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Abstract. Smooth irreducible representations of tori over local fields have

been parameterized by Langlands, using class field theory and Galois coho-

mology. This paper extends this parameterization to central extensions of
such tori, which arise naturally in the setting of nonlinear covers of reductive

groups.
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1. Introduction

1.1. Motivation. Let T be an algebraic torus over a local field F ; let T = T (F ).
Let L/F be a finite Galois extension over which T splits, with Γ = Gal(L/F ).
Let X (T ) denote the group of continuous characters of T with values in C×. In
a preprint from 1968, now appearing as [9] (cf. the 1985 article by Labesse [8]),
Langlands proves the following:

Theorem 1.1. There is a natural isomorphism:

X (T ) ∼= H1
c (WL/F , T̂ ),

where WL/F denotes the Weil group of L/F , and T̂ denotes the complex dual torus
of T .

We may consider T as a sheaf of groups, on the big Zariski site over F . In
addition, we may consider K2 as such a sheaf, using Quillen’s algebraic K-theory.
Let T ′ be a central extension of T by K2, in the category of sheaves of groups on
the big Zariski site over F . Such objects are introduced and studied extensively by
Deligne and Brylinski in [3].

Let T ′ = T ′(F ) be the resulting extension of T by K2 = K2(F ). If F 6∼= C
and F has sufficiently many nth roots of unity, one may push forward the central
extension T ′ via the Hilbert symbol to obtain a central extension T̃ :

1 → µn → T̃ → T → 1.
1
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We are interested in the set Irr ε(T̃ ) of irreducible genuine representations of T̃ ,
as defined in Section 3. Such representations arise frequently in the literature on
“metaplectic groups”, especially when considering principal series representations
of nonlinear covers of reductive groups (cf. [13], [6], [1], among others). It is the goal
of this paper to parameterize the set Irr ε(T̃ ) in a way which naturally generalizes
the aforementioned theorem of Langlands.

1.2. Main Results. Associated to the central extension T ′, Deligne and Brylinski
associate two functorial invariants: an integer-valued quadratic form Q on the
cocharacter lattice Y of T , and a Gal(L/F )-equivariant central extension Ỹ of Y
by L×. Associated to Q, one has a symmetric bilinear form BQ : Y ⊗Z Y → Z.

Define:

Y # = {y ∈ Y such that BQ(y, y′) ∈ nZ for all y′ ∈ Y }.

Associated to the inclusion ι : Y # ↪→ Y , there is an isogeny of complex tori: ι̂ : T̂ →
T̂ #. This isogeny is also a morphism of WL/F -modules. We prove the following
result in this paper:

Theorem 1.2. Suppose that one of the following conditions is satisfied:
(1) T is a split torus.
(2) F is nonarchimedean, T splits over an unramified extension of F , and n is

relatively prime to the residue characteristic of F .
(3) F is archimedean.

Then, there exists a finite-to-one map:

Φ: Irr ε(T̃ ) →
H1

c (WL/F , T̂ )

η(H1
c (WL/F , T̂ → T̂ #))

,

such that the map intertwines canonical actions of H1(WL/F , T̂ ).

We call the fibres of Φ “packets”, in analogy with the theory of L-packets. In
each of the three cases of the above theorem, we explicitly describe the structure of
the packets. When T is a split torus, all packets are singletons. In the other cases,
the packets are naturally torsors for an explicitly determined finite abelian group,
which we call P †. The definition of P † is quite uniform; it may have a cohomological
interpretation over the residue field, when considering nonarchimedean local fields.

The parameterization Φ of irreducible genuine representations is not unique;
rather, it depends upon the choice of a base-point. The choice of this base-point is
a significant problem. We identify a natural class of “pseudo-spherical” representa-
tions (following previous authors such as [13] and [1]). Moreover, we parameterize
pseudo-spherical irreducible representations as a torsor for a complex algebraic
torus in Section 6; perhaps more naturally, the category of pseudo-spherical rep-
resentations can be identified with the category of modules over a “quantum dual
torus”.

1.3. Acknowledgements. We would like to thank Jeffrey Adams and Gordan
Savin, for providing some advice and insight related to this paper. In addition, we
are thankful for the hospitality and excellent working environment provided by the
Hausdorff Institute for Mathematics in Bonn, Germany, during the preparation of
this paper. In addition, we thank the University of Michigan for their hospitality,
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while this paper was being finished. We thank Brian Conrad and Stephen DeBacker
for helpful conversations at Michigan during this time.

We are heavily indebted to Pierre Deligne, who read an early draft of this pa-
per, and gave extensive helpful comments. His generosity has led to significant
improvements in presentation and content.

2. Background

2.1. Fields and sheaves. F will always denote a local field. FZar will denote
the big Zariski site over F . By this, we mean that FZar is the full subcategory of
the category of schemes over F , whose objects are schemes of finite type over F ,
endowed with the Zariski topology. SetF will denote the topos of sheaves of sets
over FZar, and GpF will denote the topos of sheaves of groups over FZar.

Any scheme or algebraic group over F will be identified with its functor of points,
i.e., the associated object of SetF or GpF , respectively. Quillen’s K-theory, defined
in [12], yields sheaves Kn of abelian groups on FZar. We only work with K1 and
K2, viewed as objects of GpF .

For any field L, the group K2(L) is identified as a quotient:

K2(L) =
L× ⊗Z L

×

〈x⊗ (1− x)〉1 6=x∈L×
.

If l1, l2 ∈ L, then we write {l1, l2} for the image of l1 ⊗ l2 in K2(L). The bilinear
form {·, ·} is called the universal symbol; it is skew-symmetric. It is usually not
alternating, but {x, x} = {x,−1} for all x ∈ L×.

2.2. Local Nonarchimedean Fields. Suppose that F is a nonarchimedean local
field. Then OF will denote the valuation ring of F , and f the residue field of OF .
We let p denote the characteristic of f , and assume that the value group of F is Z.
We let q denote the cardinality of f .

There is a canonical short exact sequence of abelian groups, given by inclusion
and valuation:

1 → O×
F → F× → Z → 1.

It is sometimes convenient to split this sequence of abelian groups, by choosing a
uniformizing element $ ∈ F×. However, none of our main results depend on the
which uniformizing element is chosen.

Reduction yields another canonical short exact sequence:

1 → O×1
F → O×

F → f× → 1.

This sequence is split by the Teichmuller lifting:

Θ: f× → O×
F .

2.3. The Weil group. We let WF denote a Weil group of F as discussed by
Tate in [14]. In particular, we follow Tate’s choices, and normalize the reciprocity
isomorphism of nonarchimedean local class field theory, rec : F× → Wab

F in such a
way that uniformizing elements of F× act as the geometric Frobenius via rec.

When L is a finite Galois extension of F , we continue to follow Tate [14], and
define:

WL/F = WF /[WL,WL].
There is then a short exact sequence:

1 → L× → WL/F → Gal(L/F ) → 1.
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2.4. The Hilbert symbol. We say that F has enough nth roots of unity if µn(F )
has n elements. When F has enough nth roots of unity, and F 6∼= C, the Hilbert
symbol provides a non-degenerate skew-symmetric bilinear map:

(·, ·)F,n :
F×

F×n
⊗Z

F×

F×n
→ µn(F ).

In general, the Hilbert symbol is not alternating. The Hilbert symbol factors
through K2(F ), via the universal symbol.

The definition of the Hilbert symbol relies on a choice of reciprocity isomor-
phism in local class field theory – this choice has been made earlier, in sending a
uniformizing element of F× to a geometric Frobenius.

If F is nonarchimedean, and (p, n) = 1, then we say that the Hilbert symbol
(·, ·)F,n is tame. If p is odd, then in the tame case, ($,$)F,n = (−1)(q−1)/n, for
every uniformizing element $ ∈ F×. When p = 2, in the tame case, ($,$)F,n = 1.
When F ∼= R, (−1,−1)F,2 = −1.

2.5. Tori. T will always denote an algebraic torus over F . Let L be a finite Galois
extension of F , over which T splits, and define Γ = Gal(L/F ). We write X =
Hom(T ,Gm) for the character group and Y for the cocharacter group Hom(Gm,T ).
We view X and Y as finite rank free Z-modules, endowed with actions of Γ. The
groups X and Y are in canonical Γ invariant duality.

The dual torus T̂ is the split torus Spec(Z[Y ]) over Z, with the resulting action
of Γ. We write T̂ = T̂ (C) ≡ X ⊗Z C× for the resulting C-torus, also endowed with
the action of Γ.

2.6. Central Extensions of Tori by K2. Let CExt(T ,K2) be the category of
central extensions of T by K2 in GpF . Let CExtΓ(Y, L×) be the category of Γ-
equivariant extensions of Y by L×.

In [3], Deligne and Brylinski study the following category, which we call DBT .
Its objects are pairs (Q, Ỹ ), where:

• Q : Y → Z is a Γ-invariant quadratic form.
• Ỹ is a Γ-equivariant central extension of Y by L×.
• The resulting commutator map C :

∧2
Y → L× satisfies:

C(y1, y2) = (−1)BQ(y1,y2), for all y1, y2 ∈ Y,
where BQ is the symmetric bilinear form associated to Q.

If (Q1, Ỹ1), and (Q2, Ỹ2) are two objects of DBT , then a morphism from (Q1, Ỹ1)
to (Q2, Ỹ2) exists only if Q1 = Q2, in which case the morphisms of DBT are the
just those from Ỹ1 to Ỹ2 in CExtΓ(Y,L×).

In Section 3.10 of [3], Deligne and Brylinski construct an equivalence of cate-
gories, from CExt(T ,K2) to the category DBT .

In particular, given a central extension T ′ of T by K2, the work of [3] (in part
following Esnault [4]) yields a quadratic form Q : Y → Z, and a central extension
Ỹ of Y by L×. Consider the central extension T ′(L) below:

1 → K2(L) → T ′(L) → T (L) → 1.

In [3], it is shown that the resulting commutator CL :
∧2

T (L) → K2(L) satisfies:

CL(y1(l1), y2(l2)) = {l1, l2}BQ(y1,y2),

for all y1, y2 ∈ Y , l1, l2 ∈ L×.
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2.7. Locally Compact Abelian Groups. An LCA group is a locally compact
Hausdorff separable abelian topological group. There is a category LCAb whose
objects are LCA groups, and whose morphisms are continuous homomorphisms.
Suppose that we are given a short exact sequence of LCA groups and continuous
homomorphisms:

0 → A→ B → C → 0.

Given a fourth LCA group D, the functor Hom(•, D) is left-exact, yielding an exact
sequence:

0 → Hom(C,D) → Hom(B,D) → Hom(A,D).

2.7.1. Continuous characters. When A is an LCA group, we write X (A) for the
group of continuous homomorphisms from A to the LCA group C×, under pointwise
multiplication. We call elements of X (A) characters (or continuous characters) of A.
If χ ∈ X (A), and |χ(a)| = 1 for all a ∈ A, then we say that χ is a unitary character.
We write Â for the Pontrjagin dual of A, i.e., the set of unitary characters of A,
with its natural topology as an LCA group.

We say that A is an elementary LCA group, if A ∼= Ra × Zb × (R/Z)c × F , for
some finite group F , and some non-negative integers a, b, c. When A is elementary,
X (A) has a natural structure as a complex algebraic group. In the case above,
X (A) ∼= Ca × (C×)b × Zc × F̂ .

If A is generated by a compact neighborhood of the identity, then A is canonically
isomorphic to the inverse limit of its elementary quotients by compact subgroups.
In this case, X (A) is endowed with the (inductive limit) structure of a complex
algebraic group. In this paper, all LCA groups will be generated by a compact
neighborhood of the identity, and thus X (A) will be viewed as a complex algebraic
group.

2.7.2. Exactness Criteria. Given a short exact sequence

0 → A→ B → C → 0,

there are two important cases, in which the induced map X (B) → X (A) is surjec-
tive, leading to an exact sequence:

0 → X (C) → X (B) → X (A) → 0.

Proposition 2.1. Suppose that A is compact. Then X (B) → X (A) is surjective.

Proof. When A is compact, every continuous character of A is unitary. The exact-
ness of Pontrjagin duality implies that every unitary character of A extends to a
unitary character of B. Hence X (B) surjects onto X (A). �

Proposition 2.2. Suppose that the map from A to B is an open embedding. Then
X (B) → X (A) is surjective.

Proof. The proof is not difficult – it follows directly from Proposition 3.3 of [5], for
example. �

2.7.3. Complex varieties and groups. We use a script letter, such as M , to denote
the (complex) points of a complex algebraic variety. It is unnecessary for us to
distinguish between complex varieties and their complex points. If R is a com-
mutative reduced finitely-generated C-algebra, then we write M = MSpec(R) for
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the maximal ideal spectrum of A, viewed as a complex variety. We view C× as a
complex algebraic variety, identifying:

C× ≡ MSpec(C[Z]),

where C[Z] denotes the group ring. We view C itself as an algebraic variety (the
affine line over the field C).

Suppose that G is a complex algebraic group, in other words, a group in the
category of complex algebraic varieties. A G -variety is a complex algebraic variety
M , endowed with an action G ×M → M which is complex-algebraic. A G -torsor
is a G -variety M , such that the induced map G × M → M × M sending (g,m)
to (g ·m,m), is an isomorphism of complex algebraic varieties.

If M1 and M2 are G -varieties, then a morphism of G -varieties is a complex
algebraic map from M1 to M2, which intertwines the action of G . Morphisms of
torsors are defined in the same way.

3. Genuine Representations of Metaplectic Tori

In this section, the following will be fixed:

• T will be a torus over a local field F , which splits over a finite Galois ex-
tension L/F , with Γ = Gal(L/F ). X and Y will be the resulting character
and cocharacter groups.

• T ′ will be an extension of T by K2 in GpF .
• (Q, Ỹ ) will be the Deligne-Brylisnki invariants of T ′. B will be the sym-

metric bilinear form associated to Q.
• n will be a positive integer, such that F has enough nth roots of unity.
• ε : µn(F ) → C× will be a fixed injective character.

3.1. Heisenberg Groups. Suppose that S is an LCA group, and A is a finite cyclic
abelian group endowed with a faithful unitary character ε : A→ C×. Suppose that
S̃ is a locally compact group, which is a central extension of S by A (in the category
of locally compact groups and continuous homomorphisms:

1 → A→ S̃ → S → 1.

In this situation, the commutator on S̃ descends to a unique alternating form:

C :
2∧
S → A.

Let Z(S̃) be the center of S̃. Then Z(S̃) is the preimage of a subgroup Z†(S) ⊂ S,
where:

Z†(S) = {s ∈ S such that C(s, s′) = 1 for all s′ ∈ S}.

Throughout this paper, the following condition will be satisfied, and hence we
assume that:

Z†(S) is an open subgroup of finite index in S.

We define the following two sets:

• The set Xε(S̃) of continuous genuine characters of S̃. These are elements
of X (S̃) whose restriction to A equals ε.
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• The set Irr ε(S̃) of irreducible genuine representations of S̃. These are irre-
ducible (algebraic) representations (π, V ) of S̃ on a complex vector space,
on which Z(S̃) acts via a continuous genuine character. In particular, since
Z(S̃) will always have finite index in S̃, these are finite-dimensional repre-
sentations.

We often use the following analogue of the Stone von-Neumann theorem:

Theorem 3.1. Suppose that χ ∈ Xε(Z(S̃)) is a genuine continuous character. Let
M̃ denote a maximal commutative subgroup of S̃. Then there exists an extension
χ̃ ∈ X (M̃) of χ to M̃ . Define a representation of S̃ by:

(πχ, Vχ) = IndS̃
M̃
χ̃.

Algebraic induction suffices here, since we always assume that Z(S̃) has finite index
in S̃. Then we have the following:

(1) The representation (πχ, Vχ) is irreducible.
(2) The representation (πχ, Vχ) has central character χ.
(3) The isomorphism class of (πχ, Vχ) depends only upon χ, and not upon the

choices of subgroup M̃ and extension χ̃.
(4) Every irreducible representation of S̃, on which Z(S̃) acts via χ, is isomor-

phic to (πχ, Vχ).

Proof. Extension of χ to M̃ follows from Proposition 2.2. All but the last claim
are proven in Section 0.3 of [6], and follow directly from Mackey theory. The last
claim follows from the previous claims and Frobenius reciprocity. �

3.2. Metaplectic Tori over Local Fields. The central extension of T by K2

yields a central extension of groups:

1 → K2(F ) → T ′(F ) → T (F ) → 1.

Since F is assumed to have enough nth roots of unity, the Hilbert symbol allows us
to push forward this extension to get:

1 → µn → T̃ → T → 1,

where µn = µn(F ), and T = T (F ). By results of Sections 10.2, 10.3 of [3], following
Moore [10], this is a topological central extension, of the LCA group T by the LCA
group µn.

In this case, the center Z(T̃ ) has finite index in T̃ . Furthermore, Theorem 3.1
implies that:

Proposition 3.2. There is a natural bijection between the set Irr ε(T̃ ) of irreducible
genuine representations of T̃ , and the set Xε(Z(T̃ )) of genuine characters of Z(T̃ ).

There is a short exact sequence of LCA groups:

1 → µn → Z(T̃ ) → Z†(T ) → 1.

From Proposition 2.1, it follows that:

Proposition 3.3. The space Xε(Z(T̃ )) of genuine continuous characters of Z(T̃ )
is a X (Z†(T ))-torsor.

As an immediate consequence, we find:

Corollary 3.4. The set Irr ε(T̃ ) is a X (Z†(T ))-torsor.
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In particular, we give Irr ε(T̃ ) the structure of a complex algebraic variety, in
such a way that it is a complex algebraic X (Z†(T ))-torsor.

Since Z†(T ) is a finite index subgroup of T , restriction of continuous characters
yields a surjective homomorphism of complex algebraic groups:

res : X (T ) → X (Z†(T )).

As a result, the set Irr ε(T̃ ) is a homogeneous space for X (T ), or equivalently (by
Langlands theorem [9]), a homogeneous space for H1

c (WL/F , T̂ ).

4. Split Tori

In this section, we carry on the assumptions of the previous section. In addition,
we assume that T is a split torus of rank r over F . Thus, there is a canonical
identification T (F ) = Y ⊗Z F

×. We are interested in parameterizing Irr ε(T̃ ). By
the results of the previous section, we may describe this set, up to a choice of base
point, by describing the set Z†(T ).

4.1. An isogeny. Recall that B : Y ⊗Z Y → Z is the symmetric bilinear form
associated to Q. It allows us to construct a subgroup of finite index Y # ⊂ Y :

Y # = {y ∈ Y such that B(y, y′) ∈ nZ for all y′ ∈ Y }.

Note that we suppress mention of Q, B, and n, in our notation Y #.
The subgroup Y # can be related to the “Smith normal form” of the bilinear

form B. Namely, there exists a pair of group isomorphisms α, β:

Zr Y
βoo α // Zr ,

such that for all y1, y2 ∈ Y , one has:

BQ(y1, y2) = D(α(y1), β(y2)),

and D is a symmetric bilinear form on Zr represented by a diagonal matrix with
entries (d1, . . . , dr) (the elementary divisors). Let ej denote the smallest positive
integer such that djej ∈ nZ, for every 1 ≤ j ≤ r. Then we find that:

Y # = α−1(e1Z⊕ e2Z⊕ · · · ⊕ erZ).

Let ι : Y # → Y denote the inclusion of Z-modules. Since Y # has finite index in
Y , this corresponds to an F -isogeny of split tori:

ι : T # → T ,

where T # is the split algebraic torus with cocharacter lattice Y #. From the previ-
ous observations, we find that:

ι(T#) = ι(T #(F )) = α−1
(
F×e1 × · · · × F×er

)
.

4.2. Describing the Center. Recall that extension T̃ of T by µn yields a com-
mutator:

C :
2∧
T → µn.

This commutator can be directly related (by [3]) to the bilinear form B. If u1, u2 ∈
F×, and y1, y2 ∈ Y , then one may directly compute:

C(y1(u1), y2(u2)) = (u1, u2)B(y1,y2)
n .
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The diagonalization of B, via group isomorphisms α, β, yields two isomorphisms of
F -tori:

Gr
m T

βoo α // Gr
m ,

One arrives at a bilinear form on (F×)r, given by:

∆(~z1, ~z2) =
r∏

j=1

(
z
(j)
1 , z

(j)
2

)dj

n
.

This is related to the commutator C by:

C(t1, t2) = ∆(α(t1), β(t2)).

We can now characterize Z†(T ):

Proposition 4.1. The subgroup Z†(T ) of T is equal to the image of the isogeny ι
on the F -rational points:

Z†(T ) = ι(T#).

Proof. We find that:

t1 ∈ Z†(T ) ⇔ C(t1, t2) = 1 for all t2 ∈ T,
⇔ ∆(α(t1), β(t2)) = 1 for all t2 ∈ T,
⇔ ∆(α(t1), ~z2) = 1 for all ~z2 ∈ (F×)r,

⇔ α(t1) ∈
(
F×e1 × · · · × F×er

)
⇔ t1 ∈ ι(T#).

The penultimate step above follows from the non-degeneracy of the Hilbert symbol.
�

We have now proven:

Theorem 4.2. If F is a local field, then Irr ε(T̃ ) is a torsor for X (ι(T#)).

4.3. Character groups. The previous theorem motivates the further analysis of
the group X (ι(T#)). We write ι∗ for the pullback homomorphism:

ι∗ : X (T ) → X (T#).

Proposition 4.3. There is a natural identification:

X (ι(T#)) ≡ Im(ι∗).

Proof. There are short exact sequences of LCA groups:

1 → Ker(ι) → T# → ι(T#) → 1,

1 → ι(T#) → T → Cok(ι) → 1,
Using Propositions 2.1 and 2.2, we arrive at short exact sequences of character
groups:

1 → X (ι(T#) → X (T#) → X (Ker(ι)) → 1,

1 → X (Cok(ι)) → X (T ) → X (ι(T#)) → 1,
Since X (T ) surjects onto X (ι(T#)), we find that the image of ι∗ : X (T ) → X (T#)
is equal to the image of the injective map X (ι(T#)) → X (T#). �
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4.4. The Dual Complex. The isogeny of split F -tori ι : T # → T yields an isogeny
of the complex dual tori:

ι̂ : T̂ → T̂ #.

One may pull back continuous characters:

ι∗ : X (T ) → X (T#).

The following result follows from local class field theory, and demonstrates the
naturality of Langlands’ classification [9]:

Proposition 4.4. There is a commutative diagram of complex algebraic groups,
whose rows are the reciprocity isomorphisms of local class field theory:

X (T ) //

ι∗

��

H1
c (WF , T̂ )

ι̂

��
X (T#) // H1

c (WF , T̂ #)

Note that since T and T # are split tori, the continuous cohomology groups are
quite simple:

H1
c (WF , T̂ ) = Homc(WF , T̂ ).

From this result, we now find:

Corollary 4.5. There is a natural identification:

X (Z†(T )) ≡ Im
(
ι̂ : H1(WF , T̂ ) → H1(WF , T̂ #)

)
.

4.5. Parameterization by Hypercohomology. We may parameterize represen-
tations, using the hypercohomology of the complex of tori:

T̂
ι̂ // T̂ #

concentrated in degrees zero and one. We follow the treatment of Kottwitz-Shelstad
in the Appendices of [7], when discussing hypercohomology of Weil groups, with
coefficients in complexes of tori. In particular, we concentrate the complexes in
degrees 0 and 1 following [7], and not in degrees -1 and 0 as in [2].

There is a long exact sequence in cohomology, which includes:

H1
c (WF , T̂ // T̂ #)

η // H1
c (WF , T̂ ) // H1

c (WF , T̂ #).

Lemma 4.6. The homomorphism η is injective.

Proof. Extending the long exact sequence above, it suffices to prove the surjectivity
of the preceding homomorphism:

H0
c (WF , T̂ ) → H0

c (WF , T̂ #).

But T̂ and T̂ # are complex tori, trivial as WF -modules, and ι̂ is an isogeny.
Therefore, the above map is surjective. �

From this lemma, it makes sense to identify the hypercohomology groupH1
c (WF , T̂ →

T̂ #) with a subgroup of H1
c (WF , T̂ ).

Lemma 4.7. The group H1
c (WF , T̂ → T̂ #) is finite.
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Proof. Since ι̂ is an isogeny, it has finite kernel and cokernel. There is a long exact
sequence, which includes the following terms:

H1
c (WF ,Ker(ι̂)) → H1

c (WF , T̂ → T̂ #) → H1
c (WF , Cok(ι̂)).

The lemma follows. �
This leads to the first main theorem:

Theorem 4.8. There exists an isomorphism, in the category of varieties over C
endowed with an action of H1

c (WF , T̂ ):

Irr ε(T̃ ) ∼=
H1

c (WF , T̂ )

H1
c (WF , T̂ → T̂ #)

.

Remark 4.9. The global analogue of this result also seems to hold. Letting
Irr aut

ε (T̃A) denote the appropriate set of genuine automorphic representations of
T̃A, it seems likely that:

Irr aut
ε (T̃A) ∼=

H1
c (WF , T̂ )

H1
c (WF , T̂ → T̂ #)

,

when T is a split torus over a global field F . The proof follows the same techniques
(together with the Hasse principle for isogenies of split tori), but requires some
analytic care with extension of continuous characters and the appropriate Stone
von-Neumann theorem. We hope to treat this global theorem in a future paper.

5. Unramified Tori

For split tori, the cohomology groups that arise in Theorem 4.8 are quite simple,
since WF acts trivially on T̂ and T̂ #. In fact, the statement of this theorem
makes sense, even when T is a nonsplit torus. However, for general nonsplit tori, it
seems that our explicit methods are insufficient to prove such a result. For “tame
covers” of unramified tori over local nonarchimedean fields, such a paramaterization
is possible.

In this section, we fix the following:
• T will be a a local nonarchimedean field F , which splits over a finite un-

ramified Galois extension L/F , with Γ = Gal(L/F ). X and Y will be the
resulting character and cocharacter groups.

• We define d = [L : F ], and write l for the residue field of OL (note that l
has cardinality qd).

• We fix a uniformizer $ of F× (and hence of L× as well).
• Let γ be the generator of Γ, which acts upon l via γ(x) = xq. Let r =

(qd − 1)/(q − 1) = #(l×/f×).
• T ′ will be an extension of T by K2 in GpF .
• (Q, Ỹ ) will be the Deligne-Brylisnki invariants of T ′. B will be the sym-

metric bilinear form associated to Q.
• n will be a positive integer, such that F has enough nth roots of unity. We

also assume that (p, n) = 1.
• ε : µn(F ) → C× will be a fixed injective character.
• If W is a subgroup of Y , then we write WΓ for the subgroup of Γ-fixed

elements of W . We also define:

W# = {y ∈ Y such that B(y, w) ∈ nZ for all w ∈W}.
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5.1. Z[Γ]-modules. Γ is a cyclic group, generated by γ, of order d. Let Z[Γ] denote
the integral group ring of Γ. We define the following elements of Z[Γ]:

• Let Tr =
∑d−1

i=0 γ
i, and let Trq =

∑d−1
i=0 q

iγi.
• Let δ = γ − 1, and let δq = qγ − 1.

Note that:
Tr ◦ δ = 0, and Trq ◦ δq = qd − 1.

When M is an Z[Γ]-module, we let M̄ = M/(qd − 1)M . We write MΓ for the
Γ-invariant Z-submodule of M . Therefore,

MΓ = {m ∈M such that δm = 0}.

We define M̄Γ,q by:

M̄Γ,q = {m̄ ∈ M̄ such that δqm̄ = 0}.

Proposition 5.1. Suppose that M is an Z[Γ]-module. Then,

Tr(M) ⊂MΓ and Trq(M̄) ⊂ M̄Γ,q.

Proof. The first inclusion is obvious. For the second inclusion, suppose that m̄ ∈ M̄ .
Then,

δqTrqm̄ = Trqδqm̄ = (qd − 1)m̄ = 0.

�

Proposition 5.2. Suppose that M is a Z[Γ]-module, which is free as an Z-module.
Then, δq and Trq act as injective endomorphisms of M , and

Im(δq) = {m ∈M such that Trqm ∈ (qd − 1)M}.

Proof. Since M is free as an Z-module, δq ◦ Trq = Trq ◦ δq = qd − 1 acts as
an injective endomorphism of M . Hence δq, and Trq must also act as injective
endomorphisms of M , proving the first assertion.

Since Trq ◦ δq = qd − 1, it follows that:

Im(δq) ⊂ {m ∈M such that Trqm ∈ (qd − 1)M}.

In the other direction, if Trqm ∈ (qd− 1)M , then Trqm = Trqδqm
′, for some m′ ∈

M . Since Trq acts via an injective endomorphism, it follows that m = δqm
′. �

5.2. Unramified Tori. Much of our treatment of unramified tori is inspired by
Section 2 of Ono [11]. Recall that X and Y are naturally Z[Γ]-modules, in such a
way that the pairing is Γ-invariant.

We fix a smooth model T of T over OF . We make the following identifications:

TL = T (L) ≡ Y ⊗Z L
×, and TF = T (F ) ≡ (Y ⊗Z L

×)Γ.

Similarly, for the integral points, we identify:

T ◦L = T (OL) ≡ Y ⊗Z O×
L , and T ◦F = T (OF ) ≡ (Y ⊗Z O×

L )Γ.

We write T̄ for the special fibre of T . Then, we also identify:

T̄l = T̄ (l) ≡ Y ⊗Z l×, and T̄f = T̄ (f) ≡ (Y ⊗Z l×)Γ.

There are natural reduction homomorphisms:

T ◦L → T̄l, and T ◦F → T̄f .
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Let T 1
L and T 1

F denote the kernels of these reduction maps. The reduction mor-
phisms are split by the Teichmuller lift, and we arrive at a decomposition of Z[Γ]-
modules:

T ◦L ≡ T 1
L × T̄l.

Together with the valuation map, we arrive at a short exact sequence of Z[Γ]-
modules:

1 → T 1
L × T̄l → TL → Y → 1.

The choice of (Γ-invariant) uniformizing element $ splits this exact sequence, lead-
ing to a decomposition of Z[Γ]-modules:

TL ≡ Y × T̄l × T 1
L.

We use this decomposition to “get our hands on” elements of TL. First, every
element of TL can be expressed as y($)t◦, for uniquely determined y ∈ Y , t◦ ∈ T ◦L.
Let θl denote a generator of the cyclic group l×, and θf = θr

l . Thus θf is a generator
of the cyclic group f×. Let ϑL ∈ O×

L and ϑF ∈ O×
F denote the Teichmuller lifts of

θl and θf , respectively.
Let ζL = ($,ϑL)L,qd−1. Let ζF = ζr

L. Note that ζL is a primitive (qd− 1)th root
of unity, and ζF is a primitive (q − 1)th root of unity.

Recall that Ȳ = Y/(qd − 1)Y ; thus, for ȳ ∈ Ȳ , it makes sense to write ȳ(ϑL) for
an element of T ◦L. According to the decomposition TL ≡ Y × T̄l×T 1

L, every element
t ∈ TL has a unique expression:

t = y1($)ȳ2(ϑL)t1,

where y1 ∈ Y , ȳ2 ∈ Ȳ , and t1 ∈ T 1
L. To determine when such an expression lies in

TF , we have the following characterization:

Proposition 5.3. An element y1($)ȳ2(ϑL)t1 of TL, with y1, ȳ2, t
1 as above, lies

in TF if and only if the following three conditions hold:

• y1 ∈ Y Γ. In other words, δ(y1) = 0.
• ȳ2 ∈ Ȳ Γ,q. In other words, δq(ȳ2) = 0.
• t1 ∈ T 1

F .

Proof. By the Γ-invariance of the decomposition TL ≡ Y × T̄l × T 1
L, we find that

y1($)ȳ2(ϑL)t1 ∈ TF if and only if the three factors are fixed by Γ. The proposition
follows from three observations:

• Since $ ∈ F , we have y1($) ∈ TΓ
L if and only if y1 ∈ Y Γ.

• Since γ(ϑL) = ϑq
L, we find that ȳ2(ϑL) ∈ TΓ

L if and only if:

ȳ2 = qγ(ȳ2), in Ȳ .

• Since the reduction map intertwines the action of Γ, we have t1 ∈ (T 1
L)Γ if

and only if t1 ∈ T 1
F .

�

5.3. Tame Metaplectic Unramified Tori. The structure of T ′(L) and T ′(F )
is based on Sections 12.8-12.12 of [3]. In particular, letting T ′L = T ′(L), and



14 MARTIN H. WEISSMAN

T ′F = T ′(F ), there is a natural commutative diagram:

1 // K2(F ) //

��

T ′F
//

��

TF
//

��

1

1 // K2(L) // T ′L // TL
// 1.

There is a natural action of Γ on the bottom row, in such a way that K2(F ) maps to
K2(L)Γ, TF = TΓ

L , and T ′F maps to (T ′L)Γ. The tame symbols yield a commutative
diagram, where the downward arrows arise from the functoriality of K2 and K1:

K2(F ) t //

��

f×

��
K2(L) t // l×

The bottom row is a morphism of Z[Γ]-modules. Pushing forward T ′F and T ′L via
the tame symbols yields a commutative diagram of locally compact groups, with
exact rows:

1 // f× //

��

T̃ t
F

//

��

TF
//

��

1

1 // l× // T̃ t
L

// TL
// 1.

The downward arrows arise from the inclusion of F in L, and of f in l. In Section
12.8 of [3], Deligne and Brylinski note the following:

Proposition 5.4. In the commutative diagram above, the groups in the top row are
precisely the Γ-invariant subgroups of the bottom row. In other words, f× = (l×)Γ,
TF = TΓ

L , and T̃ t
F = (T̃ t

L)Γ.

We may push forward the covers further to obtain all tame covers. Recall that
(p, n) = 1, and F has enough nth roots of unity. Then, we find that n|(q − 1), and
there is a natural surjective map:

ψF : f× → µn(F ),

obtained by first applying the Teichmuller map (from f× to µq−1), and then raising
to the m = (q−1)/n power. Recall that r = (qd−1)/(q−1). One obtains a similar
map:

ψL : l× → µnr(L),
obtained by applying the Teichmuller map (from l× to µqd−1(L)) and then raising to
them = (q−1)/n power. The compatibility of these maps yields a new commutative
diagram with exact rows:

1 // µn(F ) //

��

T̃F
//

��

TF
//

��

1

1 // µnr(L) // T̃L
// TL

// 1.

With this construction, we say that T̃F is a tame metaplectic cover of TF , and T̃L

is a tame metaplectic cover of TL as well. T̃F is identified as a subgroup of T̃L.
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Note that the commutator map for T̃L satisfies:

CL(y1(u), y2(v)) = (u, v)B(y1,y2)
L,nr = (u, v)mB(y1,y2)

L,qd−1
,

where (·, ·)L,nr and (·, ·)L,qd−1 denotes the appropriate Hilbert symbols (in this case,
norm residue symbols) on L×. The commutator on TF is simply the restriction of
CL; as a result, Z†(TF ) ⊂ Z†(TL)∩TF , where the pre-image of Z†(TF ) is the center
of T̃F , and the pre-image of Z†(TL) is the center of T̃L.

5.4. Computation of the center. Recall that the set Irr ε(T̃F ) is a torsor for
X (Z†(TF )). Therefore, we wish to study the group Z†(TF ) in more detail. To this
end, we first observe:

Proposition 5.5. The group T 1
L is contained in Z†(TL). Similarly, T 1

F is contained
in Z†(TF ).

Proof. Since (qd−1, p) = 1, the Hilbert symbol (in this case, a norm-residue symbol)
is trivial, when one of its “inputs” is contained in O1

L. Hence the commutator
CL(·, ·) is trivial when one of its inputs is contained in T 1

L. Hence T 1
L ⊂ Z†(TL).

Since Z†(TF ) ⊂ Z†(TL) ∩ TF , we find that T 1
F ⊂ Z†(TF ) as well. �

Since T 1
F is contained in Z†(TF ), Z†(TF ) corresponds to a subgroup of TF /T

1
F .

Our choice of uniformizing element, together with the previously mentioned split-
tings, yields a decomposition of Z[Γ]-modules:

TL/T
1
L ≡ Y × T̄l.

Namely, every element t of TL/T
1
L can be represented by y1($)ȳ2(ϑL), for uniquely

determined y1 ∈ Y and ȳ2 ∈ Ȳ .
In order to describe Z†(TF ), we work with a number of subgroups of Y . Recall

that Y Γ# is given by:

Y Γ# = {y ∈ Y such that B(y, y′) ∈ nZ for all y′ ∈ Y Γ}.

Note that Y Γ# ⊃ Y #. Also, it is important to distinguish between Y Γ# and
Y #Γ = (Y #)Γ.

Lemma 5.6. There are inclusions of Z[Γ]-modules, of finite index in Y :

Y ⊃ Y Γ# ⊃ Y # ⊃ (qd − 1)Y.

Furthermore, δq(Y ) ⊂ Y Γ#, and Trq(Y Γ#) ⊂ Y #.

Proof. The inclusions are clear, since n divides qd − 1. If y ∈ Y , and y′ ∈ Y Γ, then
we find:

B(δqy, y′) = B(qγy − y, y′)

= qB(y, γ−1y′)−B(y, y′)
= (q − 1)B(y, y′) ∈ nZ, since q − 1 = mn.

Hence δq(Y ) ⊂ Y Γ#.
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Now, suppose that w ∈ Y Γ#, and y′ ∈ Y . Then, we find:

B(Trq(w), y′) =
d−1∑
i=0

B(qiγiw, y′)

≡
d−1∑
i=0

B(γiw, y′) (mod n) since q − 1 = mn

≡ B(w, Tr(y′)) ∈ nZ, since Tr(y′) ∈ Y Γ.

Hence Trq(Y Γ#) ∈ Y #. �
Now, we fully describe Z†(TF ) with two results:

Theorem 5.7. Suppose that y1 ∈ Y , and ȳ2 ∈ Ȳ . Then if the element t =
y1($)ȳ2(ϑL) is contained in Z†(TF ), then for every lift y2 ∈ Y of ȳ2,

y1, y2 ∈ Y #, and δqy2 ∈ (qd − 1)Y Γ#.

Proof. For reference during this proof, we recall that:

nm = q − 1, and r = 1 + q + · · ·+ qd−1, and nmr = qd − 1.

Suppose furthermore that y′1, y
′
2 ∈ Y , and let ȳ′2 ∈ Ȳ be the reduction of y′2. Then,

we find that [Tr(y′1)]($) and [Trq(ȳ′2)](ϑL) are elements of TF . It follows that:

CL (y1($)ȳ2(ϑL), [Tr(y′1)]($)) = 1, and
CL (y1($)ȳ2(ϑL), [Trq(ȳ′2)](ϑL)) = 1.

The explicit formula for the commutator CL yields:

1 = CL (y1($)y2(ϑL), [Trq(ȳ′2)](ϑL)) ,

=
d−1∏
i=0

($,ϑL)mqiB(y1,γiy′2)

L,qd−1
,

= ζ
∑d−1

i=0 mqiB(y1,γiy′2)
L , since ($,ϑL)L,qd−1 = ζL,

= ζ
∑d−1

i=0 mqiB(γd−iy1,y′2)
L , by the Γ-invariance of B,

= ζ
∑d−1

i=0 mqiB(y1,y′2)
L , by the Γ-invariance of y1,

= ζ
mrB(y1,y′2)
L , by summing a partial geometric series,

= ζ
mB(y1,y′2)
F , since ζF = ζr

L.

Since 1 = ζ
mB(y1,y′2)
F for all y′2 ∈ Y , we find that:

y1 ∈ Y #.

Carrying out a similar analysis, an explicit computation yields:

1 = CL (y1($)y2(ϑL), [Tr(y′1)]($)) ,

=
d−1∏
i=0

($,$)mB(y1,γiy′1)

L,qd−1
($,ϑL)mB(y2,γiy′1)

L,qd−1
.

Now, if p is odd, we find that q − 1 is even. Since ($,$)L,qd−1 = ±1, and
mB(y1, γiy′1) ∈ mnZ = (q − 1)Z ⊂ 2Z (since y1 ∈ Y #), we find that:

($,$)mB(y1,γiy′1)

L,qd−1
= 1.
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On the other hand, if p = 2, ($,$)L,qd−1 = 1, and once again the above equality
holds. Continuing our computations yields:

1 =
d−1∏
i=0

($,$)mB(y1,γiy′1)

L,qd−1
($,ϑL)mB(y2,γiy′1)

L,qd−1
,

=
d−1∏
i=0

ζ
mB(y2,γiy′1)
L , since ($,$)mB(y2,γiy′1)

L,qd−1
= 1 and ($,ϑL)L,qd−1 = ζL,

= ζ
∑d−1

i=0 mqiB(y2,y′1)
L , since qγ(ȳ2) = ȳ2,

= ζ
mrB(y2,y′1)
L , by summing a partial geometric series,

= ζ
mB(y2,y′1)
F , since ζF = ζr

L.

Hence, we find that y2 ∈ Y #.
Finally, we prove that δqy2 ∈ (qd − 1)Y Γ#. Note that δqy2 ∈ (qd − 1)Y , since

ȳ2 ∈ Ȳ Γ,q. Thus, δqy2 = (qd − 1)y3, for some y3 ∈ Y . It suffices to prove that
y3 ∈ Y Γ#.

Now, to prove that y3 ∈ Y Γ#, suppose that y′ ∈ Y Γ. It follows that:

1 = CL (y1($)ȳ2(ϑL), y′($))

= ($,$)mB(y1,y′)

qd−1
(ϑL, $)mB(y2,y′)

qd−1

= ζ
mB(y2,y′)
L .

Hence B(y2, y′) ∈ nrZ. It follows that:

B(y3, y′) = (qd − 1)−1B(δqy2, y′)

= (qd − 1)−1 (B(qγy2, y′)−B(y2, y′))
= r−1B(y2, y′) ∈ nZ.

Thus y3 ∈ Y Γ#. �

Theorem 5.8. Suppose that y1, y2 ∈ Y #. Also, suppose that y1 ∈ Y Γ, and ȳ2 ∈
Ȳ Γ,q. Furthermore, suppose that δqy2 ∈ (qd−1)Y Γ#. Then y1($)ȳ2(ϑL) ∈ Z†(TF ).

Proof. Since y1 ∈ Y Γ, and ȳ2 ∈ Ȳ Γ,q, it follows that y1($)ȳ2(ϑL) ∈ TF . Now, we
may compute some commutators.

Suppose that y′1 ∈ Y Γ, and y′2 ∈ Y , and ȳ′2 ∈ Ȳ Γ,q. Thus y′1($) and ȳ′2(ϑL) are
elements of TF . We begin by computing:

CL(y1($), y′1($)) = ($,$)mB(y1,y′1)

L,qd−1
.

If p is odd, then mn = q − 1 is even, and thus mB(y1, y′1) is even. Hence the
commutator is trivial. If p is even, then qd− 1 is odd, and hence ($,$)L,qd−1 = 1.
In either case, the commutator is trivial.

Now, consider the following commutator:

CL(y1($), ȳ′2(ϑL)) = ζ
mB(y1,y′2)
L .

We claim that mB(y1, y′2) ∈ (qd − 1)Z. Indeed, we have:

B(y1, y′2) = B(γy1, y′2) = B(y1, γ−1y′2) = B(y1, qy′2 + (qd − 1)y′3),
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for some y′3 ∈ Y . Since y1 ∈ Y #, we have:

B(y1, (qd − 1)y′3) ∈ n(qd − 1)Z.

It follows that:
(q − 1)B(y1, y′2) ∈ n(qd − 1)Z.

From this, we find:
B(y1, y′2) ∈ nrZ.

Hence mB(y1, y′2) ∈ mnrZ = (qd−1)Z. This proves our claim, and we have proven
that:

CL(y1($), ȳ′2(ϑL) = 1.

Next, consider the following commutator:

CL(ȳ2(ϑL), y′1($)) = ζ
−mB(y2,y′1)
L .

We claim now that mB(y2, y′1) ∈ (qd − 1)Z. Indeed, we have:

B(y2, y′1) = B(qγy2 + (qd − 1)y3, y′1) = qB(y2, y′1) + (qd − 1)B(y3, y′1),

for some y3 ∈ Y Γ#. In particular, B(y3, y′1) ∈ nZ, since y′1 ∈ Y Γ. It follows that:

(q − 1)B(y2, y′1) ∈ n(qd − 1)Z.

From this we find that B(y2, y′1) ∈ nrZ, from which the claim follows. We have
proven that:

CL(ȳ2(ϑL), y′1($)) = 1.

Finally, note that (ϑL, ϑL)L,qd−1 = 1. Hence,

CL(ȳ2(ϑL), ȳ′2(ϑL)) = 1.

We have proven that y1($), and ȳ2(ϑL) commute with a set of generators for
TF /T

1
F . Since T 1

F ∈ Z†(TF ), this suffices to prove that:

y1($)ȳ2(ϑL) ∈ Z†(TF ).

�
The previous two theorems fully characterize the subgroup Z†(TF ).

Corollary 5.9. Suppose that y1 ∈ Y , ȳ2 ∈ Ȳ , and t1 ∈ T 1
F . Then t = y1($)ȳ2(ϑL)t1 ∈

Z†(TF ) if and only if all of the following conditions hold:
• y1 ∈ Y #Γ.
• y2 ∈ Y #, for any choice of representative y2 of ȳ2.
• δqy2 ∈ (qd − 1)Y Γ#, for any choice of representative y2 of ȳ2.

Proof. This corollary follows directly from the previous two theorems. One impor-
tant observation is the following: The latter two conditions do not depend upon
the choice of representative y2 ∈ Y for a given ȳ2 ∈ Ȳ .

Indeed, suppose that y′2 = y2 + (qd − 1)z, for some z ∈ Y , so that y2 and y′2
are representatives for ȳ2. Since Y # ⊂ nY , and n divides (qd − 1), we find that
y2 ∈ Y # if and only if y′2 ∈ Y #.

Similarly, we find that δqy′2 = δqy2 + (qd − 1)δqz. By Lemma 5.6, δqz ∈ Y Γ#. It
follows that δqy2 ∈ (qd − 1)Y Γ# if and only if δqy′2 ∈ (qd − 1)Y Γ#. �

The above corollary implies that y1($) ∈ Z†(TF ), for a given y1 ∈ Y , if and
only if y1 ∈ Y #Γ. It also implies the following:
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Corollary 5.10. Suppose that ȳ2 ∈ Ȳ . Then ȳ2(ϑL) ∈ Z†(TF ) if and only if

(5.1) ȳ2 ∈ Im(Trq(Ȳ Γ#) → Ȳ ).

Proof. The previous corollary implies that ȳ2(ϑL) ∈ Z†(TF ) if and only if the
following two conditions hold:

(1) y2 ∈ Y # for some (equivalently, every) representative y2 of ȳ2.
(2) δqy2 ∈ (qd − 1)Y Γ# for some (equivalently, every) representative y2 of ȳ2.

Given these conditions, and a representative y2 of ȳ2, there exists w ∈ Y Γ# such
that δq(y2) = (qd − 1)w. Hence δq(y2) = δqTrq(w). The injectivity of δq implies
that y2 = Trq(w). It follows that ȳ2 is the image of Trq(w̄) in Ȳ . Hence, the
conditions (1) and (2) imply the one condition 5.1 of this corollary.

Conversely, suppose that Equation 5.1 is satisfied. Then we may choose w ∈
Y Γ#, such that ȳ2 equals the image of Trq(w̄) in Ȳ . Thus y2 = Trq(w) is a
representative for ȳ2 in Ȳ . Since Trq(Y Γ#) ⊂ Y # by Lemma 5.6, the condition
(1) is satisfied. Since δqy2 = Trqδqw = (qd − 1)w, condition (2) is satisfied as well.
Therefore, ȳ2(ϑL) ∈ Z†(TF ). �

5.5. The image of an isogeny. For split metaplectic tori, we found a useful
characterization of Z†(TF ) as the image of an isogeny on F -rational points. The
same isogeny makes sense for non-split tori, however there is a small but important
difference between the image of the isogeny and Z†(TF ). We view this difference
as accounting for “packets” of representations of metaplectic tori, with the same
parameter.

Consider the inclusion of Z[Γ]-modules ι : Y # ↪→ Y . Note that we use the fact
that Q is a Γ-invariant quadratic form, so that Y # is a Z[Γ]-submodule. This
inclusion corresponds to an isogeny of algebraic tori over F :

ι : T # → T .

Our description of the F -rational and L-rational points for T is also valid, mutatis
mutandis, for T #. When y ∈ Y #, and u ∈ L×, we simply write (y ⊗ u) for the
corresponding element of T #(L) ≡ Y #⊗L×. We choose this notation, rather than
y(u), since we do not wish to confuse cocharacters of T with cocharacters of T #.
Since Y # is an Z[Γ]-module, we find that:

Proposition 5.11. The torus T # splits over an unramified extension of F . Sup-
pose that y1, y2 ∈ Y #. Then (y1 ⊗$)(y2 ⊗ ϑL) ∈ T# = T #(F ) if and only if

y1 ∈ Y #Γ, and ȳ2 ∈ (Y #)Γ,q.

The isogeny ι has the following effect on L-rational points:

ι(y ⊗ u) = y(u), for all y ∈ Y #, u ∈ L×, (y ⊗ u) ∈ T #(L).

Hence, we find that:

Proposition 5.12. Suppose that y1 ∈ Y , ȳ2 ∈ Ȳ , and t1 ∈ T 1
L. Then y1($)ȳ2(ϑ)t1

is an element of the image of ι : T #(F ) → T (F ) if and only if:
• y1 ∈ Y #Γ.
• There exists y2 ∈ Y # representing ȳ2, such that δqy2 ∈ (qd − 1)Y #.
• t1 ∈ T 1

F .
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Proof. Since (n, p) = 1, the image of ι contains T 1
F . It suffices only to consider the

images:
ι((y1 ⊗$)(y2 ⊗ ϑL)),

for all y1 ∈ Y #Γ, and all y2 ∈ Y # such that ȳ2 ∈ (Y #)Γ,q. �
Then, we find:

Corollary 5.13. Suppose that ȳ2 ∈ Ȳ . Then ȳ2(ϑL) ∈ ι(T #(F )) if and only if

ȳ2 ∈ Im(Trq(Y #) → Ȳ ).

Proof. If ȳ2 ∈ Im(Trq(Y #) → Ȳ ), there exists an element y3 ∈ Y # such that ȳ2
equals the image of Trq(y3) in Ȳ . If y2 = Trq(y3), then y2 is a representative for
ȳ2 in Y . Note that y2 ∈ Y #, since y3 ∈ Y #. Furthermore, δqy2 = δqTrq(y3) =
(qd − 1)y3 ∈ (qd − 1)Y #. Hence, ȳ2(ϑL) ∈ ι(T #(F )) by the previous proposition.

Conversely, suppose that ȳ2(ϑL) ∈ ι(T #(F )). By the previous proposition, there
exists a representative y2 of ȳ2 in Y , such that y2 ∈ Y #, and δq(y2) ∈ (qd − 1)Y #.
It follows that δq(y2) = δqTrq(y3), for some y3 ∈ Y #. Hence y2 = Trq(y3). Hence,
ȳ2 is contained in the image of Trq(Y #) in Ȳ . �

5.6. Endoscopic Parameterization. From the previous two sections, we have
described the groups Z†(TF ) and ι(T #(F )). They are quite similar, with one
exception. Given ȳ2 ∈ Ȳ , we have:

• ȳ2(ϑL) ∈ Z†(TF ) if and only if

ȳ2 ∈ Im(Trq(Ȳ Γ#) → Ȳ ).

• ȳ2(ϑL) ∈ ι(T #(F )) if and only if

ȳ2 ∈ Im(Trq(Y #) → Ȳ ).

Define a finite group P † by:

P † =
Im(Trq(Ȳ Γ#) → Ȳ )

Im(Trq(Y #) → Ȳ )

Since Y # ⊂ Y Γ#, one may give a more practical definition of P †:

P † =
Trq(Y Γ#)

Trq(Y #) · (qd − 1)Y
.

Since Trq acts as an injective endomorphism of Y Γ# and Y #, and qd−1 = δq ◦Trq,
we may further identify P †:

P † ≡ Y Γ#

Y # · δqY
.

The description of P † given above depends upon the choice of root of unity θL.
However, it can be defined canonically in terms of the Z[Γ]-module T̄l, and the
bilinear form B.

It follows from Proposition 5.12, and Corollary 5.9, that there is a short exact
sequence:

1 → ι(T #(F )) → Z†(TF ) → P † → 1.
The main theorem of Langlands in [9], parameterizing smooth characters of tori

over local fields, determines isomorphisms:

X (TF ) ∼= H1
c (WL/F , T̂ ), and X (T#

F ) ∼= H1
c (WL/F , T̂ #).
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As before, the characters of the image of an isogeny can be parameterized cohomo-
logically:

Proposition 5.14. The Langlands parameterization yields a finite-to-one param-
eterization of the smooth characters of Z†(TF ):

1 → X (P †) → X (Z†(TF )) →
H1

c (WL/F , T̂ )

H1
c (WL/F , T̂ → T̂ #)

→ 1.

Remark 5.15. In order to viewH1
c (WL/F , T̂ → T̂ #) as a subgroup ofH1

c (WL/F , T̂ )
as above, we must know that the map H0

c (WL/F , T̂ ) → H0
c (WL/F , T̂ #) is surjec-

tive. This follows from the identifications:

H0
c (WL/F , T̂ ) ≡ HomZ(Y Γ,C×), and H0

c (WL/F , T̂ #) ≡ HomZ(Y #Γ,C×),

and the fact that Y #Γ has finite index in Y Γ.

This leads directly, via a Stone-von-Neumann theorem, to a main theorem for
tame covers of unramified tori:

Theorem 5.16. Suppose that we are given a tame metaplectic cover of an unram-
ified torus:

1 → µn → T̃ → T → 1,
Then, with the sublattices Y # ⊂ Y Γ# ⊂ Y defined as before, and the resulting
isogeny ι : T # → T , we find:

There is a finite-to-one surjective map, intertwining the natural
action of H1(WL/F , T̂ ):

Φ: Irr ε(T̃ ) →
H1

c (WL/F , T̂ )

H1
c (WL/F , T̂ → T̂Q,n)

.

The fibres of this map are torsors for the finite group X (P †), where:

P † ≡ Y Γ#

Y # · δqY
.

Remark 5.17. We do not know if a parameterization, such as that above, holds
for general metaplectic tori over local fields. Namely, we have not been able to
describe the center of such metaplectic tori, when T is ramified, or when T is an
unramified torus, but the cover is not tame. We hope that such a parameterization
is possible, though the packets might be substantially different.

Remark 5.18. In the process of proving the previous theorem, we chose a uni-
formizing element $ ∈ F× and a root of unity θL. However, this choice does not
have any effect on the parameterization given above. The sublattices Y # and Y Γ#

clearly do not depend upon such a choice. Moreover, the action of X (P †) on the
fibres of Φ does not depend on such a choice.

6. Pseudo-Spherical and Pseudo-Trivial Representations

We maintain all of the conventions of the previous section. In particular, we
have a tame metaplectic cover of an unramified torus:

1 → µn → T̃F → TF → 1.
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We have shown that the irreducible genuine representations of T̃F can be parameter-
ized by the points of a homogeneous space on which H1(WL/F , T̂ ) acts transitively.
However, such a parameterization is not unique; one must choose a “base point” in
the space of irreducible genuine representations of T̃F , in order to choose a specific
morphism of homogeneous spaces:

Φ: Irr ε(T̃F ) →
H1(WL/F , T̂ )

H1(WL/F , T̂ → T̂ #)
.

In this section, we discuss the data which determines such base points. Such
choices arise frequently in treatments of metaplectic groups, often as choices of
square roots of −1 in C.

6.1. The Residual Extension. Recall that the unramified torus T has a smooth
model T over OF , and T ◦F = T (OF ). In this case, T ◦F is the maximal compact
subgroup of T , and we let T̃ ◦F be its preimage in T̃F . Also, T̄ denotes the special
fibre of T , which is a torus over f . Recall that T ′ is a central extension of T by
K2. Pushing forward via the tame symbol led to the tame central extension:

1 → f× → T t
F → TF → 1.

We write T t◦
F for the preimage of TF in T t

F .
In Section 12.11 of [3], Deligne and Brylinski construct an extension T̄

′ of T̄ by
Gm (in the category of groups over f). We call T̄

′ the residual extension associated
to T ′. The residual extension fits into the following commutative diagram:

1 // f× //

��

T t◦
F

//

��

T ◦F //

��

1

1 // f× // T̄ ′f
// T̄f

// 1.

Here, the map from f× to itself is the identity, the map from T ◦F to T̄f is the
reduction map, and the diagram identifies the top row with the pullback of the
bottom row via reduction.

As an extension of T̄ by Gm over f , the group T̄
′ is an algebraic torus over f .

Note that the category of extensions of T̄ by Gm, in the category of groups over f , is
equivalent to the category of extensions of Y by Z, in the category of Z[Γ]-modules
(where Z is given the trivial module structure). In this way, the construction of
Section 12.11 of [3] associates an extension of Y by Z, to any extension of an
unramified torus T by K2.

Remark 6.1. Recall that Ỹ is a Γ-equivariant extension of Y by L×, constructed
as a functorial invariant of the extension T ′ of T by K2. Let Y ′ be the extension
of Y by Z, obtained by pushing forward Ỹ via the valuation map L× → Z:

0 → Z → Y ′ → Y → 0.

We do not know whether this extension is naturally isomorphic to the exact se-
quence of cocharacter groups of the residual extension of tori described above

Definition 6.2. Let Spl(T̄ ′) denote the set of splittings, in the category of algebraic
groups over f , of the short exact sequence:

1 → Gm → T̄
′ → T̄ → 1.
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We say that the extension T ′ of the unramified torus T is a residually split extension,
if Spl(T̄ ′) is non-empty.

Proposition 6.3. Then, if Spl(T̄ ′) is non-empty, then Spl(T̄ ′) is a torsor for the
abelian group XΓ.

Proof. Any two algebraic splittings are related by an element of Homf (T̄ ,Gm).
This group may be identified with the Γ-fixed characters of T . �

6.2. Pseudo-spherical representations. Suppose now that T ′ is a residually
split extension of T by K2. Fix a splitting s ∈ Spl(T̄ ′). The splitting lifts to a
splitting σ : T ◦F → T t◦

F . Pushing forward via the mth power map, we may also view
σ as a splitting T ◦F → T̃ ◦F . From such a splitting s, we let θ◦s : T̃ ◦F → C× denote the
character obtained by projecting onto µn (via the splitting σ), and then applying
the injective homomorphism ε : µn → C×.

Let T̃ 1
F be the centralizer of T̃ ◦F in T̃F . Then, we find:

Proposition 6.4. The group T̃ 1
F is the preimage of a subgroup T 1

F ⊂ TF . Consid-
ering the valuation map:

val : TF → Y Γ,

whose kernel is T ◦F , T 1
F is equal to the preimage of Y #Γ.

Proof. Since T 1
F ⊃ T ◦F , it suffices to identify the set of y ∈ Y Γ such that:

CL(y($), ȳ′(ϑL)) = 1 for all ȳ′ ∈ Ȳ Γ,q.

In fact, the set of such y has been identified in the proofs of Theorems 5.7 and 5.8.
The above condition is satisfied if and only if y ∈ Y #Γ. �

Corollary 6.5. The group T̃ 1
F is abelian.

Proof. As T̃ 1
F is the centralizer of the abelian group T̃ ◦F , it suffices to prove that

C(y($), y′($)) = 1 for all y, y′ ∈ Y #Γ. This is proven in the beginning of the proof
of Theorem 5.8. �

Directly following Section 4 of Savin [13], we find

Proposition 6.6. There is a natural bijection between the following two sets:

• The set Irr sph
s,ε (T̃F ) of pseudo-spherical irreducible representations of T̃F

(for the splitting s). These are the genuine irreducible representations of
T̃F , whose restriction to T̃ ◦F via the splitting s contains a nontrivial θ◦-
isotypic component.

• The set of extensions of θ◦ to the group T̃ 1
F .

Namely, if (π, V ) is a pseudo-spherical irreducible representation, its θ◦-isotypic
subrepresentation is an extension of θ◦ to the group T̃ 1

F . Conversely, given such an
extension θ1 of θ◦ to a character of T̃ 1

F , the induced representation IndT̃F

T̃ 1
F

θ1 is a
pseudo-spherical irreducible representation.



24 MARTIN H. WEISSMAN

One may rephrase the above bijection slightly; the splitting s yields an injective
homomorphism from T ◦F onto a normal subgroup of T̃ 1

F . This fits into a commuta-
tive diagram with exact rows and columns:

1

��

1

��
1 // 1 //

��

T ◦F //

s

��

T ◦F //

��

1

1 // µn //

��

T̃ 1
F

//

��

T 1
F

//

��

1

1 // µn //

��

Ỹ #Γ //

��

Y #Γ //

��

1

1 1 1

Hence, the splitting s determines an extension Ỹ #Γ of Y #Γ by µn. A standard
diagram chase now yields:

Proposition 6.7. There is a natural bijection:

Irr sph
s,ε (T̃F ) ↔ Xε(Ỹ #Γ).

Corollary 6.8. The space Irr sph
s,ε (T̃F ) is naturally a torsor for the complex algebraic

torus X (Y #Γ).

Remark 6.9. One may view Xε(Ỹ #Γ) as the set of irreducible representations of
a “quantum torus”. Indeed, consider the ring:

Cε[Ỹ #Γ] =
C[Ỹ #Γ]

〈ζ − ε(ζ)〉ζ∈µn

.

The ring Cε[Ỹ #Γ] can be viewed as (the coordinate ring of) a quantum complex
torus, which we call T̂ #Γ

ε . T̂ #Γ
ε is the quantization of a complex torus, at a root

of unity. Quasi-coherent sheaves on this quantum torus (i.e. modules over its
coordinate ring) correspond naturally to pseudo-spherical representations of T̃F .

6.3. Pseudo-Trivial Representations. In many practical situations, the exten-
sion Ỹ #Γ of Y #Γ by µn splits over a quite large submodule of Y #Γ. For example,
in many cases, the extension splits over Y #Γ ∩ 2Y .

Suppose that V ⊂ Y #Γ is a finite index subgroup, endowed with a splitting v of
the resulting exact sequence:

1 // µn // Ṽ // V //
vuu

1.

Let U = Y #Γ/V denote the quotient. The splitting v yields an extension of finite
abelian groups:

1 → µn → Ũ → U → 1.
Pulling back yields natural inclusions:

Xε(U) ↪→ Xε(Ỹ #Γ) ≡ Irr sph
s,ε (T̃F ).
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Therefore, within the set of pseudo-spherical representations of T̃F , we find a
finite set of “pseudo-trivial” representations (relative to the choice of splitting sub-
group (V, v) of Y #Γ:

Definition 6.10. The genuine pseudo-trivial representations of T̃F , are those irre-
ducible pseudo-spherical genuine representations, that are in the image of Xε(Ũ).
This definition depends upon the following choices:

• The splitting s (to determine the pseudo-spherical representations).
• The splitting subgroup (V, v) (to determine the pseudo-trivial representa-

tions).

Remark 6.11. Most often, one chooses a pseudo-trivial “base point” in the space
Irr ε(T̃F ). Very often (cf. the examples of [13]) Ũ is a finite abelian group of
exponent 4. It follows that pseudo-trivial representations may often be given by
specifying certain characters of an abelian group of exponent 4. This explains
the frequent need to choose fourth roots of unity, in the literature on metaplectic
groups.

7. Tori over R

In this section, the following will be fixed:

• T will be a torus over R, which splits over C, with Γ = Gal(C/R) = {1, γ}.
X and Y will be the resulting character and cocharacter groups.

• T ′ will be an extension of T by K2 in GpR.
• (Q, Ỹ ) will be the Deligne-Brylisnki invariants of T ′. B will be the sym-

metric bilinear form associated to Q.
• We fix n = 2, so that R has enough nth roots of unity.
• ε : µ2(R) → C× will be the unique injective character.
• We view T = T (R) as a real Lie group. The extension T ′, and the quadratic

Hilbert symbol, yields an extension of Lie groups:

1 → µ2 → T̃ → T → 1.

We are interested in parameterizing the irreducible genuine representations of
T̃ , and the set of such representations is called Irr ε(T̃ ), as before.

7.1. Structure of metaplectic tori over R. Let T ◦ be the connected component
of the identity in the Lie group T . Then, we find a canonically split short exact
sequence of Lie groups:

1 → T ◦ → T → (Y Γ ⊗Z µ2) → 1.

We define Y Γ = Y Γ ⊗Z µ2 ≡ Y Γ/2Y Γ. Every element t of T has a decomposition
t = t◦ȳ(−1), for uniquely determined t◦ ∈ T ◦ and ȳ ∈ Y Γ.

Now, we consider the metaplectic cover of T :

1 → µ2 → T̃ → T → 1.

The commutator C : T × T → µ2 is bi-multiplicative and continuous. It follows
that the commutator is trivial when either of its inputs is in T ◦. Hence we find:

Proposition 7.1. T ◦ is a subgroup of Z†(T ).
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7.2. Description of the center. It follows from the previous proposition that,
to describe Z†(T ), it suffices to describe its image in T/T ◦. Hence, it suffices to
determine when, given ȳ ∈ Y Γ, ȳ(−1) ∈ Z†(T ). We must be able to compute the
commutator C(ȳ(−1), ȳ′(−1)) for arbitrary ȳ, ȳ′ ∈ Y Γ.

Here, we note that such elements ȳ(−1) and ȳ′(−1) are contained in the maximal
split subtorus T s ⊂ T over R. Restricting the central extension of T by K2, to the
subtorus T s, the formula of Corollary 3.14 of [3] is valid for computing commutators.
We find that:

Proposition 7.2. If y, y′ ∈ Y Γ, then C(ȳ(−1), ȳ′(−1)) = (−1)B(y,y′).

Proof. This follows directly from Corollary 3.14 of [3], and the Hilbert symbol over
R: (−1,−1)R,2 = −1. �

Proposition 7.3. Given ȳ ∈ Y Γ, ȳ(−1) ∈ Z†(T ) if and only if every representative
y of ȳ in Y satisfies:

y ∈ Y Γ#Γ.

Proof. Suppose ȳ, ȳ′ ∈ Y Γ. Let y be a representative of ȳ in Y . The commutator
has been computed:

C(ȳ(−1), ȳ′(−1)) = (−1)B(ȳ,ȳ′).

Thus, we find that C(ȳ(−1), ȳ′(−1)) = 1 for all ȳ′ ∈ Y Γ, if and only if B(y, y′) ∈ 2Z
for all represenatives y of all ȳ′ ∈ Y Γ. This occurs if and only if B(y, y′) ∈ 2Z for
all y′ ∈ Y Γ, i.e., y ∈ Y Γ#.

Thus, we find that, given ȳ ∈ Y Γ, ȳ(−1) ∈ Z†(T ) if and only if y ∈ Y Γ# ∩ Y Γ =
Y Γ#Γ. �

7.3. The image of an isogeny. As in the nonarchimedean case, the inclusion
Y # → Y of Z[Γ]-modules corresponds to an isogeny of tori over R:

ι : T # → T .

We are interested in the resulting continuous homomorphism of real Lie groups:

ι : T# → T.

Since ι is an isogeny, we find that ι(T#) ⊃ T ◦. Thus, in order to fully describe
ι(T#) it suffices to determine for which ȳ ∈ Y Γ, ȳ(−1) ∈ ι(T#).

Proposition 7.4. Suppose that ȳ ∈ Y Γ. Then ȳ(−1) ∈ ι(T#) if and only if
ȳ ∈ Im(Y #Γ → Y Γ).

Proof. We find that ȳ(−1) ∈ ι(T#), if and only if there exists y ∈ Y #Γ which
represents ȳ. The proposition follows. �

Comparing the image of the isogeny ι, to the group Z†(T ), yields a short exact
sequence:

1 → ι(T#) → Z†(T ) → P † → 1,

where we may identify the finite group:

P † ≡ Y Γ#Γ

Y #Γ · 2Y Γ
.
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7.4. Parameterization. As for the case of nonarchimedean fields, we choose to
parameterize the genuine irreducible representations of T̃ , through a finite-to-one
map and a description of the fibres. Over R, the previous two sections imply the
following:

Theorem 7.5. The space Irr ε(T̃ ) can be identified (via Theorem 3.1) with the
complex variety of genuine characters Xε(Z(T̃ )). This is a torsor for the complex
algebraic group of characters X (Z†(T )). There is a short exact sequence:

1 → X (P †) → X (Z†(T )) → H1
c (WR, T̂ )

H1
c (WR, T̂ → T̂ #)

→ 1.

Thus, there exists a finite-to-one parameterization:

Φ: Irr ε(T̃ ) → H1
c (WR, T̂ )

H1
c (WR, T̂ → T̂ #)

,

which intertwines the actions of H1
c (WR, T̂ ), and whose fibres are torsors for the

finite group X (P †).

Note that this theorem is quite similar to the parameterization of Irr ε(T̃ ) for
tame covers of unramified tori over nonarchimedean local fields. The primary dif-
ference is that the “packet group” P † is built from Γ-fixed subgroups. For example,
the analogue of δq = qγ − 1 (in the nonarchimedean case) is −γ − 1 (in the real
case), which restricts to multiplication by −2 on the Γ-fixed subgroup.

On the other hand, the extension C/R is more analogous to a ramified extension
of nonarchimedean fields, so one should not expect a perfect analogy. Perhaps, for
ramified extensions of nonarchimedean fields, the packet groups look similar to the
groups P † above.
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