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1. Introduction

Let G be a real connected semisimple Lie group with finite center.

Suppose (03C0, H03C0) is an irreducible unitary representation of G, and (p, F )
is an irreducible finite dimensional representation of G. Then one can
consider the continuous cohomology of G with coefficients in ir ~ p,

(see [2] or [5]). The zero cohomology group H0ct(G, H03C0 0 F) consists of
the G-invariant vectors in A’ , 0 F, and the higher groups are the derived
functors of H° in an appropriate category. One of the main reasons for
the interest in this cohomology is its connection with the theory of
automorphic forms. The simplest aspect of this connection can be

described as follows. Let K c G be a maximal compact subgroup, and let
r c G be a discrete subgroup. Assume that 0393 B G is compact, and that r
acts freely on G/K. (Such subgroups r always exist.) Then

is a compact manifold. The action of G by right translation on the
Hilbert space L2(0393BG) decomposes into a Hilbert space direct sum of
irreducible unitary representations of G, each occurring with finite multi-
plicity :

with m03C0 a non-negative integer. Matsushima’s formula ([2], page 223) is

* Supported in part by NSF grant MCS-8202127.



52

The cohomology groups on the left are the ordinary topological ones for
the manifold X. The numbers m03C0 are essentially dimensions of spaces of
automorphic forms for r. In order to apply this formula (and refine-
ments or generalizations of it) to compute the m03C0, we need to understand
Hci(G, H03C0). The problem we consider (and more or less solve) is there-
fore this: describe, in as much detail as possible, the irreducible unitary
representations ( ’TT, Ye,) such that

for some finite dimensional representation F of G.
To understand the solution to this problem, we have to know what it

means to describe a unitary representation. (The reader with any back-
ground in this area should now skip to Theorem 1.4.) The best descrip-
tion is usually a realization: we make G act on a vector bundle over a
homogeneous space (say), and consider the representation on an ap-
propriate Hilbert space of sections of the bundle. Unfortunately, the
representations with cohomology rarely have such realizations. (This is
perhaps a failure more of technology than of vision. Rawnsley, Schmid,
and Wolf in [21] ] have suggested a possible realization which is a very
sophisticated version of "sections of a bundle" but they have been able
to produce it only in special cases.) Instead, we consider some invariants
which any unitary representation has, and specify what they are in our
representations. Two invariants are needed: the eigenvalue of the Casimir
operator of the representation, and the restriction of the representation to
K.

To describe the Casimir operator, we need to get a representation of
the Lie algebra g0 of G out of a unitary representation (03C0, H03C0). There is a
dense subspace H~03C0 ~ H03C0, the smooth vectors of H03C0. If x e g0 and

v ~ H~03C0, then we define

the limit exists, and belongs to H~03C0. Therefore

The Casimir operator is a certain element 03C0-(03A9) in the algebra generated
by the operators 03C0(X); we will describe it more explicitly in a moment. It
commutes with all of the operators 03C0(X). Since (03C0, H03C0) is irreducible,
this suggests that 03C0(03A9) should be a scalar operator. (Schur’s lemma does
not immediately apply, since H03C0 is infinite dimensional, and 03C0-(03A9) is

defined only on a dense subspace.) Nevertheless, I.E. Segal has shown
that
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The (real) constant c03C0 is our first general invariant of v. To define v(Q ),
recall the Killing form

on g0. It is non-degenerate since g0 is semisimple. Fix a basis {Xt} of g,
and let {XJ} be the dual basis:

Then

It is easy to check that this is independent of the choice of basis.
If 03C0 is realized in a space of functions on G/K (which is a Riemannian

manifold in a natural way), then c’1T may be interpreted as the eigenvalue
of the Laplace-Beltrami operator on that space of functions. Now Hodge
theory suggests that it is the zero eigenspace of the Laplacian which
should be related to cohomology; and this turns out to be the case.

PROPOSITION 1.2 ([2], Proposition IL3.1): Suppose (7r, A’,) is an irreduci-
ble unitary representation of G, and (p, F) is an irreducible finite dimen-
sional representation of G. Write c03C0, cp for the respective eigenvalues of the
Casimir operator ( see (1.1)). Then Hci(G, H03C0, (9 F) =1= 0 only if c03C0 = cP . In

particular, H*ct(G,H03C0) ~ 0 only if c03C0 = 0.

We therefore know the value of this first invariant in a representation
with non-zero cohomology.

Next, recall the maximal compact subgroup K of G. Any unitary
représentation (y, H03B3) of K decomposes as a Hilbert space direct sum of
copies of the various irreducible representations of K, which are finite
dimensional. If we write k for the set of irreducible representations of K,
we can write symbolically

Here m(03B4, y ) is a cardinal number, the multiplicity of 8 in y. This means
that (if 8 acts on

(a Hilbert space direct sum), with the isomorphism respecting the actions
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of K. In particular, if (03C0, H03C0) is an irreducible unitary representation of
G, then

here we have written m(03B4, 03C0) for the multiplicity of 8 in the restriction of
v to K. A theorem of Harish-Chandra says that all the cardinal numbers

m(03B4, 03C0) are finite; that is, they are non-negative integers. The second
general invariant of 77 which we have in mind is the set of integers
m(03B4, 03C0). In practice, one usually uses much weaker information. One
might know only (for some fixed v) that a particular m(03B40, v) is

non-zero. If v is realized in a space of functions on the symmetric space
G/K, for example, then m(trivial, 77-) must be non-zero: that is, v must
contain the trivial representation of K.

Matsushima’s formula shows that the representations having non-zero
cohomology are connected with the cohomology of locally symmetric
spaces; so analogy with the DeRham theorem suggests that such repre-
sentations should be realized on the space of sections of the form bundle
on G/K. This is essentially correct; and one concludes that they must
contain certain particular representations of K.

PROPOSITION 1.3 ([2], Proposition Il.3.1): Suppose (03C0, 03C0) is an irreduci-
ble unitary representation of G, and ( p, F) is a finite dimensional represen-
tation of G. Write P for the complexified tangent space of G/K at the
origin. Suppose HJct ( G, 03C0 0 F) =1= 0. Then there is a 8 E K such that 8
occurs in both ’lT and

Propositions 1.2 and 1.3 show how to get some information about our
two general invariants from knowing that the cohomology of 17 is

non-zero. Our results imply that this very weak information actually
determines the representation.

THEOREM 1.4: Suppose ( p, F) is an irreducible finite dimensional represen-
tation of G, and 8 E k occurs in

Then there is at most one irreducible unitary representation (03C0, H03C0) of G
with the following properties:

(a) c03C0 = cp (notation (1.1))
(b) 03B4 occurs in 03C0.



55

Assume that (7r, H03C0) exists. Then the following things may be computed
explicitly from 8:

(1) H*ct(G, H03C0 ~ F ) ( together with its Hodge structure, if G/K is Hermi-
tian symmetric)

(2) the position of 03C0 in the Langlands classification of irreducible repre-
sentations of G

(3) the character of 77 on a fundamental Cartan subgroup
(4) the multiplicity of any representation of K in 77.

This summarizes Propositions 6.1, 6.4, and 6.19, and Theorems 5.5 and
6.16. The theorem can be rephrased as follows. Suppose v is unitary and
v 0 F has non-zero cohomology. If we can determine a single K type of v
which lies in HomC(F, 039B’p), then we can compute all of the other things
mentioned.

For simplicity of exposition, we treat the case of untwisted coefficients
( F = Ç) first. The first step is to exhibit a certain collection of represen-
tations of G (Theorem 2.5). These were first constructed by Parthasarathy
in [12], but we need a characterization of them different from the one he
gives. Next, we compute the cohomology of these representations (Theo-
rem 3.3). Finally, we show (confirming a conjecture of Zuckerman) that
any irreducible unitary representation of G having non-zero continuous
cohomology belongs to our collection (Theorem 4.1). The method is due
to Parthasarathy [13].

Our results rely heavily on work of Kumaresan in [10] (the cases À = 0
of Propositions 5.7 and 5.16). For some applications, such as vanishing
theorems, they do not improve on [10]. (We have completed the explicit
calculation of Kumaresan’s vanishing theorem in Section 8.) When G is
complex, our results deduce to those of Enright [4], with essentially the
same proof. When G/K is Hermitian symmetric and H03C0 is a highest
weight representation, our results are those of Parthasarthy [13]. When G
is SL( n, R), sharper results than ours have been given by Speh in [15],
[16].

There is-one annoying gap in our results: we do not know how to
prove that all of the representations which we construct are in fact

unitary; so we have not actually classified the unitary representations
with non-zero cohomology. This is unimportant for the obvious applica-
tions to automorphic forms; but it is of great importance in the study of
the unitary dual of G. Some partial results are given in Section 6

(Propositions 6.3 and 6.5).
Finally, our results have some bearing on the theory of Dirac opera-

tors on locally symmetric spaces. This is discussed in Section 7.
This paper has deliberately been written at two levels. The results

should be of interest outside of representation theory, so they have been
formulated in as elementary a way as possible. The proofs are not really
very deep, but they are a little convoluted; and it is difficult to imagine
that they will appear natural or enlightening to a non-expert. They are
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accordingly addressed to a much smaller audience. From Section 5 on, in
fact, many proofs are omitted or sketched on the grounds that this

audience could easily supply the details.
It is a pleasure to thank J. Arthur and D. Barbasch for helpful

discussions.

2. The représentations A a

Recall that G is a connected real semisimple Lie group with finite center.
Write g o for the Lie algebra of G, and g = (g0)C for its complexification.
Analogous notation is used for other groups. Let K c G be a maximal
compact subgroup, 0 the Cartan involution, and

the corresponding Cartan decomposition. We write (, ) for the Killing
form on g o and its various natural complexifications, restrictions, and so
on.

Let (03C0, Yê) be an irreducible unitary representation of G on a Hilbert
space P, and £00 the subspace of smooth vectors. Then H~ is a dense
subspace of H invariant under G, and there is a natural action of g on
H~ (see the introduction). Define

here (v(K)v) denotes the linear span of all the vectors of the form

’1T ( k ) v, with k E K.

PROPOSITION 2.1 (Harish-Chandra [6]): £K is stable under the actions of
K and g on H~. As a g module,£K is irreducible, and determines ’1T up to
unitary equivalence.

We call ye K the Harish-Chandra module of ’1T. If x ~ g and v ~ HK, we
will use the module notation x - v instead of 03C0(x) v.

What we will actually describe are modules An for g. The main

theorem will assert that if (03C0, H) has non-zero continuous cohomology,
then £K is isomorphic to some A q as a g module. Because of the last
assertion of Proposition 2.1, Aq then determines v. (The problem dis-
cussed in the introduction is that, given Aq, we do not know how to find
a unitary representation (03C0, H) with 4,K ~ Aq.) The first problem is to
describe the parameter q.

Fix an element x E i f o; here i = 1 . Since K is compact, the linear
transformation ad(x) of g is diagonalizable, with real eigenvalues; and
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complex conjugation interchanges the positive and negative eigenspaces.
Define

q = sum of non-negative eigenspaces of ad( x )

u = sum of positive eigenspaces of ad( x )

1 = sum of zero eigenspaces of ad( x ) = centralizer of x. (2.2)

Then q is a parabolic subalgebra of g, and

is a Levi decomposition. Furthermore, 1 is the complexification of

lo = q ~ g o . Since 03B8x = x, q, l, and u are all invariant under 0, so

and so on. In particular, q n f is a parabolic subalgebra of f, with Levi
decomposition

We call the subalgebras q obtained in this way 0-stable parabolic subalge-
bras of g. (Since not every parabolic subalgebra preserved by 03B8 is of this
form, the terminology is unfortunate.)

With notation as in the preceding paragraph, choose a Cartan subalge-
bra to of f0 containing ix (as is possible). Then t is automatically
contained in 1 E f. Let f c q be any subspace stable under ad(t). Then
there are a subset ( 03B11, ... , 03B1r} of t * (the dual of t), and subspaces f03B1, of f ,
such that if y E t and v ~ f03B1 , then 

Write

the weights or roots of t in f. Often we assume that 0394(f) is a set with

multiplicities, with 03B1, having multiplicity dim f03B1l. Then if

we have

Fix a system 0394 + ( ~ f ) of positive roots in the root system A( ~ f, t).
(Of course 0394( ~ f, t) as defined above includes zero, and so it is not
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really a root system; but we will overlook such abuses of terminology.)
Then

is a positive root system for t in f.
Recall that (given 0394+()) the irreducible representations of the com-

pact group K may be parametrized by their highest weights, which are
elements of t *. Define

03BC = 03BC ( q ) = representation of K with highest weight 2 p ( u ~ p).

(2.4)

Since not every element of t * is the highest weight of a representation,
the existence of IL is not quite obvious. We will postpone this problem
until Section 3, where IL will be exhibited as a subrepresentation of the
exterior algebra 039B* p. We can now describe the representation Aq.

THEOREM 2.5 : Let q = 1 + u be a 0-stable parabolic subalgebra of g (see
(2.2)). Then there is a unique irreducible module Aq for g with the following
properties:

(a) The restriction of Aq to f contains the irreducible representation 03BC(q)
( see (2.4)).

(b) The center of the universal enveloping algebra of g acts in Aq by the
same scalars as in the trivial representation of g.

(c) If the representation of f of highest weight 8 occurs in A q restricted to
f, then 8 must be of the form

( notation (2.3)), with ne a non-negative integer.

If 1 c f (and in fact only then), Aq is a discrete series representation.
More generally, A q is a fundamental series representation if and only if
[, ] ~ f. If [, ]  f, then Aq is not tempered; that is, it does not appear
in Harish-Chandra’s Plancherel formula for G. If u n p = 0 (for example,
if q = g), then Aq is the trivial representation of g. The other Aq are less
familiar representations. For SU(n, 1) and SO(n, 1), they are all the

representations having the same infinitesimal character as the trivial

representation; they occur at the endpoints of certain complementary
series. In Section 6, a simpler characterization of Aq is given (Proposition
6.1, with 03BB = 0), as well as a formula for its global character on the
fundamental Cartan subgroup (Proposition 6.4) and other properties.
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The existence of Aq is proved by Parthasarathy in [12]. Alternatively,
the results of §6.3 of [19] show that the cohomologically induced repre-
sentation Rsq() (with S = dim u n f) satisfies (a) - (c); so Aq may be
taken to be an appropriate irreducible subquotient of it. (Actually, it is
not hard to show that RSq(C) is irreducible, and so coincides with Aq.
This construction of Aq is due to Zuckerman.) Still another construction
is that of Speh-Vogan [17]: by their results, X( q, Ç, 03BC(q)) (notation [17],
p. 247) satisfies (a), (b) and a weakening of (c): 0394(u~p) is replaced by
0394(u). (This weaker version of (c) suffices for our applications in this
paper.)

The uniqueness of A, is more difficult, particularly because we need to
establish it under a much weaker condition than Theorem 2.5(c). Choose
a system 0394+() of positive roots for t in 1, containing the positive system
0394+( r r1 f ) chosen above. Then

in a system of positive roots for t in g. (It should be admitted that t is not
a Cartan subalgebra of 1 or g in general; but 0394()/{0} and 0394(g)/{0)
can be shown to be root systems, so the discussion of "positive systems"
is justified.) Set

We will be interested in representations of f having a highest weight of
the form

with (J E wi, and Bo a subset of 0394(u ~ p). We assume that either (J’ =1= 1,
or Bo =1= j).
LEMMA 2.7: No weight 8 E t * can satisfy both (2.5) ( c) and (2.6).

PROOF: Suppose (2.6) holds. We put B = B, U AI (l n p); then

Therefore (2.6) may be rewritten as

As is well known (e.g., [20], 2.5.2.4), the first term is a sum of roots in
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- 0394(u ~ f). By [19], Lemma 5.4.5, each of the next two terms is of the
form

Therefore

Here C1 ~ 0394(u ~ f); C2 and C3 are contained in A’(P). Suppose now
that 8 also satisfies (2.5) (c). By inspection, this implies that all n03B2 are

zero, and Ci is empty. Thus 8 = 2p ( u ~ p)). Since C1 is empty,

so a = 1. Therefore (2.6) becomes

This forces Bo to be empty, contrary to the hypotheses in (2.6).
0

Another proof of Lemma 2.7 can be given based on Lemma 4.7. Here
is the result we actually need.

PROPOSITION 2.8: Theorem 2.5 remains true with (c) replaced by (c)’: No
representation of f whose highest weight is of the form (2.6) occurs in Aq.

PROOF.: Existence. By Lemma 2.7, condition ( c) implies condition ( c)’;
so the constructions given after Theorem 2.5 apply.

Uniqueness. Let X be an irreducible g module satisfying the conditions
of Proposition 2.8. The calculation in [18], before (5.3), shows that the
representation p of f is strongly u-minimal in X ([18], Definition 3.13).
Write 03BCL for the trivial representation of 1 ~ f. By Theorem 3.14 of [18],
I’L occurs in HR(u , X) ( R = dim u ~ p) exactly as often as Il occurs in
X. Let Y be an irreducible subquotient of HR(u, X) (as an 1 module)
containing 03BCL. Since 03BCL is one dimensional, the centralizer U()~f of
t r1 f in the enveloping algebra of 1 acts by scalars on the 1 n f-type IL L of
Y. Write

for the corresponding homorphism. Recall from [18], (3.2) the homomor-
phism
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Define

By Theorem 3.5 of [18], U(g)f acts on the t type it of X by the

homomorphism cp. Thus X is determined by Y. To complete the unique-
ness proof, we will show that Y must be the trivial representation of 1;
this is where we use hypothesis (b) on X.

Choose a maximally split 0-stable Cartan subalgebra b o of 10; write

Write W = W(g, b) for the Weyl group of b in g, and 3(9) for the
center of U( g ). Recall from [9] the Harish-Chandra isomorphism

If 03BB ~ b *, then composition of X with evaluation at À gives

with X. = X s if and only if À e W·03B4.
Fix an Iwasawa decomposition

of lo (with a o as above), and let m0 be the centralizer of a o in 10 n to.
Choose a positive root system 0394+(,b) compatible with this decomposi-
tion ; that is,

for some choice of 0394+(m, t+). Define

Let WA denote the "little Weyl group" of a0 in 10’ The irreducible
representations of 1 whose restrictions to 1 ~ f contain 03BCL are parame-
trized by WA orbits in a *; write v for the parameter of Y. The parameter
of the trivial representation is 03C1(0394+(l, b))|03B1; so what we are trying to
prove is

Now 3(1) acts in Y by ~L03B3 (defined in analogy with (2.9)), with
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Since Y occurs in H*(u, X), the Casselman-Osborne theorem ([3]) says
that 8(g) acts in X by X03BB,, with

On the other hand, hypothesis (b) of Proposition 2.8 says that 8(g) acts
by X,. Therefore there is an element w E W such that

Since u is 0-stable, 03C1(u) ~ (t+)*; so we get finally

By [20], 2.5.2.4, the left side is

We now consider the inner product of both sides with p(u). Since

03C1(u) ~ (t+)*, we may ignore the v and the pA . Since p ( u ) is orthogonal
to the roots of b in 1, it is orthogonal to 03C1T+ . So

So each root in the sum must belong to 0394+(); so w E W(,b), and w
fixes p(u). Now (2.120 becomes

Since what we want to prove is (2.11), we may modify v by WA.
Assume this has been done, in such a way that

whenever « E 0394(n,b); that is, that v is dominant for the restricted roots
of a in 1. We claim that when w = 1; this will complete the proof. If a is a
simple root of t + in m, then



63

so a is also simple in w(0394+(r, b)). Put

It follows that W(m, t+) permutes 0394+w. Let w0 ~ W(, t+) be the

element taking 0394+(m, t+) to -0394=(m, t+). If 03B1 ~ 03B4+2, then

Since « E 0394+w and this set is stable under wo, the last term is positive. By
(2.14), 03B1 ~0394(a, b); so

Obviously this forces w = 1, as we wished to show.
~

The uniqueness part of Theorem 2.5 follows from Proposition 2.8, by
Lemma 2.7.

3. The cohomology of A ci

DEFINITION 3.1: Let X be any module for g. Identify the exterior algebra
039B*p with the quotient of 039B*g by the ideal generated by f; thus

Hom(A*p, X) is identified with a subspace of Hom(A*g, X). In this
identification, the d map of g cohomology preserves the subspace
Homf(039B*,p, , X), which therefore becomes a complex. Its cohomology
groups are called H * ( g, f, X), the relative Lie algebra cohomology groups.

For more about this definition, see [2] or [5].

PROPOSITION 3.2 (see [2]): Suppose (03C0, H) is an irreducible unitary
representation of G, and HK is its Harish-Chandra module.

(a) H*ct(G, H) ~ H*(g, f, HK)
(b) H*(g, f , HK) is zero unless the Casimir operator acts by zero in

HK.

(c) If the Casimir operator acts by zero in .)Ié?K, then

Statements (b) and (c) make sense for any g module in place of ye K. In
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that generality, (b) is true when the Casimir operator acts by a scalar;
and (c) is false in general (even for (g, K ) modules). Because of this
proposition, we can compute the continuous cohomology of the unitary
representation which ought to be attached to Aq, in terms of Aq alone.
The result, due to Zuckerman, is this.

THEOREM 3.3: Let q = 1 + u be a 0-stable parabolic subalgebra of g (see
(2.2)), and put R = dim( u ~ p). Then

Zuckerman’s original proof of this theorem was very simple: since

Aq = RSq(¢) ([19], Definition 6.3.1), and R1q(¢) = 0 for i ~ S, the spectral
sequence of [19], Corollary 6.3.4 collapses to the isomorphism we want.
However, a much more elementary argument can also be given. Since it is
of some interest for the light it sheds on the structure of A* p, we will give
it here.

Write

recall that R is the dimension of u ~ p . For each i, 1  i  r, choose a
non-zero element X, of u ~ p of weight 03B2l, and a non-zero element Yl ouf p
of weight - 03B2l. Choose also a basis {Z1,...,Zm} of 1 ~ p, consisting of
weight vectors for t. If A and B are subsets of {1,...,R}, and C is a
subset of {1,..., ml, put

These elements form a basis of 039B* p consisting of weight vectors for t.

LEMMA 3.4: With notation as above, let À E t * be the weight of XA A YB A
Z.. Then

Equality holds if and only if A = (1, .... RI and B =)1.

PROOF. If a is a root of t in u, then
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and if /3 is a root of t in f, then

The lemma is now obvious.
n

LEMMA 3.5: Suppose x E 039B*p is a weight vector for t, of weight 2p( u ~ P)
+ 8, with 8 a weight of 039B*( ~ p). Then

PROOF: If U E U n f is a weight vector of weight a, then ad(U)x has
weight 2p( u ~ p) + 8 + a. Since

Lemma 3.4 says that 039B* p has no vectors of this weight.

PROPOSITION 3.6: Let (7rL, FL) be an irreducible representation of  ~ f, of
highest weight 8, occurring in 039B*( ~ p); and let (03C0, F) be the irreducible
representation of t of highest weight 8 + 2 p ( u ~ p) ( if it exists). Then there
is an isomorphism

PROOF: Denote by V the one dimensional space AR( u ~ p); and by F °
the subspace of F annihilated by u ~ f. Then

as representations of 1 ~ f. By the Cartan-Weyl highest weight theory,

Every weight of FL ~ V is of the form 203C1(u ~ p) + 8, with 8 a weight of
039B*( ~ p). By Lemma 3.4, these occur in A* p only inside V ~ A* ( ~ p);
so
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In the preceding proof, we were a little careless about the question of the
existence of 7r. There is no difficulty, however. As the proof shows,
(03C0, F) can be taken to be the f submodule of 039B*p generated by V times a
copy(03C0L, FL) in 039B*(~p).

COROLLARY 3.7:

PROOF: Let 8 be the highest weight of a representation of f occurring in
AQ’ By Theorem 2.5(c),

with n03B2  0. By Lemma 3.4, 8 cannot occur in A* p unless all né are zero.
This proves the first isomorphism. The second is a special case of
Proposition 3.6.

~

To complete the proof of Theorem 3.3, we must show that the

differential in the complex Homf(039B*p, Aq) is zero. If we knew that An
arose from a unitary representation, this would follow from Proposition
3.2(c); and since this is the only case we really care about, the reader may
wish to omit the rest of this section. We will in any case simply use the
standard proof in the unitary case.

LEMMA 3.8: Aq admits a non-degenerate invariant Hermitian form ~ , &#x3E;;
that is, if v, w E Aq, and X E g o, then

PROOF: Let Y be the space of all conjugate-linear, f-finite functionals on
Aq:
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Make Y into a g0 module by

and then into a q module by complexification. We claim that Y ~ Aq; we
will prove this using the characterization of Theorem 2.5. By general
arguments, Y is irreducible, and Y|f ~ Aq|f. So (a) and (c) of the

characterization are satisfied. Let

be the antiautomorphism determined by

for X ~ g0 , À e Ç. Let I ~ 8(g) be the maximal ideal annihilating A,,;
then ~(I) annihilates Y. By (b) of Theorem 2.5, 1 annihilates the trivial
representation of g. Since that representation admits an invariant Hermi-
tian form, ~(I) = I. So I annihilates Y, establishing (b) of the characteri-
zation.

Choose an isomorphism 41: Aq ~ Y, and put

Obviously this is a non-degenerate invariant form on Y, linear in v and
conjugate linear in w. The restriction of ~ , ~ to the f-type IL( q) must still
be non-degenerate; so if v, is a highest weight vector of 03BC(q), then

~v0, v0~ ~ 0. Modifying 1/; by a scalar, we may assume ~ vo, va) = 1. Now
we claim that (, ) is Hermitian. To see this, define

We want to show that 4, == . Since Aq are Y are irreducible, and  is a
g-module map, we have

for some À E Ç. But

so 03BB = 1.
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A f-invariant form on an irreducible representation of K is necessarily
definite; so we may assume that (, ) is positive definite on the f-type IL
of Aq. The Killing form gives a natural positive definite Hermitian form
on 039B*p; so we get a natural Hermitian form on

Since only IL contributes to this Hom (Corollary 3.7), this form is positive
definite. That d is zero is now proved just as in [2], Proposition 11.3.1.
Theorem 3.3 then follows from Corollary 3.7.

4. Unitary representations with cohomology

THEOREM 4.1: Let ir be an irreducible unitary representation of G, and X
the Harish-Chandra module of 7r. Suppose that Hci( G, 7r) =1= 0. Then there is
a 0-stable parabolic subalgebra q = 1 + u of g ( cf . (2.2)) such that X ~ An
(cf. Theorem 2.5).

The main ingredient in the proof is the following result of

Parthasarathy. Recall from Section 2 our Cartan subalgebra t c f, and
the positive root system à + ( f ).

LEMMA 4.2: ( Parthasarathy’s Dirac operator inequality - [2], Lemma
IL6.11, and [13], (2.26)). Let 03C0 be an irreducible unitary representation of
G, and X the Harish-Chandra module of 7r. Fix a representation of f
occurring in X, of highest weight X E t * ; and a positive root system 03B4+ ( g )
for t in g. Write

Fix an element w E WK such that w(~ - Pn) is dominant for 0394+(). Let co
denote the eigenvalue of the Casimir operator of g in X. Then

Roughly speaking, this says that the length of the highest weight of a
representation of f occurring in a unitary representation must be at least
the eigenvalue of the Casimir operator. For example, in a unitary
spherical series representation, the eigenvalue of the Casimir is non-posi-
tive, since the trivial representation of f occurs.

Here is a sketch of the proof of Theorem 4.1. By Proposition 3.2, X
contains some f-type from A*p, of highest weight IL; and the Casimir



69

operator has eigenvalue zero in X. Kumaresan shows in [10] that any
f-type of A* p satisfying the inequality of Lemma 4.2 with co = 0, must be
of the form 03BC(q) (cf. (2.4)) for some 0-stable parabolic subalgebra q 9 g.
To show that X ~ Aq , we use the criterion of Proposition 2.8: roughly
speaking, the bad f-types of (2.6) do not satisfy the inequality of Lemma
4.2. To carry this out, we need some calculations with roots and weights,
drawn largely from [10].

LEMMA 4.3: Suppose y, 8 E t * are dominant integral for 0394+(f), and
a E Wx . Choose Q’, a" E WK so that a y - 8 is dominant for Q’( 0 + (f)), and
y - 8 is dominant for 03C3"( 0394 + (f )). Then

Equality holds if and only if 03C303B3 - 8 E WA. - ( y - 03B4).

PROOF: The "if" part is obvious; we prove the inequality and "only if"
by induction on the length of a, as in [10], Lemma 2.2. If a = 1, there is
nothing to prove; so suppose a &#x3E; 1, and the result is known for shorter

Weyl group elements. Choose a reflection Sa ( a ~ 0394+(f)) so that

Choose T E Wx so that s03B103C303B3 - 03B4 is dominant for 03C4(0394+(f)). By induction,
if suffices to show that

with equality only if ay - 8 is conjugate to s03B103C303B3 - 03B4. By [9], Lemma
13.4(C) and Proposition 21.3, it is enough to show that s03B103B3 - 03B4 is a weight
of the finite dimensional representation F of f, of extremal weight a y - 8.
Now (4.4) implies that

(since y is dominant); and

since 8 is dominant. So the a-string of weights of F through 03C303B3 2013 03B4 is

which contains
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LEMMA 4.5 ( Kumaresan ’s lemma): Under the hypotheses of Lemma 4.2,
assume that the Casimir operator of g acts by zero in X. Assume that there
are elements cy, T E WK, and a subset A c à 

+ 

( g), such that

(a) Qx - p" is dominant for 03C4(0394+(f))
(b) ax - p" + Tp, = p - 2 p ( A ) ( notation after (2.3)).

Then there is a 0-stable parabolic subalgebra q = f + u of g, such that

~=203C1(u~p).

PROOF: Extend t to a Cartan subalgebra b of g. Let W be the Weyl group
of b in g. The elements of 0394+(g) are the restriction to t of a positive root
system 0394+( g, f) for b in g; and the corresponding half sum of roots is
just p, extended by zero on the orthogonal complement of t in b. Choose
a subset A ~ 0394+(g, b) whose restriction to t is A. Then p - 203C1(A) ~ b* is
a weight of the finite dimensional representation of g of highest weight p;
so

with equality only if

for some w E W. On the other hand,

so

Equality holds if and only if there is a w as above, and wp is zero on the
orthogonal complement of t in b. This is the same as requiring that w
commute with 0 ([18], Lemma 5.5). In that case, 03C9(0394+(g, b))|t is another
positive system for the restricted roots 0394(g, t); we write it as w(0394+(g)).
We may also regard w as acting on t alone, since it commutes with 0.
Thus

with equality if and only if

Now choose 03C4’ ~ WK so that ~ - 03C1n is dominant for 03C4’(0394+(f)). By
Lemma 4.3,
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Combining (4.6) (a) and (c) with Lemma 4.2, we deduce that equality
must hold in (4.6) (a) and (c). Accordingly, we can find a new positive
system w(0394+(g)) and a cr’ F= WK so that (4.6) (b) holds, and

Therefore x - p" is dominant for 03C3’03C4(0394+()); and

The left side is dominant and regular for 03C3’03C4(0394+()), so

If we set

then we have

The conclusion of the lemma is now part (b) of the first theorem in [10].
(It is proved, incidentally, by a purely algebraic manipulation of roots
and weights, in the spirit of the preceding arguments.)

a

LEMMA 4.7: Fix a 0-stable parabolic subalgebra q = 1 + u as in (2.2), and
suppose 8 is of the form (2.6). Then

PROOF: Chôose a positive root system 0394+() making 03C1(0394+(~)) domi-
nant ; and put 0394+(g)=0394+()~0394(u) as usual. Define

We claim that if a ~ 0394+(g), then

with strict inequality for 03B1 ~ 03B4(u). It suffices to prove this under the



72

additional assumption that a is simple. If « ~ 0394+(), then ~ 03B1, p(u)) = 0;
so (4.9) follows from (4.8) (c) and the choice of 0394+(). If « E 0394(u) is

simple then « has a non-positive inner product with all positive roots in
1; for they are positive combinations of simple roots distinct from a.
Thus (4.9) follows from (4.8) (d) in this case. The computation leading to
(5.3) in [18] shows that

Here B is a non-empty subset of A(u), and B" is its complement in
0394+(g). By (4.9), the first term on the right is strictly positive. By Lemma
5.6 of [18], the second term on the right is non-negative.

n

PROOF oF THEOREM 4.1: By the main theorem of [10], there is a 0-stable
parabolic subalgebra q = 1 + u of g, such that the representation of f of
highest weight 2p( u ~ p) occurs in X. Choose such a q, with

as small as possible. To prove that X ~ Aq, we use the characterization of
Proposition 2.8. Condition (a) (that X contain IL( q» follows from the
choice of q. Condition (b) (on the infinitesimal character) follows from
the non-vanishing of H*(g, f, X) by Wigner’s lemma ([2], Theorem
1.4.1). For condition (c)’, suppose 8 satisfies (2.6). We can easily rewrite
that as

here

Define a new positive root system 03C4(0394+( f ))(03C4 ~ WK ) by

Then Q8 - 03C1n is dominant for 03C40394+(f); and if we put
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then

Since a8 is dominant for aA + ( f ), it is clear that

Set ting A = B U C, we have A ~ 0394+(g); and (4.10) becomes

By Kumaresan’s lemma (Lemma 4.5), there is another 0-stable parabolic
subalgebra q’ = l’ + u’, with 8 = 203C1(u’ ~ p). By Lemma 4.7,

By the choice of q, this means that the representation of f of highest
weight 8 cannot occur in X, verifying condition (c)’ of Proposition 2.8.

~

5. Twisted coefficients

In this section, we will indicate (without detailed proofs) how to extend
Theorem 4.1 to the case in which the cohomology is twisted by a finite
dimensional representation of G. First, we must construct some represen-
tations. Fix a 0-stable parabolic subalgebra q = 1 + u as in Section 2, and
let L c G be the connected subgroup with Lie algebra 0. ( L is closed in
G; it is the centralizer of the element x used to construct q.) A one
dimensional representation À : 1 - Ç is called admissible if it satisfies the
following conditions:

(a) 03BB is the differential of a unitary character (also called À)

Given q and an admissible À, define

03BC(q, À) = representation of K of highest weight À 1, + 2 p ( u ~ p).

Extend t to a Cartan subalgebra b of g, and choose d + ( g, 1)) as in the
proof of Lemma 4.5 (see also the discussion before (2.6)).
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THEOREM 5.3 : Suppose q is a 0-stable parabolic subalgebra of g, and 03BB:

1 ~ Ç satisfies (5.1). Then there is a unique irreducible g-module Ao (À)
with the following properties:

(a) The restriction of AQ(À) to f contains IL(q, 03BB) (see (5.2));
(b) 8(g) acts by XÀ+p in AQ(À) ( compare (2.9»;
(c) If the representation of t of highest weight 8 occurs in Aq(03BB)

restricted to f, then

with n /3 a non-negative integer.

(Of course, A la is just An (0).) This is proved in the same way as Theorem
2.5. There is also an analogue of Proposition 2.8, whose formulation we
leave to the reader.

PROPOSITION 5.4 (see [2]) : Suppose (03C0, H) is an irreducible unitary
representation of G, and HK its Harish-Chandra module. Let F be a finite
dimensional irreducible representation of G.

(a) H,,*t (G, Yeo F) ~ H*(g, , HK ~ F)
(b) H*(g, f, HK ~ F) = 0 unless the Casimir operator acts by the same

scalars in £K and in F.

(c) If the Casimir operator acts by the same scalars in HK and in F, then

THEOREM 5.5 : Let q = 1 + u be a 0-stable parabolic subalgebra of g, and 03BB:
1 - Ç an admissible character (5.1). Put R = dim u rl p. Suppose F is a
finite dimensional irreducible representation of g, of lowest weight - y E f) *

with respect to à 
+ (g, b) ( defined after (5.2)). Then

if 03B3 = 03BB|b; and

otherwise.

This is proved in substantially the same way as Theorem 3.3. (The
vanishing statement is an immediate consequence of Theorem 5.3(b) and
Wigner’s lemma.)
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THEOREM 5.6: Let 7T be an irreducible unitary representation of G, and F
and irreducible finite dimensional representation of G. Write X for the
Harish-Chandra module of 03C0. Suppose H*ct(G, 03C0 0 F) =1= 0. Then there is a
0-stable parabolic subalgebra q = 1 + u of g, such that

(a) Flu F is a one dimensional unitary representation of L; write - À:
1 ~ Ç for its differential.

(b) X ~ Aq (03BB).

It is worth remarking that whenever q satisfies (a), the corresponding À
automatically satisfies (5.1). The proof of Theorem 5.6 is a little harder
than that of Theorem 4.1, since one must first check that Kumaresan’s
results in [10] can be generalized appropriately. Kumaresan’s first result
is generalized as follows. We assume fixed a Cartan t c f, a positive
system 0394+(f), and a Cartan subalgebra b of g containing t.

PROPOSITION 5.7: Under the hypotheses of Theorem 5.6, let IL be the highest
weight of a representation of f occurring in both X and F * 0 039Bp. ( Such a IL
exists by Proposition 5.4). Then there are positive root systems 0394+(g),
à + ( g )’, and a weigh t À ~ b * of F *, such that

(a) À is zero on the orthogonal complement of t in b
(b) À is a highest weight of F * with respect to both A’ and (0394+)’
(c) 0394+(g) contains 0394+(f)
(d) IL = À + 03C1(0394+(p)) + 03C1(0394+(p)’).

PROOF: The orthogonal Lie algebra à o (p) has a natural representation
S = spin(p), of dimension 2[1/2 dim p]. Since the adjoint action of f on p
preserves the Killing form defining (p), there is a natural map
f ~  o (p); so S may be regarded as a representation of f. We refer to [2]
for various basic facts concerning this representation, which will be used
below. First of all, the exterior algebra 039B*p is isomorphic to one or two
copies (according to whether n is even or odd) of HomC(S, S). Write E,
for the representation of f of extremal weight 03B3 ~ t *. By hypothesis,

This space is naturally isomorphic to

write y for the highest weight of a representation of f occurring in both

F * ~ S and E03BC ~ S. Every highest weight of S is of the form 03C1(0394+(p))
for some positive system 0394+ (g) ~ 0394+(f). As a highest weight of F* 0 S,
y is therefore of the form

for some weight À of F * and some positive system 0394+(g)". Suppose EY
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occurs in E03BC ~ E03C1n ~ E03BC ~) S here 0394+(g) denotes a second positive system
containing 0394+(f), and 03C1n = 03C1(0394+(p)). Choose T E WK of minimal length
so that IL - Pn is dominant for 03C4-1(0394+(f)). By [14], p. 394, Corollaries 1
and 2,

with equality if and only if y = T(IL - 03C1n).
Write v for the 0394+(g)"-highest weight of F*. Then the Casimir

operator acts in F * (or in F ) by the scalar

By Proposition 5.4(b), it acts in X by the same scalar. Now Lemma 4.2
(the Dirac operator inequality) gives

Finally, we know that

The first inequality is [9], Lemma 13.4(c), and the second is clear (since p
vanishes on the orthogonal complement of t in b). Equality holds if and
only if v = 03BB, and À vanishes on the orthogonal complement of t in b.
Combining (5.8)t(5.11), we find that equality holds everywhere. This
gives (a) of the lemma. Furthermore,

Now choose a E Wx so that 03BC - 03C4-103C1"n is dominant for 03C3(0394+()). Then

By Lemma 4.2, the left side has length at least ~03BB + p", À + p"). Arguing
as in the proof of Lemma 4.5, we deduce that the left side has length at
most that. Furthermore, the equality implies that there is a positive
system w(0394+(g)") (w ~ W(g, b) commuting with 0) such that
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Furthermore, w fixes À; so that if we put

then every root in A and B is orthogonal to À. We claim that T fixes À.
Assume this for a moment, and apply T-1 to (5.13). We get

Setting 0394+(g)"=03C4-10394+(g)", we get the conclusion of the lemma.
To show that 7 fixes À, put

It suffices to show that C c A ; for T is a product of reflections in C, and
we know that those in A fix À. Suppose not. Fix a E C, a SÉ A. Since
a G C, a E 0394+(f); no since a e A, 03B1 ~ 03C403C3(0394+(f)) g w(0394+(g)"). By (5.14),
this implies that

Therefore

Since T was chosen to have minimal length,

Therefore

u

Here is Kumaresan’s second result.

PROPOSITION 5.16 : Let à ’ ( g ), 0 + ( g )’ be two positive root systems for t in
g ( with 0 + (g) ~ 0394+ (f); and suppose À E 1) * is à - ( g )-dominant. Let 7r be
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an irreducible unitary representation of G, and X its Harish-Chandra
module. Assume that

(a) The Casimir operator of g acts in X by (À + p, À + p) - (p, p).
(b) À is zero on the orthogonal complement of t in b.
(c) The f representation of highest weight

occurs in X. Then there is a 0-stable parabolic subalgebra q = f + u of
g, containing and the positive root vectors for 0394+( g ), such that

and q preserves the À weight space of F * .

This is proved in exactly the same way as Kumaresan’s Theorem 1(b) in
[10]. Theorem 5.6 follows from Propositions 5.7 and 5.16 by the proof of
Theorem 4.1; verification of this is left to the reader.

6. Some auxiliary results

In this section we collect several technical results which might be useful
in applications of the main theorems to automorphic forms. The first
provides a fairly simply way to identify Aq(03BB) in some cases (including
those having non-zero cohomology).

PROPOSITION 6.1: Suppose q is a 0-stable parabolic subalgebra of g, and 03BB:
1 - Ç is an admissible character (5.1). Assume in addition that À is zero on
the orthogonal complement of t in 1). Let 7T be an irreducible unitary
representation of G, and X the Harish-Chandra module of 03C0. Assume that

(a) The f representation 03BC(q, 03BB) of (5.2) occurs in X.
(b) The Casimir operator of g acts by ~03BB|b + 03C1, 03BB|b + 03C1~ - ~03C1 03C1~ in X.

( Here p is half the sume of the roots in any positive system compati-
ble with q.)

Then X ~ Aq(03BB).
This is clear from the proof of Theorem 5.6. To get a purely algebraic
characterization of Aq(03BB) (omitting any discussion of unitarity), one
could add

(c) X satisfies the Dirac operator inequality (of Lemma 4.2).
Then (a)-(c) characterize Aq(03BB). The formulation of Proposition 6.1

should be best for applications, however.
The condition that À should vanish on the orthogonal complement of t

in b has a natural reformulation.
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PROPOSITION 6.2: In the setting of Theorem 5.3, choose an automorphism a
of g o which preserves f 0 and b, such that a 1 h = 0. Then ( if we let a act on
representations of q ) a - A q (03BB) = A q (a À); and this is isomorphic to A q (03BB) if
and only if À vanishes on the orthogonal complement of t in b.

This is an elementary consequence of Theorem 5.3. It indicates that one
might hope to study the occurrence of Aq(À) in automorphic forms,
when À is zero on the complement of t in b, using a a-twisted trace
formula. In particular, one might hope to verify the unitarity of such

Aq(À). From the point of view of pure real group representation theory,
one would then like a way to deduce unitarity in the general case. This is
provided by the next proposition.

PROPOSITION 6.3: In the setting of Theorem 5.3, let Go ~ b0 be the split
component of the center of l0; and let P = MN be a parabolic subgroup of
G, with M the centralizer of Go in G. Then

(a) M is connected and reductive, and mo ;;2 10.
(b) q M = q rl rrt = 1 + u M is a 0-stable parabolic subalgebra of m.
(c) Aq(03BB) ~ IndGpAqM(03BB + p ( u/u M)) ( normalized induction).

Parts (a) and (b) are elementary. For (c), we use Theorem 5.3. It is easy to
check conditions (a) and (b) of Theorem 5.3 for the induced representa-
tion. For (c), put

On the one hand, any highest weight of K occurring in the induced
representation must be of the form

with m a a non-negative integer, and T a highest weight of M r1 K in

AqM(03BB). By Theorem 5.3 for M,

On the other hand, any root y of b in u/u M must not vanish on a.
Therefore 03B3 ~ 0y, and 03B3|t is both a compact and a noncompact root of t.
Therefore
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Our formula for 8 is now

So the induced representation satisfies (c) of Theorem 5.3.
D

Here is the character formula for Aq(03BB) on the fundamental Cartan.

PROPOSITION 6.4: In the setting of Theorem 5.3, write H for the fundamen-
tal Cartan subgroup of G with Lie algebra b,. Choose a positive root system
A’(g) compatible with q. Identify WK with the Weyl group of H in G, and
thus with a subgroup of W(g, b). Then the character of A Q (03BB) on H is

here R = dim u n p.

If  = g, this is of course nothing but the Weyl character formula. If

1 = b, it is Harish-Chandra’s formula for the character of a fundamental
series representation. The general case may be reduced to these two by
the results of [17], section 4.

The same results in [17] show that if the trivial representation of r is at
the end of a complementary series, then the same is true of Aq(03BB). This
gives

PROPOSITION 6.5: In the setting of Theorem 5.3, suppose that every simple
noncompact factor of rois isomorphic to su ( n, 1) or  o ( n, 1). Then A 1 (À)
is ( the Harish-Chandra module of ) a unitary representation.

It seems likely that most of theAQ(À) are isolated in the unitary dual; so
the technique of proof in Propositions 6.3 and 6.5 cannot be extended
very much. For G = SL(n, R), all of the Aq(03BB) are unitarily induced (by
Proposition 6.3) unless n = 2m and l0 ~ (m, ¢) + (one dimensional
compact center). In that case, Speh has shown in [16] that such AI(À)
occurs in the non-cuspidal discrete spectrum of SL(n, R) modulo a
congruence subgroup of SL(n, Z). (In particular, all Aq(03BB) are unitary
for SL(n, R).) Analogous techniques may one day be available for other
classical groups, but they seem to be far out of reach at present. When
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G/K is Hermitian symmetric, and q is compatible with a complex
structure on G/K, then Aq(03BB) is a highest weight representation.
Parthasarathy proves in [13] a converse to the Dirac operator inequality
(Lemma 4.2) for such representations; so these Aq(03BB) are unitary. There
may be some hope of extending this method to all Aq(03BB) when rank( G )
= rank(K).

Baldoni-Silva and Barbasch have shown in [1] that all the Aq(03BB) are
unitary when G has rank 1. Of course most of the cases are covered by
Proposition 6.5, but the remaining ones require complicated and ingeni-
ous calculation.

Next we will describe how the representations Aq(03BB) fit into the

Langlands classification of all irreducible Harish-Chandra modules ([2],
Theorem 4.11). Fix q and À satisfying (5.1). We will construct a parabolic
subgroup P d c G, with Langlands decomposition P d = MdAdNd; a

(non-unitary) character vd ~ (ad)*; and a discrete series representation
03C3d ~ (d). We will have

Then Aq(03BB) will be the unique "Langlands quotient" JP,03C3d,vd of the
induced representation

The Langlands classification is usually phrased a little differently, how-
ever. Define

MA = Langlands decomposition of centralizer of A in G

To make sense of the last statement, notice that

is a cuspidal parabolic subgroup of M. Because of (6.6), there is a unique
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parabolic subgroup of G having Levi factor MA and containing Pd; we
write

By the choice of P,

By induction by stages, IP,s,v ~ IPd,03C3d,vd. Since a is unitarily induced from
discrete series, it is tempered; and it turns out (for our choice of pd) that
a is irreducible. Therefore Ip,03C3,v is the kind of representation considered
in [2], and it has a unique Langlands quotient JP,s,v; this is what we

meant by JPd,03C3d,vd.
We turn now to the construction of Pd. Fix a maximally split 0-stable

Cartan subgroup H = T+ Ad of L (the Levi factor of our 0-stable para-
bolic q ), and an Iwasawa decomposition L = ( L ~ K) A dNL. Put

MdAd = Langlands decomposition of centralizer of Ad in G.

Now let pd be any parabolic subgroup of G with Levi factor MdAd,
satisfying (6.6); such subgroups certainly exist. It remains to define the

discrete series representation 03C3d of Md. Choose a positive root system for
t + in Md ~ , and write

The main property of 03C3d is

here p ( u ) denotes half the sum of the roots of t + in the nil radical u of
our 0-stable parabolic subalgebra q. The only remaining difficulty is that
Md need not be connected, so a discrete series need not be determined by
its Harish-Chandra parameter. In analogy with (5.2), we define
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which turns out to be well defined. The remaining characteristic of 03C3d is

In fact (6.15) alone determines 03C3d(without (6.13)); but (6.13) is perhaps
useful information in its own right.

THEOREM 6.16: Suppose q = 1 + u is a 0-stable parabolic subalgebra of g,
and 03BB: t - CI is admissible (cf. (5.1)). Then the Langlands parameters for
the representation Aq(03BB) are specified by (6.6)-(6.15). In particular, Ad is
the split component of a maximally split Cartan subgroup of L.

This is proved in [17], Theorem 4.23. (The reader who actually wishes to
verify this may find it helpful to know that Aq(À) was denoted
X(q, ¢03BB, tt(q, 03BB)) in [17].)
We can give a formula for the multiplicity of any irreducible represen-

tation of f in Aq(03BB).

THEOREM 6.17: Under the hypotheses of Theorem 6.16, define

Pu~p(03B3) = number of expressions of y as 03A303B1~0394(u~p)n03B103B1, with na E N.
Then the representation of f of highest weight 8 occurs in Aq(03BB) with

multiplicity

Here we have written Pc for p (0394+ ( f )).

PROOF: This follows from [19], Theorem 6.3.12(d) by an easy calculation,
if we recall that

When G/K is Hermitian symmetric, the cohomology of a representa-
tion acquires a bigrading, as follows. Write p+ ~ p for the holomorphic
tangent space of G/K at the origin, and p- for the antiholomorphic
tangent space. Then
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a K-invariant bigrading. If X is any g module,

The differential d of Lie algebra cohomology splits as

with 8 of ( p, q) degree (1, 0), and à of degree (0, 1). If X is of the form

Aq(03BB) 0 (finite dimensional), then d is zero or the complex is exact

(proof of Theorem 3.3); so in that case we have natural Dolbeaut

cohomology spaces

Obviously this decomposition corresponds (via Matsushima’s formula) to
the Hodge structure on the cohomology of locally symmetric spaces (for
example); so it is of interest to compute it. If X is trivial, it is well known
that only the ( p, p) terms can be non-zero. The proof of Theorem 5.5
therefore computes the HP,q spaces; we have

PROPOSITION 6.19: Suppose G/K is Hermitian symmetric, q = l + u is a
0-stable parabolic subalgebra of g, 03BB : 1 - et is admissible (5.1), and F is a
finite dimensional irreducible representation of G. Assume that the lowest
weight of F is -À 1 Put

Then

This last space has dimension equal to the number of elements of
W(, b)/ WL~K of length p. If p - q ~ R + - R-, then

HP,q( g, f, Aq(À) OF) = 0.

7. Dirac oprators

We assume throughout this section that rank(G) = rank(K). Fix a Cartan
subgroup T c K, and a positive root system 0394+ ( g ) for t in g. Let À E Î



85

be a character whose differential (also called À) has the property that

Write

By (7.1), y is the highest weight of a representation E03B3 of f.
Recall from the proof of Proposition 5.7 the spin representation S of

f. Its weight are all the expressions of the form

The subspaces

S + = span of the weights vA with lAI even

S - = span of weights vA with |A| odd

are invariant under f; they are called the half spin representations. Let X
be any representation of g. Then Parthasarathy has defined Dirac

operators

see [11]. They are intertwining operators for the tensor product action of
f; so we get operators

when y is as in (7.2). Put

the index of D+03B3 for X. Two examples are particularly important. First,
suppose r c G is a discrete torsion-free subgroup, and X = C~(0393BG)
(regarded as a g module by differentiating on the right). Then

If we let Cy:t denote the vector bundle on r B G/K defined by the K



86

representation E*03B3 ~ S±, then this space is just the space of sections of
CyI. The Dirac operator D, is an elliptic first order differential operator;
so Ind03B3(C~(0393BG)) is well defined, and computable by the index theo-
rem. (For an appropriate normalization of Haar measure, the formula is

see [8].) On the other hand, a version of Matsushima’s formula computes
the index one representation at a time. If we write (as in the introduction)
m7T for the multiplicity of the irreducible representation 7T in L2(fB G),
then

here X03C0 is the Harish-Chandra module of 7r. This brings up the second
case in which it is important to be able to compute the index: Harish-
Chandra modules of irreducible unitary representations.

THEOREM 7.6: Suppose rank(G) = rank(K), T c K is a Cartan subgroup,
03B4+ (g) is a positive system for t in g, and À E T. Assume that ~ 03B1, 03BB~  0 for
all a ~ 0394+(g); and define y = y + pn . Let X be the Harish - Chandra

module of an irreducible unitary representation of G, and suppose Indy(X)
=1= 0 (see (7.3)(b)). Then there is a 0-stable parabolic subalgebra q 1  + u
of g, with t c r and 0394(u) ~ 0394 + ( g), such that À is admissible for q ( see
(5.1 )), and X = Aq(À).

Notice that the hypothesis on À is a little stronger than (7.1): this theorem
is not as general as one would like. The work of Baldoni-Silva and

Barbasch [1] ] shows that when 03BB is not dominant, more complicated
representations than the Aq(À) can have non-zero index. They have
found all representations with non-zero index in rank one; the general
case is a very interesting open problem.

PROOF OF THEOREM 7.6: By [2], Lemma 11.6.11,

here co is the scalar by which the Casimir operator of g acts in X. The
non-vanishing of the index therefore implies that c0 = ~03BB + 03C1, 03BB + 03C1 ~ -
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~03C1, p). Let IL be a representation of K occurring in E03B3 o S* and in X;
this exists by the non-vanishing of the index. Thus y = À + 03C1n, E’Y occurs
in IL 0 S, and it occurs in X. Now the argument for Proposition 5.7
applies, and establishes hypothesis (c) (on the form of p) in Proposition
5.16. We observed above that hypothesis (a) (on the eigenvalue of the
Casimir) holds; and (b) is vacuous since rank( G ) = rank( K ). so Proposi-
tion 5.16 shows that 03BC = 03BC(q, 03BB) (notation (5.2)) for some o with the
desired properties. By Proposition 6.1, X ~ Aq (03BB).

PROPOSITION 7.7: In the setting of Theoreni 7.6,

SKETCH OF FIRST PROOF. Let

be the highest weight of a representation of f occurring in Aq(03BB). To
study Ind03B3(Aq(03BB)), we must determine whether EY occurs in E~ ~ S. If it
does, then

this says

Clearly this is impossible unless all n03B2 are zero (so that E~ = 03BC(q , À)),
and A 1 and A2 are empty. The weight of spin in question (- Pn +
2p(0394+( ~ p)) clearly lies in S+ or S - , depending on the parity of
dim u r1 p. Therefore either the domain or the target of Dy+ (see (7.3)(a))
is zero, and the other space is one dimensional. To check the formula for

the index, we only have to show that E03B3 really occurs in S 0 IL( q, À). This
is fairly easy, and is left to the reader.
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SECOND PROOF (assuming AQ(À) is unitary). Schmid has shown that the
index for a unitary representation is the coefficient on e03BB+03C1 in the
numerator of the character formula of Aq(03BB) on the compact Cartan
subgroup. The result therefore follows from Proposition 6.4.

~

8. Vanishing theorems

Kumaresan’s results in [10] imply an explicit vanishing theorem of the
following kind.

THEOREM 8.1: Suppose G is simple, and 7T is a non-trivial irreducible

unitary representation of G. Let F be a finite dimensional representation of
G. Then

Here ro is the minimum of dim( u ~ p ) over all proper 0-stable parabolic
subalgebras q = 1 + u of g, and is given ( for non-complex groups ) by Table
8.2.

Table 8.2. Kumaresan Vanishing theorem for real groups
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This is clear from Proposition 5.4 and Theorems 5.5 and 5.6. The

calculation of rG may require some comment, however. Clearly, what is
wanted is an 10 with dim 10 n p0 as large as possible; but given g o, it is

not a trivial matter to list all possible 10’ It is easy to list the 0-stable

parabolics containing a fixed 0-stable Borel subalgebra; they are parame-
trized by the 0-stable subsets of the simple roots. However, there are in
general many K conjugacy classes of 0-stable Borel subalgebras. The
easiest way to get candidates for Io is to use the following conditions:
(a) 1 is the Levi factor of a parabolic subalgebra of g.
(b) real rank (0)  real rank ( g o )
(c) r o and g0 have a common fundamental Cartan.

Using Helgason’s tabulation (in [7]) of dimensions of symmetric spaces to
compute dim 1o n Po, it is a simple matter to get for each simple group a
short list of possible 10 with dim 0 ~ P0 maximal. These can then be
realized as 0-stable Levi factors by explicit calculations in the root system
of a fundamental Cartan. (For complex groups, rG is tabulated in [4] or
[10].) The Levi factors with maximal dim 0 ~ p0 are also listed in the
table. For exceptional groups, we list the Lie algebras (g0, K), with g o
written as (root system type)(dim p - dim f). 03A0 denotes the circle group.
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