METAPLECTIC TORI OVER LOCAL FIELDS

MARTIN H. WEISSMAN

ABSTRACT. Smooth irreducible representations of tori over local fields have
been parameterized by Langlands, using class field theory and Galois coho-
mology. This paper extends this parameterization to central extensions of
such tori, which arise naturally in the setting of nonlinear covers of reductive

groups.
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1. INTRODUCTION

1.1. Motivation. Let T be an algebraic torus over a local field F; let T = T'(F).
Let L/F be a finite Galois extension over which T' splits, with I' = Gal(L/F).
Let X(T') denote the group of continuous characters of T" with values in C*. In
a preprint from 1968, now appearing as [9] (cf. the 1985 article by Labesse [§]),
Langlands proves the following:

Theorem 1.1. There is a natural isomorphism:
X(T) = H:(Wrp. T),

where Wy, p denotes the Weil group of L/F, and T denotes the complex dual torus
of T.

We may consider T as a sheaf of groups, on the big Zariski site over F. In
addition, we may consider K5 as such a sheaf, using Quillen’s algebraic K-theory.
Let T’ be a central extension of T by K, in the category of sheaves of groups on
the big Zariski site over F'. Such objects are introduced and studied extensively by
Deligne and Brylinski in [3].

Let T" = T'(F) be the resulting extension of T by Ko = Ko(F). If F 2 C
and F has sufficiently many n'* roots of unity, one may push forward the central
extension 7" via the Hilbert symbol to obtain a central extension T':

1HanTHTH1.
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We are interested in the set Irr (T) of irreducible genuine representations of T,
as defined in Section Such representations arise frequently in the literature on
“metaplectic groups”, especially when considering principal series representations
of nonlinear covers of reductive groups (cf. [I3], [6], [1], among others). It is the goal
of this paper to parameterize the set Irre(f’) in a way which naturally generalizes
the aforementioned theorem of Langlands.

1.2. Main Results. Associated to the central extension T", Deligne and Brylinski

associate two functorial invariants: an integer-valued quadratic form ) on the

cocharacter lattice Y of T', and a Gal(L/F)-equivariant central extension Y of ¥

by L*. Associated to (), one has a symmetric bilinear form Bg: Y ®z Y — Z.
Define:

Y# = {y € Y such that Bg(y,y’) € nZ for all y/ € Y'}.

Associated to the inclusion ¢: Y# < Y, there is an isogeny of complex tori: i: T
T#. This isogeny is also a morphism of W, sr-modules. We prove the following
result in this paper:

Theorem 1.2. Suppose that one of the following conditions is satisfied:

(1) T is a split torus.

(2) F is nonarchimedean, T splits over an unramified extension of F', and n is
relatively prime to the residue characteristic of F.

(3) F is archimedean.

Then, there exists a finite-to-one map:
N H\Wy,p, T
D ITI‘C(T) — C( L/Ij ) A )
U(Hcl(WL/m T — T#))

such that the map intertwines canonical actions of Hl(WL/F, ‘ZA“)

We call the fibres of & “packets”, in analogy with the theory of L-packets. In
each of the three cases of the above theorem, we explicitly describe the structure of
the packets. When T is a split torus, all packets are singletons. In the other cases,
the packets are naturally torsors for an explicitly determined finite abelian group,
which we call PT. The definition of P' is quite uniform; it may have a cohomological
interpretation over the residue field, when considering nonarchimedean local fields.

The parameterization ® of irreducible genuine representations is not unique;
rather, it depends upon the choice of a base-point. The choice of this base-point is
a significant problem. We identify a natural class of “pseudo-spherical” representa-
tions (following previous authors such as [13] and [I]). Moreover, we parameterize
pseudo-spherical irreducible representations as a torsor for a complex algebraic
torus in Section [6} perhaps more naturally, the category of pseudo-spherical rep-
resentations can be identified with the category of modules over a “quantum dual
torus”.

1.3. Acknowledgements. We would like to thank Jeffrey Adams and Gordan
Savin, for providing some advice and insight related to this paper. In addition, we
are thankful for the hospitality and excellent working environment provided by the
Hausdorff Institute for Mathematics in Bonn, Germany, during the preparation of
this paper. In addition, we thank the University of Michigan for their hospitality,
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while this paper was being finished. We thank Brian Conrad and Stephen DeBacker
for helpful conversations at Michigan during this time.

We are heavily indebted to Pierre Deligne, who read an early draft of this pa-
per, and gave extensive helpful comments. His generosity has led to significant
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2. BACKGROUND

2.1. Fields and sheaves. F' will always denote a local field. Fz,, will denote
the big Zariski site over F. By this, we mean that F,, is the full subcategory of
the category of schemes over F', whose objects are schemes of finite type over F,
endowed with the Zariski topology. Getp will denote the topos of sheaves of sets
over Fyz,,, and &p will denote the topos of sheaves of groups over Fz,,.

Any scheme or algebraic group over I’ will be identified with its functor of points,
i.e., the associated object of Getp or By, respectively. Quillen’s K-theory, defined
n [12], yields sheaves K, of abelian groups on Fz,,.. We only work with K; and
K4, viewed as objects of &p .

For any field L, the group Ko(L) is identified as a quotient:

LX ®Z LX
(x® (1= 2))1zerx
If I1,1y € L, then we write {l1,l5} for the image of Iy ® I3 in Ko(L). The bilinear

form {-,-} is called the wuniversal symbol; it is skew-symmetric. It is usually not
alternating, but {z,z} = {x, —1} for all z € L*.

K»(L) =

2.2. Local Nonarchimedean Fields. Suppose that F' is a nonarchimedean local
field. Then Op will denote the valuation ring of F', and f the residue field of Op.
We let p denote the characteristic of f, and assume that the value group of F' is Z.
We let ¢ denote the cardinality of f.

There is a canonical short exact sequence of abelian groups, given by inclusion
and valuation:

1-0p—>F*—2Z—1.

It is sometimes convenient to split this sequence of abelian groups, by choosing a
uniformizing element w € F*. However, none of our main results depend on the
which uniformizing element is chosen.

Reduction yields another canonical short exact sequence:

1—- 0 - 0F =% — 1.
This sequence is split by the Teichmuller lifting:
0: f* - 05%.
2.3. The Weil group. We let Wr denote a Weil group of F' as discussed by
Tate in [I4]. In particular, we follow Tate’s choices, and normalize the reciprocity
isomorphism of nonarchimedean local class field theory, rec: F* — W% in such a
way that uniformizing elements of F'* act as the geometric Frobenius via rec.

When L is a finite Galois extension of F, we continue to follow Tate [14], and
define:

Wi, p=Wg/[WL, Wi].
There is then a short exact sequence:
1—L* -Wp/p — Gal(L/F) — 1.
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2.4. The Hilbert symbol. We say that F has enough n'" roots of unity if u,, (F)
has n elements. When F has enough n'” roots of unity, and F' % C, the Hilbert
symbol provides a non-degenerate skew-symmetric bilinear map:
X X
(Ve s @2 s — i (F).
In general, the Hilbert symbol is not alternating. The Hilbert symbol factors
through K5 (F), via the universal symbol.

The definition of the Hilbert symbol relies on a choice of reciprocity isomor-
phism in local class field theory — this choice has been made earlier, in sending a
uniformizing element of F'* to a geometric Frobenius.

If F is nonarchimedean, and (p,n) = 1, then we say that the Hilbert symbol
(-, )Fn is tame. If p is odd, then in the tame case, (@, @)r, = (—1)@ /" for
every uniformizing element @ € F*. When p = 2, in the tame case, (w,w)p, = 1.
When F = R, (—1, —].)F’Q =—1.

2.5. Tori. T will always denote an algebraic torus over F. Let L be a finite Galois
extension of F', over which T splits, and define I' = Gal(L/F). We write X =
Hom(T', G,,) for the character group and Y for the cocharacter group Hom(G,,,, T').
We view X and Y as finite rank free Z-modules, endowed with actions of I'. The
groups X and Y are in canonical I' invariant duality.

The dual torus T is the split torus Spec(Z[Y]) over Z, with the resulting action
of T. We write 7" = T'(C) = X ®z C* for the resulting C-torus, also endowed with
the action of T.

2.6. Central Extensions of Tori by K. Let €&rt(T, K2) be the category of
central extensions of T' by Ko in &pp. Let €€t (Y, L*) be the category of T'-
equivariant extensions of Y by L*.
In [3], Deligne and Brylinski study the following category, which we call DB .

Its objects are pairs (Q, Y), where:

e (): Y — Z is a I'-invariant quadratic form.

e Y is a I-equivariant central extension of Y by L*.

e The resulting commutator map C': /\2 Y — L* satisfies:

Cy1,y2) = (fl)BQ(yl’yQ), for all y1,y2 €Y,

where Bg is the symmetric bilinear form associated to Q.

If (Q1,Y1), and (Qa, Y3) are two objects of ©B, then a morphism from (Qy, Y7)
to (Q2, }72) exists only if 1 = @2, in which case the morphisms of DB are the
just those from Y; to Ya in €&tp (Y, LX).

In Section 3.10 of [3], Deligne and Brylinski construct an equivalence of cate-
gories, from €€rt(T, K5) to the category DBr.

In particular, given a central extension T” of T' by K, the work of [3] (in part
following Esnault [4]) yields a quadratic form @:Y — Z, and a central extension
Y of Y by L*. Consider the central extension T"(L) below:

1— Ky(L) - T'(L) — T(L) — 1.
In [3], it is shown that the resulting commutator Cp: A T(L) — K4(L) satisfies:

CrLyr(h), y2(l2)) = {l1, o} Perv2),
for all y1,y2 €Y, ly,lo € L*.
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2.7. Locally Compact Abelian Groups. An LCA group is a locally compact
Hausdorff separable abelian topological group. There is a category £€2Ab whose
objects are LCA groups, and whose morphisms are continuous homomorphisms.
Suppose that we are given a short exact sequence of LCA groups and continuous
homomorphisms:

0—-A—B—C—0.

Given a fourth LCA group D, the functor Hom(e, D) is left-exact, yielding an exact
sequence:
0 — Hom(C, D) — Hom(B, D) — Hom(A, D).

2.7.1. Continuous characters. When A is an LCA group, we write X(A) for the
group of continuous homomorphisms from A to the LCA group C*, under pointwise
multiplication. We call elements of X (A) characters (or continuous characters) of A.
If x € X(A), and |x(a)| =1 for all a € A, then we say that x is a unitary character.
We write A for the Pontrjagin dual of A, i.e., the set of unitary characters of A,
with its natural topology as an LCA group.

We say that A is an elementary LCA group, if A = R® x Z° x (R/Z)¢ x F, for
some finite group F, and some non-negative integers a,b,c. When A is elementary,
X(A) has a natural structure as a complex algebraic group. In the case above,
X(A) =2 C* x (C*) xZ¢ x F.

If A is generated by a compact neighborhood of the identity, then A is canonically
isomorphic to the inverse limit of its elementary quotients by compact subgroups.
In this case, X(A) is endowed with the (inductive limit) structure of a complex
algebraic group. In this paper, all LCA groups will be generated by a compact
neighborhood of the identity, and thus X(A) will be viewed as a complex algebraic

group.
2.7.2. Ezactness Criteria. Given a short exact sequence
0—-A—B—C—0,

there are two important cases, in which the induced map X (B) — X(A) is surjec-
tive, leading to an exact sequence:

0— X(C)— X(B) — X(A) — 0.
Proposition 2.1. Suppose that A is compact. Then X(B) — X(A) is surjective.

Proof. When A is compact, every continuous character of A is unitary. The exact-
ness of Pontrjagin duality implies that every unitary character of A extends to a
unitary character of B. Hence X(B) surjects onto X(A). O

Proposition 2.2. Suppose that the map from A to B is an open embedding. Then
X(B) — X(A) is surjective.

Proof. The proof is not difficult — it follows directly from Proposition 3.3 of [5], for
example. 0

2.7.3. Complex varieties and groups. We use a script letter, such as M, to denote
the (complex) points of a complex algebraic variety. It is unnecessary for us to
distinguish between complex varieties and their complex points. If R is a com-
mutative reduced finitely-generated C-algebra, then we write M = MSpec(R) for
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the maximal ideal spectrum of A, viewed as a complex variety. We view C* as a
complex algebraic variety, identifying:

C* = MSpec(C[Z)),

where C[Z] denotes the group ring. We view C itself as an algebraic variety (the
affine line over the field C).

Suppose that G is a complex algebraic group, in other words, a group in the
category of complex algebraic varieties. A G-variety is a complex algebraic variety
M, endowed with an action G x M — M which is complex-algebraic. A G-torsor
is a G-variety M, such that the induced map G x M — M x M sending (g, m)
to (g -m,m), is an isomorphism of complex algebraic varieties.

If M; and My are G-varieties, then a morphism of G-varieties is a complex
algebraic map from M) to My, which intertwines the action of G. Morphisms of
torsors are defined in the same way.

3. GENUINE REPRESENTATIONS OF METAPLECTIC TORI

In this section, the following will be fixed:

e T will be a torus over a local field F', which splits over a finite Galois ex-
tension L/F, with I' = Gal(L/F). X and Y will be the resulting character
and cocharacter groups.

T’ will be an extension of T by Ko in &pp.

(Q,Y) will be the Deligne-Brylisnki invariants of T”. B will be the sym-
metric bilinear form associated to Q.

n will be a positive integer, such that F' has enough n*" roots of unity.

e: p,(F) — C* will be a fixed injective character.

3.1. Heisenberg Groups. Suppose that S is an LCA group, and A is a finite cyclic
abelian group endowed with a faithful unitary character e: A — C*. Suppose that
Sisa locally compact group, which is a central extension of S by A (in the category
of locally compact groups and continuous homomorphisms:

1-A—S—S—1.

In this situation, the commutator on S descends to a unique alternating form:

2

C: /\S—>A.

Let Z(S) be the center of S. Then Z(S) is the preimage of a subgroup Z'(S) C S,
where:

ZT(S) = {s € S such that C(s,s’) =1 for all s’ € S}.
Throughout this paper, the following condition will be satisfied, and hence we
assume that:
Z1(89) is an open subgroup of finite index in S.
We define the following two sets:

e The set X.(S) of continuous genuine characters of S. These are elements

of X(S) whose restriction to A equals €.
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e The set Irr.(S) of irreducible genuine representations of S. These are irre-
ducible (algebraic) representations (m,V) of S on a complex vector space,
on which Z (5’ ) acts via a continuous genuine character. In particular, since
Z(S) will always have finite index in S, these are finite-dimensional repre-
sentations.

We often use the following analogue of the Stone von-Neumann theorem:

Theorem 3.1. Suppose that x € X.(Z(S)) is a genuine continuous character. Let
M denote a mazimal commutative subgroup of S. Then there exists an extension
X € X(M) of x to M. Define a representation of S by:

(my, Vy) = Inde(
Algebraic induction suffices here, since we always assume that Z(S) has finite index

in S. Then we have the following:

(1) The representation (my, Vi) is irreducible.

(2) The representation (my, V) has central character x.

(3) The isomorphism class of (my, Vy) depends only upon x, and not upon the
choices of subgroup M and extension X. }

(4) Ewery irreducible representation of S, on which Z(S) acts via x, is isomor-
phic to (my, Vy).

Proof. Extension of y to M follows from Proposition All but the last claim
are proven in Section 0.3 of [6], and follow directly from Mackey theory. The last
claim follows from the previous claims and Frobenius reciprocity. ]

3.2. Metaplectic Tori over Local Fields. The central extension of T' by Ko
yields a central extension of groups:

1— Kyo(F) - T (F)—T(F)— 1.
Since F is assumed to have enough n'" roots of unity, the Hilbert symbol allows us
to push forward this extension to get:
1— pp — T—-T—1,

where p, = p,,(F), and T = T'(F). By results of Sections 10.2, 10.3 of [3], following
Moore [10], this is a topological central extension, of the LCA group T by the LCA

group fin.
In this case, the center Z(T) has finite index in 7. Furthermore, Theorem .

implies that:

Proposition 3.2. There is a natural bijection between the set Irr.(T) of irreducible
genuine representations of T, and the set X.(Z(T)) of genuine characters of Z(T).

There is a short exact sequence of LCA groups:
1— py — Z(T) — Z1(T) — 1.
From Proposition [2.1], it follows that:

Proposition 3.3. The space X (Z(T )) of genuine continuous characters of Z(T)
is a X(Z1(T))-torsor.

As an immediate consequence, we find:

Corollary 3.4. The set Irr(T) is a X(ZT(T))-torsor.
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In particular, we give Irr.(T) the structure of a complex algebraic variety, in
such a way that it is a complex algebraic X (ZT(T))-torsor.

Since ZT(T) is a finite index subgroup of T restriction of continuous characters
yields a surjective homomorphism of complex algebraic groups:

res: X(T) — X(Z1(T)).

As a result, the set Irr.(T) is a homogeneous space for X(T), or equivalently (by
Langlands theorem [9]), a homogeneous space for H (W /r,T).

4. SPLIT TORI

In this section, we carry on the assumptions of the previous section. In addition,
we assume that 7" is a split torus of rank r over F. Thus, there is a canonical

identification T(F) = Y ®z F*. We are interested in parameterizing Irr.(T). By
the results of the previous section, we may describe this set, up to a choice of base
point, by describing the set ZT(T).

4.1. An isogeny. Recall that B: Y ®z Y — Z is the symmetric bilinear form
associated to Q. It allows us to construct a subgroup of finite index Y# C Y

Y# = {y € Y such that B(y,y’) € nZ for all y € Y}.

Note that we suppress mention of @, B, and n, in our notation Y#.
The subgroup Y# can be related to the “Smith normal form” of the bilinear
form B. Namely, there exists a pair of group isomorphisms «, 3:

LT <—Y ——>17",
such that for all ¥,y € Y, one has:
Bq(y1,y2) = D(a(y1), B(y2)),

and D is a symmetric bilinear form on Z" represented by a diagonal matrix with
entries (di,...,d,) (the elementary divisors). Let e; denote the smallest positive
integer such that d;e; € nZ, for every 1 < j <r. Then we find that:

Y# = a e Z e & - e 7).

Let ¢: Y# — Y denote the inclusion of Z-modules. Since Y# has finite index in
Y, this corresponds to an F-isogeny of split tori:

v: T - T,
where T is the split algebraic torus with cocharacter lattice Y#. From the previ-
ous observations, we find that:
(T#) = (TH(F)) = a7t (FX x o x FXer).

4.2. Describing the Center. Recall that extension T of T’ by ln yields a com-
mutator:

2
C: /\ T — pn.
This commutator can be directly related (by [3]) to the bilinear form B. If uy, us €
F* and y1,y2 € Y, then one may directly compute:

Cy1(u1), y2(uz)) = (ug, ug) F0v2),
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The diagonalization of B, via group isomorphisms «, 3, yields two isomorphisms of
F-tori:
. B @
G,<—T—G,,,
One arrives at a bilinear form on (F*)", given by:

A(%,5) = H (+7,247)

j=1

d;

n

This is related to the commutator C' by:
C(t1,t2) = Aa(tr), B(t2)).
We can now characterize Z(T):

Proposition 4.1. The subgroup Z1(T) of T is equal to the image of the isogeny t
on the F-rational points:

ZN(T) = «(T#).

Proof. We find that:
t, € Z1(T)

Q

(t1,t2) =1 for all to € T,
Ala(ty),B(t2)) =1 for all ty € T,
A(a(ty),Z2) =1 for all 5 € (F*)",
a(ty) € (FX° x - x FXr)
&t € u(TH).

K

The penultimate step above follows from the non-degeneracy of the Hilbert symbol.
O
We have now proven:

Theorem 4.2. If F is a local field, then Irr (T) is a torsor for X(«(T#)).

4.3. Character groups. The previous theorem motivates the further analysis of
the group X (.(T#)). We write +* for the pullback homomorphism:

U X(T) — X(T#).
Proposition 4.3. There is a natural identification:
X(u(T#)) = Im(c*).
Proof. There are short exact sequences of LCA groups:
1 — Ker(i) — T# — (T#) — 1,
1 — (T#) = T — Cok(1) — 1,
Using Propositions and we arrive at short exact sequences of character
groups:
1 — X((T#) = X(T#) — X(Ker(:)) — 1,
1 — X(Cok(1)) — X(T) — X(u«(T#)) — 1,
Since X (T') surjects onto X (¢(T#)), we find that the image of t*: X(T) — X(T%)
is equal to the image of the injective map X (.(T%)) — X (T#). O
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4.4. The Dual Complex. The isogeny of split F-tori ¢: T# — T yields an isogeny
of the complex dual tori:

r: T d#,
One may pull back continuous characters:
U X(T) — X(T%).
The following result follows from local class field theory, and demonstrates the

naturality of Langlands’ classification [9]:

Proposition 4.4. There is a commutative diagram of complex algebraic groups,
whose rows are the reciprocity isomorphisms of local class field theory:

X(T) —— HYWp, T)

X(T#) —= H-(Wp, T#)

Note that since T and T# are split tori, the continuous cohomology groups are
quite simple:
Hcl(WF, T) = HomC(WF, T)
From this result, we now find:
Corollary 4.5. There is a natural identification:

X(ZHT)) = Im (z: H' (Wp, ) — Hl(WF,‘f“#)) .

4.5. Parameterization by Hypercohomology. We may parameterize represen-
tations, using the hypercohomology of the complex of tori:

-
concentrated in degrees zero and one. We follow the treatment of Kottwitz-Shelstad
in the Appendices of [7], when discussing hypercohomology of Weil groups, with
coefficients in complexes of tori. In particular, we concentrate the complexes in

degrees 0 and 1 following [7], and not in degrees -1 and 0 as in [2].
There is a long exact sequence in cohomology, which includes:

n

HYWp, T T#) HXWp, T) — H-(Wp, T#).

Lemma 4.6. The homomorphism n is injective.

Proof. Extending the long exact sequence above, it suffices to prove the surjectivity
of the preceding homomorphism:

HOWp, T) = H(Wp, T#).

But 7 and T# are complex tori, trivial as Wg-modules, and [ is an isogeny.
Therefore, the above map is surjective. O

From this lemma, it makes sense to identify the hypercohomology group H} (Wg, T
‘jﬁ#) with a subgroup of H!(Wg, ‘ZA“)

A

Lemma 4.7. The group H:(Wp, T — T#) is finite.
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Proof. Since i is an isogeny, it has finite kernel and cokernel. There is a long exact
sequence, which includes the following terms:

HXWp, Ker(i)) — H (Wp, T — T#) = H{ (W, Cok(i)).

The lemma follows. O
This leads to the first main theorem:

Theorem 4.8. There exists an isomorphism, in the category of varieties over C
endowed with an action of HX(Wpg,T):

. H:Wp, T
ITTE (T) ~ c( f‘v )A )
HI(Wp,T — T#)
Remark 4.9. The global analogue of this result also seems to hold. Letting

Irr®*(T},) denote the appropriate set of genuine automorphic representations of
Ty, it seems likely that:

" H!(Wp, T
() o — MOV T)
HX(Wpg, T — T#)
when T is a split torus over a global field F. The proof follows the same techniques
(together with the Hasse principle for isogenies of split tori), but requires some

analytic care with extension of continuous characters and the appropriate Stone
von-Neumann theorem. We hope to treat this global theorem in a future paper.

5. UNRAMIFIED TORI

For split tori, the cohomology groups that arise in Theorem are quite simple,
since Wg acts trivially on T and T#. In fact, the statement of this theorem
makes sense, even when T is a nonsplit torus. However, for general nonsplit tori, it
seems that our explicit methods are insufficient to prove such a result. For “tame
covers” of unramified tori over local nonarchimedean fields, such a paramaterization
is possible.

In this section, we fix the following:

e T will be a a local nonarchimedean field F', which splits over a finite un-
ramified Galois extension L/F, with I' = Gal(L/F). X and Y will be the
resulting character and cocharacter groups.

e We define d = [L : F], and write 1 for the residue field of Oy (note that 1
has cardinality ¢7).

e We fix a uniformizer w of F* (and hence of L* as well).

e Let v be the generator of T, which acts upon 1 via y(z) = z?. Let r =
(g7~ 1)/(q - 1) = (% /£%).

e T’ will be an extension of T by K3 in &pp.

° (Q,f’) will be the Deligne-Brylisnki invariants of T'. B will be the sym-
metric bilinear form associated to Q.

e n will be a positive integer, such that F has enough nt" roots of unity. We
also assume that (p,n) = 1.

e c: p (F)— C* will be a fixed injective character.

e If W is a subgroup of Y, then we write W' for the subgroup of I'-fixed
elements of W. We also define:

W# = {y € Y such that B(y,w) € nZ for all w € W}.
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5.1. Z[I']-modules. T is a cyclic group, generated by v, of order d. Let Z[I'] denote
the integral group ring of I'. We define the following elements of Z[I']:

o Let Tr = Z?;Ol %, and let Ty = Z?;()l vt
o Let 6 =v—1, and let §; = ¢y — 1.
Note that:
Trod =0, and Tr 08, =q¢* — 1.

When M is an Z[[']-module, we let M = M/(q? — 1)M. We write M" for the
I'-invariant Z-submodule of M. Therefore,

M"Y = {m € M such that §m = 0}.
We define M4 by:
M"4 = {m € M such that é,m = 0}.
Proposition 5.1. Suppose that M is an Z[['|-module. Then,
Tr(M) Cc M" and Tr (M) c M™.

Proof. The first inclusion is obvious. For the second inclusion, suppose that m € M.
Then,
§qTrgm = Trydgm = (¢ — 1)m = 0.
O

Proposition 5.2. Suppose that M is a Z[T']-module, which is free as an Z-module.
Then, 64 and Try act as injective endomorphisms of M, and

Im(8,) = {m € M such that Trym € (¢® — 1)M}.

Proof. Since M is free as an Z-module, §, o Tr, = Try 06, = ¢* — 1 acts as
an injective endomorphism of M. Hence d,, and T'r; must also act as injective
endomorphisms of M, proving the first assertion.

Since T'ry 0 04 = q% — 1, it follows that:

Im(8,) € {m € M such that Tr,m € (¢® — 1)M}.

In the other direction, if Trym € (¢¢ —1)M, then Trym = Tr,d,m’, for some m' €
M. Since T'rq acts via an injective endomorphism, it follows that m = é,m’. [

5.2. Unramified Tori. Much of our treatment of unramified tori is inspired by
Section 2 of Ono [II]. Recall that X and Y are naturally Z[I']-modules, in such a
way that the pairing is I'-invariant.

We fix a smooth model T of T' over Op. We make the following identifications:

T, =T(L)=Y @z L, and Tr = T(F) = (Y @z L*)'.
Similarly, for the integral points, we identify:
Tp =T(01) =Y @7 0F, and Tj = T(0p) = (Y @7 07)".
We write T for the special fibre of T. Then, we also identify:
Ti=T1) =Y @z 1%, and Ty = T(f) = (Y @7 )V
There are natural reduction homomorphisms:

TP — Tq, and Tp — T¢.
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Let 7} and T} denote the kernels of these reduction maps. The reduction mor-
phisms are split by the Teichmuller lift, and we arrive at a decomposition of Z[I']-
modules:

7 =17 x Th.

Together with the valuation map, we arrive at a short exact sequence of Z[T']-
modules:

1HTL1XT1HTLHYH1.

The choice of (I'-invariant) uniformizing element o splits this exact sequence, lead-
ing to a decomposition of Z[[']-modules:

T, =Y xTy x T}.

We use this decomposition to “get our hands on” elements of Ty. First, every
element of 77, can be expressed as y(w)t°, for uniquely determined y € Y, t° € T7.
Let 6 denote a generator of the cyclic group 1*, and 0 = 0. Thus 0¢ is a generator
of the cyclic group f*. Let ¥, € Of and 9 € O denote the Teichmuller lifts of
0, and 0, respectively.

Let ¢, = (w,91)1 441 Let (g = (7. Note that (;, is a primitive (¢% —1)*" root
of unity, and (r is a primitive (¢ — 1) root of unity.

Recall that Y = Y/(¢? — 1)Y; thus, for § € Y, it makes sense to write g(Jz) for
an element of T7. According to the decomposition T, = Y x Ty x T}, every element
t € Tt has a unique expression:

t = y1(@)i2(I1)t",

where y; € Y, 92 € Y, and ¢! € T}. To determine when such an expression lies in
T, we have the following characterization:

Proposition 5.3. An element yi(@)y2(Vp)t' of Tr, with yy,9a,t' as above, lies
i Tr if and only if the following three conditions hold:

ey € ifr. In other words, 6(y1) = 0.

e 4o € Y9, In other words, §,(j2) = 0.

o tleT}.

Proof. By the T-invariance of the decomposition T, = Y x Tj x T, we find that
y1(@)y2(V)tt € Tr if and only if the three factors are fixed by I'. The proposition
follows from three observations:

e Since @ € F, we have y;(w) € Tt if and only if y; € Y.
e Since y(91) = 9%, we find that 2(9) € Tt if and only if:
Yo = q¥(J2), in Y.
e Since the reduction map intertwines the action of I', we have t* € (T} if
and only if ¢! € T}.
O

5.3. Tame Metaplectic Unramified Tori. The structure of T'(L) and T'(F)
is based on Sections 12.8-12.12 of [3]. In particular, letting T = T'(L), and
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T} = T'(F), there is a natural commutative diagram:

1 —— Ko(F) Ty, Tr 1
1—— K(L) T Ty, 1.

There is a natural action of I" on the bottom row, in such a way that K5 (F') maps to
Ky(L)Y, Tr = TF, and T4 maps to (T4)F. The tame symbols yield a commutative
diagram, where the downward arrows arise from the functoriality of Ko and Kj:

K2<F) t*> £x

L,

K5(L) ——1*
The bottom row is a morphism of Z[I']-modules. Pushing forward T}, and 77 via
the tame symbols yields a commutative diagram of locally compact groups, with
exact rows:

1 £ Tk Tr 1
1 1* T! Ty 1.

The downward arrows arise from the inclusion of F' in L, and of f in 1. In Section
12.8 of [3], Deligne and Brylinski note the following:

Proposition 5.4. In the commutative diagram above, the groups in the top row are
precisely the T-invariant subgroups of the bottom row. In other words, £* = (1X)T,

Tp =T, and Th = (TH)T.

We may push forward the covers further to obtain all tame covers. Recall that
(p,n) = 1, and F has enough n'* roots of unity. Then, we find that n|(¢ — 1), and
there is a natural surjective map:

Yr: £ — p, (F),
obtained by first applying the Teichmuller map (from f* to p,—1), and then raising
to the m = (¢—1)/n power. Recall that 7 = (¢ —1)/(g—1). One obtains a similar
map:

wL: X — ll’nr(L)v
obtained by applying the Teichmuller map (from 1* to g a_; (L)) and then raising to

the m = (¢g—1)/n power. The compatibility of these maps yields a new commutative
diagram with exact rows:

1 —— p, (F) Tr Tr 1
1 H#’nr(L) TL TL 1.

With this construction, we say that Tr is a tame metaplectic cover of T, and Ty,
is a tame metaplectic cover of Ty, as well. T is identified as a subgroup of T7p,.
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Note that the commutator map for T}, satisfies:

Crya(u). 32 (v)) = (u,0) P07 = (u, 0) B0,

where (-, )L, nr and (-, -)p, 4a_1 denotes the appropriate Hilbert symbols (in this case,
norm residue symbols) on L*. The commutator on T% is simply the restriction of
Cr;asaresult, Z1 (Tr) C Z1(T1)NTr, where the pre-image of ZT(Tr) is the center
of Tp, and the pre-image of ZT (T) is the center of Ty.

5.4. Computation of the center. Recall that the set ]rrE(TF) is a torsor for
X(Z1(Tr)). Therefore, we wish to study the group Z'(Tx) in more detail. To this
end, we first observe:

Proposition 5.5. The group T} is contained in Z1(Ty). Similarly, T}L is contained

Proof. Since (¢?—1,p) = 1, the Hilbert symbol (in this case, a norm-residue symbol)
is trivial, when one of its “inputs” is contained in O}. Hence the commutator
Cr(-,-) is trivial when one of its inputs is contained in T}. Hence T} C ZT(Ty).
Since Z1(Tr) C Z1(T) N Tk, we find that TE C ZT(Tr) as well. O

Since T} is contained in ZT(Tr), Z1(Tr) corresponds to a subgroup of Tr/Tr.
Our choice of uniformizing element, together with the previously mentioned split-
tings, yields a decomposition of Z[['-modules:

T1/T; =Y x Tj.

Namely, every element ¢ of Ty, /T} can be represented by y1(w)y2 (1), for uniquely
determined y; € Y and g, € Y.

In order to describe ZT(TF), we work with a number of subgroups of Y. Recall
that YT# is given by:

Y'# = {y € Y such that B(y,y') € nZ for all y € Y'}.

Note that YT'# o Y#. Also, it is important to distinguish between Y'# and
y#T = (Y#)L.

Lemma 5.6. There are inclusions of Z[T'|-modules, of finite indez in Y :
Y O YT# 5 v# 5 (¢ - 1)Y.
Furthermore, §,(Y) C Y #, and Tr, (Y'#) C Y#.

Proof. The inclusions are clear, since n divides ¢? — 1. If y € Y, and ¢/ € YT, then
we find:

B(o.y,y") = Blavw—y.9)
= ¢B(y.,v'Y) - By,v)
= (¢—1)B(y,vy') € nZ, since ¢ — 1 = mn.

Hence §,(Y) C YT#.



16 MARTIN H. WEISSMAN

Now, suppose that w € Y'#_ and 4/ € Y. Then, we find:

d—1
B(Try(w),y') = > Blgy'wy)
=0

d—1
Z B('YiU),y/) (mod TL) since q— 1=mn
=0

B(w,Tr(y')) € nZ, since Tr(y') € Y.
Hence Tr, (Y'#) € Y#. O
Now, we fully describe ZT(Tr) with two results:
Theorem 5.7. Suppose that y, € Y, and 5o € Y. Then if the element t =
y1 ()72 (V1) is contained in ZT(Tr), then for every lift yo €Y of 7o,
y1,y2 €Y?, and OqY2 € (¢ —1)YT#,

Proof. For reference during this proof, we recall that:

d—1

nm=q—1, andr=1+q+---+ ¢, and nmr = ¢* — 1.

Suppose furthermore that 3/, y5 € Y, and let 77, € Y be the reduction of y5. Then,
we find that [Tr(y})](w) and [Try(g5)](YL) are elements of Tr. It follows that:

Cr (y1(@)g2(92), [Tr(y))(w)) = 1, and
Cr (y1(@)g2(91), [Trq(52)](V1)) L.
The explicit formula for the commutator C, yields:

1 = Cr(i(@y201), [Tre(75)](0r)),
d-1 . y
_ H(w7§L)sz13_(f/1,vyz)’
i=0
{0 ma' B(y1,7 yh)
L

, since (@, V) qa-1 = (L,
d—1

i d—i ’
= (%:1:0 ma'B(y yl’yQ), by the I'-invariance of B,

d—1 i ’
C?i:o mq B(yhyz)’ by the I'-invariance of y,

mr B (y1,y5 i i i i
= ( W y2), by summing a partial geometric series,

’
G, since Cr = G-

Since 1 = C?B(yl’y;) for all ¢4 € Y, we find that:

Y1 € Y#.
Carrying out a similar analysis, an explicit computation yields:
1 = Cp(@)y2(0), [Tr(y))(=)),
d-1 , .
B(y1,7'y1) B(y2,7'y1)
— H(w7w)7ﬁng11W Y1 (w’,ﬂL)zL’ngle Y
i=0

Now, if p is odd, we find that ¢ — 1 is even. Since (w,w)p a_1 = *1, and
mB(y1,7'y}) € mnZ = (¢ — 1)Z C 27Z (since y; € Y#), we find that:

mB(y1,7'y}) _
( aw)L’qd,l =1
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On the other hand, if p = 2, (@, @)y ,a_; = 1, and once again the above equality
holds. Continuing our computations yields:

d—1

_ mB(y1,7'y}) mB(y2,7'y})
1 = I |(w7w)L)qd71 (W719L)L,qd,1 ,
i=0

_ mB(y27'yy) mBu27'v1) _ 1 and (. 0 —
- C , Sluce (w7w)L’qd_1 = 1l an (wa L)L,qdfl - <L7

C%izo mq B(y27y1)’ since q’y(§2) = 9o,

mrB T . . . .
= ( (v yl), by summing a partial geometric series,

C}nB(yQ’yi), since (p = (J.
Hence, we find that y, € Y#.

Finally, we prove that §,y2 € (¢ — 1)YT#. Note that d,y2 € (¢¢ — 1)Y, since
7o € YD4. Thus, §,y2 = (g% — 1)ys, for some y3 € Y. It suffices to prove that
Y3 € YyT#.

Now, to prove that y3 € Y'#, suppose that 3’ € YT. It follows that:

1 Cr (y1(w@)i2(91),y' (w))

";B(lyl Y )(19 w)WZB(lymy )

= (ww)

mB s
¢r (y29)
Hence B(ya,y’) € nrZ. Tt follows that:

Bys,y') = (¢ =1)7"'B(6y2,9)
(¢* = 1) (B(gvy2,y) — B(y2,v))
r ' B(y2,y) € nZ.

Thus y3 € YT#. O

Theorem 5.8. Suppose thal y1,y2 € Y#. Also, suppose that y, € YT, and 7, €
Y14, Furthermore, suppose that 6,y € (¢ —1)Y'#. Then y1(@)g2(91) € ZT(TF).

Proof. Since y; € YT, and g, € Y14, it follows that y;(@)y2(¥r) € Tr. Now, we
may compute some commutators.

Suppose that ¢} € YT, and 4 € Y, and 7, € Y19, Thus y} () and 74(J;) are
elements of Tr. We begin by computing:

mB 1,,1
CLlr (@), 4 (@) = (w, ) B,

If p is odd, then mn = ¢ — 1 is even, and thus mB(y1,y]) is even. Hence the
commutator is trivial. If p is even, then ¢% — 1 is odd, and hence (w, @) gio1 = 1.
In either case, the commutator is trivial.

Now, consider the following commutator:

CrL(yi(w), Gy (9)) = CrPWva),
We claim that mB(y1,v5) € (qd _ 1)Z. Indeed, we have:

B(y1,v5) = B(vy1,v) = B(y1,7 " 'y) = Bly1, qvh + (¢* — 1)y5),
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for some y4 € Y. Since y; € Y7, we have:

By, (¢ — 1)y4) € n(¢* — 1)Z.
It follows that:
(¢ —1)B(y1,95) € n(¢” — 1)Z.
From this, we find:
B(y1,95) € nrZ.

Hence mB(y1,y4) € mnrZ = (¢* —1)Z. This proves our claim, and we have proven
that:

Cr(y1(®@),92(Vr) = 1.
Next, consider the following commutator:

CL(Ta(91), v, (w)) = ¢ " PW»¥)
We claim now that mB(yz, ;) € (¢* — 1)Z. Indeed, we have:

B(y2,41) = Blavyz + (¢ = Dys,y1) = aB(y2,41) + (¢" = 1) By, v1),
for some y3 € YT#. In particular, B(ys,y;) € nZ, since v} € YT. It follows that:

(¢ —1)B(y2,9}) € n(q” — 1)Z.

From this we find that B(ys,y;) € nrZ, from which the claim follows. We have
proven that:

Cr(g2(91),y1(w)) = 1.
Finally, note that (Jz,9r)r q¢—1 = 1. Hence,

CL(#2(91),92(9r)) = 1.

We have proven that y;(w), and §»(¥;) commute with a set of generators for
Tr/TE. Since T € ZT(Tr), this suffices to prove that:

yl(w)gjz(ﬂL) S ZT(TF).

O
The previous two theorems fully characterize the subgroup ZT(Tr).

Corollary 5.9. Suppose thaty, € Y, 5o € Y, andt' € T}, Thent = yi(w)ya2(I)t €
ZY(Tr) if and only if all of the following conditions hold:

oy € Y#L,

e yo € Y# for any choice of representative yo of ¥o.

® dyy2 € (¢4 — 1)YY# for any choice of representative yo of ia.

Proof. This corollary follows directly from the previous two theorems. One impor-
tant observation is the following: The latter two conditions do not depend upon
the choice of representative yo € Y for a given o € Y.

Indeed, suppose that y5 = yo + (¢¢ — 1)z, for some z € Y, so that y, and
are representatives for . Since Y# C nY, and n divides (¢¢ — 1), we find that
yo € Y7 if and only if v, € Y7#.

Similarly, we find that &,y5 = d,y2 + (¢% — 1)d,2. By Lemma Sz €EYT# Tt
follows that d,y2 € (¢% — 1)YT# if and only if d,y5 € (¢¢ — 1)YT7#. O

The above corollary implies that y;(w) € ZT(TF), for a given y; € Y, if and
only if y; € Y#T. It also implies the following:
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Corollary 5.10. Suppose that 3o € Y. Then §2(91) € ZT(Tr) if and only if
(5.1) G2 € Im(Tr (Y'#) - Y),

Proof. The previous corollary implies that () € Z!(Tr) if and only if the
following two conditions hold:

(1) yo € Y# for some (equivalently, every) representative ys of 7.
(2) 64y2 € (g% — 1)YT# for some (equivalently, every) representative yz of .

Given these conditions, and a representative 3, of g2, there exists w € Y''# such
that d,(y2) = (¢ — 1)w. Hence 6,(y2) = §,Tr,(w). The injectivity of §, implies
that yo = Try(w). It follows that 7> is the image of Tr,(w) in Y. Hence, the
conditions (1) and (2) imply the one condition [5.1| of this corollary.

Conversely, suppose that Equation [5.1] is satisfied. Then we may choose w €
YT# such that g equals the image of Tr,(w) in Y. Thus yo = Tr,(w) is a
representative for 7 in Y. Since Tr,(YT#) C Y# by Lemma the condition
(1) is satisfied. Since d,y2 = Try6,w = (g% — 1)w, condition (2) is satisfied as well.
Therefore, 32(91) € Z1(Tr). O

5.5. The image of an isogeny. For split metaplectic tori, we found a useful
characterization of ZT(Tr) as the image of an isogeny on F-rational points. The
same isogeny makes sense for non-split tori, however there is a small but important
difference between the image of the isogeny and ZT(Tr). We view this difference
as accounting for “packets” of representations of metaplectic tori, with the same
parameter.

Consider the inclusion of Z[I'J-modules ¢: Y# < Y. Note that we use the fact
that @ is a I-invariant quadratic form, so that Y# is a Z[[']-submodule. This
inclusion corresponds to an isogeny of algebraic tori over F:

v T > T.

Our description of the F-rational and L-rational points for T is also valid, mutatis
mutandis, for T#. When y € Y#, and u € L*, we simply write (y ® u) for the
corresponding element of T# (L) = Y# @ L*. We choose this notation, rather than
y(u), since we do not wish to confuse cocharacters of T' with cocharacters of T7 .
Since Y# is an Z[I']-module, we find that:

Proposition 5.11. The torus T? splits over an unramified extension of F. Sup-
pose that y1,yo € Y#. Then (y1 ® w)(y2 ® 91) € T# = T#(F) if and only if

1 € Y# and g, € (Y#)1,
The isogeny ¢ has the following effect on L-rational points:
y@u)=y(u), forally e Y# ue LX, (y@u) € T (L).
Hence, we find that:

Proposition 5.12. Suppose thaty; € Y, 2 € Y, and t' € T}. Then yi(w)y2(9)t*
is an element of the image of v: T* (F) — T(F) if and only if:

® Y1 € y#I,

e There erists yo € Y representing o, such that 6,y» € (¢% — 1)Y#.

o tl eT}L.
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Proof. Since (n,p) = 1, the image of ¢ contains T4. It suffices only to consider the
images:
(1 @ @) (y2 ® I1)),
for all y; € Y#T' and all y, € Y# such that g, € (Y#)4, O
Then, we find:
Corollary 5.13. Suppose that G € Y. Then §2(91) € o(T#(F)) if and only if

G € Im(Try(Y#) = Y).

Proof. If Gy € Im(Try(Y#) — Y), there exists an element y3 € Y# such that
equals the image of Try(ys) in Y. If yo = Try(ys), then y, is a representative for
72 in Y. Note that yo € Y#, since y3 € Y#. Furthermore, d,y2 = §,T7,(y3) =
(¢% — 1)ys € (¢* — 1)Y#. Hence, §2(91) € o(T#(F)) by the previous proposition.
Conversely, suppose that 7(97) € «(T#(F)). By the previous proposition, there
exists a representative ys of 7> in Y, such that y» € Y#, and §,(y2) € (¢¢ — 1)Y#.
It follows that d,(y2) = 8,17, (y3), for some y3 € Y#. Hence yo = Tr,(y3). Hence,
72 is contained in the image of Tr,(Y#) in Y. O

5.6. Endoscopic Parameterization. From the previous two sections, we have
described the groups %T(TF) and (T#(F)). They are quite similar, with one
exception. Given g2 € Y, we have:

e 42(91) € Z1(Tr) if and only if
G2 € Im(Tr (Y'#) = Y),
e 52(91) € o(T#(F)) if and only if
Jo € Im(Try(Y#) — Y).
Define a finite group P by:
i In(Try(V7#) = 7)
Im(Try(Y#) —Y)
Since Y# C YT#, one may give a more practical definition of PT:
t Trq(YF#)
Trq(Y#)- (¢ =Y~

Since T, acts as an injective endomorphism of YT# and Y#, and ¢¢ —1 = §,0Tr,,
we may further identify Pt:

yT#
TY# Y
The description of PT given above depends upon the choice of root of unity 6.
However, it can be defined canonically in terms of the Z[[']-module T}, and the
bilinear form B.
It follows from Proposition and Corollary that there is a short exact
sequence:

pt

1— L(T#(F)) — ZT(TF) — Pt 1.
The main theorem of Langlands in [J], parameterizing smooth characters of tori
over local fields, determines isomorphisms:

X(Tr) = H(Wy, e, T), and X(TF) = HX(Wy, p, T#).
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As before, the characters of the image of an isogeny can be parameterized cohomo-
logically:

Proposition 5.14. The Langlands parameterization yields a finite-to-one param-
eterization of the smooth characters of Z1(Tr):

HY Wy, e, T)
HY Wy p, T — T#)

1= X(PY) — X(ZY(TF)) —

Remark 5.15. In order to view H} (Wp,/, T - ‘ZA‘#) as a subgroup of HX(Wp, /., ‘ZA‘)
as above, we must know that the map HY (W, QA“) — HYWyp/F, QA“#) is surjec-
tive. This follows from the identifications:

HS(WL/F,‘ZA‘) = Homgz(Y",C*), and HB(WL/F,‘ZA‘#) = Homg (Y#1', C*),
and the fact that Y#I' has finite index in Y.

This leads directly, via a Stone-von-Neumann theorem, to a main theorem for
tame covers of unramified tori:

Theorem 5.16. Suppose that we are given a tame metaplectic cover of an unram-
ified torus:
1— pp — T—T—1,
Then, with the sublattices Y# C YT# C Y defined as before, and the resulting
isogeny v: T? — T, we find:
There is a finite-to-one surjective map, intertwining the natural
action of H*(Wpp, ‘j“)

HY W p,T)
HYWp e, T — 94.0)

®: Irr (T) —

The fibres of this map are torsors for the finite group X (P1), where:
yr#

Pl=
YH#.5,Y

Remark 5.17. We do not know if a parameterization, such as that above, holds
for general metaplectic tori over local fields. Namely, we have not been able to
describe the center of such metaplectic tori, when T is ramified, or when T is an
unramified torus, but the cover is not tame. We hope that such a parameterization
is possible, though the packets might be substantially different.

Remark 5.18. In the process of proving the previous theorem, we chose a uni-
formizing element w € F'* and a root of unity 6. However, this choice does not
have any effect on the parameterization given above. The sublattices Y# and Y'#
clearly do not depend upon such a choice. Moreover, the action of X(P') on the
fibres of ® does not depend on such a choice.

6. PSEUDO-SPHERICAL AND PSEUDO-TRIVIAL REPRESENTATIONS

We maintain all of the conventions of the previous section. In particular, we
have a tame metaplectic cover of an unramified torus:

1*>[Ln*>TF4>TF*>1.
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‘We have shown that the irreducible genuine representations of TFA can be parameter-
ized by the points of a homogeneous space on which H'(W;, /P> T') acts transitively.
However, such a parameterization is not unique; one must choose a “base point” in
the space of irreducible genuine representations of Tr, in order to choose a specific
morphism of homogeneous spaces:

H' W, T)
Hl(WL/F7 (ZA‘ - {f#)
In this section, we discuss the data which determines such base points. Such

choices arise frequently in treatments of metaplectic groups, often as choices of
square roots of —1 in C.

P: IrrS(TF) —

6.1. The Residual Extension. Recall that the unramified torus T" has a smooth
model T over Op, and Tp = T(Op). In this case, Ty is the maximal compact
subgroup of T', and we let TI% be its preimage in Tr. Also, T denotes the special
fibre of T, which is a torus over f. Recall that T" is a central extension of T by
K. Pushing forward via the tame symbol led to the tame central extension:

1 —f* =T —Tp— 1.

We write T for the preimage of T in Th.
In Section 12.11 of [3], Deligne and Brylinski construct an extension T of T by

G, (in the category of groups over f). We call T’ the residual extension associated
to T'. The residual extension fits into the following commutative diagram:

1 £x Ty T 1
1 £x T} s 1.

Here, the map from f* to itself is the identity, the map from Tp to Tt is the
reduction map, and the diagram identifies the top row with the pullback of the
bottom row via reduction.

As an extension of T by G,, over f, the group T is an algebraic torus over f.
Note that the category of extensions of T by G,,, in the category of groups over f, is
equivalent to the category of extensions of Y by Z, in the category of Z[I']-modules
(where Z is given the trivial module structure). In this way, the construction of
Section 12.11 of [3] associates an extension of Y by Z, to any extension of an
unramified torus T by K.

Remark 6.1. Recall that Y is a -equivariant extension of Y by L*, constructed
as a functorial invariant of the extension T' of T by K>. Let Y’ be the extension
of Y by Z, obtained by pushing forward Y via the valuation map L* — Z:

0—-Z—-Y —-Y —0.

We do not know whether this extension is naturally isomorphic to the exact se-
quence of cocharacter groups of the residual extension of tori described above
Definition 6.2. Let Spl(fl_"/) denote the set of splittings, in the category of algebraic
groups over f, of the short exact sequence:

1HGmHT'/HTH1.
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We say that the extension T” of the unramified torus T is a residually split extension,
if Spl(’l_’l) is non-empty.

Proposition 6.3. Then, if S’pl(T’) is non-empty, then Spl(’l_’/) is a torsor for the
abelian group XT.

Proof. Any two algebraic splittings are related by an element of Hom¢(T, G,,).
This group may be identified with the I'-fixed characters of T'. O

6.2. Pseudo-spherical representations. Suppose now that T’ is a residually
split extension of T' by K. Fix a splitting s € Spl(ﬁl_"/). The splitting lifts to a
splitting o: Th — T5. Pushing forward via the m*" power map, we may also view
o as a splitting Tp — TI‘% From such a splitting s, we let 07 : Tl‘% — C* denote the
character obtained by projecting onto u, (via the splitting o), and then applying
the injective homomorphism €: p,, — C*.

Let T} be the centralizer of TI‘% in Tr. Then, we find:

Proposition 6.4. The group T} is the preimage of a subgroup Tr C Tp. Consid-
ering the valuation map:

val: Ty — YT,
whose kernel is Tg, T is equal to the preimage of Yy#I,

Proof. Since T D T, it suffices to identify the set of y € YT such that:
Cr(y(w), 7 (¥1)) =1 for all § € Y1

In fact, the set of such y has been identified in the proofs of Theorems [5.7] and @
The above condition is satisfied if and only if y € Y#T.

Corollary 6.5. The group T}, s abelian.

Proof. As T}; is the centralizer of the abelian group TI%, it suffices to prove that

C(y(w),y' (w)) = 1 for all y,y’ € Y#T. This is proven in the beginning of the proof

of Theorem 5.8 O
Directly following Section 4 of Savin [13], we find

Proposition 6.6. There is a natural bijection between the following two sets:

e The set ]rrSph(’fF) of pseudo-spherical irreducible representations of Tr
(for the splitting s). These are the genuine irreducible representations of
Tr, whose restriction to T} via the splitting s contains a nontrivial 6°-
1sotypic component.

o The set of extensions of 6° to the group T}

Namely, if (7, V) is a pseudo-spherical irreducible representation, its 0°-isotypic
subrepresentation is an extension of 6° to the group T}. Conversely, given such an

extension 01 of 6° to a character of T}, the induced representation Ind?f@l s a
F
pseudo-spherical irreducible representation.
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One may rephrase the above bijection slightly; the splitting s yields an injective
homomorphism from 7% onto a normal subgroup of 7. This fits into a commuta-
tive diagram with exact rows and columns:

1 1

1 1 TR TE 1

1 fin ; T 1

1 —— fin — y#T y#0 1
1 1 1

Hence, the splitting s determines an extension Y#T of Y#T by pn. A standard
diagram chase now yields:

Proposition 6.7. There is a natural bijection:
ISP (Tp) — X (Y#D).

Corollary 6.8. The space Irrz{’eh (TF) 1s naturally a torsor for the complex algebraic
torus X (Y#1).
Remark 6.9. One may view X.(Y#1) as the set of irreducible representations of
a “quantum torus”. Indeed, consider the ring:

C[Y#I]
(€= e(Ocepn

The ring C.[Y#I] can be viewed as (the coordinate ring of) a quantum complex

C[Y#T) =

torus, which we call ‘ZA;#F. ‘ZA;#F is the quantization of a complex torus, at a root
of unity. Quasi-coherent sheaves on this quantum torus (i.e. modules over its
coordinate ring) correspond naturally to pseudo-spherical representations of 7.

6.3. Pseudo-Trivial Representations. In many practical situations, the exten-
sion Y#I' of Y#I' by i, splits over a quite large submodule of Y#I'. For example,
in many cases, the extension splits over Y#I' N 2Y.

Suppose that V C Y#I is a finite index subgroup, endowed with a splitting v of
the resulting exact sequence:

v
~ AT

1 fin v 1% 1.

Let U = Y#1 /V denote the quotient. The splitting v yields an extension of finite
abelian groups:
1— pp — U—U-—1.
Pulling back yields natural inclusions:

X(U) = X(Y#T) = IrrP(Tp).
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Therefore, within the set of pseudo-spherical representations of T, we find a
finite set of “pseudo-trivial” representations (relative to the choice of splitting sub-
group (V,v) of Y#T:

Definition 6.10. The genuine pseudo-trivial representations of T, are those irre-
ducible pseudo-spherical genuine representations, that are in the image of X, (U).
This definition depends upon the following choices:

e The splitting s (to determine the pseudo-spherical representations).
e The splitting subgroup (V,v) (to determine the pseudo-trivial representa-
tions).

Remark 6.11. Most often, one chooses a pseudo-trivial “base point” in the space
Irr(Tr). Very often (cf. the examples of [I3]) U is a finite abelian group of
exponent 4. It follows that pseudo-trivial representations may often be given by
specifying certain characters of an abelian group of exponent 4. This explains
the frequent need to choose fourth roots of unity, in the literature on metaplectic
groups.

7. TORI OVER R

In this section, the following will be fixed:

e T will be a torus over R, which splits over C, with I = Gal(C/R) = {1, ~}.
X and Y will be the resulting character and cocharacter groups.

T’ will be an extension of T by Ko in Gpg.

° (Q,Y) will be the Deligne-Brylisnki invariants of T/. B will be the sym-
metric bilinear form associated to Q.

We fix n = 2, so that R has enough n*" roots of unity.

€: py(R) — C* will be the unique injective character.

We view T' = T'(R) as a real Lie group. The extension T, and the quadratic
Hilbert symbol, yields an extension of Lie groups:

1—>M2—>T—>T—>1.

We are interested in parameterizing the irreducible genuine representations of

T, and the set of such representations is called Irr.(T"), as before.

7.1. Structure of metaplectic tori over R. Let T° be the connected component
of the identity in the Lie group T. Then, we find a canonically split short exact
sequence of Lie groups:

1-T° =T — (YN ®zp) — 1.

We define YT = YT ® pe = YT /2YT Every element ¢ of T" has a decomposition
t =t°y(—1), for uniquely determined ¢°> € T° and j € YT.
Now, we consider the metaplectic cover of T

1—>u2—>T—>T—>1.

The commutator C': T x T — pus is bi-multiplicative and continuous. It follows
that the commutator is trivial when either of its inputs is in 7°. Hence we find:

Proposition 7.1. T° is a subgroup of Z'(T).



26 MARTIN H. WEISSMAN

7.2. Description of the center. It follows from the previous proposition that,
to describe ZT(T), it suffices to describe its image in T/T°. Hence, it suffices to
determine when, given § € YT, §(—1) € Z(T). We must be able to compute the
commutator C(g(—1),y (—1)) for arbitrary 3,y € YT.

Here, we note that such elements §(—1) and 3’(—1) are contained in the maximal
split subtorus T'y C T over R. Restricting the central extension of T' by K5, to the
subtorus Ty, the formula of Corollary 3.14 of [3] is valid for computing commutators.
We find that:

Proposition 7.2. Ify,y € YT, then C(5(—1),7(—1)) = (—1)Bwv),

Proof. This follows directly from Corollary 3.14 of [3], and the Hilbert symbol over
R: (=1, —1)gz = —1. O

Proposition 7.3. Givenj € YT, j(—1) € Z1(T) if and only if every representative
y of 7 in'Y satisfies:
y e YI#T,

Proof. Suppose 7,5 € YT. Let y be a representative of § in Y. The commutator
has been computed:

C(a(=1),7/(=1)) = (=) Z07.
Thus, we find that C(7(—1),7(—1)) = 1 for all § € YT, if and only if B(y,y') € 27Z
for all represenatives y of all ¥ € YT. This occurs if and only if B (y,vy') € 2Z for
ally’ € YT ie., y € YT#,
Thus, we find that, given § € YT, 5i(—1) € ZT(T) if and only if y € YT#NYT =
yT#, O

7.3. The image of an isogeny. As in the nonarchimedean case, the inclusion
Y# — Y of Z[I']-modules corresponds to an isogeny of tori over R:

v: TH - T.
We are interested in the resulting continuous homomorphism of real Lie groups:

v T# - T

Since ¢ is an isogeny, we find that ((T7%) D T°. Thus, in order to fully describe
t(T#) it suffices to determine for which § € YT, y(—1) € o(T#).

Proposition 7.4. Suppose that § € YT. Then (1) € o(T#) if and only if
g € Im(Y#I' —YT).
Proof. We find that 5(—1) € «(T#), if and only if there exists y € Y#I which
represents . The proposition follows. (I

Comparing the image of the isogeny ¢, to the group ZT(T), yields a short exact
sequence:

1—u(T*) - Z1(T) - PT — 1,

where we may identify the finite group:
yT#T

=
P Cy#U .2y
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7.4. Parameterization. As for the case of nonarchimedean fields, we choose to
parameterize the genuine irreducible representations of T, through a finite-to-one
map and a description of the fibres. Over R, the previous two sections imply the
following:

Theorem 7.5. The space Irr(T) can be identified (via Theorem with the
complex variety of genuine characters X.(Z(T)). This is a torsor for the complex
algebraic group of characters X(Z1(T)). There is a short exact sequence:

H} (W, T)
HY(Wg, T — T#)
Thus, there exists a finite-to-one parameterization:

H} (W, T)
HY(Wg, T — T#)

1 — X(PH - x(Zz(1)) —

®: Irr(T) —

A

which intertwines the actions of HX(Wg,T), and whose fibres are torsors for the
finite group X (PT).

Note that this theorem is quite similar to the parameterization of Irr (T) for
tame covers of unramified tori over nonarchimedean local fields. The primary dif-
ference is that the “packet group” P is built from I-fixed subgroups. For example,
the analogue of §; = ¢y — 1 (in the nonarchimedean case) is —y — 1 (in the real
case), which restricts to multiplication by —2 on the I'-fixed subgroup.

On the other hand, the extension C/R is more analogous to a ramified extension
of nonarchimedean fields, so one should not expect a perfect analogy. Perhaps, for
ramified extensions of nonarchimedean fields, the packet groups look similar to the
groups Pt above.
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