choose y1, . . . , y2C ∈ End(W ′), such
that

∑

s∈S2C
sign(s)ys(1) . . . ys(2C) 6= 0. By the Chevalley-Jacobson density theorem,

[Fa], there exist x1, . . . , x2C ∈ R such that

xi · w = yi(w)

for all i and any w ∈W ′. Hence
∑

s∈S2C

sign(s)ys(1) . . . ys(2C) = 0.

Contradiction. 2

Lemma 3.2. Let k be a semisimple Lie algebra and C be a positive integer. There
are finitely many non-isomorphic finite dimensional k-modules of dimension less or
equal than C.

Proof. Let Mµ be a simple finite dimensional k-module with highest weight µ with
respect to a fixed Borel subalgebra bk ⊂ k. Recall that

dimMµ = Πα∈∆+

(µ+ ρ, α)

(α, ρ)
,

where ∆+ is the set of roots of bk and ρ := 1
2

∑

α∈∆+
α. If

(µ+ ρ, α)

(α, ρ)
> C at least for

one α, then dimMµ > C. But the number of all weights µ such that
(µ+ ρ, α)

(α, ρ)
< C

for all α ∈ ∆+ is finite. Hence the number of modules Mµ of dimension less or
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equal than C is finite. Therefore the number of all finite dimensional k-modules with
dimension less or equal than C is finite. 2

In what follows, k ⊂ g will denote a reductive in g subalgebra. By definition, the
latter means that g is a semisimple k-module. For the purpose of this paper, we call
a g-module M a (g, k)-module if k ⊂ g[M ] and M is a semisimple k-module. For any
(g, k)-module M ,

M =
⊕

r∈Rk

V r ⊗M r,

where Rk is the set of isomorphism classes of simple finite dimensional k-modules, V r

denotes a representative of r ∈ Rk, and M r := Homk(V
r,M). In addition, each M r

has a natural structure of a U(g)k - module. The following is a well known statement,
[Dix] [Prop. 9.1.6], whose proof we present for the convenience of the reader.

Lemma 3.3. If M is a simple (g, k)-module, then M r is a simple U(g)k - module for
each r.

Proof. Let 0 6= w, w′ ∈ M r. By the density theorem ([Fa]), for any v ∈ V r there
exists x ∈ U(g) such that x · (v⊗w) = v⊗w′. If t ∈ k, then xt · (v⊗w) = t · v⊗w′ =
tx · (v⊗w), hence [k, x] ⊂ Ann(V r ⊗w). Since Ann(V r ⊗w) is k-invariant under the
adjoint action, and since U(g) is a semisimple k -module, we can write x = y+z with
z ∈ Ann(V r ⊗ w) and y ∈ U(g)k. Therefore y · w = w′, i.e. M r is a simple U(g)k -
module. 2

Lemma 3.4. Let M be a (g, k)-module with Mr 6= 0 for finitely many r ∈ Rk.

(a) Then g[M ] + gk = g.
(b) If in addition g is simple and M is finitely generated, then M is finite dimen-

sional.

Proof. (a)Let g =
⊕

i gi be a decomposition of g into a sum of simple k-modules.
It suffices to prove that gi ⊂ g[M ] for every non-trivial k-module gi. Assuming that
the Borel subalgebra bk ⊂ k is fixed, let xi be a non-zero bk- singular vector of gi.
For any bk - singular vector m ∈ M , xl

i ·m is a bk - singular vector for any l ∈ N. If
gi is not a trivial k-module, all non-zero vectors of the form xl

i ·m generate pairwise
non-isomorphic simple k-submodules of M . Hence, xl

i ·m = 0 for large l whenever
gi is non-trivial. Since M is generated as a k-module by bk-singular vectors, we have
xi ∈ g[M ], and moreover gi ⊂ g[M ] as k ⊂ g[M ].

(b) Note that the subalgebra g̃ generated by all non-trivial k-submodules gi is an
ideal in g. On the other hand, by (a), g̃ ⊂ g[M ]. The simplicity of g yields now
g = g[M ]. Hence M is finite dimensional as it is finitely generated. 2

4. First results on bounded modules and bounded subalgebras

Recall (see the Introduction) that a (g, k)-module M has finite type if M r is finite
dimensional for all r ∈ Rk, and that a (g, k)-module of finite type is a generalized
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Harish-Chandra module according to the definition in [PZ1] and [PSZ]. Any (g, k)-
module M of finite type is also automatically a (g, k′)-module of finite type for any
intermediate subalgebra k′, k ⊂ k′ ⊂ g[M ]. Note also that k + gk ⊂ g[M ]. If g

is reductive, then for any proper reductive in g subalgebra k, there exist infinite
dimensional simple (g, k)-modules of finite type over k. A stronger statement is proved
in [PZ2]. A (g, k)-module is bounded if, for some positive integer CM , dimM r < CM

for all r ∈ Rk, and is multiplicity free if dimM r ≤ 1 for all r ∈ Rk.

Theorem 4.1. Let g =
⊕

gi, where gi are simple Lie algebras, let k ⊂ g be a
reductive in g subalgebra, and let M be a simple bounded (g, k)-module. Then
gk =

⊕

i g
k
i, and gi ⊂ g[M ] whenever gk

i is not abelian. Furthermore, M ≃M ′⊗M ′′ for

some simple finite dimensional g′ :=
⊕

gi⊂g[M ]

gi-module M ′ and some simple bounded

(g′′, k′′)-module M ′′, where g′′ :=
⊕

gi*g[M ]

gi and k′′ := k ∩ g′′.

Proof. The equality gk =
⊕

i g
k
i follows directly from the definition of gk. In

addition, each subalgebra gk
i is reductive in gi, hence si := [gk

i, g
k
i] is semisimple. Set

s :=
⊕

i si. Consider the decomposition

M =
⊕

r∈Rk

V r ⊗M r.

Since the dimensions of M r are bounded, Lemmas 3.2 and 3.3 imply that at most
finitely many simple s-modules M r are non-isomorphic. Hence, M considered as a
(g, s)-module satisfies the condition of Lemma 3.4. Thus g[M ] + gs = g. Note that
the trivial s-submodule gs of g has a unique s-submodule complement a. Moreover,
a ⊂ g[M ] by Lemma 3.4. In addition, as we already noted in the proof of Lemma
3.4 (b), the subalgebra of g generated by a is an ideal in g. Since s ⊂ a, we have
⊕

si 6=0 gi ⊂ g[M ], i.e. we have proved that gi ⊂ g[M ] whenever gk
i is not abelian.

We prove next that M = M ′ ⊗ M ′′. Since g′ ⊂ g[M ], there is a simple finite
dimensional g′-submodule M ′ of M . Set M ′′ := Homg′(M

′,M). Clearly M ′′ is a
g′′-module, and there is a non-zero homomorphism of g-modules

Φ : M ′ ⊗M ′′ →M,

Φ(m′ ⊗ ϕ) := ϕ(m′), m′ ∈M ′.

Since M is simple, Φ is surjective. To prove that Φ is injective, fix a nonzero vector
m ∈M ′. If ϕ1, . . . , ϕn ∈M ′′ are linearly independent, the vectors ϕ1(m), . . . , ϕn(m) ∈
M are linearly independent, as the contrary would imply that ϕ1(m

′), . . . , ϕn(m
′) are

linearly dependent for any m′ ∈ M (since m generates M ′), which is contradictory.
Since ϕ1(m), . . . ϕn(m) are linearly independent, the sum

∑

i ϕi(M
′) is direct, hence

no non-zero vector of the form
∑

i ϕi(m
′
i) for m′i ∈ M belongs to the kernel of Φ.

This implies ker Φ = 0. The irreducibility of M now yields the irreducibility of M ′′.
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To see that M ′′ is a bounded (g′′, k′′)-module it suffices to notice that M is a bounded
(g, g′ ⊕ k′′)-module as k ⊂ g′ ⊕ k′′ and that the multiplicity of M ′ ⊗ V r′′ in M equals
the multiplicity of V r′′ in M ′′ for any r′′ ∈ Rk′′ . 2

In the rest of this section and in Sections 5 and 6 below, g is a reductive Lie algebra
unless further restrictions are explicitly stated. We call k a bounded subalgebra of g

if there exists an infinite dimensional bounded simple (g, k)-module. Theorem 4.1
suggests also the following stronger notion: a bounded subalgebra k of g is strictly

bounded, if there exists an infinite dimensional bounded simple (g, k)-module M such
that g[M ] contains no simple ideal of g. Clearly, if g is simple, a subalgebra k is
bounded if and only if it is strictly bounded.

Corollary 4.2. If k is a strictly bounded subalgebra of a reductive Lie algebra g,
then gk ⊂ g is an abelian subalgebra.

Theorem 4.3. Let C be a positive integer and M be a simple bounded (g, k)-
module with dimM r < C for all r ∈ Rk. Let N be a simple (g, k)-module with
AnnN = AnnM . Then N is also bounded and dimN r < C for all r ∈ Rk.

Proof. Set UM := U(g)/AnnM and ZM := (UM)k. The (g, k)-module M deter-
mines an injective algebra homomorphism

ZM →
∏

r∈Rk

End(M r),

and dimM r < C for all r. By Lemma 3.3, N r is a simple ZM -module for any r.
Therefore, by Lemma 3.1, dimN r < C. 2

Recall that, for any simple g-moduleM , its Gelfand-Kirillov dimension GKdimM ∈
Z≥0 is defined by the formula

GKdimM = lim
n→∞

log dim (U(g)n · v)

log n

for any non-zero v ∈ M , [KL] [p. 91]. Recall also that the associated variety XM

of M is the nil-variety in g∗ of the associated graded ideal in S ·(g) of AnnM . We
next prove an explicit bound for dimXM by dim k + rkk for any simple bounded
(g, k)-module M . For this purpose we will use the well known inequality

GKdimM ≥
dimXM

2
,

see [KL] [p. 135].

Theorem 4.4. Let M be a simple bounded (g, k)-module. Then

(4.1) GKdimM ≤ bk,

where bk :=
dim k + rkk

2
.
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Proof. Fix a Cartan subalgebra hk ⊂ k and a Borel subalgebra bk ⊂ k with hk ⊂ bk.
Note that bk = dim bk. Fix also r ∈ Rk with M r 6= 0 and let µ0 ∈ h∗k be the bk -highest
weight of V r. Set

Mn := U(g)n · V r

for n ∈ Z≥0. It suffices to prove that there exists a polynomial f(n) of degree bk such
that dimMn ≤ f(n).

Let ν1, . . . , νs be the bk-highest weights of all simple k-submodules of g. Put ν :=
∑

i νi. Then, if Vµ is the simple finite dimensional k-module with bk- highest weight
µ, Homk(Vµ,Mn) 6= 0 implies

(4.2) µ ≤ nν + µ0

where ≤ is the partial order on h∗k determined by bk. The cardinality of the set of
all integral- bk-dominant weights µ satisfying (4.2) is bounded by some polynomial
g(n) of degree rkk. Weyl’s dimension formula implies that the dimension of Vµ is
bounded by a polynomial h(n) of degree equal to the number of simple roots of bk.
If dimM r < C, then

dimMn ≤ Ch(n)g(n).

2

The inequality (4.1) is very much in the spirit of A. Joseph who was the first to
establish the equality dim k = 2 dimXM in the particular case when k is a Cartan
subalgebra of g and M is a simple bounded (g, k)-module, [J].

Corollary 4.5. Let M be a bounded simple (g, k)-module. Then

dimXM

2
≤ bk.

In the remainder of the paper G will be a fixed reductive algebraic group with Lie
algebra g. Denote by rg the half-dimension of a nilpotent orbit of minimal positive
dimension in g. If g is simple, such an orbit is unique. It coincides with the orbit of
a highest vector in the adjoint representation, and

rg =











































rkg = n for g = sl(n + 1), sp(2n)
2n− 2 for g = so(2n+ 1)
2n− 3 for g = so(2n)
3 for g = G2

8 for g = F4

11 for g = E6

17 for g = E7

29 for g = E8.

Corollary 4.6. If k is a bounded subalgebra. Then

(4.3) rg ≤ bk.
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If g = g1 ⊕ ...⊕ gs is a sum of simple ideals and k ⊂ g is strictly bounded, then

(4.4) rg1 + ...+ rgs ≤ bk.

Proof. XM is a closed G-invariant subvariety of the nilpotent cone in g. Since
M is infinite dimensional, the dimension of XM is positive. Hence dim XM

2
≥ rg, and

(4.3) follows from Corollary 4.5. If k is strictly bounded, then there exists a simple
bounded (g, k)-module M such that g[M ] does not contain gi for all i = 1, ..., s. This
implies that XM ∩ gi 6= 0 for all i = 1, ..., s, and hence dim XM

2
≥ rg1 + ...+ rgs. 2

Example 4.7. Corollary 4.6 implies that if k ≃ sl(2) is a strictly bounded subalgebra
of a semisimple Lie algebra g, then there are only following three choices for g:

(4.5) g ≃ sl(2) ⊕ sl(2), g ≃ sl(3), g ≃ sp(4).

As we show below, up to conjugation there are five possible embeddings sl(2) →֒ g

(with g in (4.5)) whose image is a bounded subalgebra.

Example 4.8. This example shows that the inequality rg ≤ bk together with the
requirement that gk is abelian are not sufficient for a reductive in g subalgebra k to
be bounded. Let g = sl(n + 1) and k = so(n) ⊂ g for n ≥ 5, where the natural
sl(n + 1)-module decomposes as a k-module as V ⊕ C, V being the natural so(n)-

module. Then rg = n and bk = n(n−1)
4

+ 1
2

[

n
2

]

, hence rg ≤ bk. In addition, dim gk = 1,

therefore gk is abelian. We will show that nevertheless k is not a bounded subalgebra
of g.

Note first that as a k-module g contains two copies of V which are gk-eigenspaces
with opposite eigenvalues, therefore we can fix an element t ∈ gk such that its corre-
sponding eigenvalues are ±1. This allows us to fix non-zero bk- singular vectors x, y ∈
g with [t, x] = x, [t, y] = −y. Then it is easy to check that [x, z] = [y, z] = [t, z] = 0.

Let M be an infinite dimensional simple bounded (g, k)-module. We claim that
g[M ] contains span{x, z} or span{y, z}. Indeed, let m be a bk-singular vector in M of
k-weight η. If y, z /∈ g[M ], all vectors of the form (zayb) ·m for a, b ∈ Z≥0 are linearly
independent bk-singular vectors in M . Then if the weight of y is κ, the weight of
z is equals 2κ and the multiplicity of the weight nκ + η in span{(zayb) · m}a,b∈Z≥0

is at least
[

n
2

]

. Since all vectors of span{(zayb) · m}a,b∈Z≥0
are bk-singular, M has

unbounded k-multiplicities, and we have a contradiction. This implies y ∈ g[M ] or
z ∈ g[M ].

Arguing in the same way, we obtain x ∈ g[M ] or z ∈ g[M ]. If x, y ∈ g[M ], then
z = [x, y] ∈ g[M ]. If z ∈ g[M ], but x, y /∈ g[M ], we repeat the above argument for the
pair (x, y) instead of (x, z) under the assumption that m is bk-singular vector with
z ·m = 0. Then all vectors {(xayb) ·m}a,b∈Z≥0

for a, b ∈ Z≥0 are linearly independent
bk-singular vectors and M has unbounded k-multiplicities, which is a contradiction.

Without loss of generality we can therefore assume that x, z ∈ g[M ]. The subalge-
bra p ⊂ g generated by k, x, z, t is a maximal parabolic subalgebra whose semisimple
part g′ is isomorphic to sl(n). Note also that g′·V = V . LetMµ be a finite dimensional
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g′ submodule of M with highest weight µ and highest weight vector 0 6= m ∈ Mµ

with respect to a fixed Borel subalgebra b′ ⊂ g′. Then yn ·m is a b′-singular vector
for any n, and yn · m 6= 0 for any n since y /∈ g[M ]. This shows that for any n
the multiplicity of Mµ+nǫ in M is non-zero, where ǫ is the b′-highest weight of the
g′-module V .

We claim that this implies that M is a (g, k)-module of infinite type. Indeed, for
any positive n

Homg′(S
nV ⊗Mµ,Mµ+nǫ) = Homg′(S

n(V ),M∗µ ⊗Mµ+nǫ) 6= 0.

However, for any even n Sn(V ) contains a trivial k-constituent. Therefore

(M∗µ ⊗Mµ+nǫ)
k = Homk(Mµ,Mµ+nǫ) 6= 0.

Since Mµ has finitely many simple k-constituents, there is a simple k-constituent V r of
Mµ such that Homk(V

r,Mµ+nǫ) 6= 0 for infinitely many n. That implies dimM r = ∞.
Contradiction.

We conclude this section by a brief discussion of the action of the translation functor
on bounded (g, k)-modules. For any ξ ∈ h∗, denote by Uχ(ξ) the quotient of U(g) by
the two sided ideal generated by the kernel of the character χ(ξ) : ZU → C via which
ZU acts on the Verma module with b-highest weight ξ − ρ. Let now ξ, η ∈ h∗ be two
weights with the same stabilizer in the Weyl group Wg and such that the difference
η−ξ is a g-integral weight. Assume furthermore that (ξ, α̌) ∈ Z≥0 ⇐⇒ (η, α̌) ∈ Z≥0

and (ξ, α̌) ∈ Z≤0 ⇐⇒ (η, α̌) ∈ Z≤0 for any root α of b ( as usual, α̌ = 2α
(α,α)

). There

is a unique simple finite dimensional g-module E such that η − ξ is its extremal
weight. It is well known, see [BG] and [Z], that the translation functors

T η
ξ : Uχ(ξ) − mod → Uχ(η) − mod

M 7→ Uχ(η) ⊗U(g) (M ⊗E),

T ξ
η : Uχ(η) − mod → Uχ(ξ) − mod

M 7→ Uχ(ξ) ⊗U(g) (M ⊗ E∗),

are mutually inverse equivalences of categories. It will be important for us that the
image of a bounded (g, k)-module under the translation functor is clearly a bounded

(g, k)-module. Therefore, if B
χ(ξ)
k (respectively, B

χ(η)
k ) is the full subcategory of

Uχ(ξ) − mod (resp., of Uχ(η) − mod ) whose objects are bounded generalized (g, k)-

modules, T η
ξ and T ξ

η induce mutually inverse equivalences of the categories B
χ(ξ)
k and

B
χ(η)
k .
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5. A construction of bounded (g, k)-modules

Let Dξ be the sheaf of twisted differential operators on G/B as introduced in [BB].
Recall that if (ξ, α̌) 6= 0 for any α ∈ ∆, then Γ(G/B,Dξ) = Uχ(ξ). Furthermore, if
(ξ, α̌) /∈ Z≤0 for any root α of b = LieB, then the functors

Γ : D
ξ − mod ; Uχ(ξ) − mod

D
ξ ⊗Uχ · : Uχ(ξ) − mod ; D

χ − mod

are mutually inverse equivalences of categories. Here Dξ −mod denotes the category
of sheaves of left Dξ-modules on G/B which are quasicoherent as sheaves of O =
OG/B-modules, [BB].

Note that if ξ, η ∈ h∗ satisfy (ξ, α̌) /∈ Z≤0, (η, α̌) /∈ Z≤0 for any root α of b, and
ξ − η is a g-integral weight, then the translation functor

T η
ξ : Uχ(η) − mod ; Uχ(ξ) − mod

coincides with the composition Γ◦(O(ξ − η) ⊗O ·)◦(Dη ⊗Uη ·), where O(ξ−η) stands
for the invertible sheaf on G/B on whose geometric fibre at the point B ∈ G/B the
Lie algebra b acts via the weight wm(ξ−η), wm being the element of maximal length
in the Weyl group Wg. This yields a geometric description of the translation functor
T η

ξ .
We need one more basic D-module construction. For any parabolic subgroup

P ⊂ G there is a well-known ring homomorphism U(g) → Γ(G/P,DG/P ) which
extends the obvious homomorphism g → Γ(G/P, TG/P ). Therefore the functor

Γ : DG/P − mod → Γ(G/P,DG/P ) − mod

can be considered as a functor into U(g)-mod.
Let Z be a smooth closed subvariety of G/P , and let (DG/P − mod )Z be the full

subcategory of DG/P -mod with objects DG/P -modules supported on Z as sheaves.
Furthermore, denote by DX←Z the (DG/P ,DZ)-bimodule ((DG/P ⊗OG/P

Ω∗G/P )|Z)⊗OZ

ΩZ . A well-known theorem of Kashiwara [K] claims that the functor

i⋆ : DZ − mod ; (DG/P − mod )Z

F 7→ DX←Z ⊗DZ
F

is an equivalence of categories. In addition, it is easy to see that Γ(G/P, i∗OZ) is an
infinite dimensional g-module whenever dimZ < dimG/B.

Next, we recall the following result.

Theorem 5.1. ([VK] [Thm.2]) Let K be a reductive algebraic group and BK be a
Borel subgroup of K. Then, for any (finite dimensional) K-module V such that BK

has an open orbit in V , the symmetric algebra S ·(V ) is a multiplicity free K-module.
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A K-module V is called spherical if it satisfies the condition of Theorem 5.1.
Moreover, assume now that K is a reductive proper subgroup of our fixed reductive
algebraic group G, and let P ⊂ G be a proper parabolic subgroup such that Q :=
K ∩ P is a parabolic subgroup in K. Let Q0 be a reductive part of Q. There is a
closed immersion

K · P = K/Q →֒ G/P.

Since P is Q-stable, Q acts in the fiber NP ≃ g/(k⊕ p) at the point P of the normal
bundle N of K/Q in G/P .

The following result is one of the key observations in this paper.

Theorem 5.2. If NP is a spherical Q0-module, then Γ(G/P, i⋆OK/Q) is an infinite
dimensional multiplicity free (g, k)-module.

Proof. Recall that i−1i⋆OK/Q has a natural OK/Q-module filtration with succes-
sive quotients

Λmax(N ) ⊗OK/Q
Si(N ).

(Λmax stands here for maximal exterior power). Moreover, i−1i⋆OK/Q isK-equivariant,
and at the point P , the above filtration induces a Q-module filtration and thus also
a Q0-module filtration of the fiber (i−1i⋆OK/Q)P with successive quotients

(5.1) Λmax(NP ) ⊗C S
i(NP ).

Theorem 5.2 implies that the direct sum of all modules (5.1) for i ≥ 0 is a multi-
plicity free Q0-module. The Bott-Borel-Weil Theorem implies therefore that Γ(K/Q,
⊕

i≥0(Λ
max(N )⊗OK/Q

Si(N ))) is a multiplicity free K-module. Since as a K-module

Γ(G/P, i⋆OK/Q) is a submodule of Γ(K/Q,
⊕

i≥0(Λ
max(N )⊗OK/Q

Si(N ))), Γ(G/P, i⋆OK/Q)
is itself K-multiplicity free.2

We would like to point out that it is relatively straightforward to generalize Theo-
rem 5.2 to the case when OK/Q is replaced by a K-equivariant line bundle on K/Q.
This more general theorem should play an important role in a future study of bounded
(g, k)-modules with central characters different from that of a trivial g-module. In the
present paper we discuss this construction briefly in a very special case, see Lemma
9.14 below.

6. On Bounded Subalgebras

Theorem 5.2 leads to the following results about bounded subalgebras.

Corollary 6.1. Let K ⊂ G ⊂ GL(V ) be a chain of reductive algebraic groups,
and let V ′ ⊂ V be a 1-dimensional space whose stabilizers in G and K are parabolic
subgroups P ⊂ G and Q ⊂ K. Then, if (V ′)∗⊗(g ·V ′/k ·V ′) is a spherical Q0-module,
then k is a bounded subalgebra of g.



12 IVAN PENKOV AND VERA SERGANOVA

Proof. We identify G/P with the G-orbit of V ′ in P(V ). Then K/Q is identified
with theK-orbit of V ′ in P(V ). Moreover (TG/P )V ′ = (V ′)∗⊗g·V ′, (TK/Q)V ′ = (V ′)∗⊗
k · V ′, and hence NP is identified with ((TG/P )V ′/(TK/P )V ′) = (V ′)∗ ⊗ (g · V ′/k · V ′).
Therefore the claim follows from Theorem 5.2. 2

Corollary 6.2. Let K be a reductive subgroup in GL(Ṽ ) such that Ṽ is a spherical
K-module. Then LieK is a bounded subalgebra of gl(Ṽ ⊕C), where LieK is embedded

in gl(Ṽ ⊕ C) via the composition LieK ⊂ gl(Ṽ ) ⊂ gl(Ṽ ⊕ C).

Proof. One sets V := Ṽ ⊕ C and applies Corollary 6.1 to the chain K ⊂ G :=
GL(V ) with the choice of V ′ as the fixed one dimensional subspace C ⊂ V . Then
(V ′)∗ ⊗ (g · V ′/k · V ′) = Ṽ as g · V ′ = V , k · V ′ = V ′. 2

All faithful simple spherical modules of reductive Lie groups are listed in [K1] [Thm.
3]. This list provides via Corollary 6.2 a lot of examples of bounded subalgebras of
gl(n).

Before we proceed to applications of Corollary 6.1, let us briefly discuss what is
known in the cases when k is a symmetric or a Cartan subalgebra of g. In the
first case, there is the celebrated classification of Harish-Chandra modules, see [V1],
[KV] and the references therein. In addition, bounded Harish-Chandra modules have
been studied in detail in many cases, and the corresponding very interesting results
are somewhat scattered throughout the literature. It is an important fact that every
symmetric subalgebra of a semisimple Lie algebra is bounded, and this follows from a
combination of published and unpublished results, communicated to us by D. Vogan,
Jr. and G. Zuckerman.

More precisely, if the pair (g, k) is Hermitian, i. e. if k is contained in a proper
maximal parabolic subalgebra, any simple highest weight Harish-Chandra module
is bounded. This follows from results of W. Schmid, [Sch]. If g is simply laced,
then (published and unpublished) results of D. Vogan, Jr. imply that any symmetric
subalgebra k ⊂ g is bounded. In all remaining cases, the boundedness of a symmetric
subalgebra follows from the existence of a simple ladder module (this is a special
type of multiplicity free (g, k)-module, see the proof of Theorem 7.1), or a bounded
degenerate principal series module, or a bounded Zuckerman derived functor module.
The corresponding results can be found in [V1], [V3], [BS], [GW], [Str], and [EPWW].
A systematic study of bounded Harish-Chandra modules would be very desirable but
is not part of this paper.

In the case when k = h is a Cartan subalgebra of g the simple bounded (g, k)-
modules have played a quite visible role in the literature on weight modules. Here it
is easy to check that, if g is simple, (4.3) is satisfied only for g ≃ sl(m), sp(n). This
observation, made by A. Joseph in the 1980’s, easily implies that a Cartan subalgebra
is a bounded subalgebra of a simple Lie algebra g if and only if g ≃ sl(m), sp(n).
Furthermore, the works of S. Fernando, O. Mathieu and others, see [M], [F] and
the references therein, have lead to an explicit description of all simple bounded
(g, h)-modules for g = sl(m), sp(n), see [M] for comprehensive results.
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We now proceed to direct applications of Corollary 6.1: we classify all bounded
reductive subalgebras k ⊂ sl(n) which are maximal as subalgebras, and give examples
of bounded non-maximal subalgebras of sl(n).

Theorem 6.3. Let g = sl(n). A proper reductive in g subalgebra k which is maximal
as a subalgebra of g is bounded if and only if it satisfies the inequality (4.3), i.e. iff
bk ≥ n− 1.

We need the following preparatory statements. For a simple Lie algebra k we denote
by ω1, ..., ωrkk the fundamental weights of k, where for the enumeration of simple roots
we follow the convention of [OV]. Furthermore, in what follows we denote by Vλ the
simple finite dimensional k-module with highest weight λ.

Lemma 6.4. Let k be a simple Lie algebra and V be a simple k module. Assume
that

(6.1) dimV − 1 ≤
dim k + rkk

2
.

Then V is trivial, or we have the following possibilities for k and V :

(1) k = sl(m), V = Vω1 , Vωm−1, Vω2 , Vωm−2 , V2ω1 , V2ωm−1 ,
(2) k = so(m) or sp(m), V = Vω1,
(3) k = so(m), 5 ≤ m ≤ 10 or m = 11, V = Vω(m−1)/2

for odd m, V = Vωm/2
and

V = Vωm/2−1
for even m,

(4) k = G2, V = Vω1 ,
(5) k = F4, V = Vω1 ,
(6) k = E6, V = Vω1 or Vω6,
(7) k = E7, V = Vω1 .

Proof. We start with the observation that (λ, αi) = k ∈ Z≥0 implies dim Vλ >
dimVkωi

. This follows immediately from Weyl’s dimension formula. Therefore it
suffices to find all fundamental representations for which the inequality (6.1) holds.

Let k = sl(m). The dimensions of the fundamental representations are
(

m
k

)

for
k = 1, . . . , m− 1. The condition

(

m

k

)

≤
m(m+ 1)

2
=

1

2
(dim k + rkk) + 1

is equivalent to (6.1) and implies k = 1, 2, m − 2, m − 1. Obviously, dimV2ωm−2 =

dimV2ω2 is greater than m(m+1)
2

. On the other hand, dimV2ω1 = dimV2ωm−1 = m(m+1)
2

.
Hence (1).

Let k = so(m), m = 2p. We may assume m ≥ 8. The inequality (6.1) is equivalent
to

dim V ≤ p2 + 1.

The dimensions of the fundamental representations are
(

m
k

)

for k ≤ p−2 and 2p−1. It
is not hard to check that for an arbitrary p the inequality holds only for Vω1 ; moreover
it holds for Vωp−1, Vωp if p = 4, 5, 6.
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Let k = so(m), m = 2p+ 1. The inequality (6.1) is equivalent to

dimV ≤ p2 + p+ 1,

and holds for Vω1 for any p, and for Vωp if p ≤ 4.
Let k = sp(m), m = 2p. Assume p ≥ 3. The inequality is the same as in the

previous case, but

dimVωk
=

(

2p

k

)

−

(

2p

k − 2

)

.

One can check that here the inequality holds only for k = 1. This proves (2) and (3).
The cases (4)-(7) can be checked using the tables in [OV]. 2

Lemma 6.5. Let k and V be as in Lemma 6.4. The following is a complete list of
pairs k, V such that V has no non-degenerate k-invariant bilinear form:

(1) k = sl(m), V = Vω1, Vωm−1 , Vω2 (m ≥ 5), Vωm−2 , (m ≥ 5), V2ω1, V2ωm−1 ;
(2) k = so(10), V = Vω4 or Vω5;
(3) k = E6, V = Vω1 or Vω6.

Proof. If V is not self-dual, the Dynkin diagram of k admits an involutive au-
tomorphism which does not preserve the highest weight. Moreover, in the case of
so(2p), p must be odd. These conditions reduce the list of representations in Lemma
6.4 to the list in the Lemma. 2

Proof of Theorem 6.3 According to E. Dynkin’s classification [D] [Ch.1.], if
k ⊂ g = sl(n) is a reductive in g subalgebra which is maximal as a subalgebra of g,
one of the following alternatives holds:

(i) k is simple, the natural sl(n)-module V is a simple k-module with no non-
degenerate invariant bilinear form, or k = so(n) and sp(n).

(ii) k ≃ sl(r)⊕sl(s) with rs = n, and V ≃ Sr⊗Ss, where Sr and Ss are respectively
the natural modules of sl(r) and sl(s).

If (i) holds, then k ≃ so(n), sp(n) or k is among the Lie algebras listed in Lemma
6.5, where g is identified with sl(V ). Consider first the case k ≃ sp(n), n = 2p. To
show that k is bounded in g, we apply Theorem 5.2 with G/P being the Grassmannian
of p-dimensional subspaces in Cn and K/Q being the Grassmannian of Lagrangian
subspaces in Cn. Then Q0 = GL(p) and NP is the exterior square of the natural
representation. The Q0-module NP is spherical, [K1].

We now consider the remaining cases of (i), which can all be settled using Corollary
6.1. Note that, if k is embedded into sl(n) via a simple k-module or via its dual,
the corresponding embeddings are conjugate by an automorphism of sl(n), hence it
suffices to consider only one such embedding. The list of Lemma 6.5 reduces therefore
to the following cases, in which all Q0-modules are spherical, [K1]:

-k = sl(k), V = Vω2 , Q0 ≃ SL(2) ×GL(k − 2) and (V ′)∗ ⊗ (V/k · V ′) is isomorphic
to the tensor product of the exterior square of the natural representation with the
determinant representation of GL(k − 2), the action of SL(2) being trivial;
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-k = sl(k), V = V2ω1 , Q0 ≃ GL(k − 1) and (V ′)∗ ⊗ (V/k · V ′) is isomorphic to
the tensor product of the symmetric square of the natural representation with the
determinant representation of GL(k − 1);

-k = so(10), V = Vω4 , Q0 = GL(5) and (V ′)∗⊗(V/k ·V ′) is isomorphic to the tensor
product of the natural representation of GL(5) with the determinant representation
of GL(5); the case V = Vω5 can be reduced to the case V = Vω4 by dualization;

-k = E6, V = Vω1, then Q0 = SO(10)× C∗ and (V ′)∗ ⊗ (V/k · V ′) is isomorphic to
the natural 10-dimensional representation of SO(10), and the action of the center of
Q0 is not trivial.

The only remaining case in (i) is when k = so(n), Q0 ≃ SO(n − 2) × C∗ and
(V ′)∗ ⊗ (V/k · V ′) is a one-dimensional non-trivial, hence spherical, Q0-module.

If (ii) holds, then k ≃ sl(r)⊕sl(s) for some rs with rs = n, and we claim that in this
case all pairs r, s with rs = n yield a bounded subalgebra k. To see this, fix V ′ of the
form S ′r ⊗S ′s for some 1-dimensional spaces S ′r ⊂ Sr, S

′
s ⊂ Ss. Then Q0 is isomorphic

to GL(Sr/S
′
r) × GL(Ss/S

′
s) and g · V ′/k · V ′ = V/k · V ′ ≃ (Sr/S

′
r) ⊗ (Ss/S

′
s). Since

the action of GL(r−1)×GL(s−1) on V ′ is given by the inverse of the determinant,
(V ′)∗ ⊗ (V/k · V ′) is isomorphic as a GL(r − 1) × GL(s − 1)-module to Sr−1 ⊠ Ss−1

twisted by the determinant. This representation is spherical, [K1]. �

We give now three more examples of bounded subalgebras of sl(n) which are not
maximal in the class of reductive subalgebras of sl(n).

(i) Let k ≃ sl(k + 1), k ≥ 2. The k-module V := Vω1 ⊕ Vωk
defines an embedding

k ⊂ g = sl(V ), and Corollary 6.1 implies that k is a bounded subalgebra of g. Indeed,
choose V ′ to be a 1-dimensional subspace V ′ ⊂ Vω1 and note that the conditions of
Corollary 6.1 are satisfied. In this case Q0 ≃ GL(k) and (V ′)∗⊗(V/k·V ′) is isomorphic
to Λk(Sk) ⊗ (Λk(Sk) ⊕ S∗k), Sk being the natural Q0-module. A straightforward
calculation shows that this representation is spherical.

(ii) Consider the embedding k = so(7) ⊂ g = sl(8), where the natural sl(8)-module
restricts to the 8-dimensional spinor representation of so(7). Corollary 6.1 implies
that k is a bounded subalgebra of g. Here V = C8, G = SL(V ), K = Spin(7) and
V ′ is a BK-stable line, where BK is a fixed Borel subgroup of K. Then g · V ′ = V
and dim k · V ′ = 7, hence dim(g · V ′/k · V ′) = 1. Since Q0 acts non-trivially on
(V ′)∗ ⊗ (V/k · V ′), the latter Q0-module is spherical.

(iii) Let k = G2 ⊂ g = sl(7). Then again, Corollary 6.1 implies that k is a bounded
subalgebra. The argument is similar to the argument in (ii) as dim g · V/k · V ′ = 1.

We conclude this section by the following conjecture which is supported by all the
empirical evidence collected in this paper.

Conjecture 6.6. Let k ⊂ g be a reductive in g subalgebra. Then k is bounded if and

only in there exists a simple infinite dimensional multiplicity free (g, k)-module.
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7. The rank 2 case

In this section we list all bounded pairs (g, k), where g is a semisimple Lie algebra
of rank 2, and we fix notation used in the subsequent sections.

Theorem 7.1. Let g be a semisimple Lie algebra of rank 2 and k ⊂ g be a reductive
in g bounded subalgebra. The following is a complete list of such pairs.

(1) g ≃ sl(2) ⊕ sl(2): k ≃ gl(2), k ≃ sl(2) is a diagonal subalgebra, or k is any
toral subalgebra;

(2) g ≃ sl(3): k is a root subalgebra isomorphic to sl(2) or gl(2), k is a principal
sl(2)-subalgebra, or k is a Cartan subalgebra;

(3) g ≃ sp(4): k ≃ sl(2) ⊕ sl(2), k ≃ gl(2), k ≃ sl(2) is a root subalgebra corre-
sponding to a short root, k is a principal sl(2)-subalgebra, or k is a Cartan
subalgebra;

(4) g ≃ G2: k ≃ sl(3), k ≃ sl(2) ⊕ sl(2), or k ≃ gl(2).

Proof. The inequality (4.3) implies that a 1-dimensional toral subalgebra is not
bounded in all cases but (1). In (1) any 1-dimensional toral subalgebra t is bounded
as the outer tensor product of a Verma module over a suitable ideal of g with the
trivial module of the complementary ideal of g is always bounded as a (g, t)-module.

Similarly, (4.3) implies that a Cartan subalgebra is not bounded in G2. In all other
cases it is well known to be bounded, see for instance [F].

If k ≃ sl(2) then k is not bounded in G2 again by (4.3), and if k is an ideal of
g = sl(2) ⊕ sl(2), it is not bounded by Theorem 4.1. Furthermore, if k ≃ sl(2) is a
root subalgebra of g = sp(4) corresponding to a long root, then k is not bounded by
Corollary 4.2. For the remaining five possible embeddings of sl(2) into a Lie algebra
of rank 2, the image k is always a bounded subalgebra. This follows for instance from
the explicit description of bounded (g, k)-modules which we present in Sections 8-11
of this paper.

For any embedding of gl(2) into a Lie algebra g of rank 2, g ≇ G2, any generalized
Verma module, corresponding to a parabolic subalgebra p which contains the image
k of gl(2), is a bounded (g, k)-module.

Consider next the case k ≃ sl(2) ⊕ sl(2) ⊂ g for g = sp(4) or G2. Here the pair
(k, g) is symmetric. In [V1] and [V3] ladder (g, k)-modules are constructed. Fix a
Borel subalgebra bk ⊂ k. By definition, a ladder module M has the k decomposition
M =

⊕

n∈Z≥0
Vµ+nβ, where µ is some integral bk-dominant weight and β is the bk-

highest weight of g/k. Clearly, a ladder module is multiplicity free and hence bounded.
Moreover, it remains bounded with respect to any gl(2)-subalgebra of k. Hence any
image of gl(2) in sp(4) or G2 is bounded.

The only remaining case is g = G2, k ≃ sl(3). To show that k is bounded we use
Corollary 6.1 with V being the 7-dimensional G2-module. Then as a k-module V is
isomorphic to Vω1 ⊕ V ∗ω1

⊕ C. One can fix a Borel subalgebra b ⊂ g so that there
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exists a b-invariant one-dimensional subspace V ′ ⊂ V ∗ω1
. Then Q0 ≃ GL(2) and

(V ′)∗ ⊗ (g · V ′/k · V ′) ≃ Λ2(S2) ⊗ (S2 ⊕ C)

is a spherical Q0-module. 2

In the rest of this paper g will be of rank 2, and k will be isomorphic to sl(2). By
Vk we denote the k+1−dimensional k-module, and we write c(M) for the k-character
of any semisimple (k, k)-module M of finite type over k:

c(M) :=
∑

k≥0

(dimMk)zk.

By definition, c(M) is a formal power series in z. The minimal k-type of M is Vt

where t ∈ Z≥0 is minimal with M t 6= 0. A (g, k)-module of finite type M is even

(respectively, odd) if M t = 0 for all t ∈ 1 + 2Z (resp. t ∈ 2Z).
Let C((z)) be the algebra of Laurent series and C((z))′ be the span of vectors in

C((z)) of the form zj +z−j−2 for j ∈ Z (C((z))′ is not a subalgebra). Note that C((z))′

is a complement to the subspace C[[z]] of C((z)). In what follows we denote by π
the projection onto the second summand in the direct sum C((z)) = C((z))′⊕C[[z]],
and we set zp ⊗ zq :=

∑

0≤k≤q z
p+q−2k for p ≥ q and zp ⊗ zq := zq ⊗ zp for p < q.

Lemma 7.2.

(a) For any f(z) ∈ C((z)) and any j ∈ Z, π(f(z)(zj+z−j)) = π(π(f(z)(zj+z−j))).
(b) For any (k, k)-module M of finite type over k

c(M ⊗ Vi) = π(c(M)
∑

0≤k≤i

zi−2k),

for all i ∈ N.

Proof.

(a) It suffices to check that for any ψ(z) ∈ C((z))′, ψ(z)(zj + z−j) ∈ C((z))′, and
this is obvious.

(b) It suffices to check that, for any s ∈ Z≥0

π(zs ⊗ (
∑

0≤k≤i

zi−2k)) =
∑

0≤k≤ |i−s|
2

zs+i−2k,

which is also obvious.

2

Finally, by Γk we denote the functor of k-finite vectors:

Γk : g − mod ; (g, k) − mod,

M 7→ {m ∈M | dim(U(k) ·m) <∞}.
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8. Classification and k-characters of simple (sl(2) ⊕ sl(2), sl(2))-modules

The simplest possible case among the 5 cases of Example 4.7 is when g = sl(2) ⊕
sl(2) and k ⊂ g is the diagonal subalgebra. In this case all simple (g, k)-modules
are bounded and are moreover multiplicity free. This follows, for instance, from the
algebraic subquotient theorem, see [Dix], Ch. 9. These (g, k)-modules are histori-
cally among the first examples of (g, k)-modules studied. They have been classified
already in 1947 by Gelfand and Naimark [GN] and by Bargmann [B], and have been
constructed also by Harish-Chandra around the same time, [HC]. A fundamental
more modern and much more general reference is the article [BG], where however
this explicit example is not written in detail. In the present section we give a quick
self-contained description of all simple (g, k)-modules based on the approach of [BG].

Lemma 8.1. Let Ω1,Ω2 ∈ U(g) be the Casimir elements of the two sl(2)-direct
summands of g, and Ω ⊂ U(k) ⊂ U(g) = U be the Casimir element of k. Then Ω1,Ω2

and Ω generate U(g)k.

Proof. Straightforward computation. A more general result is proved by F. Knop
in [Kn1]. 2

Corollary 8.2. Every simple (g, k)-module is multiplicity free.

Lemma 8.3. If Vn is the minimal k-type of a simple infinite dimensional (g, k)-module
M , then

(8.1) c(M) = zn + zn+2 + zn+4 + . . . .

Proof. To prove (8.1) it suffices to show that Vn, Vn+2, Vn+4, etc. are precisely all
k-types of M . The absence of other k-types follows from the fact that as a k-module
g is isomorphic to V2 ⊕ V2, hence when acting by g on Vn+2i one can only obtain
k-constituents of (V2 ⊕ V2) ⊗ Vn+2i, i.e. Vn+2(i−1), Vn+2i and Vn+2(i+1). To show that
for each i > 0 Vn+2i is a k-constituent of M , note that if Vn+2i were not a constituent
of M , then when acting by g on Vn+2(i−t) for t ≥ 1 one would not be able to obtain
a constituent of the from Vn+2(i+r) for r ≥ 1. Hence M would turn being finite
dimensional, a contradiction. 2

Lemma 8.4. Let M be a simple (g, k)-module with minimal k-type V0. Then the
central character of M equals χ(a, a) for some a ∈ C.

Proof. Since g ≃ k⊕k, the g-module U⊗U(k)V0 is isomorphic to U(k). The latter is
endowed with a U ≃ U(k)⊗U(k)-module structure via left multiplication by elements
of U(k)⊗ 1 and right multiplication by elements of 1⊗U(k). Moreover, the action of
Ω1 and Ω2 coincides on U(k). Since M is a quotient of the g-module U(k), the action
of Ω1 and Ω2 coincides on M , hence the Lemma. 2

Lemma 8.5. Let M be a simple (g, k)-module. Then the central character of M
equals χ(a, a+ n) for some a ∈ C and some n ∈ Z. Moreover, the parity of n equals
the parity of k where Vk is the minimal k-type of M .
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Proof. LetM have central character χ(α, β). Consider the g-moduleM⊗(V0⊠Vk),
where the g = k ⊕ k-module V0 ⊠ Vk is endowed with a g-module structure via the
isomorphism g ≃ k⊕k. Then Homk(V0,M⊗(V0⊠Vk)) 6= 0, hence a simple subquotient
of M ⊗ (V0 ⊠ Vk) has central character χ(a, a) for some a. On the other hand, the
central characters of all simple subquotients ofM⊗(V0⊠Vk) are of the form χ(α, β−n)
for n running over the set of weights of Vk. Therefore α = a, β − n = a, i.e. the
Lemma follows. 2

Lemma 8.6. For any central character χ, up to isomorphism there is at most one
infinite dimensional simple (g, k)-module with this central character.

Proof. Let M ′,M ′′ be two simple (g, k)-modules with central character χ. Then,
by Lemma 8.3, for some m Homk(Vm,M

′) = Homk(Vm,M
′′) = C. Therefore M ′ and

M ′′ are isomorphic to simple quotients of the g-module U ⊗ZUU(k) Vm, where ZU acts
on Vm via the central character χ. The fact that U k ⊂ ZUU(k) (Lemma 8.1) implies
that Homk(Vm, U ⊗ZUU(k) Vm) = C for every m ≥ 0. Hence U ⊗ZUU(k) Vm has a unique
proper maximal submodule, and in this way also a unique simple quotient. Therefore
M ′ ≃ M ′′. 2

In the rest of this section we will normalize the central characters considered
as χ(a, a − n) for n ∈ Z≥0, where the notation a, b is shorthand for the weight
aωleft + bωright, ωleft (respectively, ωright) being the fundamental weight of the first
(respectively, second) direct summand of g. If a ∈ Z, we assume in addition that
a ≥ 0 and a − n ≤ 0. By Mc denote the Verma module over k with highest weight
c− 1. Note that for a, a− n as above, HomC(Ma,Ma−n) is a g-module with central
character χ(a, a− n). Define

Wa,a−n := Γk(HomC(Ma,Ma−n)).

Theorem 8.7.

(a) Fix a ∈ C\Z<0 and n ∈ Z≥0 such that a − n ≤ 0 for integer a. The g-
module Wa,a−n is the unique (up to isomorphism) simple infinite dimensional
(g, k)-module with central character χ(a, a− n).

(b) c(Wa,a−n) = zn + zn+2 + zn+4 + . . . .

Proof. Note that to compute the k-character of Γk(HomC(Ma,Ma−n)) it suffices
to compute Homk(Vm,HomC(Ma,Ma−n)) for all m ∈ Z≥0. However,

Homk(Vm,HomC(Ma,Ma−n)) = Homk(Ma,Ma−n ⊗ V ∗m),

and

Homk(Ma,Ma−n ⊗ V ∗m) =

{

C for m− n ∈ 2Z≥0

0 otherwise
.

Hence
c(Wa,a−n) = zn + zn+2 + zn+4 + . . . .

The simplicity of Wa,a−n follows from the observation that if simple, Wa,a−n would
have a finite dimensional subquotient, but there is no finite dimensional g-module
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with central character χ(a, a−n) for a ∈ C\Z or a = 0. If a ∈ Z, the finite dimensional
g-module with central character χ(a, a− n) is isomorphic to Va−1 ⊠ Vn−a−1 whose k-
character is zn−2 + zn−4 + ... + z|n−2a−2|, and hence it can not be a subquotient of
Wa,a−n. 2

9. Classification and k-characters of simple bounded
(sl(3), sl(2))-modules

Throughout this section g = sl(3) and k ≃ sl(2) ⊂ g.

9.1. The root case. In this subsection we fix a Cartan subalgebra h ⊂ g and simple
roots α1, α2 ∈ h∗ which define a Borel subalgebra b+ ⊂ g. We also fix k to be the sl(2)-
subalgebra generated by the root spaces g±α1 . There are two parabolic subalgebras
containing k and h: p+ := (h+ k)⊕gα2 ⊕gα1+α2 , p− := (h+ k)⊕g−α2 ⊕g−α1−α2 . Note
that b+ ⊂ p+ and define b− to be the Borel subalgebra with simple roots α1,−α1−α2.
Then b− ⊂ p−. In addition, we fix generators hi ∈ [gαi , g−αi ] and denote by ωi, for
i = 1, 2, the corresponding dual basis of h∗. Then ρb+ = ω1 + ω2, ρb− = ω1 − 2ω2.

Lemma 9.1. Let M be a simple bounded infinite dimensional (g, k)-module. Then
g[M ] = p±.

Proof. Since h ⊂ gk ⊕ k, we have h ⊂ g[M ]. Put M0 := {m ∈ M |gα1 · m = 0}
and choose generators x and y of the respective root spaces g−α2 and gα1+α2 . A
straightforward computation shows that for any i, j ∈ Z≥0, (xiyj) · v ∈M0 if v is any
non-zero vector in M0 such that h1 · v = ν(h1)v for some ν ∈ (h ∩ k)∗. Therefore the
assumption that x, y /∈ g[M ] implies that the multiplicity of Vν+i+j is at least i + j,
which contradicts the boundedness of M . Hence g−α2 ∈ g[M ] or gα1+α2 ∈ g[M ], and
consequently g[M ] = p±. 2

Let F±a,b be the simple finite dimensional p±-module with b±-highest weight aω1 +

bω2. Define L±a,b as the unique simple quotient of U(g) ⊗U(p±) F
±
a,b. Then L±a,b are

bounded (g, k)-modules, and the existence of an isomorphism L±a,b ≃ L∓a′,b′ implies

dimL±a,b <∞.

Theorem 9.2. Let, as above, k ≃ sl(2) be a root subalgebra of g = sl(3).

(a) Any infinite dimensional bounded (g, k)-module is isomorphic either to L+
a,b

for a ∈ Z≥0, b ∈ C\Z≥0 or to L−a,b for a ∈ Z≥0, −a− b ∈ C\Z≥0.
(b)

(9.1) c(L±a,b) = 1 + 2z + · · · + aza−1 + (a+ 1)(za + za+1 + . . . )

for all a ≥ 0 and for those b which do not satisfy the conditions −b ∈ Z≥2,
a+ b ∈ Z≥−1 for L+

a,b, and respectively the conditions a+ b ∈ Z≥2, −b ∈ Z≥−1

for L−a,b.
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(c) If −b ∈ Z≥2, a+ b ∈ Z≥−1, then

(9.2) c(L+
a,b) = z−b−1 + 2z−b + · · ·+ (a + b+ 1)za−1 + (a+ b+ 2)(za + za+1 + . . . ),

and if a + b ∈ Z≥2, −b ∈ Z≥−1, then

(9.3) c(L−a,b) = za+b−1 + 2za+b + · · · + (1 − b)za−1 + (2 − b)(za + za+1 + . . . ).

Proof. Let M be a simple infinite dimensional bounded (g, k)-module. Then, by
Lemma 9.1, g[M ] = p±. If g[M ] = p+, let M+ be a simple finite dimensional p+-
submodule of M . Then M+ ≃ F+

a,b for some a ∈ Z≥0 and some b ∈ C, and there is an

obvious surjection of g-modules U(g)⊗U(p+)F
+
a,b →M . Hence M is isomorphic to the

unique simple quotient L+
a,b of U(g) ⊗U(p+) F

+
a,b. However, L+

a,b is finite dimensional

iff b ∈ Z≥0, therefore (a) follows for the case when g[M ] = p+. The case g[M ] = p−

is obtained by replacing b with −a − b which corresponds to the replacement of the
simple root α2 of b+ by the simple root −α1 − α2 of b−.

Statements (b) and (c) follow from a non-difficult reducibility analysis for the in-
duced module U(g) ⊗U(p±) F

±
a,b. Note first of all that chk(U(g) ⊗U(p±) F

±
a,b) is always

given by the right-hand side of (9.1). Indeed as k-modules g/p± and F±a,b are isomor-
phic respectively to V1 and Va, therefore

c(U(g) ⊗U(p±) F
±
a,b) = c(S ·(V1) ⊗ Va).

A straightforward computation shows that c(S ·(V1) ⊗ Va) is nothing but the right
hand side of (9.1).

We claim now that U(g)⊗U(p±) F
±
a,b is irreducible precisely when b does not satisfy

the respective conditions stated in (b). Consider first the case of p+. Then U(g)⊗U(p+)

F+
a,b is irreducible if and only if there exists w ∈W\Wk such that

(9.4) (w((a+ 1)ω1 + (b+ 1)ω2) − (ω1 + ω2))(h1) ∈ Z≥0

and

(9.5) (w((a+ 1)ω1 + (b+ 1)ω2) − (ω1 + ω2)) = aω1 + bω2 −m1α1 −m2α2

for some m1, m2 ∈ Z≥0. The only non b+-dominant solution of (9.4) and (9.5) is
w = wα1+α2 and −b ∈ Z≥2, a + b ∈ Z≥−1. Moreover, in the latter case L+

a,b ≃

(U(g)⊗U(p+) F
+
a,b)/L

+
−b−2,−a−2, where c(L+

−b−2,−a−2) is given by the right hand side of

(9.1) with a replaced by −b − 2. An immediate computation shows that c(L+
a,b) is

given in this case by the right hand side of (9.2), therefore (b) and (c) are proved for
the case of p+. The case of p− is obtained by interchanging the parameter b in (9.2)
with −a− b. 2

Corollary 9.3. Let g and k be as above.

(a) The minimal k-type of a simple bounded infinite dimensional (g, k)-module
can be arbitrary. The multiplicity of the minimal k-type is always 1.
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(b) The following is a complete list of multiplicity free simple infinite dimensional
(g, k)-modules:

– L+
0,b for b ∈ C\Z≥0,

– L−0,b for −b ∈ C\Z≥0,

– L+
a,b for a + b = −1, −b ∈ Z≥2,

– L−a,b for b = 1, a + b ∈ Z≥2.

9.2. The principal case. Let now k be a principal sl(2)-subalgebra of g = sl(3).
The pair (g, k) is well known to be symmetric and the simple (g, k)-modules have
been studied extensively, see for instance [Fo] and [Sp]. In principle one should be
able to identify all simple bounded modules in the known classification of simple
Harish-Chandra modules. However, we propose an alternative approach which leads
directly to all bounded simple (g, k)-modules and their k-characters. This is the first
case in which the richness of the theory of bounded (generalized) Harish-Chandra
modules becomes apparent.

We keep the notations h, b+, α1, α2 from Subsection 9.1. By La,b we denote the
simple g-module with b+-highest weight (a − 1)ω1 + (b − 1)ω2, by Vp,q we denote
the simple finite dimensional g = sl(3)-module with b+-highest weight pω1 + qω2

(p, q ∈ Z≥0), and χ(a, b) stands for the central character of La,b. By A we denote the
Weyl algebra in the indeterminates t, x, y.

We first describe the primitive ideals of all simple bounded (g, k)-modules.

Lemma 9.4. Let M be an infinite dimensional bounded simple (g, k)-module. Then
AnnM = AnnLa,b, where dimLa,b = ∞, a ∈ Z>0, b ∈ Z>0 or a + b ∈ Z>0.

Proof. By Duflo’s Theorem AnnM = AnnLa,b. By Theorem 4.4, GKdimLa,b ≤ 2.
A straightforward computation shows that this latter condition is equivalent to the
condition on (a, b) in the statement of the Lemma. 2

Corollary 9.5. If B
χ
k is not empty, then χ = χ(u+ 1 − n, n+ 1) for some n ∈ Z≥0,

where u ∈ C\Z<n−1 or u = −2.

Note that the natural embedding of gl(3) into A maps the center of gl(3) to the line
CE for E := t∂t + x∂x + y∂y, and that the adjoint action of the central element E on
A defines a Z-grading A :=

⊕

i∈Z Ai. We define the (associative) algebra Du as the
quotient of A0 by the ideal generated by E−u. The embedding of g → A0 induces a
surjective homomorphism γu : U(g) → Du. It is not difficult to show that if u ∈ Z,
Du is isomorphic to the algebra of globally defined differential endomorphisms of
the line bundle OP2(u) (P2 being the projective space with homogeneous coordinates
(x, y, z)).

Lemma 9.6. Consider Du with its adjoint g-module structure. Then

Du ≃
⊕

m≥0

Vmρ.



BOUNDED GENERALIZED HARISH-CHANDRA MODULES 23

Proof. Let C = A0 ⊂ A1 ⊂ · · · ⊂ A denote the standard filtration of A. A direct
computation shows that as a g-module Am

0 /A
m−1
0 is isomorphic to

Vm,0 ⊗ V0,m = ⊕m
k=0Vkρ.

After factorization by E − u, one obtains

(Du)m/(Du)m−1 ≃ Vmρ.

2

It is not difficult to see that the restriction of γu to U(k) is injective. Slightly
abusing notation we identify U(k) with its image in Du. We will use the following
expression for the standard basis E,H, F of k:

(9.6) E = t∂x + x∂y , H = 2t∂t − 2y∂y, F = 2x∂t + 2y∂x.

Lemma 9.7. The centralizer of k in Du coincides with the center of U(k) ⊂ Du.

Proof. As V k
mρ = 0 for odd m and V k

mρ = C for even m it is clear that the

centralizer of k in Du is generated by the quadratic Casimir element Ω ∈ V k
2ρ. 2

Corollary 9.8. Every (Du, k)-module is multiplicity free. For any non-negative
m, there exists at most one (up to isomorphism) simple (Du, k)-module M with
Homk(Vm,M) 6= 0.

Proof. The first statement follows from Lemma 9.7 via Lemma 3.3. The proof of
the second statement is very similar to the proof of Lemma 8.6. 2

We now introduce the functors

Ind : Du − mod →֒ A− mod

M 7→ A⊗A0 M,

Resu : A− mod →֒ Du − mod

M 7→ Du ⊗A0 M.

Obviously, Resu ◦ Ind = idDu−mod .

Lemma 9.9.

ker γu =







AnnLu+1,1 = AnnL−u−1,u+2 = AnnL1,−u−2 for u /∈ Z
AnnL−u−1,u+2 = AnnL1,−u−2 for u ∈ Z≥−1

AnnLu+1,1 = AnnL−u−1,u+2 for u ∈ Z≤−2

.

Proof. First we prove that ker γu ⊂ AnnLa,b with a, b as in the statement. Note
that Resu(t

uC[t±1, x, y]) contains a submodule generated by tu isomorphic to Lu+1,1,
Resu(x

uC[t±1, x±1, y])/Resu(x
uC[t, x±1, y]) contains a submodule with highest vector

t−1xu+1 isomorphic to L−u−1,u+2 and Resu(y
uC[t±1, x±1, y±1])/(Resu(y

uC[t±1, x, y±1])+
Resu(y

uC[t, x±1, y±1])) contains a submodule with highest vector t−1x−1yu+2 isomor-
phic to L1,−u−2. Hence ker γu ⊂ AnnLa,b. Next we see from Lemma 9.6 that all proper
two-sided ideals of Du have finite codimension. Thus, γu(AnnLa,b) is either 0 or has
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finite codimension in Du. The latter is impossible because La,b is infinite-dimensional.
Hence ker γu = AnnLa,b. 2

Since the eigenvalues of adH in U(g) are all even, every simple (g, k)-module is
either odd or even.

As follows from Lemma 9.9, all simple bounded (g, k)-modules with central char-
acter χ(u + 1, u) are (Du, k)-modules. This allows us to first classify the simple
(Du, k)-modules and then use translation functors to classify the bounded simple
modules with arbitrary possible central character, see Corollary 9.5.

Note that the functor Ind maps (Du, k)-mod into (A, k̃)-mod, the latter being the

full subcategory of A-modules with semisimple action of k̃ := k ⊕ CE.

Lemma 9.10. For any simple (Du, k)-module M there exists a simple (A, k̃)-module

M̂ with Resu(M̂) ≃M .

Proof. Let N be a maximal proper A-submodule of Ind(M). Then Resu(N) ≇ M

as M generates Ind(M). Therefore Resu(N) = 0 and one defines M̂ as Ind(M)/N .
2

Set f := x2−2ty, ∆ := ∂2
x−2∂y∂t and note that f,∆ ∈ Ak. For every fixed p ∈ C,we

put Rp := f pC[t, x, y, f−1]. Then clearly Rp is an (A, k̃)-module and Resu(R
p) = 0 if

u− 2p /∈ Z. Otherwise,

(9.7) Resu(R
p) =

{

Cf
u
2 ⊕ f

u−2
2 H2 ⊕ f

u−4
2 H4 ⊕ . . . for u− 2p ∈ 2Z

Cf
u−1

2 H1 ⊕ f
u−3

2 H3 ⊕ f
u−5

2 H4 ⊕ . . . for u− 2p ∈ 2Z + 1,

where Hn denotes the space of homogeneous polynomials of degree n in C[t, x, y]
annihilated by ∆ (as a k-module Hn is isomorphic to V2n).

Lemma 9.11.

(a) For u /∈ Z and for u = −1,−2, Resu(R
u
2 ) and Resu(R

u+1
2 ) are simple Du-modules.

(b) For u ∈ 2Z≥0, Resu(R
u+1
2 ) is a simple Du-module and there is an exact sequence

(9.8) 0 → Vu,0 → Resu(R
u
2 ) → I+

u,0 → 0

for some simple Du-module I+
u,0.

(c) For u ∈ 1+2Z≥0, Resu(R
u
2 ) is a simple Du-module and there is an exact sequence

0 → Vu,0 → Resu(R
u+1
2 ) → I−u,0 → 0

for some simple Du-module I−u,0.

(d) For u ∈ 2Z≤−2, Resu(R
u
2 ) is a simple Du-module and there is an exact sequence

0 → I−u,0 → Resu(R
u+1

2 ) → V0,−3−u → 0

for some simple Du-module I−u,0.
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(e) For u ∈ 1 + 2Z≤−1, Resu(R
u+1

2 ) is a simple Du-module and there is an exact
sequence

0 → I+
u,0 → Resu(R

u
2 ) → V0,−3−u → 0

for some simple Du-module I+
u,0.

Proof. The isomorphism (9.7) yields

(9.9) c(Resu(R
u
2 )) = 1 + z4 + z8 + . . . , c(Resu(R

u+1
2 )) = z2 + z6 + z10 + . . . .

Thus, if Resu(R
u
2 ) (respectively Resu(R

u+1
2 )) is not simple it has a unique simple finite

dimensional submodule or a unique simple finite dimensional quotient. By Lemma
9.9 the latter can happen only if u ∈ Z≥0 or u ∈ Z≤−3. Hence (a).

Let u ∈ 2Z≥0. Then Resu(R
u
2 ) contains Resu(C[t, x, y]) ≃ Vu,0 as a finite dimen-

sional simple submodule, hence (9.8). The g-module Resu(R
u+1

2 ) has the same central

character as Resu(R
u
2 ) and, since Vn,0 is not a subquotient of Resu(R

u+1
2 ) by (9.9),

Resu(R
u+1

2 ) is a simple Du-module. Hence (b).

As ∆(f−
1
2 ) = 0, f−

1
2 generates a proper A-submodule M ⊂ f

1
2 C[t, x, y, f−1]. A di-

rect computation shows that dim Resu(M) = ∞ for any u ∈ 1+2Z≥−2. Furthermore,
the only finite dimensional module, whose central character coincides with that of
Du is V0,−3−u. Therefore one necessarily has

0 → I+
u,0 → Resu(R

u
2 ) → V0,−3−u → 0

where I+
u,0 := Resu(M). Resu(R

u+1
2 ) is simple by the same reason as in (b). Hence

(e).
(c) and (d) are similar to (b) and (e). 2

For any u ∈ C we define now I+
u,0 (respectively, I−u,0) as the unique simple infinite

dimensional constituent of Resu(R
u
2 ) (resp., Resu(R

u+1
2 )).

Corollary 9.12. Every simple even infinite dimensional (Du, k)-module is isomorphic
to I±u,0.

Proof. For every fixed u and any sufficiently large m ∈ 2Z≥0 (such that Vm is not
a k-type of Vu,0 or V0,−3−u for u ∈ Z), Lemma 9.11 implies Homk(Vm, I

±
u ) 6= 0. The

statement follows now from Corollary 9.8. 2

Lemma 9.13. If u /∈ 1
2

+ Z, then every (Du, k)-module is even.

Proof. Assume that M is an odd simple (Du, k)-module and u /∈ 1
2

+ Z. Let M̂

be as in Lemma 9.10, Af denote the localization of A in f , M̂f = Af ⊗A M̂ . First,

we claim that if u /∈ 1
2

+ Z, then M̂f 6= 0. Indeed, M̂f = 0 implies that f acts locally

nilpotently on M̂ . Then M0 := kerf is a k-submodule of M̂ and a straightforward
calculation using (9.6) shows Ω|M0 = 2(E + 3)(E + 2)|M0. Thus Homk(Vm,M

0) 6= 0
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only if 2(d + 3)(d + 2) = m2

2
+ m or equivalently (d + 5

2
)2 = (m+1

2
)2, where d is the

eigenvalue of E on M0. Since d ∈ u+ Z, u /∈ 1
2

+ Z implies M0 = 0.

Our next observation is that M̂f is an odd (A, k)-module and that t does not act

locally nilpotently on M̂f . Indeed, if t acts locally nilpotently, by k-invariance x
and y act locally nilpotenly, and therefore f acts locally nilpotently. Contradiction.
Therefore M̂f is a submodule of its localization in t, M̂f,t. Furthermore, for some

odd m there exists a non-zero vector v ∈ M̂f,t such that H · v = mv, E · v = 0 and
E · v = uv. The expressions for E,H and E imply

∂tv =
−(u+m/2)ty +mx2/2

tf
v, ∂xv =

(u−m/2)x

f
v, ∂yv =

(m/2 − u)t

f
v.

Thus, every vector in M̂f,t can be obtained from v by applying elements of C[t±1, x, y, f−1],

i.e. M̂f,t = C[t±1, x, y, f−1]v. It is not difficult to see that v = t
m
2 f

2u−m
4 satis-

fies the above relations. The Af,t-module C[t±1, x, y, f−1]v is simple and free over

C[t±1, x, y, f−1]. Hence M̂f,t ≃ C[t±1, x, y, f−1]v and it is obvious that M̂f,t has no

non-zero k-finite vectors. As we pointed out above, M̂f ⊂ M̂f,t. Therefore M̂f = 0.
2

We now turn to odd simple (Du, k)-modules.

Lemma 9.14. Let u ∈ 1
2

+ Z. Up to isomorphism, there exists exactly one odd
simple (Du, k)-module Ju,0. Moreover,

(9.10) c(Ju,0) =

{

z2−2u + z6−2u + z10−2u + . . . for u < 0
z4+2u + z8+2u + z12+2u + . . . for u > 0

.

Proof. Let P ⊂ G = SL(3) be the maximal parabolic subgroup whose Lie algebra
p equals b ⊕ g−α1 , K ⊂ G be the algebraic subgroup with Lie algebra k, and Z be
the closed K-orbit on G/P ≃ P2. Then Z ≃ P1 and the embedding i : Z → P2

is a Veronese embedding of degree 2. It is not difficult to verify that the relative
tangent bundle TP of the projection p : G/B → G/P is a OG/B-submodule of the

twisted sheaf of differential operators D
(u+1)ω1+ω2

G/B . Furthermore, the direct image

p∗(D
(u+1)ω1+ω2

G/B /IP ), where IP is the left ideal in D
(u+1)ω1+ω2

G/B generated by TP , is a

well defined twisted sheaf of differential operators on G/P . We denote this sheaf by

D
(u+1)ω1+ω2

G/P .

Our next observation is that, similarly to the equivalence of categories i⋆ discussed
in Section 5, Kashiwara’s theorem yields an equivalence of categories

iu⋆ : OZ(2u) ⊗OG/P
DG/P ⊗OG/P

OZ(−2u) − mod → (D
(u+1)ω1+ω2

G/P − mod )Z ,

where (D
(u+1)ω1+ω2

G/P − mod )Z denotes the full subcategory of D
(u+1)ω1+ω2

G/P - mod

supported on Z, and OZ(2u) is the line bundle on Z with Chern class 2u. Therefore
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we can put

Ju,0 := Γ(P2, iu⋆OZ(2u)).

It is clear that Ju,0 is a (g, k)-module, and furthermore, using the fact that N ≃ OZ(4)
and the filtration on iu⋆OZ(2u) with successive functors analogous to (5.1), one easily
verifies that c(Ju,0) is given by the right-hand side of (9.10). Since there are no finite
dimensional modules with central character χ(u+1, 1) for u ∈ 1

2
+ Z, Ju,0 is a simple

g-module.
It remains to prove that every simple odd (Du, k)-module is isomorphic to Ju,0 for

some u ∈ 1
2

+ Z. Let M be a simple odd (Du, k)-module and M̂ be a simple (A, k̃)-

module such that Resu(M̂) = M . Then by the proof of Lemma 9.14 M̂f = 0. For

every bk-highest vector v ∈ Resu(M̂) there exists k such that fk · v = 0. Let v have
weight m. Then by the relation (d + 5

2
)2 = (m+1

2
)2 from the proof of Lemma 9.14,

m+1
2

= ±(u+ 2k+ 5
2
), as Efk · v = (2k+ u)fk · v. Without loss of generality we may

assume that m is very large and then m+1
2

= (u+2k+ 5
2
). Therefore Homk(Vm,M) 6= 0

implies m = 2u+4k+4. Hence if M and M ′ are two odd (Du, k)-modules one can find
m such that Homk(Vm,M) 6= 0, Homk(Vm,M

′) 6= 0. But then M ≃ M ′ by Corollary
9.8. 2

Let M be some A-module with semisimple E-action. Consider the U(g)-modules
M (n) := M ⊗ Sn(span{x, y, t}) for n ∈ Z≥0, together with the linear operators

d̄ : M (n) → M (n−1)

d̄ = t⊗ ∂t + x⊗ ∂x + y ⊗ ∂y

δ̄ : M (n) → M (n+1)

δ̄ = ∂t ⊗ t+ ∂x ⊗ x+ ∂y ⊗ y.

It is straightforward to check that d̄, E⊗1−1⊗E and δ̄ form a standard sl(2)-triple.
Let Ress(M

(k)) be the eigenspace of the operator E ⊗ 1 + 1 ⊗ E in M (k). Then
obviously d̄ and δ̄ induce operators

d : Ress(M
(n)) → Ress(M

(n−1))

δ : Ress(M
(n−1)) → Ress(M

(n)),

and elementary sl(2) representation theory implies that if s /∈ Z, s < n−1 or s ≥ 2n,
then d is surjective, δ is injective, and

(9.11) Ress(M
(n)) = kerd⊕ imδ.

For any (Du, k)-module M choose a simple (A, k̃)-module M̂ such that Resu(M̂) = M

(in fact M̂ is unique).

Let T n(M) := Resu+n(M̂ (n)) ∩ kerd. If u 6= −1, 0, . . . , n− 1, (9.11) implies

(9.12) c(T n(M)) = c(Resu+n(M̂ (n))) − c(Resu+n(M̂ (n−1))).
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Lemma 9.15. Let M be a bounded simple (Du, k)-module. Assume that u 6=
−1, 0, . . . , n− 1. Then T n(M) is a simple (g, k)-module with central character χ(u+
1 − n, n + 1).

Proof. Lemma 9.9 implies that M is a (g, k)-module with central character χ(u+
1, 1). Therefore M ⊗ Sn(span{x, y, t}) has constituents with central character χ(u+
1 + n − 2k, 1 + k), k = 0, . . . , n, and imδ has constituents with central character
χ(u + 1 + n − 2k, 1 + k), k = 0, . . . , n − 1. Thus, T n(M) is a direct summand of
M ⊗ Sn(span{x, y, t}) with central character χ(u+ 1 − n, n + 1).

Our restrictions on u imply that the weights (u + 1)ω1 + ω2 and (u − n + 1)ω1 +
(n+1)ω2 belong to the same Weyl chamber and have the same stabilizer in the Weyl
group. Hence, T n is nothing but the translation functor

T
(u−n+1)ω1+(n+1)ω2

(u+1)ω1+ω2
: B

χ(u+1,1)
k → B

χ(u−n+1,n+1)
k .

Therefore T n is an equivalence of categories, in particular T n(M) is simple. 2

We put for u 6= −1, 0, . . . , n− 1

I±u,n := T n(I±u,0),

Ju,n := T n(Ju,0).

Theorem 9.16. Let M be a simple bounded infinite dimensional (g, k)-module with
central character χ. Then

(a) if χ = χ(u+ 1 − n, n + 1) for u /∈ Z,

M ≃

{

I±u,n for u /∈ 1
2

+ Z
I±u,n, Ju,n for u ∈ 1

2
+ Z

;

(b) if χ = χ(u+ 1 − n, n+ 1) for u ∈ Z≥n,

M ≃ I±−n−3,u−n, I
±
u,n;

(c) if χ = χ(−1 − n, n+ 1),
M ≃ I±−2,n;

(d) if χ = χ(0, n+ 1),
M ≃ (I±−2,n)τ ,

where τ stands for the outer automorphism τ(X) = −X t for any X ∈ g.

Proof. By Corollary 9.5 every simple bounded (g, k)-module has central character
χ of the form χ(u+1−n, n+1) for some n ∈ Z≥0 and some u ∈ {C\Z<n−1}∪{−2}.

Moreover, T n = T
(u−n+1)ω1+(n+1)ω2

(u+1)ω1+ω2
is an equivalence of the categories B

χ(u+1,1)
k and

B
χ(u+1−n,n+1)
k . If u /∈ Z, 1

2
+ Z then B

χ(u+1,1)
k has two non-isomorphic simple objects,

and, if u ∈ 1
2

+ Z, B
χ(u+1,1)
k has three non-isomorphic simple objects. This implies

(a).
If u ∈ Z≥0, u ≥ n, we have χ = χ(u + 1 − n, n + 1) = χ((−n − 3) + 1 − (u −

n), (u− n) + 1), hence in this case B
χ
k has 4 non-isomorphic simple objects: I±u,n and
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I±−n−3,u−n. This proves (b). If n = −2, B
χ
k is equivalent to B

χ(1,1)
k and has two simple

objects, I±−2,n, which proves (c). Finally if u = n−1, the automorphism τ establishes

an equivalence between B
χ(0,n+1)
k and B

χ(−1−n,n+1)
k , hence (d). 2

Lemma 9.17. For a ∈ Z≥2, define

µn(a, z) :=
za

1 − z4
⊗ c(Vn,0) −

za−2

1 − z4
⊗ c(Vn−1,0).

For a ∈ Z≥0, define

κn(a, z) :=
za

1 − z4
⊗ c(Vn,0) −

za+2

1 − z4
⊗ c(Vn−1,0).

Then

(9.13) µ2p(a, z) =
za

1 − z4
+
za−2(z4 + z8 + · · ·+ z4p)

1 − z2
,

(9.14) µ2p+1(a, z) =
za(1 + z4 + · · · + z4p)

1 − z2
,

(9.15) κ2p(a, z) =
za

1 − z4
+
z|a−4| + · · ·+ z|a−4p|

1 − z2
,

(9.16) κ2p+1(a, z) =
z|a−2| + · · ·+ z|a−4p−2|

1 − z2
.

Proof. Since Vn,0 = Sn(V1,0), and since Sn(V1,0) is isomorphic as a k-module to
Sn(V2), we have

c(V2p,0) = 1 + z4 + · · ·+ z2p,

c(V2p+1,0) = z2 + z6 + · · ·+ z2p+2.

Recall that za ⊗ zb = π(za
∑i=b

i=0 z
b−2i) (Lemma 7.2,(b)). Therefore

za

1 − z4
⊗ z2k −

za−2

1 − z4
⊗ z2k−2 = π











za−2(z2
i=2k
∑

i=0

z2k−2i − z−2
i=2k−2

∑

i=0

z2k−2i)

1 − z4











=

= π

(

za−2(z2k+2 + z2k)

1 − z4

)

=
za−2+2k

1 − z2
.



30 IVAN PENKOV AND VERA SERGANOVA

za

1 − z4
⊗ z2k −

za+2

1 − z4
⊗ z2k−2 = π











za(
i=2k
∑

i=0

z2k−2i − z2
i=2k−2

∑

i=0

z2k−2−2i)

1 − z4











=

= π

(

za(z−2k + z2−2k)

1 − z4

)

= π

(

za−2k

1 − z2

)

=
z|a−2k|

1 − z2
.

The above identities imply (9.13)-(9.16). 2

Theorem 9.18.

(a) Let u /∈ Z, 1
2

+ Z. Then

c(I+
u,n) = κn(0, z), c(I−u,n) = µn(2, z).

(b) Let u ∈ 1
2

+ Z. Then

c(Ju,n) = κn(4 + 2u, z) for u ≥ −1
2
,

c(Ju,n) = µn(2 − 2u, z) for u ≤ −3
2
.

(c) Let u ∈ 2Z≥0. Then

c(I+
u,0) = z2u+4

1−z4 , c(I−u,0) = z2

1−z4 ,
c(I+

u,n) = κn(2u+ 4, z), c(I−u,n) = µn(2, z).

(d) Let u ∈ 1 + 2Z≥0. Then

c(I+
u,0) = 1

1−z4 , c(I−u,0) = z2u+4

1−z4 ,
c(I+

u,n) = κn(0, z), c(I−u,n) = κn(2u+ 4, z).

(e) Let u ∈ 2Z≤−2. Then

c(I+
u,0) = 1

1−z4 , c(I−u,0) = z−2−2u

1−z4 ,
c(I+

u,n) = κn(0, z), c(I−u,n) = µn(−2 − 2u, z).

(f) Let u ∈ −1 + 2Z≤−1. Then

c(I+
c,0) = z−2−2u

1−z4 , c(I−u,0) = z2

1−z4 ,
c(I+

u,n) = µn(−2 − 2u, z), c(I−u,n) = µn(2, z).

(g)

c(I+
−2,n) = c((I+

−2,n)τ ) = κn(0, z),
c(I−−2,n) = c((I−−2,n)τ ) = µn(2, z).

Proof. Using (9.12) one obtains the identities

(9.17)
c(I±u,n) = c(I±u,0 ⊗ Vn,0) − c(I∓u+1,0 ⊗ Vn−1,0),
c(Ju,n) = c(Ju,0 ⊗ Vn,0) − c(Ju+1,0 ⊗ Vn−1,0).
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The theorem is a straightforward corollary of (9.17). Indeed, let us prove (f). In this
case

c(I+
u,0) =

z−2u−2

1 − z4
, c(I+

u−1,0) =
z−2u−4

1 − z4
,

c(I+
u,n) =

z−2u−2

1 − z4
⊗ c(Vn,0) −

z−2u−4

1 − z4
⊗ c(Vn−1,0) = µn(−2 − 2u, z);

c(I−u−1,0) =
z−2u−4

1 − z4
, c(I+

u−1,0) =
1

1 − z4
,

c(I−u,n) =
z2

1 − z4
⊗ c(Vn,0) −

1

1 − z4
⊗ c(Vn−1,0) = µn(2, z).

In all other cases the arguments are similar. 2

Corollary 9.19.

(a) The minimal k-type can be any Vk but its multiplicity is always 1.
(b) For sufficiently large i ci(M) = ci+4(M) for any simple bounded (g, k)-module,
and for sufficiently large j there are the following k-multiplicities:

c4j(I
±
u,2p+1) = c4j+2(I

±
u,2p+1) = p+ 1,

c4j(I
+
u,2p) = p+ 1, c4j+2(I

+
u,2p) = p,

c4j+2(I
−
u,2p) = p+ 1, c4j(I

−
u,2p) = p,

c4j+1(Ju,2p+1) = c4j+3(Ju,2p+1) = p+ 1,

c4j+2u(Ju,2p) = p, c4j+2u+2(Ju,2p) = p+ 1.

(c) The only multiplicity free simple infinite dimensional (g, k)-modules are I±u,0, Ju,0,

I±u,1, Ju,1, (I±−2,1)
τ .

The complete list of multiplicity free simple (g, k)-modules has been first found
by Dj. Sijacki, see [S] and the references therein for a historic perspective on this
problem.

10. Classification of simple bounded (sp(4), sl(2))-modules

In this section we classify all simple bounded (g, k)-modules, where g = sp(4) and
k is a principal sl(2)-subalgebra or a sl(2)-subalgebra corresponding to a short root.
We fix a Cartan subalgebra h ⊂ g and write the roots of g as {±2ǫ1,±2ǫ2,±ǫ1 ± ǫ2}.
Our fixed simple roots are ǫ1 − ǫ2, 2ǫ2, and ρ = 2ǫ1 + ǫ2. By e1, e2, h1, h2, f1, f2 we
denote the Serre generators of g associated to our choice of simple roots, [OV]. We
define two sl(2)-subalgebras of g: one with basis e1, h1, f1 and one with basis e1+2e2,
3h1 +4h2, 3f1 +2f2. The first one is the root subalgebra corresponding to the simple
root ǫ1 − ǫ2, and the second one is a principal sl(2)-subalgebra. In Sections 10 and
11, we denote by k any one of these two subalgebras, referring respectively to the root

case and to the principal case when we want to be specific. We set bk := b∩ k, where
b is the Borel subalgebra generated by e1, e2, h1, h2. By La,b we denote the simple
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b-highest weight g-module with highest weight aǫ1 +bǫ2−ρ = (a−2)ǫ1 +(b−1)ǫ2, by
Va,b we denote the simple finite-dimensional g-module with highest weight aǫ1 + bǫ2,
and χ(a, b) is the central character of La,b.

Lemma 10.1. Let dim La,b = ∞ and GKdimLa,b ≤ 2. Then a > |b| and a, b ∈ 1
2
+Z.

Proof. Let λ = aǫ1 + bǫ2. If (λ, α) /∈ Z>0 for all positive roots α, then La,b is a
Verma module and therefore its Gelfand-Kirillov dimension equals 4. If (λ, α̌) ∈ Z>0

for exactly one positive root, then one has the following exact sequence

0 → Lwα(λ) →Mλ → Lλ → 0,

where wα denotes the reflection in α. A straightforward computation shows that
in this case GKdimLλ = 3. Therefore GKdimLλ ≤ 2 implies the existence of two
positive roots α and β such that (λ, α̌), (λ, β̌) ∈ Z>0. One can see immediately
that at least one of these roots, say α, is simple. If Nλ denotes the quotient of
Mλ by the submodule generated by a highest vector with weight wα(λ) − ρ, then
GKdimNλ = 3. The condition GKdimLλ ≤ 2 implies the reducibility of Nλ which in
turn implies (λ, γ̌) ∈ Z>0 for the positive root γ orthogonal to α. That leaves only
two possibilities for λ: λ is either regular integral or λ satisfies the conditions of the
Lemma.

It remains to eliminate the case of a regular integral non-dominant λ. By using the
translation functor we may assume without loss of generality that λ belongs to the
Weyl group orbit of ρ. That leaves four possibilities for λ: 2ǫ1 − ǫ2, ǫ1 − 2ǫ2, ǫ1 + 2ǫ2,
−ǫ1 + 2ǫ2. Let p1 and p2 be the parabolic subalgebras obtained from b by joining
ǫ2 − ǫ1 and −2ǫ2 respectively. It is not difficult to verify the existence of embeddings

L2,−1 → U(g) ⊗U(p1) F
1
2,1, L1,−2 → U(g) ⊗U(p1) F

1
2,−1,

L1,2 → U(g) ⊗U(p2) F
2
2,1, L−1,2 → U(g) ⊗U(p2) F

2
1,2,

where F 1
a,b (respectively, F 2

a,b) is the finite dimensional p1-module (resp., p2-module)
with b-highest weight aǫ1 + bǫ2 − ρ. Therefore the Gelfand-Kirillov dimension of
any of the above four simple modules equals the Gelfand-Kirillov dimension of the
corresponding parabolically induced module, i.e. 3. The proof is now complete. 2

Corollary 10.2. Let M be a simple bounded infinite dimensional (g, k)-module.
Then AnnM = AnnLa,b for some a, b with a > |b|, a, b ∈ 1

2
+ Z. In particular, χ(a, b)

is the central character of M .

Proof. By Duflo’s theorem, AnnM = AnnLa,b for some a, b. It is known that
1
2
dimXLa,b

= GKdimLa,b, thus GKdimM ≥ GKdimLa,b. On the other hand,
GKdimM ≤ 2 = bk. Hence GKdimLa,b ≤ 2, and Lemma 10.1 applies to La,b. 2

Corollary 10.3. Let a, b ∈ 1
2

+ Z, a > |b|. Then B
χ(a,b)
k is equivalent to B

χ( 3
2
, 1
2
)

k .
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Proof. The weights ξ = aǫ1 + bǫ2 and η = 3
2
ǫ1 + 1

2
ǫ2 satisfy all assumptions of

Section 4, hence T η
ξ and T ξ

η are mutually inverse equivalences of B
χ(a,b)
k and B

χ( 3
2
, 1
2
)

k .
2

Our next step is to describe the quotient algebra U(g)/AnnL 3
2
, 1
2
. In this section

we denote by A the Weyl algebra in two variables, i.e. the algebra of differential
operators acting in C[x, y]. We introduce a Z2-grading, A := A0 ⊕ A1, by putting
deg x = deg y = deg ∂x = deg ∂y := 1 ∈ Z2. It is well known that there exists a
surjective algebra homomorphism

κ : U(g) → A0

such that

κ(e1) = x∂y , κ(e2) =
y2

2
, κ(f1) = y∂x, κ(f2) = −

∂2
y

2
,

κ(h1) = x∂x − y∂y, κ(h2) = y∂y +
1

2
.

The kernel of κ equals AnnL 3
2
, 1
2
. Furthermore, κ(k) is spanned by E := x∂y, F := y∂x,

H := x∂x−y∂y in the root case, and respectively by E := x∂y+y
2, F := 3x∂x+y∂y+2,

H := 3y∂x − ∂2
y in the principal case.

The problem of describing all simple modules in B
χ( 3

2
, 1
2
)

k is equivalent to the problem
of describing all simple (A0, k)-modules, i.e. all simple locally κ(k)-finite A0-modules.
The following lemma reduces this problem to a classification of all simple (A, k)-
modules.

Lemma 10.4. Every simple (A, k)-module M is a Z2-graded A-module, i. e. M =
M0⊕M1 where M0 and M1 are simple (A0, k)-modules. Furthermore, M = A⊗A0M0,
and the Z2-grading on M is unique up to interchanging M0 with M1.

Proof. The element H (as defined above separately for the root case and for the
principal case) acts semisimply on M with integer eigenvalues. We define M0 (respec-
tively, M1) as the direct sum of H-eigenspaces with even (resp., odd) eigenvalues. It
is obvious that M = M0 ⊕M1, that M0 and M1 are simple A0 modules, and that
M = A⊗A0M0. Since M0 and M1 are non-isomorphic as A0-modules, the uniqueness
follows from the fact that a decomposition of M as an A0-module into a direct sum
of two non-isomorphic A0-modules is unique. 2

Remark. More generally, if k′ is a subalgebra of g′ = sp(2m) such that the
centralizer of k′ in the Weyl A′ algebra of m indeterminates is abelian, every (A′, k′)-
module is a multiplicity free (g′, k′)-module whose primitive ideal is a Joseph ideal.
F. Knop has classified all such subalgebras k′, [Kn2], which makes us optimistic that
this idea can eventually lead to a classification of simple bounded (g′, k′)-modules.

Let Fou : A→ A be the automorphism defined by

Fou(x) := ∂x, Fou(y) := ∂y, Fou(∂x) := −x, Fou(∂y) := −y
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If M is an A-module, we denote by MFou the twist of M by Fou.

Theorem 10.5. In the root case, any simple (A, k)-module is isomorphic to C[x, y]
or C[x, y]Fou.

Proof. Let M be a simple (A, k)-module. Then there exists 0 6= v ∈M such that
E · v = 0, i.e. x∂y · v = 0. Hence either x or ∂y act locally nilpotently on M .

Assume first that ∂y acts locally nilpotently on M . Then ∂x ∈ [k, ∂y] also acts
locally nilpotenly on M . Let A+ be the abelian subalgebra in A generated by ∂x, ∂y.
One can find 0 6= w ∈M such that A+ · w = 0, and hence

M ∼= A⊗A+ C ∼= C [x, y] .

If x acts locally nilpotently on M , one considers MFou and reduces to the previous
case.2

Corollary 10.6. In the root case, up to isomorphism, there are exactly four simple
(g, k)-modules with central character χ(3

2
, 1

2
). As k-modules two of these modules are

isomorphic to
V0 ⊕ V2 ⊕ V4 ⊕ . . . ,

and the other two are isomorphic to

V1 ⊕ V3 ⊕ V5 ⊕ . . . .

Theorem 10.7. In the principal case, up to isomorphism, there exist exactly two
simple (A, k)-modules and they have the following k-module decompositions:

V0 ⊕ V3 ⊕ V6 ⊕ V9 ⊕ . . . , V1 ⊕ V4 ⊕ V7 ⊕ V10 ⊕ . . . .

Proof. Note that k is a maximal subalgebra of g. Hence, every element g ∈ g\k acts
freely on a simple (A, k)-module M . In particular, x2 acts freely on M , and therefore
x acts freely on M . Let Ax be the localization of A in x, and Mx := Ax ⊗A M . Then
M ⊂ Mx. Fix 0 6= m ∈ M with E ·m = 0 and H ·m = λm for a minimal λ ∈ Z≥0.
Since E = x∂y + y2 and H = 3∂x + y∂y + 2, we have

∂y ·m = −
y2

x
·m, ∂x ·m =

(

−
y3

3x2
+
λ− 2

3x

)

·m.

Therefore, Mx = C [x, x−1, y] ·m. Set

uλ := x
λ−2

3 exp

(

−y3

3x

)

.

Then it is easy to see that Mx is isomorphic to Fλ := C [x, x−1, y]uλ and that Fλ =
Fλ+3. Hence, Mx is isomorphic F0,F1 or F2.

Next we calculate Γk (Fλ). Note that the space of bk-singular vectors in Fλ is
spanned by the family uλ+3k, k ∈ Z of solutions to the differential equation

E · u = x∂y(u) + y2u = 0.
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If λ ∈ Z≥0, then F λ+1 · uλ is again a bk-highest vector of weight −λ − 2. There-
fore F λ+1 · uλ = cu−λ−2 for some constant c. On the other hand, u−λ−2 ∈ Fλ iff
λ− (−λ− 2) = 2λ+ 2 ∈ 3Z or λ = 3k + 2. Hence F λ+1 · uλ = 0 for λ = 3k or
λ = 3k+1. Thus, Γk (F0) is generated by u3k for k ≥ 0, Γk (F1) is generated by u3k+1

for k ≥ 0, and we have the k-module decompositions

Γk (F0) ≃ V0 ⊕ V3 ⊕ V6 ⊕ V9 ⊕ . . . , Γk (F1) ≃ V1 ⊕ V4 ⊕ V7 ⊕ V10 ⊕ . . . .

Let us prove that Γk (F0) and Γk (F1) are simple A-modules. Indeed, let N be a
proper submodule of Γk(F0). If uλ ∈ N , then uλ+3k = xkuλ ∈ N for all positive
k. Choose the minimal λ such that uλ ∈ N . Then the quotient module has a
decomposition Vλ−3⊕· · ·⊕V0, hence it is finite dimensional. Since A has no non-zero
finite dimensional modules, this is a contradiction. The case of Γk(F1) is very similar.
In this way we obtain that, if Mx = F0 or F1, then M is respectively isomorphic to
Γk (F0) or Γk (F1).

Finally, we show that Γk (F2) = 0. It is sufficient to check that there is no non-zero
v ∈ F2 with F · v = 0 and

(10.1) H · v = (−3k − 2) v for k ∈ Z≥0.

Indeed, then v would be a solution of the differential equation

3yvx = vyy.

Since v ∈ F2,

v = g (x, y) exp

(

−
y3

3x

)

for some g (x, y) ∈ C [x, x−1, y] such that

3ygx = gyy − 2
y2

x
gy − 2

y

x
g.

As g (x, y) is homogeneous with respect to H , we may assume without loss of gener-
ality that

g (x, y) =

l
∑

i=0

bix
p−iy3i+s,

where s ∈ Z≥0, p ∈ Z, bi ∈ C, b0 = 1. The equation on the highest term with respect
to x gives the condition

∂2
y (ys) = 0,

or, equivalently, s = 0, 1. But H · g = (3p+ s+ 2) g, hence H · v = (3p+ s+ 2) · v.
Therefore

H · v = (3p+ 2) v or H · v = (3p+ 3) v,

and (10.1) does not hold.2
Theorem 10.7 together with Lemma 10.4 yield the following.
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Corollary 10.8. In the principal case, up to isomorphism, there are exactly four sim-
ple (g, k)-modules with central character χ(3

2
, 1

2
). They have the following k-module

decompositions:

(10.2) V0⊕V6⊕V12⊕ . . . , V1⊕V7⊕V13⊕ . . . , V3⊕V9⊕V15⊕ . . . , V4⊕V10⊕V16⊕ . . . .

11. k-characters of simple bounded (sp(4), sl(2))-modules

11.1. The root case. In this case, the four simple modules of Corollary 10.6 are
nothing but the simple highest weight modules L 3

2
, 1
2
, L 3

2
,− 1

2
, and their respective

restricted duals L′3
2
, 1
2

, L′3
2
,− 1

2

, i.e. the simple b-lowest weight modules with lowest

weights (−3
2
,−1

2
) and (−3

2
, 1

2
). Therefore, by Corollaries 10.2,10.3 we conclude that

all simple bounded (g, k)-modules are precisely La,b and the lowest weight modules
L′−a,−b, where a > |b| ∈ 1

2
+Z. Since c(La,b) = c(L′−a,−b), it suffices to compute c(La,b),

for a, b as above.
The h-character of La,b is given by the formula

(11.1) chhLa,b =
(xa−b − xb−a)(ya+b − y−a−b)

(x− x−1)(y − y−1)(xy − x−1y−1)(x−1y − xy−1)
,

where x = e
ǫ1−ǫ2

2 , y = e
ǫ1+ǫ2

2 . We rewrite (11.1) as

(11.2)
(xa−b − xb−a)(ya−b − yb−a)

(x− x−1)(y − y−1)
y−2(1 − x2y−2)−1(1 − x−2y−2)−1.

Next we note that

(11.3) (1 − x2y−2)−1(1 − x−2y−2)−1 =
∞

∑

k=0

y−2k(x2k + x2k−4 + · · ·+ x−2k),

and use the expression

zk = xk + xk−2 + · · ·+ x−k =
xk+1 − x−(k+1)

x− x−1

to rewrite the right-hand side of (11.3) in the form
∞

∑

k=0

y−2k(z2k − z2k−2 + · · ·+ (−1)k) =
1

1 + y2

∞
∑

k=0

z2ky−2k.

Now (11.2) becomes

chhLa,b = za−b−1 y
a+b − y−a−b

y − y−1

1

1 + y2

∞
∑

k=0

z2ky−2k.

To find the k-character of La,b, we set y = 1:

(11.4) c(La,b) =
a+ b

2
za−b−1 ⊗

∞
∑

k=0

z2k.
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Thus, equation (11.4) implies the following result.
Theorem 11.1.

(a) If a− b is even and a+ b is odd, then

c(La,b) =
a + b

2
(2z + 4z3 + · · ·+ (a− b)za−b−1 + (a− b)za−b+1 + . . . ).

(b) If a− b is odd and a+ b is even, then

c(La,b) =
a+ b

2
(1 + 3z2 + 5z4 + · · ·+ (a− b)za−b−1 + (a− b)za−b+1 + . . . ).

(c) In the case (a) the minimal k-type is V1 and its multiplicity is a + b. In the
case (b) the minimal k-type is V0 and its multiplicity is a+b

2
.

(d) For sufficiently large i,

ci(La,b) = ci+2(La+b) =
(a2 + b2)(1 + (−1)a+b−i)

4
.

(e) La,b is k-multiplicity free if and only if a = 3
2
, hence the only simple multiplicity

free (g, k)-modules are those with central character χ(3
2
, 1

2
), i.e. the four g-

modules from Corollary 10.8.

11.2. The principal case. We now proceed to calculating the k-characters of all
simple bounded (g, k)-modules where g = sp(4) and k is the principal subalgebra of
g fixed in Section 10. In this case, let M0

3
2
, 1
2

and M1
3
2
, 1
2

denote the simple bounded

(g, k)-modules with central character χ(3
2
, 1

2
) and respective k-module decompositions

V0 ⊕ V6 ⊕ V12 ⊕ . . . and V1 ⊕ V7 ⊕ V13 ⊕ . . . . We set Ms
a,b := T

3
2
ǫ1+

1
2
ǫ2

aǫ1+bǫ2
(Ms

3
2
, 1
2

) for

a, b ∈ 1
2

+ Z, a > |b|, s ∈ {0, 1}, and Ms
a,b := 0 for a, b ∈ 1

2
+ Z, a ≤ |b|, s ∈ {0, 1}. By

Vp,q we denote the simple finite dimensional g = sp(4)-module with b-highest weight
pǫ1 + qǫ2 (p, q ∈ Z≥0, p ≥ q).

Lemma 11.2. We have

(11.5) V1,0 ⊗Ms
a,b ≃ Ms

a+1,b ⊕Ms
a,b+1 ⊕Ms

a−1,b ⊕Ms
a,b−1,

and, for a 6= |b| + 1,

(11.6) V1,1 ⊗Ms
a,b ≃Ms

a+1,b+1 ⊕Ms
a,b ⊕Ms

a−1,b+1 ⊕Ms
a+1,b−1 ⊕Ms

a−1,b−1.

If a = b+ 1, b > 0, then

(11.7) V1,1 ⊗Ms
a,b ≃Ms

a+1,b+1 ⊕Ms
a+1,b−1 ⊕Ms

a−1,b−1,

and if a = −b+ 1, b < 0, then

(11.8) V1,1 ⊗Ms
a,b ≃Ms

a+1,b+1 ⊕Ms
a+1,b−1 ⊕Ms

a−1,b+1.
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Proof. Let us first prove (11.5). Let M s
a,b := D

a,|b|
G/B ⊗Uχ(a,b) Ms

a,b be the localization

of Ma,b on G/B. Then as a sheaf of U -modules V1,0 ⊗ M s
a,b has a filtration of length

4 with the following associated factors given in increasing order:

O(−ǫ1) ⊗O M
s
a,b, O(−ǫ2) ⊗O M

s
a,b, O(ǫ2) ⊗O M

s
a,b, O(ǫ1) ⊗O M

s
a,b.

Note that ZU acts via a character on any of the four associated factors, and that these
characters are pairwise distinct. Therefore, as a sheaf of U -modules, V1,0 ⊗ M s

a,b is
isomorphic to the direct sum

(

O(−ǫ1) ⊗O M
s
a,b

)

⊕
(

O(−ǫ2) ⊗O M
s
a,b

)

⊕
(

O(ǫ2) ⊗O M
s
a,b

)

⊕ (O(ǫ1) ⊗ M
s
a,b).

Now we calculate Γ(G/B, V1,0 ⊗ M s
a,b). If a = b+ 1, b > 0, then

Γ(G/B,O(−ǫ1) ⊗O M
s
a,b) = Γ(G/B,O(ǫ2) ⊗O M

s
a,b) = 0

as there are no bounded modules with these central characters. Similarly, if a =
−b+ 1, b < 0, then

Γ(G/B,O(−ǫ1) ⊗O M
s
a,b) = Γ(G/B,O(−ǫ2) ⊗O M

s
a,b) = 0.

In all other cases
Γ(G/B,O(±ǫ1) ⊗O M

s
a,b) ≃Ms

a±1,b,

Γ(G/B,O(±ǫ2) ⊗O M
s
a,b) ≃Ms

a,b±1.

Thus, (11.5) is established.
Consider (11.6). Then as a sheaf of U -modules V1,1⊗M s

a,b has a filtration of length
5 with the following associated factors given in increasing order:

O(−ǫ1 − ǫ2) ⊗O M
s
a,b, O(ǫ1 − ǫ2) ⊗O M

s
a,b, M

s
a,b,

O(−ǫ1 + ǫ2) ⊗O M
s
a,b, O(ǫ1 + ǫ2) ⊗O M

s
a,b.

Note that ZU acts via a character on any of the five associated factors, and that these
characters are pairwise distinct if a 6= |b| + 1. Therefore the proof of (11.6) is very
similar to that of (11.5).

Let now a = b + 1. Then M s
a,b and O(−ǫ1 + ǫ2) ⊗O M s

a,b both afford the central
character χ(a, b). Thus, as a sheaf of U -modules, V1,1 ⊗ M s

a,b is isomorphic to the
direct sum

(11.9)
(

O(−ǫ1 − ǫ2) ⊗O M
s
a,b

)

⊕
(

O(ǫ1 − ǫ2) ⊗O M
s
a,b

)

⊕
(

M
s
a,b

)′
⊕

⊕
(

O(ǫ1 + ǫ2) ⊗O M
s
a,b

)

,

where for
(

M s
a,b

)′
we have an exact sequence

0 → M
s
a,b →

(

M
s
a,b

)′
→ O(−ǫ1 + ǫ2) ⊗O M

s
a,b → 0.

We will show that Γ(G/B, (M s
a,b)
′) = 0. It suffices to show that the tensor product

V1,1 ⊗ Ms
a,b has no simple constituent with central character χ(a, b). Indeed, from

(11.5), we see that V1,0 ⊗ V1,0 ⊗Ms
a,b has exactly two simple constituents affording
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the central character χ(a, b) and that both these constituents are isomorphic to Ms
a,b.

Recall that

V1,0 ⊗ V1,0
∼= V2,0 ⊕ V1,1 ⊕ V0,0.

Clearly, V0,0⊗Ms
a,b = Ms

a,b. Furthermore, V2,0 is the adjoint representation and there-
fore the very g-module structure on Ms

a,b defines a non-trivial intertwining operator
V2,0 ⊗Ms

a,b → Ms
a,b. Thus, V2,0 ⊗Ms

a,b must have a constituent isomorphic to Ms
a,b

and consequently V1,1⊗Ms
a,b has no simple constituent affording the central character

χ(a, b). By taking the global sections of the direct sum (11.9) we obtain (11.7). The
case a = −b+ 1, which leads to (11.8), is similar. 2

Lemma 11.3. There is the following k-module decomposition

(11.10) Ms
3
2
,− 1

2
≃ V3+s ⊕ V9+s ⊕ V15+s ⊕ . . . .

Proof. By (11.5),

M0
3
2
, 1
2
⊗ V1,0 ≃ M0

5
2
, 1
2
⊕M0

3
2
,− 1

2
.

As a k-module, V1,0 is isomorphic to V3. Hence M0
3
2
, 1
2

⊗ V1,0 has a k-module decompo-

sition

2V3 ⊕ V5 ⊕ . . . .

Since χ(3
2
,−1

2
) = χ(3

2
, 1

2
), M0

3
2
,− 1

2

must have one of the four k-module decompositions

(10.2), and hence (11.5) implies (11.10) for s = 0. Similarly, M1
3
2
, 1
2

⊗ V1,0 has the

k-module decomposition V2 ⊕ 2V4 ⊕ . . . , which implies (11.10) for s = 1. 2

We set now ϕs
a,b(z) := c(Ms

a,b) for a, b ∈ 1
2

+ Z, a ≥ |b|, s ∈ {0, 1} and extend the

definition of ϕs
a,b(z) to arbitrary pairs a, b ∈ 1

2
+ Z by putting

(11.11) ϕs
a,b(z) = −ϕs

b,a(z) = −ϕs
−b,−a(z) = ϕs

−a,−b(z).

Lemma 11.4. For all a, b ∈ 1
2

+ Z and s ∈ {0, 1},

π(ϕs
a,b(z

3 + z + z−1 + z−3)) = ϕs
a−1,b + ϕs

a+1,b + ϕs
a,b+1 + ϕs

a,b−1

π(ϕs
a,b(z

4 + z2 + 1 + z−2 + z−4)) = ϕs
a+1,b+1 + ϕs

a−1,b+1 + ϕs
a+1,b−1 + ϕs

a−1,b−1 + ϕs
a,b.

(the projection π is introduced in Section 7).

Proof. Both equalities are straightforward corollaries of Lemma 11.2 and Lemma
7.2 (b) if one takes into account the isomorphisms of k-modules V1,0 ≃ V3 and V1,1 ≃
V4. 2

We define now ψs
a,b(z) ∈ C((z)) via the conditions:

(c1) ψs
a,b(z)(z

3 + z + z−1 + z−3) = ψs
a+1,b(z) + ψs

a−1,b(z) + ψs
a,b+1(z) + ψs

a,b−1(z),

(c2) ψs
a,b(z)(z

4 + z2 + 1 + z−2 + z−4) = ψs
a+1,b+1(z) + ψs

a+1,b−1(z) + ψs
a−1,b+1(z) +

ψs
a−1,b−1(z) + ψs

a,b(z),
(c3) ψs

a,b(z) = −ψs
b,a(z) = −ψs

−b,−a(z) = ψs
−a,−b(z),
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(c4) ψs
3
2
, 1
2
(z) =

zs

1 − z6
, ψs

3
2
,− 1

2
(z) =

z3+s

1 − z6
.

Theorem 11.5. The Laurent series ψs
a,b(z) exists and is unique. Moreover,

(11.12)

ψs
a,b(z) =

z5+s(z3a+b − za+3b − z−a−3b + z−3a−b) − z6+s(z3a−b − z−a+3b − za−3b + z−3a+b)

(1 − z2)2(1 − z4)(1 − z6)
.

Proof. We show first that ψs
a,b(z) is unique if it exists. By (11.11) ψs

a,b(z) is
determined by ψs

a,b(z) for a > |b|. Assume, by induction on a, that ψs
a,b(z) is unique

for all a ≤ a0, |b| < a. Then equation (c1) determines ψs
a0+1,b(z), and equation (c2)

determines ψs
a0+1,a0

(z) and ψs
a0+1,a0+1(z).

To prove the existence of ψs
a,b(z), it suffices to verify that the right-hand side

of (11.12) satisfies all conditions (c1)-(c4). This is a direct calculation, which is
simplified by the observation that both Laurent polynomials

z3a+b − za+3b − z−a−3b + z−3a−b,

z3a−b − z−a+3b − za−3b + z−3a+b

satisfy (c1),(c2) and (c3). The condition (c4) is satisfied only by the entire expression.
2

Corollary 11.6.

ϕs
a,b = π(ψs

a,b).

Corollary 11.7. Any simple bounded (g, k)-module is either even or odd. More
precisely, Ms

a,b is even if a+ b+ s is even, and Ms
a,b is odd if a + b+ s is odd.

In the calculations below we use binomial coefficients
(

s
k

)

, for which we always

assume
(

s
k

)

= 0 if s or k are not integers.

Lemma 11.8.

1

(1 − z2)2(1 − z4)(1 − z6)
=

∞
∑

n=0

γ(n)z2n,

where

γ(n) :=
1

144

[

119

(

n + 3

3

)

− 179

(

n + 2

3

)

+ 109

(

n + 1

3

)

− 25

(

n

3

)]

+
(−1)n

16
+
β(n)

9

and

β(n) :=







0 n ≡ 1 (mod 3)
1 n ≡ 0 (mod 3)
−1 n ≡ −1 (mod 3)

.
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Proof. The statement follows from the identity

1

(1 − z2)2(1 − z4)(1 − z6)
=

119 − 179z2 + 109z4 − 25z6

144(1 − z2)4
+

1

16(1 + z2)
+

1 + z2

9(1 + z2 + z4)
.

2

Corollary 11.9. Let

δs
a,b(n) = γ

(

n− (3a+ b+ 5) − s

2

)

− γ

(

n− (a+ 3b+ 5) − s

2

)

−

−γ

(

n− (−a− 3b+ 5) − s

2

)

+ γ

(

n− (−3a− b+ 5) − s

2

)

−

−γ

(

n− (3a− b+ 6) − s

2

)

+ γ

(

n− (−a+ 3b+ 6) − s

2

)

+

+γ

(

n− (a− 3b+ 6) − s

2

)

− γ

(

n− (−3a+ b+ 6) − s

2

)

.

Then

ci(M
s
a,b) = δs

a,b(i) − δs
a,b(−i− 2).

Proof. The statement follows directly from Theorem 11.5, Corollary 11.6, and
Lemma 11.8. 2

Corollary 11.10. For any simple bounded (g, k)-module M , ci(M) = ci+6(M) for
sufficiently large i ∈ N.

Proof. The given (g, k)-module M is isomorphic to Ms
a,b for some a, b ∈ 1

2
+ Z,

s ∈ {0, 1}. For sufficiently large i, δs
a,b(−i − 2) = 0, hence ci(M) = δs

a,b(i). The
explicit formula for γ(i) from Lemma 11.8 implies that δs

a,b(i + 6n) is a polynomial
in n. Since this polynomial is a bounded function, it is necessarily a constant. 2

For large enough values of i, Corollary 11.10 enables us to write ci(M
s
a,b), i ∈ Z6.

Here are simple explicit expressions for ci(M
s
a,b).

Theorem 11.11. Let σa,b :=







1 if 3|2a, 3 ∤ 2b
−1 if 3|2b, 3 ∤ 2a
0 in all other cases

.

Then

c0+s(M
s
a,b) =

1

6
(1 + (−1)a+b)

(

a2 − b2

2
+ 2σa,b

)

,

c1+s(M
s
a,b) = c5+s(M

s
a,b) =

1

6
(1 − (−1)a+b)

(

a2 − b2

2
− σa,b

)

,

c2+s(M
s
a,b) = c4+s(M

0
a,b) =

1

6
(1 + (−1)a+b)

(

a2 − b2

2
− σa,b

)

,
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c3+s(M
s
a,b) =

1

6
(1 − (−1)a+b)

(

a2 − b2

2
+ 2σa,b

)

.

Proof. Let {ξī}ī∈Z6
denote the standard basis in C6. Set

ϕs
a,b :=

∑

i∈Z6

ci(M
s
a,b)ξī

for a, b ∈ 1
2

+ Z, a ≥ |b|. Extend ϕs
a,b to all a, b ∈ 1

2
+ Z by putting

ϕs
a,b = −ϕs

b,a = −ϕs
−b,−a = ϕs

−a,−b,

and let S, T : C6 → C6 be the linear operators

S(ξi) := 2ξi+3 + ξi+1 + ξi−1, T (ξi) := 2ξi+2 + 2ξi+4.

Then ϕs
a,b satisfy the following version of conditions (c1)-(c4):

(c5) S(ϕs
a,b) = ϕs

a+1,b + ϕs
a,b+1 + ϕs

a−1,b + ϕs
a,b−1,

(c6) T (ϕs
a,b) = ϕs

a+1,b+1 + ϕs
a−1,b+1 + ϕs

a+1,b−1 + ϕs
a−1,b−1,

(c7) ϕs
a,b = −ϕs

b,a = −ϕs
−b,−a = ϕs

−a,−b,
(c8) ϕs

3
2
, 1
2

= ξs, ϕs
3
2
,− 1

2

= ξ3+s.

Denote by ω a primitive sixth root of unity. Then {ηi :=
∑

j∈Z6

ωijξj}i∈Z6
is an eigen-

basis for S and T . Put

η0,a,b :=
(a2 − b2)

2
η0, η3,a,b := (−1)a+b (a

2 − b2)

2
η3,

η2,a,b := σa,bη2, η4,a,b := σa,bη4,

η3,a,b := (−1)a+bσa,bη3, η5,a,b := (−1)a+bσa,bη5.

Using the identity

σa,b =
ω2b + ω−2b − ω2a − ω−2a

3
,

one can easily check that ηi,a,b satisfies (c5)-(c7). The linear combination

ϕs
a,b =

1

6

∑

i∈Z6

ω−isηi,a,b

satisfies the condition (c8), hence its coefficients in the basis {ξī} equal ci
(

Ms
a,b

)

. 2

Corollary 11.12. The following is a complete list of multiplicity free simple (g, k)-
modules: Ms

3
2
,± 1

2

, Ms
5
2
,± 3

2

, Ms
5
2
,± 1

2

,Ms
7
2
,± 5

2

, s ∈ {0, 1}.

Proof. A straightforward computation based on Theorem 11.11 shows that ci(M
s
a,b) ∈

{0, 1} for i ∈ Z6 iff (a, b) is one of the pairs

(

3

2
,±

1

2

)

,

(

5

2
,±

3

2

)

,

(

5

2
,±

1

2

)

, and
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(

7

2
,±

5

2

)

. Then, using Corollary 11.9 one verifies that all modules Ms
a,b for (a, b) as

above are indeed multiplicity free. 2

Theorem 11.13.

(a) The minimal k-type of any even (respectively, odd) bounded simple (g, k)-
module M equals V0, V2 or V4 (resp., V1 or V3).

(b) If M is an even (respectively, odd) simple module in Bχ(a,b), then c0(M)

(resp., c1(M)) equals
a± b

6
+ ǫ or

a± b

12
+ ǫ (resp.,

a± b

3
+ ǫ or

a± b

6
+ ǫ) for

some ǫ with |ǫ| < 1.

Proof. (a) Note that for any bounded (g, k)-module M, ci(M) equals the constant
term of the Laurent polynomial z−i(1 − z2i+2)c(M). Hence c1(M) + c3(M) equals
the constant term in the Laurent expansion of (z−1(1 − z4) + z−3(1 − z8))c(M). A
straightforward calculation shows that for M = Ms

a,b the latter is nothing but the
constant term of the Laurent series

z3a+b+2+s − za+3b+2+s − z−a−3b+2+s + z−3a−b+2+s − z−3a+b+3+s

(1 − z2)3
+

+
za−3b+3+s + z−a+3b+3+s − z3a−b+3+s

(1 − z2)3
.

Using the identity

(11.13)
1

(1 − z2)3
=
∞

∑

n=0

(

n + 2

2

)

z2n,

we obtain
(11.14)

c1(M
s
a,b)+c3(M

s
a,b) =: ds

a,b =

(

−3a−b+2−s
2

2

)

−

(

−a−3b+2−s
2

2

)

−

(

a+3b+2−s
2

2

)

+

(

3a+b+2−s
2

2

)

−

(

3a−b+1−s
2

2

)

+

(

−a+3b+1−s
2

2

)

+

(

a−3b+1−s
2

2

)

−

(

−3a+b+1−s
2

2

)

,

where we set
(

l
2

)

:= 0 for l /∈ Z≥0.
This expression is a piecewise polynomial function which equals identically zero

whenever Ms
a,b is even, i.e. when a + b + s is even. In fact, the right hand side of

(11.14) turns out to be very simple as an explicit calculation shows that, for a+ b+ s
odd,

(11.15) ds
a,b =

{

a+ (−1)s+1b

2
for a+ (−1)s3b ≥ 0

a+ (−1)sb for a+ (−1)s3b ≤ 0
.
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Since a > |b|, the right hand side of (11.15) is never 0, i.e. the minimal k-type of Ms
a,b

is V1 or V3 whenever a+ b+ s is odd.
A similar analysis proves that the minimal k-type of Ms

a,b is V0, V2, or V4 whenever
a+ b+ s is even. Indeed, in this case

es
a,b := c0(M

s
a,b) + c2(M

s
a,b) + c4(M

s
a,b)

equals the constant term of the Laurent series

(1 − z2) + z−2(1 − z6) + z−4(1 − z10)c(M) .

Using the identity

(1 − z2) + z−2(1 − z6) + z−4(1 − z10)

(1 − z2)2(1 − z4)(1 − z6)
=

1

8z4

(

7 + 4z2 + z4

(1 − z2)3
+

1

(1 + z2)

)

,

as well as the identity (11.13), we calculate

es
a,b = θ

(

−3a− b− 1 − s

2

)

− θ

(

−a− 3b− 1 − s

2

)

−

−θ

(

a+ 3b− 1 − s

2

)

+ θ

(

3a+ b− 1 − s

2

)

−

−θ

(

3a− b− 2 − s

2

)

+ θ

(

−a + 3b− 2 − s

2

)

+

+θ

(

a− 3b− 2 − s

2

)

− θ

(

−3a+ b− 2 − s

2

)

,

where θ(n) :=
3

4
n2 +

3

2
n+

7

8
+

(−1)n

8
for n ∈ Z≥0 and θ(n) := 0 otherwise. Further

calculations show:

(11.16) es
a,b =











3

4

(

a+ (−1)s+1b
)

+
(−1)

a+(−1)s+1b−1
2

4
for (−1)sa+ 3b ≥ 0

3

2
(a + (−1)sb) for (−1)sa+ 3b ≤ 0

under the assumption that a+b+s is even. Since the right-hand side of (11.16) never
equals 0, we obtain that es

a,b 6= 0 under the same assumption. Hence the minimal
k-type of any even simple bounded (g, k)-module equals V0, V2, or V4.

(b) To compute c0(M) we use the identity

1 − z2

(1 − z2)2(1 − z4)(1 − z6)
=

1

(1 − z2)(1 − z4)(1 − z6)

=
47 − 52z2 + 17z4

72(1 − z2)3
+

1

8(1 + z2)
+

2 − z2 − z4

9(1 − z6)



BOUNDED GENERALIZED HARISH-CHANDRA MODULES 45

which yields

c0(M
s
a,b) = γ′

(

−3a− b− 5 − s

2

)

− γ′
(

−a− 3b− 5 − s

2

)

−

−γ′
(

a+ 3b− 5 − s

2

)

+ γ′
(

3a + b− 5 − s

2

)

−

−γ′
(

3a− b− 6 − s

2

)

+ γ′
(

−a + 3b− 6 − s

2

)

+

+γ′
(

a− 3b− 6 − s

2

)

− γ′
(

−3a + b− 6 − s

2

)

,

where

γ′(n) :=
n2

12
+
n

2
+

94

144
+

(−1)n

8
+
σ′(n)

9
,

σ′(n) :=

{

−1 3 ∤ n
2 3 | n

for n ∈ Z≥0 and γ′(n) = σ′(n) := 0 otherwise. Similarly, using the identity

z−1(1 − z4)

(1 − z2)2(1 − z4)(1 − z6)
= z−1

(

8 − 7z2 + 2z4

9(1 − z2)3
+

1 + z2 − 2z4

9(1 − z6)

)

we obtain

c1(M
s
a,b) = γ′′

(

−3a− b− 4 − s

2

)

− γ′′
(

−a− 3b− 4 − s

2

)

−

−γ′′
(

a+ 3b− 4 − s

2

)

+ γ′′
(

3a+ b− 4 − s

2

)

−

−γ′′
(

3a− b− 5 − s

2

)

+ γ′′
(

−a + 3b− 5 − s

2

)

+

+γ′′
(

a− 3b− 5 − s

2

)

− γ′′
(

−3a + b− 5 − s

2

)

,

where

γ′′(n) :=
n2

6
+

5n

6
+

8

9
+
σ′′(n)

9
,

σ′′(n) :=

{

−2 n = −1(mod 3)
1 n 6= −1(mod 3)

for n ∈ Z≥0 and γ′′(n) = σ′′(n) := 0 otherwise. Using the expressions for c0(M
s
a,b)

and c1(M
s
a,b) we notice that the terms (−1)n

8
+ σ′(n)

9
and σ′′(n)

9
will give a contribution

ǫ with |ǫ| < 1. Thus, a direct computation implies

c0(M
s
a,b) =

{ a+(−1)sb
6

+ ǫ for a+ (−1)s3b < 0
a−(−1)sb

12
+ ǫ for a+ (−1)s3b > 0

,
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c1(M
s
a,b) =

{ a−(−1)sb
6

+ ǫ for a + (−1)s3b > 0
a+(−1)sb

3
+ ǫ for a + (−1)s3b < 0.

2

Corollary 11.14. For a± b ≥ 24, the minimal k-type of Ms
a,b equals V0 (respectively,

V1) if a+ b+ s is odd (resp., even).

Corollary 11.15. A simple (g, k)-module with minimal k-type Vi for i ≥ 5 is un-
bounded.

Note that all simple (g, k)-modules of finite type over k with minimal k-type Vi for
i ≥ 6 are classified in [PZ2]. In particular it is proved, [PZ2], that if M is a (g, k)-
module with minimal k-type Vi for i ≥ 6, then M is necessarily of finite type over k

and ci(M) = 1. Recently G. Zuckerman and the first named author have shown that
this holds also for i = 5, and Theorem 11.13 (b) implies that the statement is false
for i ≤ 1.
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