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Annals of Mathematics, 120 (1984), 141-187

Unitarizability of certain series of
representations

By Davip A. Vogan, Jr.

1. Introduction

Let G be a reductive Lie group in Harish-Chandra’s class, K a maximal
compact subgroup, and 6 the corresponding Cartan involution. Write g, =
Lie(G), and g for its complexification; analogous notation is used for other
groups. Let g be a parabolic subalgebra of g such that

(L.1)(a) fa =a,

(b) g and its complex conjugate § are opposite; that is, they intersect
inaLevifactor (=g N qof g.

If u is the nil radical of g, then
(L.1)(c) ag=1+u
is a @-stable Levi decomposition of ¢, and

(1.1)(d) g=u®leu

is a triangular decomposition of g. Unless g = g, g is not the complexification of
a subalgebra of g,; but [ = ([,)c, with [, € g,. Define

(1.1)(e) L = normalizer of g in G.

Then L is again a reductive group in Harish-Chandra’s class, with maximal
compact subgroup L N K. We will summarize these assumptions by saying
“q = [ + u is a @-stable parabolic subalgebra”.

In [S-V], a more or less formal correspondence was established from certain
(I, L N K) modules to (g, K) modules. Here is one version of it (except for a
definition of £, which will be given in Section 4).
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THEOREM 1.2 [S-V]. Let q = [ + u be a @-stable parabolic subalgebra of g.
Fix a Cartan subalgebra Y) C |, and a weight A € H*. Define

1
p)=3 ¥ achn
a€A(g,h)
Let Y be an irreducible (1, L N K) module of infinitesimal character A — p(1).
Assume that

(1.2)(a) Re(a,A\) >0, forall a € A(u,b).

Then there is a (g, K) module RY of infinitesimal character \ naturally
attached to Y; XY is irreducible or zero. If (in addition to (a))

(1.2)(b) (a,A\) # 0, forall a € A(u,Y),

then RY is non-zero.

More important, [S-V] shows how to compute the global character of 2Y
from that of Y (Corollary 4.21 below). If Y is tempered, then ZY is as well. In
conjunction with other results of [S-V], this immediately suggests the conjecture
that ZY is unitary whenever Y is. That conjecture is proved here:

THEOREM 1.3. Fix notation as in Theorem 1.2.

a) Assume that Y is a unitarizable (1, L N K) module of infinitesimal
character A — p(u), and that A satisfies (1.2)(a). Then Y is a unitarizable
(g, K) module.

b) Assume that A satisfies (1.2)(a) and (b), and that XY is a unitarizable
(g, K) module. Then Y is a unitarizable (1, L N K) module.

After [S-V] was written, Zuckerman independently constructed (among
other things) the representations #ZY for Y one dimensional, and conjectured
their unitarity. (These representations have a special importance, discussed in
[V-Z].) At about the same time, Parthasarathy in [P1] gave yet another construc-
tion (still for Y one dimensional); he was undoubtedly also aware that they ought
to be unitary. Since that time, the problem has been widely studied; some of the
successes may be found in [A], [P3], [R-S-W], and [E-P-W-W]. (Most of these
prove substantially more than Theorem 1.3 in special cases.)

The central idea in the proof of Theorem 1.3 is to exploit the existence of a
large family of well understood unitary representations, the tempered ones. Any
representation admitting an’invariant Hermitian form may be obtained from a
tempered one by analytic continuation of a tempered representation through
Hermitian ones. An almost trivial analysis of this process leads to some control on
the possible signatures of Hermitian forms. The point is that the signature must
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be known a priori somewhere; the tempered representations are the starting
point. To give a precise result, we need a definition.

Definition 1.4. Suppose X is a (g, K) module of finite length endowed with
a non-degenerate g-invariant Hermitian form (,). Fix a representation § € K,
and a positive-definite Hermitian form on the space V5 of 6. Then the finite
dimensional space

X% = Homg/(V;, X)

acquires a non-degenerate Hermitian form; write (p(8), q(6)) for its signature.
The signature of (,) is the pair of formal sums

(X »®3. T a()3).
dekK 6ekK

(For notational convenience, we may sometimes regard the signature ‘as the pair
(p, q) of functions from K to N.) Similarly, we define

m(8) = p(8) + q(9),
the multiplicity of 8. The formal K-character of X is

Ox(X) = X m(8)s.

dekK

(or sometimes just the function m).

THEOREM 1.5. Suppose X is a (g, K) module of finite length endowed with
a non-degenerate Hermitian form (,). Then there are finitely many tempered
irreducible (g, K) modules

and integers

such that the signature of (,) is

P p

Z 1,70k (Z,), Z T ®K(Zj) .

i=1 j=1
We may assume that all the Z,; have real infinitesimal character; in this case
they, and the integers 1,*, are unique (except for terms with r,* = 0).

If this result were proved by an effective computation, it would be an
(unsatisfactory) determination of the unitary dual of G. However, it uses two
non-computable invariants. The first is a Jantzen-type filtration of certain induced
representations; we need to know the character of each subquotient. There is an
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obvious conjecture for this (at least if G is linear), and it may be provable by the
methods used by Beilinson-Bernstein in category @. The second invariants are
some signs, associated with the fact that an indefinite form is not intrinsically
preferable to its negative. I have no idea how to calculate these.

Here is an outline of the proof of Theorem 1.5. The basic idea is to
understand how the signature of a one parameter analytic family (,), of
Hermitian forms can vary with the parameter. Obviously the signature does not
change at all over intervals where the form is non-degenerate. At each point ¢,
where (., ), is singular, Jantzen has defined in [J] a family of “residual” forms
(,)* which make precise the idea of “signature on the subspace where (, ),
vanishes to order k at #,”. Theorem 3.8 says that the change in signature of (, ),
as one crosses 1, is given by the sum of all the signatures of odd order residual
forms. (This generalizes the fact that a real analytic function changes sign exactly
at zeros of odd order. The generalization is not really much harder than that fact,
at least in the presence of Jantzen’s results.) Theorem 1.5 is deduced from
Theorem 3.8 by a standard inductive argument in terms of the Langlands-
Knapp-Zuckerman classification of irreducible representations.

In the context of Theorem 1.3, the proof of Theorem 1.5 and the results of
[S-V] show that the tempered characters involved in the signature of (say) 2Y
must have their lowest K-types in the “bottom layer” of ZY (see [S-V] or Section
6). Consequently, ZY is unitary if and only if its form is definite on the bottom
layer. If Y is one dimensional, there is only one K-type in the bottom layer, and
we are done. In general, the ideas of [E-W] make possible a comparison of forms
for Y and ZY on the bottom layer; and Theorem 1.3 follows.

As explained in [V3], Theorem 1.3 reduces the classification of unitary
representations of G to a finite set F, of lowest K-types. (The proof of Theorem
1.5 gives an effective finite set F; € K such that any representation having a
lowest K-type in F,, and an invariant Hermitian form positive inside F;, must be
unitary. For fixed G, the determination of the unitary dual is therefore reduced
to a finite computation.)

The paper is organized as follows. Section 2 recalls the general theory of
Hermitian forms and irreducible (g, K) modules. Section 3 is devoted to the
proof of Theorem 1.5. Section 4 translates [S-V] into the language of Zuckerman’s
functor. Section 5 describes the Enright-Wallach construction of Hermitian forms
on the representations in Theorem 1.3, and the proof of that theorem is in
Section 6. An extension of Theorem 1.3, which is important for some applica-
tions, is given in Sections 7 and 8.

This paper grew out of joint work with Dan Barbasch, and I would like to
thank him for many fruitful discussions. The results in Section 8 also owe a great
deal to suggestions of Tony Knapp.
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2. Preliminary results

Recall that G is a reductive group in Harish-Chandra’s class. In particular,
G may be non-linear; its Cartan subgroups may be nonabelian; lowest K-types
may not have multiplicity one; and so on. Many of the results we need have
published proofs only under additional hypotheses, but we will avoid most of
those which cannot easily be extended to the present setting. All references to
the bibliography should be interpreted with this in mind. General notation
follows [V2]. In particular,

(2.1)(a) Z(g) = center of U(g).
If § is a Cartan subalgebra of g, then we write
(2.1)(b) & Z(g) — S(p)"*"

for the Harish-Chandra isomorphism. The ““infinitesimal character A”, for A € h*,
refers to the map

(2.1)(c) &:Z(g) > C
obtained by composing ¢ with evaluation at A.

Definition 2.2. Suppose b, C g, is a f-stable Cartan subalgebra, and H its
centralizer in g. Write

t, = 1 eigenspace of 6 on ),

a, = — 1 eigenspace,
T=HNK,
A = exp(a,),

so that H =T X A, a direct product. A regular pseudocharacter (or simply
regular character) of H is a pair

vy =(I,¥)
subject to the following conditions:
R-1) '€ H,and ¥ € bh*;
R-2) If a is an imaginary root of ) in g, then (a,¥) is a non-zero real number.
Write ¥ for the unique system of positive imaginary roots such that

(a,¥) >0, foralla € V.

R-3) Write p(¥) for half the sum of the roots in ¥, and p (¥) for half the sum of
the compact ones. Then

dl' =5 + p(¥) — 2p,(¥).
We write 2(H) or #(H) for the set of regular characters of H. (In [S-V] and
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[V2], the set P(H) was called H’. That notation is inconvenient when several
Cartan subgroups must be considered simultaneously.)

Definition 2.3. In the setting of Definition 2.2, write

M = centralizer of A in G.
There is a unique (relative) discrete series (n, M N K) module

X = X¥(y)
satisfying
a actsin X™ by ¥/,
XM has a lowest M N K-type of highest weight T'|;.

(We require X to be square integrable only on the commutator subgroup of M.
On M itself, X™ need not even be unitary.)
Choose a real parabolic subgroup
P = MN
so that
Re(a,¥) <0, foralla € A(n,a).

The standard representation with parameter v is the (g, K) module

X(y) = X%(y) = Ind§py (XY X 1).
We use normalized induction, and consider only the K-finite vectors in the
induced representation.

The (g, K) module X(y) has finite length, and infinitesimal character y
(cf. (2.1)).

Definition 2.4. Suppose H = TA is a f-stable Cartan subgroup of G. A
limit pseudocharacter (or limit character) of H is a triple

y=(¥.I,9)
with the following properties.
L-1) ¥ is a positive system for the imaginary roots of ) in g, I' € H, and
¥ < b*.
L-2) If « € ¥, the (a,y) > 0.
L-3) dT = 3 + p(¥) — 2p,(¥).

Write 2, (H) or 2 (H) for the set of limit characters of H; of course we
may regard #(H) as a subset of 2, (H). A limit character is called final if it
also satisfies the following conditions.

F-1) Suppose «a is a simple root of ¥, and (a,¥) = 0. Then a is noncompact.
F-2) Suppose a is a real root of § in g, and (@, ¥) = 0. Then a does not satisfy
the parity condition ([V2], Definition 8.3.11).
Write Z,(H) or .@fC(H ) for the set of final limit characters on H.
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Attached to every limit character v is a standard limit representation

(2.5) X(v) = X<(v)
given by a generalization of Definition 2.3; it may be zero. It is induced from a

limit of discrete series representations on M = G*; a discussion may be found in
[S-V]. The conditions (F-1) and (F-2) are chosen because of the following result.

ProposiTiON 2.6. Suppose vy € Py, (H) (Definition 2.4).

a) v satisfies (F-1) & X(y) # 0.

b) If y does not satisfy (F-2), then X(y) is a direct sum of standard limit
representations attached to a more compact Cartan subgroup.

c) If v is final, then X(y) has a unique irreducible submodule.

This result (due in part to Hecht-Schmid and Mili¢i¢) is proved for con-
nected linear G in [K-Z2]. The general case is similar. Whenever vy satisfies (F-1)
of Definition 2.4, set

2.7)(a) X(y) = X(y) = soc(X(v))
= largest completely reducible (g, K) submodule of X(y).
Whenever y does not satisfy (F-1), define

(2.7)(b) X(y) =o.

Definition 2.8. Suppose y € P(H). The Langlands subrepresentation of
X(7v) is X(y) (ck. (2.7)).

By Proposition 2.6(c), X(y) is irreducible whenever v is final.

Tueorem 2.9 (Langlands, Knapp-Zuckerman [L], [K-Z2]).

a) Suppose v, € P(H,) (i = 1,2). Then X(y,) is equivalent to X(v,) if and
only if (H,,y,) is conjugate by K to (H,,v,).

b) Suppose X is any irreducible (g, K) module. Then there are a 0-stable
Cartan subgroup H, and a y € #4(H), such that X is equivalent to X(y).

The Knapp-Zuckerman result was formulated differently, and proved only
for connected linear groups. This version is a consequence of the results on
translation functors in [S-V] and [V2].

We need some generalities on Hermitian forms, all of which are entirely
standard.

Definition 2.10. Suppose X is a (g, K) module. The Hermitian dual of X,
denoted X", is the (g, K) module defined as follows. The underlying vector
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space of X" is, as an abelian group, equal to the K-finite dual X¢ of X ([V],
Definition 8.5.1). For the purpose of the rest of the definition only, write

¢: X°¢ - X"
for this identification. The scalar multiplication of C on X" is
z-¢(x)=9(z-x) (x€X°z€CQ).
The action of g is
(U+iv)-¢(x)=¢((U-ivV)-x) (U,Veg,xecX°).
Finally, K acts exactly as in X°, via the isomorphism ¢. Write
(,): XxXh>C

for the pairing induced by ¢ and that on X X X°, It satisfies
a) (,) is linear in the first variable, and conjugate linear in the second:

(x,ay + bz) = a(x,y) + b(x,2)
fora,be C, x € X, and y, z € X".
b) For U,V € g,, x € X, and y € X",
((U+iV)x,y) = (x,(- U+ iV)y)
c) Forke K, x € X, and y € X",
(k-x,y) = (x,k7'y).
Definition 2.11. Suppose X is a (g, K) module. An (invariant) Hermitian

form on X is a pairing
(,): XXX->C

satisfying (a)—(c) of Definition 2.10, and also
d) (x,y) = (y,x).
The radical of () is
Rad((,)) = {x € X|(x, X} = 0}.
We say (,) is non-degenerate if its radical is {0}.

ProposiTiON 2.12. Suppose X is an irreducible (g, K) module. Then X
admits a non-zero invariant Hermitian form if and only if X is isomorphic to X*.
In this case any such form is non-degenerate, and any two differ by multiplica-
tion by a real constant.

This is standard.

Definition 2.13. Suppose y = (¥,I,y) € #, (H). Define a new limit
character
y* = (¥h, Th 3)
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I'* = Hermitian dual of the representation I of H,
¥" = — (complex conjugate of 7).
(Recall that the bar here is part of the notation, and does not mean complex
conjugate.)

ProposiTioN 2.14. Suppose y € P, (H). Choose P = MN as in Definition
2.3. Then the opposite parabolic P°® = MN°? satisfies the same conditions for
v*. We have

X(y) = Ind§(X"(v) ® 1),
X(v)" = md§(X¥(y*) ® 1),
X(v") = Indfw(X™(v") ® 1).

Consequently X(y") and X(y)" have the same irreducible composition factors
and multiplicities.

Again this is standard and easy.

CoroLLARY 2.15. Suppose y € P4(H) (Definition 2.4). Then X(y) admits
a non-degenerate Hermitian form if and only if vy is conjugate to Y" by an
element of W(G, H).

The proof of Theorem 1.5 depends on having some control on how the
Hermitian form on X(y) varies as y varies continuously.

Definition 2.16. Suppose H = TA is a @-stable Cartan subgroup, and
Y= (\I” I"?) = ‘@lim(H)'

For every real number ¢, define

v, = (¥.1,,%,)
with
Llr =Tl
Lila = (T1,)"
Yele = ¥les
Yela = t¥1a-

THEOREM 2.17. Suppose Y € P((H) (Definition 2.4), and that X(v) admits
a non-zero invariant Hermitian form. Choose P as in Definition 2.3, and define

L(y,) = Ind§(X(x,) ® 1).
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(Thus Ix(v,) = X(y,) for t = 0.) Regard all the Ip(v;) as realized on a fixed
space V; so all the Hermitian duals I,(y,)" are realized on a fixed space V™.
Then there is an analytic family

{A(t)it € R}

of maps from V* to V, with the following properties:

a) For fixed t, A(t) is a (g, K) module map from I(v,)* to Ix(y,);

b) A(t) is not zero for any t;

¢) A(0) is an isomorphism;

d) There is a non-zero Hermitian form (), defined on I,(v,)* by the formula

(%, y), = <x’A(t)y>;

e) The radical of (), is the kernel of A(t); and

f) For t > 0, the image of A(t) is precisely X(v,).

Consequently, { , ), may be identified (after dividing X(y)" by the radical) with
a non-zero invariant Hermitian form on X(y).

This is a consequence of the results in [K-S]; see also [K-Z1]. Usually A(t) is
proved only to be meromorphic. There are two ways around this. First, we will
need analyticity only for ¢ > 0, where it is standard. Alternatively, one can
remember that A(t) is usually taken meromorphic in order to have a nice
functional equation. Since we do not need such an equation, we can easily
eliminate poles and zeroes by multiplying A(¢) by an appropriate meromorphic
function of ¢.

A few remarks about the statement are in order. The space of I(y,) consists
of the K-finite maps from K to X™(y,) transforming properly under M N K. All
the X™(y,) may be taken on a fixed space, with a fixed action of M N K; only the
action of A changes. This is why V exists. Notice also that the action of K is
independent of ¢. Thus
(2.18) V=& V(s),

dek
A(t): V(8)" - V(s).

So A(t) is just a direct sum of maps between finite dimensional vector spaces,
and it is these which we are requiring to be analytic: There is no functional
analysis involved.

Although we make no use of the fact, it is worth observing that A(t) is
unique up to multiplication by a nowhere zero real valued analytic function
of ¢. This follows from the fact that X(y,) is irreducible for ¢ outside some
discrete set.
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3. The Jantzen filtration and the proof of Theorem 1.5

Definition 3.1. Let E be a finite dimensional complex vector space, and
(,), an analytic family of Hermitian forms on E defined for small real ¢. Assume
that (,), is non-degenerate for sufficiently small non-zero ¢. The Jantzen filtra-
tion of E is the sequence of subspaces

E=E,DE D --- DEy= {0},

defined as follows. Fix n > 0. Then an element e € E belongs to E,, if and only
if for some € > 0 there is an analytic function

f:(—¢¢e) > E,
with the following properties:

a) £(0) =e, .

b) ( £(t),e’), vanishes at least to order n at t = 0, for any ¢’ € E.

(It is equivalent to consider only polynomial functions f,.) Suppose e, e’ are in
E,; choose £, f,. accordingly. Set

nn . 1
oo’y = lim - (£(), £(0),
(which is easily seen to be independent of the choices of f, and f).

Tueorem 3.2 (Jantzen [J], 5.1). In the setting of Definition 3.1, (,)" is a
Hermitian form on E_ with radical exactly equal to E, . In particular,

a) Rad(,), = E}; and

b) (,)" is a non-degenerate Hermitian form on E /E, . .

Proof. Let A be the ring of germs of analytic functions at ¢t = 0. Germs of
analytic functions from (— ¢, €) to E may be regarded as elements of the A
module

M=AQE.
C

The family of Hermitian forms on E may be regarded as a single pairing
(,): MXM— A,

(f.g) = (f(t),g(t)),.

With these definitions, we are essentially in the setting of [J]. This pairing is
Hermitian instead of symmetric, but Jantzen’s arguments still apply. Q.E.D.

ProposiTioN 3.3. In the setting of Theorem 3.2, let (p,,q,) be the signa-
ture of {,)".
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a) For small positive t, {,), has signature
N N
( L P L qn)
n=0 n=0
b) For small negative t, {,), has signature
(Zp+Za. Zot T al

n even n odd n odd n even

Proof. For (a), it suffices to produce (for small positive ¢) a subspace F, of E
of dimension 2_p, on which (,), is positive definite. (For if we replace (,), by
its negative, we accomplish the same thing for the negative part of the signature.
These two things together give (a).) For each n, choose

(3.4)(a) {el,....ep ) CE,
in such a way that

(3.4)(b) (el'sef)" = 0.
Write

(3.4)(c) {f":(—e¢) > E}

for the corresponding functions from Definition 3.1. By that definition and
(3.4)(b),

t"(8;+t(...)) ifm=n
gmaxmmy( ) always.

(3.5) (fr(2), £7(t)), = {

>

> represents an analytic function of ¢. Set
hr(t) =t "2f(t)  (¢>0).

In each case, “...

Then (3.5) becomes
(he(t), h(t)), = {‘% +t(...) ifm=n
i i t §m=nl/2(. ) always.
Now define F, to be the span of the various h{(t). Then the matrix of (,), on
F, is
| I+6(...).

It follows that for small ¢, the h}(t) are linearly independent, and (, ), is positive
definite on F,.
For (b), apply (a) to the family of forms

(=0 Q.E.D.
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CoroLLARY 3.6. In the setting of Proposition 3.3, write (p,q) for the
signature of {,) for small positive t, and (p’,q’) for the signature for small
negative t. Then

p=p"+ 2 Po— 2 Gus

n odd n odd
a=q'+ X 4.~ L .
n odd n odd

We express this by saying that (,), changes sign on the odd levels of the
Jantzen filtration as one passes through the singularity at zero.

Definition 3.7. Suppose Y € Z,(H) (Definition 2.4), and that X(y) admits
a non-zero invariant Hermitian form. Define I,(y,) as in Theorem 2.17, so that
there is an analytic family (,), of Hermitian forms on V" (notation as in
Theorem 2.17). The Jantzen filtration of X(y)" (the space of which is V*) is

X(v)o=X(v)" 2 X(y)y 2 -+ > X(v)y = (0},

defined using (,), at ¢ = 1 (instead of ¢ = 0) as in Definition 3.1. Explicitly,
X(v)" consists of those elements x € X(y)" with the following property: There is
an analytic function

fii(l—¢el+e)—>Vh

satisfying three conditions:
a) f. takes values in a fixed finite dimensional subspace of V"

b) £.(1) = x;

¢) For all y € V*, the function { f,(¢), y), vanishes at least to order n at t = 1.
(Again, we could consider only polynomial functions f,.) On each subquotient
X(v)!/X(v)",,, we have the nondegenerate Hermitian form (, )" defined as in
Definition 3.1 (cf. Theorem 3.2). The Jantzen filtration of X(vy) is

X(1)¥=X(y) 2 X(y)" 2 - 2 X(v)" = {0};
here

X(y)" = {x S X(y)|<x, X('Y)Z> = 0}
= (X(vn)" .

(The pairing (, ) is that between X(y) and its Hermitian dual X(y)".) The form
(,) provides an identification

X(V)h/X(y)ey = [X(0)™/x(n)"]"

(see Definition 2.10)). Therefore (,), may be transferred to a non-degenerate
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Hermitian form on X(y)"*!/X(y)"; we call it {,)" as well.

THEOREM 3.8. Suppose v € P4(H) (Definition 2.4), and X(y) admits a
non-zero invariant Hermitian form. Then the Jantzen filtration

X(v)=X(¥)"2 X(y)" 2 - 2 X(y) = {0}
is a filtration by (g, K) submodules.
a) X(v)' is the Langlands subrepresentation X(v).
b) The non-degenerate Hermitian form (,), on X(y)""!/X(y)" is invariant
(Definition 2.11). Write (p,, q,) for its signature ( Definition 1.4; here p, and
q,, are functions from K to N.)
c) For e sufficiently small, the non-degenerate invariant Hermitian form (),
on X(v,4,) (Theorem 2.17) has signature
N-1  N-1
( Y P 2 qn)-
n=0 n=0
d) For ¢ sufficiently small, the non-degenerate invariant Hermitian form (,),_,
on X(v,_,) has signature

(Z(pZm + Goms1)s Z(p2m+l + Q2m))~

m m

Proof. To show that X(y)" is g-stable, it suffices to show that X(y)" is. So
fix x € X(y)", and U € g. Let f, be as in Definition 3.7, and define

fU-x(t) =U (f;(t)),

the action on the right is in X(y,)". It is a triviality to check that f;,  satisfies
(a)—(c) of Definition 3.7 for U - x instead of x. Therefore U - x belongs to X(v)".
The K invariance is similar. Part (a) follows from Theorem 2.17(e) and (f), with
Theorem 3.2(a). Part (b) may be proved in the same way as the first claim of the
theorem. Parts (c) and (d) follow from Proposition 3.3. Q.E.D.

The proof of Theorem 1.5 from Theorem 3.8 is entirely standard bookkeep-
ing, which experts will probably wish to omit; they should proceed directly to
Section 4.

LeEmMa 3.9. Suppose X is a (g, K) module of finite length admitting a
non-degenerate invariant Hermitian form of signature (_p(8)8, 2q(8)8) (Defi-
nition 1.4). Then we can find irreducible (g, K) modules {X;}i_,, {Y;};-, (not
necessarily distinct), with the following properties:

a) In the Grothendieck group of finite length (g, K) modules,

X= ixi+ i(yj+th).

i=1 j=1
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b) Each X; admits a non-degenerate invariant Hermitian form (,),. Write
(p;, q;) for its signature; and write m; for the K-character of Y; (Definition
1.4).

0 p(8) = X p(8) + ¥, m,(8).

i=1 i=1

r S
q(8) = Zl q;(8) + Zlmj(a)-
1= 1=

Proof. We proceed by induction on the length of X. If X = {0}, we take
r=s=0; so suppose X # {0}. Then we can find an irreducible submodule
Z c X. There are two possibilities.

Case 1. The restriction of { ,) to Z is non-zero. By Proposition 2.12, (, )|, is
non-degenerate. Set

(3.10)(a) Z+={x€X|(x,Z) = 0}.
It follows that
(3.10)(b) (,)|z+ is nondegenerate,
ZnZ+= {0},
X=ZoZ".

Choose {X;}i_,, {Y;}i—; for Z* (by inductive hypothesis). Let s = s, r =
r’ + 1, and
Xr = Z’<’>r = <’>|Z‘
The various conclusions of the lemma follow from (3.10) and the conclusions
for Z+.
Case 11. The restriction of (,) to Z is zero. The inclusion

(3.11)(a) Z-X

induces a surjection

(3.11)(b) Xt > Zh,

The form (,) induces an isomorphism

(3.12)(a) ¢: X > X",

defined by

(3.12)(b) (x,9(y)) = (x,y)  (x,y €X);

the pairing on the left is that of Definition 2.10, and that on the right is the
Hermitian form on X. Composing ¢ with the map of 3.11(b), we get a surjection

(3.13) Y: X » Zh,
(z,¢yx) = (z,x) (z€Z,x€X).
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The pairing on the left is that of Z and Z", and the one on the nght is the
Hermitian form on X. By the hypothe51s of Case II,

(3.14) =kery D Z.

Define

(3.15) V= (kery)/Z

Essentially by definition,

(3.16) Rad((, ) liery) = Z;

so (,) induces a non-degenerate form (, ), on V. Because of (3.13) and (3.15),
(3.17) X=V+Z+2Z"

in the Grothendieck group. Choose {X;}i_,, {Y;}5_, for V and (,), by
inductive hypothesis. Put r = r’, s = s" + 1, and Y, = Z. Parts (a) and (b) of the
lemma follow from (3.17) and the inductive hypothesis. For (c), we use:

SuBLEMMA 3.18. Let E be a finite dimensional vector space carrying a
non-degenerate Hermitian form (,) of signature (p,q). Let S be a totally
isotropic subspace of E (that is, (,)| is zero), and set

S+t={e€ E|(e,S) =0} 2 8.
a) The radical of (,)|s+ is S; so (,) induces a non-degenerate Hermitian form
(,)pon F=S8*/8.
b) Write (p’,q’) for the signature of {, ), and m for the dimension of S. Then
p=p +m, qg=4q +m.

This is elementary. Part (c) of the lemma follows, if we apply the sublemma

to each K-isotypic subspace X(9). Q.E.D.

LemMma 3.1. Suppose X is a (g, K) module of finite length having a
non-degenerate Hermitian form (,). Assume that the conclusion of Theorem 1.5
holds for every irreducible composition factor of X which admits a non-zero
Hermitian form. Then Theorem 1.5 is true for X itself.

Proof. By Lemma 3.9, it suffices to show that the K-character of any
irreducible (g, K) module is an integral combination of K-characters of tempered
representations. This is well known ([V2], Proposition 6.6.7). Q.E.D.

To set up the inductive argument proving Theorem 1.5, we need a few more
standard ideas.

Definition 3.20 ([V2], 5.4.11). Suppose f), = t, + a, is a f-stable Cartan
subalgebra of g,. Then

(a) b* = [af @ (ity)*] @[ia} ® t3].
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If p € h*, we define
(b) RE p = projection of p on first factor of (a),

an element of af + ity; it is called the canonical real part of p.

Lemma 3.21 ([V2], Lemma 5.4.12). In the setting of Definition 3.20, the
infinitesimal character &g, (cf. (2.1)) depends only on §,. The standard
bilinear form () is positive definite on aff ® it¥.

Definition 3.22. Suppose y € 2, (H). Write

¥y=(A,») et* + a*
= (A, (Rer,Im»)) € it* +(a¥ + ia¥).
The lambda norm of v is
¥ lhamba = (A5 A)*.
Notice that
1Y hambaa < IIREY]].
Definition 3.23 ([V2], Definition 5.4.1). Suppose 8 € K. Choose a highest

weight p of 8, and construct from it a parameter A by [V1], Proposition 4.1 (cf.
[V2], Proposition 5.33). The lambda norm of § is

1181l ambaa = (N5 A)2.

If X is any (g, K) module, the representations of K having minimal lambda
norm among those occurring in X are called the lambda-lowest K-types of X. If
y € P, (H), define A%(y) = A(y) = set of lambda-lowest K-types of X(y) C K.

TrEOREM 3.24 ([V1] or [V2], Chapter 6). Suppose y € P, (H), and & €
A(Y) (Definition 3.23).

) 1Y lliambda = 101l iambda-
b) The §-primary subspace X(v)(8) is contained in the Langlands subrepresenta-

tion X(v) (cf. (2.7)). B
c) ZBGA(y)X(y)(S) generates X(7v).

CoroLLARY 3.25. Suppose v € Py, (H), v’ € P:(H'), and X(y’) is a com-
position factor of X(y). Then

. 1Y Niambda = 117 ltambda -
If equality holds, then X(y") € X(y).

CoroLLARY 3.26. Suppose X is an irreducible (g, K) module of infinitesi-
mal character n, and & is a lambda-lowest K-type of X. Then

”REV’” = ”6”lambda'
Of course, this uses the remark after Definition 3.22.
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Proof of Theorem 1.5. We postpone for a moment the uniqueness assertion.
Fix some large real number T. We will prove Theorem 1.5 for all representations
whose composition factors have infinitesimal characters p satisfying

(3.27) IREu| < T.

Since T is arbitrary, this will suffice. We proceed by downward induction on the
lambda norm of a lambda-lowest K-type of X; this is permitted by (3.27) and
Corollary 3.26. By Lemma 3.19, we may as well suppose X is irreducible; say

(3.28) X=X(y), veZ(H).

We work with the tools of Theorem 2.17. Define

(3.29) {t;, < --- <t,_;} ={te(0,1)A(¢) is not an isomorphism},
t,=0, t =1.

For 1 <1 < r, define

(3.30) (p', q') = signature of (,),, s € (¢,_,,¢,).

For each I,1 < I < r, the representation X(y, ) has a Jantzen filtration

(3.31) {0) = X(v,)’ < X(v,)' € --- .

The nth subquotient X(Yt,)"H /(X(v,)" carries a non-degenerate Hermitian
form (, )}, of signature

(3.32) (vl ql).
By Theorem 3.8, we have the following facts:
(3.33) X(x)=X(v)"  (I=1L...n),
(3.34)(a) p't =Y nl,
n (I=1,...,r—1)
(3.34)(b) q"'=2aq,,
(3’35)(3) pl = Z(pém + q£m+l)’
m (I=1,...,7)
(335)(b) ql = Z(pém+l + qém)
° m

Combining (3.34) and (3.35), we get recursion formulas
(3.36) P =p'+ L (Phues ~ Ghuer)s

m (I=1,....,r—1)
0" = q' + X (Ghnsr — Phmar)-
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Finally, (3.35) gives
(3.37) P =P = 2 Gimi1— 2 Pimo

m>0

=G = 2 Poms1— 2 Pom-
m m>0

Now (3.36) and (3.37) together give

(3.38) signature of form on X(v) = (p}, q;)
r—1
= (ppql) + Z Z(pIZm+1’qém+l)

I=1m

r
- IZ Z(qém+l’ pém+l)_ Z (p;m’ qém)
=1

m m>0
To prove Theorem 1.5, it suffices to show that each term on the right in this
formula has the desired form. Because

IREY,|| < |[REY| < T (¢t <1),
the inductive hypothesis tells us that Theorem 1.5 holds for all the various

X(Ytl)2m+2/)—((ytl)2m+l (l _ 1,.”,7‘)
and
X(y)™ " /x(y)™  (m>0).
This takes care of all terms but (p;, q,) in (3.38). That term is the signature of
(,), for small positive s. By Theorem 2.17(c), it is also the signature of (, ), a
nondegenerate Hermitian form on
Y = Ind§(X*(v}) ® 1).

Since Y is trivial on A (Definition 2.16), Y is a direct sum of irreducible unitary
tempered representations Z, ... Z;. The signature of (, ), is therefore of the form

DEREAR NENER)

ies jes
for some subset S of {1,...,1} (cf. Lemma 3.9). So every term on the right of
(3.38) has the desired form. Q.E.D.

"This proof actually produces tempered representations with infinitesimal
character p satisfying u = REpy; this is what is meant by “real infinitesimal
character” in the statement.

We turn now to the uniqueness statement.

Lemma 3.39. Suppose vy € #;(H); write
y=(A,») €t* + a*.
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Then

a) X(y) is tempered if and only if Rev = 0,

b) X(y) has real infinitesimal character if and only if v = Rev,

c) X(y) is tempered and has real infinitesimal character if and only if v = 0.

This is obvious.

THEOREM 3.40. Suppose y € P«(H), and X(v) is tempered with real infini-
tesimal character. Then X(y) has a unique lambda-lowest K-type 8(y):

a) A(y) = {8(v)}.

This K-type occurs with multiplicity one in X(y) and X(y). If ' € P(H') is of
the same type, then

b) 8(y) = 8(y") < (H,¥) is conjugate to (H',y").
Finally,
c) X(v) = X(v).

Sketch of proof. Suppose first that G is linear, with abelian Cartan sub-
groups. Then the result is a consequence of Theorem 2.9 and the results of
Sections 6.5 and 6.6 of [V2] (notably Corollary 6.5.14). Next, suppose G is
connected, but possibly non-linear. Then the result follows from Theorem 2.9 and
[V1], Theorem 1.4. In general, one combines these two arguments. The main
point for (a) and the multiplicity-one statement is that the assumptions on y
mean that all the real roots are good ([V2], Section 6). Consequently the R-group
is trivial, and the delicate part of the multiplicity one proof disappears. Part (c) is
immediate from (a) and Corollary 3.25. For (b), let y* € #(H®) be the unique
regular character such that X(y) € X(y°). If we write

Y0 = (A, »°),
then y° is determined by the two properties
=0, 8(y)€A(y°)
(Definition 3.23). Therefore
(3.41) X(v°) 2 X(v), X(v").

Let 2" be the order of the R-group for y°. The method of [V1], Section 6, shows
that we can write

(3.42)(a) n=p+2q,
in such a way that

(3.42)(b) A(y°) has 2 elements, each occurring 27 times in X(v°).
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Because of (3.41), part (b) of the theorem will follow if we can show that the 29
composition factors of X(v°) containing &(y) are all equivalent. By (3.42), this
amounts to

(3.43) dim Hom_ (X(v°), X(y°)) > 2".

So it suffices to show that the standard intertwining operators on X(y°) (attached
to elements of the R-group) are linearly independent. For this, we may as well
restrict to the identity component of G (which can only enlarge the R group).
Then the linear independence was proved by Knapp-Stein in the linear case. For
non-linear connected groups, one can either imitate their argument or invoke
Theorem 1.4 of [V1] and Harish-Chandra’s completeness theorem. (Alternatively,
one can prove (3.43) by a similar algebraic argument: One first expresses the
Hom as the dimension of a weight space in a cohomology group of X(y?), then
restricts to the identity component of G to compute it.) - Q.E.D.

CoroLLARY 3.44. Suppose Z, and Z, are tempered irreducible (g, K)
modules having real infinitesimal character and the same lambda-lowest K-type.
Then Z, = Z,.

CoroLLaRY 3.45. Suppose Z,,...,Z, are distinct tempered irreducible
(g, K) modules having real infinitesimal character, and r,,...,r, are integers.
Then there is an i such that the lambda-lowest K-type of Z,; has multiplicity 7, in
Zri@K(Zi)'

The uniqueness statement of Theorem 1.5 follows.

4. An up-to-date look at [S-V]

We fix throughout this section a f-stable parabolic subalgebra
(4.1) g=l+ucgy

as in (1.1); and we use the other notation of (1.1) freely. If ) C [ is any Cartan
subalgebra, we will often need

1
(42) p)=2 T acn
a€l(u,bh)

this is the weight of a one-dimensional representation of [ (but not necessarily of
L). Recall from [V2], Chapter 6, Zuckerman’s functors ([V2], Definition 6.2.11):

(4.3) I #(g,LNK)—>M(g,K),
and the functor ([V2], Definition 6.1.21)
(4.4) prof: #(I,LNK)— #(g,LNK),

projY = Homa(U(g)’Y)LﬂK-ﬁm’te;
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we regard Y asa (g, L N K) module by making u act trivially. We will also need
(4.5) ind%: #(I,LNK)—> #(a,LnNK),
indY=U(g) ® Y
a
([V2], Definition 6.1.5). The basic construction is cohomological parabolic induc-
tion:
(4.6) R: M, LNK) > M(g,K).
Z'Y = Ti(pro(Y ® APu)).
LEmMMa 4.7 ([V2]). Suppose Y is an (1, L N K) module of finite length.

a) Forall i, 2'Y is a (g, K) module of finite length.
b) Fori > S = idim(t/l N ¥),
RY = 0.
¢) Suppose Y) C [ is a Cartan subalgebra, A € H*, and Y has infinitesimal
character N — p(u). Then R'Y has infinitesimal character \.

Because it will recur constantly, we emphasize
(4.8) S = 3dim(f/[ N t) = dim(u N f).
Here is the formal correspondence between representations of L and of G.
Definition 4.9. Suppose H is a f-stable Cartan subgroup of L, and
Yo = (¥, 1, 7,) € 2i.(H).

Assume that

(a) Re(¥, + p(u),a) >0, foralla € A(u,b).
Define
vy=(¥.T,7) € 2 (H)
by
¥ = ¥, U {imaginary roots of § in u},
Lly= Lol as
Ty = (Tylr) ® (A (u N p)ly),
Y=Y, +p(u),

the limit character of H for G associated to Y,. Thus
(b1) Re(y,a) > 0, forall a € A(u, ).
(b2) ¥ O {imaginary roots of §) in u}.
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LEmMA 4.10. In the setting of Definition 4.9, v is really a limit character
for G. The correspondence y, < v is a bijection between limit characters for L
satisfying (4.9)(a), and those for G satisfying (4.9)(b).

Proof. The only non-formal part of this is the fact that
+2p(uNp)—pu),

both sides regarded as elements of t*. This is a consequence of Lemma 5.3.29 of
[V2]; or one can argue more directly as in [V2], proof of Lemma 8.1.1.  Q.E.D.

ProposiTiON 4.11 ([V2], Proposition 8.2.15). Suppose H C L is a 0-stable
Cartan subgroup, and vy, € Py, (H) satisfies (4.9)(a). Define y € 2§ (H) by
Definition 4.9. Then

0, i+S
X%(y), i=S8.

The result in [V] is for regular characters only, but the general case follows
immediately by the translation principle.

Xy, - |

Definition 4.12. For A € §H*, write
%( a, K))\

for the full subcategory of (g, K) consisting of modules of generalized
infinitesimal character A.

ProposiTION 4.13. Assume (1.2)(a). The functor
R%: ML LN K)oy = H(g, K),

is exact.

Proof. We need only show that #' vanishes on ([, L N K),_ p(uy for
i # S. For standard limit representations, this is Proposition 4.11. The general
case follows by a straightforward induction (compare the proof of Theorem 1.5 in
Section 3). Q.E.D.

Lemma 4.14. Suppose v, € ?fL(H ) satisfies (4.9)(a). Theg the correspond-
ing element y € 2§ (H) satisfies (F-2) of Definition 2.4, so X%(y) is irreduc-
ible or zero.

¢ Lemma 4.15. Suppose v, € .@fL(H ) satisfies (4.9)(a). Then
25 X(v,)] 2 XS(y).
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Proof. If X(y) = 0, there is nothing to prove; so assume not. By Proposition
4.11, there is an irreducible composition factor

Y = X(v;)
of X’(y,), such that
A5Y 2 X¢(vy).
Suppose Y # X’(y,). By Corollary 3.25,

(4.16) 1Y Nambaa < 117" ambaa
By Propositions 4.11 and 4.13,

(4.17) XG(y) c 25(X"(v;)) = X(v).
Now (4.16) and (4.17) contradict Corollary 3.25. Q.E.D.
ProposiTion 4.18. Suppose v, € .@fL(H ) satisfies (4.9)(a). Then
RXH(v,) = X(y).
Proof. Enumerate the composition factors of X*(y,) (with multiplicities) as
{X™(v})}, with
(vi € PH(1,)).

Because (4.9)(a) is just a condition on infinitesimal character, all the v, satisfy it;
so by Lemma 4.15,

(4.19) R5(XH(vi)) 2 XE(vY).
By Proposition 4.13, the formal difference
(4.20) XG(y) = LX4(y)

(in the Grothendieck group) is equal to
#(XH(r,)) ~ LX) = 2 LX) - LX)
- £ (R ) - X1,

By (4.19), each term is the character of a representation. By [S-V], Theorem 4.23,
(4.20) is zero (see Corollary 4.21 below). Consequently equality holds in (4.19).
Q.ED.

CoroLLARY 4.21 ([S-V], Theorem 4.23). Suppose v, € PL (H) satisfies
( (4.9)(a). Write

Xi(y,) = LX)
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in the Grothendieck group, with y; € #}(H,). Then
XCG(y) =2 X%(y")
i
in the Grothendieck group, with y' € P (H,) associated to v} by Definition
4.9. Each term on the right is irreducible or zero; it is zero only if y' is
orthogonal to some compact imaginary root of 1), in u.

Proposition 4.18 shows that #° realizes the correspondence of [S-V] de-
scribed in the introduction.

5. Duality for derived functor representations

In order to study Hermitian forms, it is convenient to introduce another
family of functors:

(5.1) ZLi: M¢,LNK)—>M(g,K),
LY = Ti(ind(Y ® A*Pu))
(compare 4.6). These have properties analogous to those of %'. For example,

Lemma 5.2. Suppose Y is an (I, L N K) module of finite length.
a) Forall j, £7Y is a (g, K) module of finite length.
b) Forj < S = 3dim(f/I N ¥f),

LiY = 0.
¢) If Y has infinitesimal character X — p(u), then LIY has infinitesimal
character \.

: The proof is identical to that of Lemma 4.7, and the rest of the results in
Section 4 carry over equally well.

TueEorREM 5.3 (Enright-Wallach). Suppose Y is an (I, L N K) module of
finite length. Then there is a natural isomorphism

[giy]h = Q2S-i(Yh)
(notation as in (2.10), (4.6), and (5.1).
We will prove this in a moment.

" ProposiTION 5.4. Suppose Y is an (I, L N K) module of finite length. Then
there is a natural map

257 S asy.

If Y has generalized infinitesimal character A — p(u), and \ satisfies (1.2)(a),
then ® is an isomorphism.
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This will also be proved in a moment.

CoRroLLARY 5.5. Suppose Y is an ([, L N K) module admitting a nondegen-
erate invariant Hermitian form {, >L. Then there is a natural invariant Hermitian
form ()¢ on L5Y; its radical is the kernel of the map ® of Proposition 5.4.

Proof. Since Y = Y" by hypothesis, Theorem 5.3 and Proposition 5.4
provide a map ¥ from #Z3Y to its Hermitian dual %#°Y. We may therefore
define
(5.6) (u,0)¢ = (u,¥v) (u,v €L%).

Here the pairing on the right is the one between #3Y and its Hermitian dual.
Conditions (a)—(c) of Definition 2.10 are obvious, and (d) of Definition 2.11
follows by inspection of the proofs of Theorem 5.3 and Proposition 5.4 (see the
proof of Theorem 5.7 and Lemma 5.19 below). The last assertion of the corollary
is clear from (5.6). Q.E.D.

We begin now the proof of Theorem 5.3. The only difficult part is the
following result. Recall that the functors I'' of (4.3) are defined even on
(t, L N K) modules.

THEOREM 5.7 ([E-W]). Suppose X is a (f, L N K) module. There is a
natural isomorphism
[Ti(x)]" = T25-i(x").

Here h is Hermitian dual (Definition 2.10), and S is defined by (4.8). In
particular, a non-degenerate Hermitian form on X induces one on I'SX. If X is
actually a (g, L N K) module, then all these constructions are g-invariant.

We will not give the proof, but it will be important to know how the pairing
is defined. There is a natural isomorphism
(5.8) X = ZH"(I‘,LﬁK;VS*®X)®VIs
s§ek

as (f, K) modules; the action on the right is on Vj; only. (This follows from [V2],
Corollary 6.2.15.) The relative Lie algebra cohomology is computed by the
complex

(5:9) Hom, ,(A(t/LNt),V* ® X)=[A(t/I NnE)]* ® V¥ ® X.
Fix a non-zero linear functional

(5.10)(a) o: [AB(E/1N )] > C

such that

(5.10)(b) o([AZ(t,/1, N ty)]") € aR;

{
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here a is a constant to be chosen later. Now suppose
ueTl'X, ovel?iXxh);
we may as well assume they belong to the d-isotypic part. Choose representatives
a=ij®v}“®xj®vj,
j
D=7 ®w®x® w,.
k

Here for each j
w; € [Ai(E/1 N E)]™, v}EVF, x,€X, v, €V,
and similarly for v. Then the pairing in the theorem is

(5.11) (u,v) = Z;,c¢(w,- A T (o, wi (a2, wy).
j»

Here the second and fourth factors are fixed Hermitian pairings on V; and V,
assumed to be dual to each other. (This cancels the ambiguity of a constant
multiple in their choice.) If i = S and X carries a Hermitian form, then exactly
the same formula gives the form on I'SX. Notice in that case that

wj AT = (@ ATy
= (- I)S(’Tk A c_o].),
and therefore that

(5.12)(a) (u,0) = (- 1)*(@/a)(v, u).
In order to get a Hermitian form, we can therefore choose
(5.12)(b) a= +(i%);

the sign will be determined later, by Proposition 6.8. We continue now with the
proof of Theorem 5.3. Because of the twists in (4.6) and (5.1), we really need to
study the ([, L N K) module

Y=Y® Ay,
If Y has infinitesimal character A — p(u), then Y has infinitesimal character
A + p(u). Since A®Pu carries a positive ([, L N K }-invariant Hermitian form, all
questions about forms transfer perfectly.

LemMa 5.13. In the setting of (4.4) and (4.5), suppose Y is an (I, L N K)
module. Then there is a natural isomorphism

[ind%(f’)] = prof(Y").
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Proof. The pairing is defined by

(5.14) (u®y,f) =y, flo(u)))
fory € ¥, u € U(g), and f € pro(Y"). Here
u—o(u)

is the anti-automorphism of U(g) induced by
o(U+iV)=—U+iV (U Veg,),

and the pairing on the right in (5.14) is between Y and Y". We leave the
verifications to the reader. Q.E.D.

Theorem 5.3 follows from Theorem 5.7 and Lemma 5.13. We begin now the
proof of Proposition 5.4.

LemMa 5.15. Suppose Y is an (1, L N K) module.
a) There are (1, L N K) module maps

Y - indgf > Y
Y - progf' %
such that the composition is the identity.
b) Thereis a (g, L N K) module map ¢ such that

ind} Y A prog Y
oy
commutes.

Proof. Write
U(g) = ul(g) ® U(T).
This is stable under ad(!1) and Ad(L N K), so that
Ug) @Y= (uU(g) ® 17) ®Y.
3 a
This gives the first half of (a); the second is similar. For (b),
(5.16) Hom, ; ~x(X,pro¥) = Hom, ; ,x(X,Y).
The kernel of the map
ind¥ 5 ¥

is u(ind?); somisaq modgle map. We define ¢ to be the map corresponding
to 7 in (5.16) (with X = indY). Then (b) is immediate. Q.E.D.

(
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LemMaA 5.17. Suppose Y is an (1, L N K) module of generalized infinitesi-
mal character A\ + p(u) = A — p(11), and that \ satisfies (1.2)(a). Then
a) Every non-zero submodule S of indgff has a non-zero intersection with Y.
b) © generates proJY.
¢) The map ¢ of Lemma 5.16(b) is an isomorphism.

(This will be generalized in Section 8.)

Proof. For (a), we can find an element x € i([, N f,) such that x com-
mutes with [ and L N K, and ad(9~c) has positive eigenvalues on u ([V2],
(6.3.13)). The eigenvalues of x in indY are

(A + p(u))(x) (on ¥),
(A + p(u))(x)+r, forsomer>0  (on uindY).»
Let (A + p(u))(x) + 1, be an eigenvalue of x on S, such that 7, is minimal;
write Y’ for the corresponding eigenspace. It is enough to show that 7, = 0.

Necessarily Y’ is an ([, L N K) submodule of ind Y. By the minimality of 7, it is
annihilated by T. There is therefore a non-zero map

(5.18) indY’ — indY.
As an ([, L N K) module, Y’ is a subquotient of
S(u)® Y.

By Kostant’s theorem ([V2], Corollary 7.1.13), Y’ has a summand of infinitesimal
character

A—p(l) +v,
with ¢ a sum of roots of f) in u. Therefore ind Y’ has a summand of infinitesimal

character A + . By (5.18), this is equal to the infinitesimal character A of ind Y;
O

A+ ¢ =wA, forsomew e W(g,b).
By [V2], Lemma 6.3.28, (1.2)(a) implies that

wh=A+ Y z.aRez, >0.
a€A(T,b)

Since ¢ is a sum of roots in u, this forces ¢ = 0. The element x now has
eigenvalue

(A = (@) +¥)(x) = (A + p(u))(x)
on Y’, which proves r, = 0. Part (b) is similar, and (c) follows. Q.E.D.

Proposition 5.4 follows from Lemmas 5.15 and 5.16. To fill the gap at the
end of the proof of Corollary 5.5, we record also the following result.
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Lemma 5.19 (Shapovalov). Suppose Y is an (I, L N K) module of finite
length, with an invariant Hermitian form (,)". Then ind8Y acquires a natural
invariant Hermitian form ()%, as follows. Write

& Y - Y*
for the map defined by the form on Y,
Y indgf’ - indgf/h
for the induced map, and
¢: ind2¥ - pro¢ ¥ = (ind2¥)"
for the composition of Y with the map ¢ of Lemma 5.15(b). Then the form on
indY is
(x,x")% = (x,¢¥x’) (x,x" € indY).
If the original form on Y is non-degenerate, then the radical of the form on ind Y
is the kernel of V.

Proof. This pairing obviously satisfies (a)-(c) of Definition 2.10; we only
have to verify (d) of Definition 2.11. Define o as in the proof of Lemma 5.13, and
(5.20) p: U(g) » U(L),  p(ul(g) + U(g)ii) = 0.

Suppose u,u’ € U(g), and y,y’ € Y, so that u® y and v’ ® y’ belong to
indY. The pairing constructed in the lemma may easily be computed in terms of
p and o: it is

(u®y,u ®y)e = (p(a(w)u)y,y")H"
Condition (d) of Definition 2.11 therefore amounts to
(5.21) | o[p(a(w)u)] = p(o(u)w).
Because o is an anti-automorphism, and ¢% = 1, (5.21) follows from

sep=peo;

and this in turn is obvious from the definitions. Q.E.D.

6. Proof of Theorem 1.3
We continue to fix a §-stable parabolic g = [ + u.
Lemma 6.1. Suppose v, € P (H); put
A=73,+p(u).
A = (%), +0(u)  (t€R; see Definition 2.16).

Assume that A\ satisfies (1.2)(a) (respectively, (1.2)(b)). Then A, does as well,
for |t] < L.
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Proof. The set of p satisfying either condition is obviously convex and
f-stable. But

A, =sA+(1—s)(0N), §=—. Q.E.D.

LeEmMA 6.2. Suppose v, € .@fL(H ) satisfies (4.9)(a) (that is, that ¥, + p(u)
satisfies (1.2)(a)), and that X"(vy,) admits a non-zero Hermitian form (,)*.
Write the signature of (,)" as .

(Z'f@LnK(ZiL)’ er_ G)LnK(Zf))
as in Theorem 1.5, with each ZX an irreducible tempered (1, L N K) module
with real infinitesimal character. Write

zb=X4y). i< 2HH,).
Then each v/ satisfies (4.9)(a).
If ¥, + p(u) satisfies (1.2)(b), then all the ¥} + p(u) do as well.

Proof. This is a consequence of Lemma 6.1 and the proof of Theorem 1.5.
Q.ED.

We will actually prove the following result, which includes Theorem 1.3.

TueoreM 6.3. Let Y be an (I,L N K) module of finite length, and
generalized infinitesimal character A — p(u). Assume that \ satisfies (1.2)(a),
and that Y admits a non-degenerate invariant Hermitian form {,)-. Write the
signature { )" as

(Z'f@LnK(zaL)a er_ eLnK(Zf)),
with notation and conventions as in Lemma 5.2; in particular,
zi = XHx;).
Let v\ € PS (H,) be the limit character corresponding to Y¢ by Definition 4.9
(which exists by Lemma 5.2); and set
Z, = X°(y') = 2%(z}).
Then
a) Z; is tempered, with real infinitesimal character; and it is irreducible or zero.

b) If A satisfies (1.2)(b), Z; is irreducible.
¢) Z°Y admits a non-degenerate invariant Hermitian form (,)¢ of signature

(Z'}+®K(Zi)’ er_ GK(Z]'))'

Proof. The proof of Theorem 1.5 produces some finite set of possible Z%,
depending only on composition series information; of course some of these occur
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with coefficient zero in the final formula for the signature of Y. Nevertheless, we
use that largest possible set of Z" throughout the proof. Parts (a) and (b) of
Theorem 6.3 follow from Lemma 6.2 and Proposition 4.18. By Corollary 4.21, the
various Z,’s are exactly the representations produced by the proof of Theorem
1.5 for 2%Y. Consequently, the signature of any non-degenerate Hermitian form
on #3Y is of the form

(6.4) (Lsi0k(Z,), X5 04(Z,)).

The idea of the proof of (c) is that (6.4) and Corollary 3.45 allow us to restrict
attention to the lowest K-type of some Z,, where the form (,)C is easy to
understand.

The existence of {,)“ is an immediate consequence of Proposition 5.4 and
Corollary 5.5; that is, it is due to Enright and Wallach. All of the ideas in Section
5 can be applied to K instead of G. We begin by recalling a result of [E] on the
signature of the resulting form in that case.

LemMa 6.5. Suppose (8;, Vs,) is an irreducible representation of L N K. Fix
a Cartan subgroup T° of L N K, and let p, € (t°)* be the differential of an
extremal weight of §,. Set

p=pe+20(unp)e (t°)*

There are two possibilities.
I) For every a € A(u N £, t°),

(p,a) = 0.
In that case, there is an irreducible representation (8, Vy) of K such that
a) Hom, - (V;*"", V;, ® A(u N p)) + 0.

II) For some a € A(u N £,t°),
(B, ) <0.
In that case, no representation satisfying (a) exists.

This is just a version of highest weight theory. Because of the disconnected-
ness of K, 8 need not be unique.

LemMa 6.6. In the setting of Lemma 6.5, fix a positive root system
AT (I N £,t°). Then every infinitesimal character for [ Nt occurring in Vs, ®
(A*Pu) is of the form (p + p,) + p(u N £) with p, a highest weight of V; , and
po= g+ 2p(uNp)

This is a trivial calculation.
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LEmMA 6.7. In the setting of Lemma 6.5, suppose Z is any (¥, K) module.
Set
W = ind}(V; ® A“Pu).
Then
Hom(Z, TSW) = Hom, ¢(Z*"", V;, ® APu N p).

This is a well-known version of the Borel-Weil theorem; it follows from [V2],
Corollary 6.3.4.

ProposiTioN 6.8 ([E]). Suppose (8;,Vs,) is an irreducible representation of
L N K with a nondegenerate invariant Hermitian form (,)-"X, Then the
Hermitian form {,)X on

V = I'S(indf,, Vs, ® APut)

induced by {,Y“"X (Corollary 5.5 for K) is always nondegenerate. We can
choose the constant of (5.12)(b) in such a way that if {,Y-"X is positive
definite, then ()X is as well.

Proof. By Lemma 6.7, we may as well assume that we are in case I of
Lemma 6.5; for otherwise V is zero, and there is nothing to prove. In that case,
Lemma 6.6 guarantees that every infinitesimal character of [ N f in V; ® A*Pu
is of the form A + p(u N f), with A = p + p,. The hypothesis of case I of
Lemma 6.5 gives

(A,a) >0, foralla € A(unt),

the analogue of (1.2) for f. Now Proposition 5.4 and Corollary 5.5 (for f) imply
that (,)* is non-degenerate. The positivity statement is Lemma 8.7 of [E].
Q.E.D.

Now we use this result to get a little information on g.

Definition 6.9. Suppose Y is an (I, L N K) module. Put
W = ind} (Y ® A"Pu) = U(f)a§r(Y ® A°Py),
= ind(Y ® A"Pu) = U(g) ? (Y ® A*Py),

and let
y: W X
be the natural inclusion. The g-bottom layer of K-types of TSX is the image of
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the induced map

¥S: TSW - TSX.
This map is always injective, by the analogue of [V], Corollary 6.3.21 for ind
instead of pro (cf. Lemma 5.2(b)).

ProposiTION 6.10. In the setting of Definition 6.9, assume that Y carries an
invariant form (,)*. Let (,)* be the form on TW induced by (,)* and (,)¢
the form on T°X (Corollary 5.5). Then the map ° of Definition 6.9 is unitary:
foru,v € TSW,

(u,0)% = (Yu, $°0)C.
Proof. By (5.11), it suffices to show that
(x,4)" = (Y, 9y)° _4
for x,y € W. (Here (,)" and (,)* are the forms on W and X constructed in
Lemma 5.19.) But this formula in turn is obvious from the definitions; we leave
the verification to the reader. Q.E.D.

The theory of the bottom layer of K-types becomes much clearer if we
assume

(6.11) L N K meets every connected component of K.

It suffices to prove Theorem 6.3(c) under this additional hypothesis, for every
(g, K) module occurring in the theorem is induced from a (g,(L N K) - K,)
module ([V2], Definition 6.2.9), and this induction obviously respects signatures.

LEmMma 6.12. Under assumption (6.11), the comaspondence o8 of
Lemma 6.5 is a bijection from K onto the subset of (L N K)~ falling in case 1
of that lemma. We have

(a) &, = representation of L N K on u Nt invariants in

Vs ® (AP(u N p))*,
(b) Vs = T%(ind} . (V;, ® APu)).
This is immediate from Lemmas 6.5 and 6.7.

LEmMMA 6.13. Suppose we are in the setting of Definition 6.9, and that
(6.11) holds. Use the notation of Lemma 6.12.

a) The multiplicity of any 8 € K in the g-bottom layer of T°X is equal to
the multiplicity of &, in Y.

b) Suppose ¢ € K occurs in T5X/TSW. Then ¢, occurs in

Y ® Si(unyp) forsomej> 0.

Proof. Part (a) is Lemma 6.7. Part (b) follows from the proof of Theorem
6.3.12 of [V2]. Q.E.D.
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ProposiTioN 6.14. Choose an element x € i(L, N t,) as in the proof of
Lemma 5.17: x is central in |, commutes with L N K, and has positive
eigenvalues on u. In the setting of Definition 5.21, assume that x acts by some
scalar ¢ on Y (as it must if Y has an infinitesimal character). Assume (6.11),
and use the notation of Lemma 6.12. Then a representation 8 € K occurs in T'SX
only if

8,(x) > c.

If equality holds, 8 can occur only in the bottom layer TSW. If the inequality is
strict, 8 can occur only in T5X /T5W,

This is immediate from Lemma 6.13. The proposition implies that Definition
6.9 is compatible with Definition 4.12 of [S-V].

CoroLLARY 6.15. In the setting of Proposition 6.14, assume that Y has a
non-degenerate Hermitian form (,)*. Write (,)© for the induced form on T°X
(Corollary 5.5). Fix 8 € K such that 8,(x) = c. Then (, )¢ is non-degenerate on
(TX)® (cf. Definition 1.4); its signature (p(8), q(8)) is equal to (p(8,), q(8,)).

This is immediate from Propositions 6.14, 6.10 and 6.8.

ProposiTion 6.16. Suppose Y is an irreducible (I, L N K) module of
infinitesimal character A — p(u), and that A satisfies (1.2)(a). Assume (6.11),
and use the notation of Lemma 6.12 and Definition 6.9.

a) If 8 is a lambda-lowest K-type of T°X, then §, is a lambda-lowest
L N K-type of Y.

b} If &, is a lambda-lowest L N K-type of Y, and the corresponding &
exists, then 8 is a lambda-lowest K-type of T5X.

This is deduced from Lemma 6.13 by essentially the same argument as for
Lemma 8.8 in [V1]; it appears also as the proof of Theorem 6.5.9(b) in [V2]. We
leave the transcription to the reader.

LemMMa 6.17. Fix x as in Lemma 6.12. Then x acts by the same scalar ¢ in
all the representations Z of Theorem 6.3, and in Y itself.

The scalar is of course
(A = p(u))(x).

We leave the trivial proof to the reader.
We can now complete the proof of Theorem 6.3; recall that we are assuming
(6.11). Write the signature of (,)“ as in (6.4). By Lemma 6.17, Corollary 6.15,
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and Lemma 6.13(a), we find

Suppose 6 € K satisfies 8,(x) = c¢. Then the multiplicity of & in
Y1 0,(Z,) is equal to its multiplicity in 2.5 04 (Z,).

By Proposition 6.16, these two K-characters agree on the lowest K-type of each
Z,. By Corollary 3.45, they coincide. Q.E.D.

(6.18)

7. Analytic continuation in the discrete parameters

Examples from the theory of dual reductive pairs, and discrete series for
semisimple symmetric spaces, as well as the philosophy of coadjoint orbits,
indicate that the hypothesis (1.2) on A is too strong. At least when Y is
sufficiently degenerate, 2°Y seems to be unitary under natural weaker hypothe-
ses. Our goal in this section is to generalize Theorem 1.3 to cover'some of these
cases. The proof in Section 6 cannot easily be extended, because it involves also
various representations #5Z, with Z non-degenerate. To generalize Theorem
1.3, we must therefore adopt a different approach. This new approach quickly
leads to an apparently impossible calculation (cf. (7.29)). But we will see that the
calculation is the same whether we are in the generalization of Theorem 1.3 or
the original version. Since the original version is already proved, we will be done.
Here is the statement we want.

TueoReM 7.1. Fix notation as in Theorem 1.2. Define

(i) ® = character of L on A*Pu,

(ii) ¢ = differential of ®,

(ii) C,, = one dimensional | module of weight t¢ (t € R),
(iv) Y,=Y®C,, (an!module),

v) I,=ind3(Y ® C,, ® Au)  (a g module),
(vi) J,=prof(Y ® C,, ® A?u)  (a g module),
(vii) ¥,: I, = J, the map of Lemma 5.15(b).

Assume that

a) Y is unitarizable; and
~b) forallt = 0, Y, is an injection.
Then
c) R3Y is isomorphic to £°Y under the map of Proposition 5.4.
d #Y=0,iS.
€) The Hermitian form (,)¢ of Corollary 5.5 is positive definite on LY.

(Some conditions sufficient for (b) are given in Section 8. The deformation
parameter ¢ should not be confused with the parameter used in Theorem 3.8.)
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The main tool used in the proof is a generalization of Sublemma 3.18 (Proposi-
tion 7.7). We begin by recalling

ProposiTiON 7.2 (Poincaré duality). Let

dy d, dos—y
a) 05V, 5V, 5 - B -0

be a complex of finite dimensional complex vector spaces. Assume that we are
given a non-degenerate Hermitian form (), on Vs, and non-degenerate Hermi-
tian pairings

b) (v Vi X Vo5, > C, 0<i<S§,
so that

c) V.= Vi

(cf. Definition 2.10). Assume that

d) df =dgys ;13

here * denotes the adjoint of a linear map. Write H' for the i cohomology
space of (a). Then there are non-degenerate Hermitian pairings

e) (SpHXH® " >C, 0<ic<S§8.
The pairing on H® is a Hermitian form.

This is standard, and quite straightforward; it is a key ingredient in the
Enright-Wallach proof of Theorem 5.3.
In the setting of Proposition 7.2, define

N, = dimV,,
h; = dim H',
(7.3) (Pg,Qs) = signature of Hermitian form on Vj,

(pg, qs) = signature of Hermitian form on H®

By Proposition 7.2(c) and (e),

(7.4) N; = Nys_;,
h; = hys_;,
Ps + Qs = N,
ps + qs = hs.
The Euler-Poincaré principle asserts that
28 28

(7.5) Y (-1'N=Y (-1,

i=0 i=0
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Using (7.4), we may rewrite this as

S-1 A S-1 ‘
(76) P+ Qs+2Y (-1 'N=ps+qs+2Y (- 1)°'h,.
i=0 i=0

What we need is a refinement of this identity.

ProposiTION 7.7. In the setting of Proposition 7.2, use the notation (7.3).
Then

5-1 s—1 ‘
a) P+ L (=) 'N=ps+ XL (-1)""h,

i=0 i=0

$-1 o 5-1 o
b) Qs+ L (=1 'N=gs+ X (-1 'h.

i=0 i=0

Proof. We proceed by induction on S, then for fixed S, on the dimension N,
of V,. If N, =0, the complex is equivalent to one of length 25 — 2, and the
proposition follows by inductive hypothesis. So we assume N, > 0. If S = 0, the
result is trivial; so suppose S > 0. Next, suppose that d, is not injective.
Consider the complex

dy
O—»Vb’—)V{—) —>Vz's—>()

defined by
Vo = Vo/kerd,,

Vs = (kerd,)" C Vo5 (cf. Proposition 7.2(c)),
(7.8) VvV, =V, 0<i<2S,

1
d{, = map induced by d,,
as—1 = (dg)*,

d;=4d,, 0<i<2§5—1.
Then the terms defined in (7.3) for V' are the same as those for V, except that
The identities in Proposition 7.7 with and without primes are equivalent. Those
with primes are known by induction; so we are done in this case. We may
therefore assume d,, is injective. We therefore regard V,, as a subspace of V.

Now there are two cases.
First, suppose S = 1. If v, and v are in V,, then

(dgvysdgvg)y = {(dd0y,05) v
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(by Proposition 7.2(d))
=(0,v9)y =0
(since V is a complex). The subspace V; of V; is therefore totally isotropic. The

proposition in this case amounts to Sublemma 3.18.
Next, suppose S > 1. Define a new complex by

(7.10) Vs = {0},
Vi = Vi/%,
Vs 1= Vo' € Vas 15
Vzs = {0},

with the obvious maps. The primed terms in (7.3) are then all equal to the
unprimed terms, except that

(7.11) Ny =0,
N =N — N,
Nzs =0,

Nys 1 = Nog_ ) = Ny,
Once again, therefore, the identities in Proposition 7.7 follow from their ana-
logues for V’, which are available by inductive hypothesis. Q.E.D.
Proof of Theorem 7.1. We assume G is connected; then L N K is as well.
For n €N, C,, (cf. (iii) of Theorem 7.1) is in a natural way an (I, L N K)
module (the n't power of ®). Consequently,

(7.12) Y, isan (I, L N K) module,
I, and J, are (g, L N K) modules.

By hypothesis,
(7.13) Y, I, — ] is an isomorphism.
Now by (4.6) and (5.1)
(7.14) R2Y, =T],
L1y, =TIl ;
so (7.13) gives
(7.15) RY, =LY, foralli (neN).
By Lemma 4.7(b) and Lemma 5.2(b), this amounts to
(7.16) RY, =LY, ={0}, i+S (n eN).

We have now proved (c) and (d) of Theorem 7.1.
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By Lemma 5.19 and hypothesis (b) in Theorem 7.1,
(7.17) I, carries a non-degenerate Hermitian form (,), (¢ > 0).

Now I, is a semisimple [ N f module with finite multiplicities. We may therefore
define a formal signature

(7.18) ( X (v, Zét(v)v)

ye(nt)
for I,, as in Definition 1.4. The [ N f-module isomorphism
(7.19) I,=U(u)®Y®C, ® APu
shows that
(7.20) multiplicity of y in I, = multiplicity of y ® C_,, in I,.

In a basis constructed from (7.19), the form (, ), depends in a polynomial way on
t (see the proof of Lemma 5.19). Now (7.17) and (7.20) show that, in the notation
of (7.18),

(7.21) ' B(y) = Bo(y ® C_yp),
G(y) =G,y ® C_,).

Define
(7.22) (P(y),Q,(y)) = signature of Hermitian form on y

[ N Etype of AS(E/LNE)* ® I,

N/(y) = multiplicity of y in Ai(f/I N £)* ® I,.

Here we endow AS(f/I N f)* with the Hermitian form

(0, 7y = ¢p(w A T)

discussed in (5.10)—(5.12). All these numbers are computable from p, and g, by
formulas independent of ¢; so by (7.21),

(7.23) P(v) = By ® C_yy),
Q:(v) = QY ® C_,,),
Ni(v) = Nj(y ® C_,,).

Finally, for § € K, and n € N, define

(7.29) PO = T [0l By,

vye(nt)
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and similarly for Q,(8), N/(8). Thus
(7.25) N/(8) = dimHom, ¢ (A (f/L N £), V¢ ® 1),
(7.26) (P,(8),0Q,(0)) = signature of Hom, - (AS(£/LNE), V¥ ®1,).
Define
(7.27) (pa(8), q,(8)) = signature of Hom (V;, £°Y,)
= signature of H¥(§£, LN K; V¥ ® 1)
(cf. (5.8)). Theorem 7.1(e), which is what we still have to prove, asserts that
(7.28) q0(8) = 0.
By Proposition 7.7, (7.25), (7.26), and (7.16) we have

S—-1
(7.29) q0(8) = Qy(8) + é}(— 1)"'Ny(8).

Proving that the right-hand side is zero is the “apparently impossible calculation™
mentioned at the beginning of this section. Now if n is large enough (say
n > n,), then Y, satisfies the hypothesis (1.2)(a). By Theorem 1.3(a), 2°Y, =
#5Y, is unitary for n > n,. That is,

(7.30) q.(8) =0, n>n,.
But the analogue of (7.29) is also true; so
S—1
(7.31) Q.(8) + X (= 1)"'Ni(8) =0, n=>n,.

i=0
To prove (7.29), it certainly suffices to prove that

S—1
(732)  Q(¥)+ XL (- 1)'Nj(y) =0, forallye (1nt)’

(see (7.24)). By (7.22) and (7.19), every term in (7.32) is zero unless y actually
exponentiates to L N K; so we confine our attention to such y henceforth. So fix
Y € (L N K) , and choose a weight u of y. Define the height of y to be

(7.33) h(y) = (p, ¢);

here ¢ is as in (ii) of Theorem 7.1. Since ¢ is orthogonal to the roots of I, h(y) is

independent of the choice of u. Clearly the height function takes values in a

lattice in R. If h(y) is sufficiently negative, (7.19) shows that all terms in (7.32)

are zero. Because of these two facts, we can prove (7.32) by induction on hA(y).
Now fix y € (L N K), and assume that

(7.34) (7.32) holds for all Y’ € (L N K)~ with h(y’) < h(y).



182 DAVID VOGAN

Let p be the highest weight of y. Choose n > n, so large that p + n¢ is
dominant for K. This is certainly possible. Let (8, V;) be the representation of K
of highest weight p + n¢. Then

(7.35)(a) V"t=y®C,

(cf. Lemma 6.5). If v’ ® C,, is any L N K-type occurring in V;/V;* "', then
clearly

(7.35)(b) h(y) < h(y).
By (7.31),

0.0)+ T (- 17 N{9) - 0
By (7.24) and (7.35)(a), N
Q.(vecC,)+X (-1 'Ni(ye®C,,)
=- X[y ®Cppi Vv (Qu(y' ® C,p) + (- DTNi(y © C,)).
By (7.23),Ythis may be rewritten as
Qo) + Z(— D Ni(v)
- - ;[y' ® C,p: Vo/ Vi1 (Qu(v) + L (= D°T'Ni(y)).

By (7.35)(b) and (7.34), the right side is zero. This is (7.32). Q.E.D.

8. Irreducibility theorems for generalized Verma modules

In this section we will give a useful sufficient condition for hypothesis (b) of
Theorem 7.1. Because the most general form of this condition (Proposition 8.18)
is probably quite hard to understand, we will state two weaker versions as well
(Propositions 8.5 and 8.17). The reader should bear in mind Lemma 5.17, which
is the result we seek to generalize.

Throughout this section (except in some examples) we drop the assumption
(1.1), and fix the following notation:

(8.1)(a) g =1+ u a parabolic subalgebra of g,
(8.1)(b) g=1[+1u the opposite parabolic subalgebra,
(8.1)(c) hcl a Cartan subalgebra,

(8.1)(d) A*(1,H) a positive root system,
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(81)0e) AT=AT(L,H) U A(u,b),

(82)(a) A €Db¥,

(8.2)(b) Y a representation of [ of infinitesimal character A — p(u),
(82)0c) Y =Y® Avry,

8.3)a) I, =ind%(Y ® C,,) (cf. Theorem 7.1(iii)),

8.3)b)  J, = pro¥(Y ® C,,),

(8.3)(c) ¥,: I, = ], the map of Lemma 5.15(b).

Here (8.3)(b) requires a little clarification, since pro was defined in (4.4) using a
finiteness condition which makes sense only when Y is an (I, L N K) module.
One possibility is to drop the finiteness condition; since we seek only conditions -
which make ¢, (cf. (8.3)(c)) injective, it is harmless to enlarge the target space.
Another is to define (with c¢([) the center of I)

(8.4) prof(Y ® C,,) = Homq(U(g),Y ® C,¢)C(‘)_ﬁm.te.
We leave the choice to the reader.

ProposiTION 8.5. With notation (8.1)—(8.3), assume that
a) Y is one-dimensional; and
b) Re(a, A — p(1)) = 0 forall « € A(u, H).

Then the map ¥, of (8.3)(c) is injective for t > 0.

An elementary argument about roots and weights shows that the hypothesis
of this proposition, for one dimensional Y, is weaker than (1.2)(a).

The argument is identical to that for the general result; so we will phrase the
lemmas in appropriate generality.

LemMma 8.6. With notation (8.1)—(8.3), the g module I, has infinitesimal
character \. It is locally finite for Ti; that is, for any x € I,, we can find k > 0
so that if {U,,...,U,} C U, then

(Ul...Uk)'x=0.

It is aiso locally finite for the center Z(1) of U(l). Any infinitesimal character
for Z(1) which occurs is of the form

A-po(@)+ Y nga,
a€l(u,b)

with each n, a non-negative integer.
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Proof. The first assertion is standard (compare [V2], proof of Proposition
6.3.11). The second is obvious. The assertions about Z([) have essentially
appeared in the proof of Lemma 5.17. Q.E.D.

Lemma 8.7. With notation (8.1)—(8.3), suppose S is a non-zero g submod.-
ule of I,. Let Y’ denote a non-zero eigenspace of Z(1) on the u invariants S*
(which exists by Lemma 8.6), say of infinitesimal character X' — p(ii). Then

a) Y < ¥ ®.[X;_,SKu)] as an | module, for some r.

b) A=A+ ZaeA(u’b)naa, n,=0.

c) If the sum in (b) is empty, then Y’ C Y.

This is proved by the argument for Lemma 5.17. These two lemmas lead at
once (as in the proof of Lemma 5.17) to the following result.

Lemma 8.8. With notation (8.1)—(8.3), suppose ¥, (cf. (8:3)(c) is not an
injection. Then there is an | module Y’, of infinitesimal character N’ — p(u),
with the following properties.

a) N is conjugate under W(g, b)) to A.

b) A=A+ Zae aqu,p)Ta® With n, a non-negative integer and some n,
non-zero.

c) Y CY®F, for some finite dimensional | module F.

Proof of Proposition 8.5. Because A + t¢ satisfies (b) of the proposition for
all ¢ > 0, it is enough to prove that ¢, is injective. Suppose not. Write
(8.9) s=1[L1]ny (the semisimple part of b for [),

¢ = centerof [ C §.

Then

(8.10) h=38+r¢,

an orthogonal direct sum. Write

(8.11) A=A, + A,

accordingly; since Y is one dimensional,

(8.12) Ae=p(1), A, =A-p(1).

Choose Y’ and A’ as in Lemma 8.8, and write

(8.13) N=N, + N\,

in accordance with (8.10). By Lemma 8.8(c), Y’ is finite dimensional, so that

A, =p(1) + p,
with p a dominant weight for [. In particular (by (8.12)),

(8.14) (A, M%) = (p(0), p(1)) = (Ag,Ay).
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By Lemma 8.8(b),

)\’c=)\c+( Yy naa)

a€A(u, b)

c

= (A =p(1) + (X ny)| .
(NLAD = (ALAY) +< (Enaa)’c, (Znaa)|c> + 2<)\ - p(1), Znaa>.

By Proposition 8.5(b), the last term has non-negative real part, and Lemma 8.8(b)
says that the second term is positive. Consequently,

(8.15) Re(A;, N.) > Re(A,A).
Adding this to (8.14) gives
“Re(A’,A") > Re(A, M),
which contradicts Lemma 8.8(a). Q.E.D.

The first generalization of Proposition 8.5 simply abstracts the property of
one dimensional representations used in the preceding proof.

Definition 8.16. A representation Y of g is called weakly unipotent if the
following conditions are satisfied:

1) Y has an infinitesimal character A € h* which lies in the real span of the
roots.

2) If F is any finite dimensional representation of g and the infinitesimal
character A’ occurs in Y ® F, then

(N,AY 2 (A, A).

Here are some examples of weakly unipotent representations: the trivial repre-
sentation; the metaplectic representation; the spherical principal series represen-
tation with a parameter zero. A great many more are constructed in [B-V].

ProrosiTion 8.17. With notation (8.1)—(8.3), assume that
a) Y| is weakly unipotent (Definition 8.16);
b) Re{ o, Al joner of 1) = 0, for all « € A(u, by).

Then the map ¥, of (8.3)(c) is injective for t > 0.

The proof is almost word-for-word the same as that of Proposition 8.5, so we
omit it.

It is Proposition 8.17 which seems to me to be the most natural condition to
use in Theorem 7.1. (More precisely, “weakly unipotent” ought to be replaced
by “unipotent”, a term which unfortunately is so far defined only for finite
Chevalley groups. Whatever the correct definition of unipotent turns out to be
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over R, it should imply weakly unipotent.) Nevertheless, there is a useful
generalization.

ProposiTION 8.18. With notation (8.1)—(8.3), assume that the Cartan sub-
algebra Y) has an orthogonal decomposition

h=3+¢
with the following properties.

a) 3 C[LI1],

b) ¢ D center of |,

c) Re{a,A|,) =0, forall « € A(u,)),

d) Suppose F is any finite dimensional representation of [, and Y’ is a
submodule of Y ® F having infinitesimal character \'. Then, aﬁer replacing N’
by a W(1) conjugate, we may arrange

Re(Als, Ale) < Re(N|g, N'[g).

Then the map ¢, of (8.3)(c) is injective for t > 0.

Again the proof is identical to that of Proposition 8.5, so we omit it.

Here is an example of how (d) of the proposition can be satisfied. Let
b, =t, + a, be an Iwasawa-Cartan subalgebra of [,, and let m be the
centralizer of a in [. Set

=[m,m]Nnpct.

Then (d) will be satisfied whenever Y has an ([ N f)-fixed vector. (This follows
from Harish-Chandra’s subquotient theorem.)

All of the results in this section can be extended slightly using the fact that
the injectivity of ¢, is controlled by the set of roots integral on A + t¢. The
crudest result of this nature is

ProposiTioN 8.19. With notation (8.1)-(8.3), assume that v, is injective
for t > 0. Let t, be the smallest strictly positive number such that

(&N — typ) €Z, forsomea € A(u,b).

Then , is injective for t > — t,.

Because I know of no nice applications, its"proof and generalizations will be
left to the reader’s imagination (or to a future paper).

MassacHUSETTS INSTITUTE oF TECHNOLOGY, CAMBRIDGE, Mass.

REFERENCES
[A] J. Apams, Unitary highest weight modules, preprint.
[B-V] D. Barsasch and D. Vocan, Unipotent representations of complex semisimple groups,

preprint.



(E]

[E-P-W-W]
(E-W]

1)

(K-S]

[K-Z1]

(K-Z2]
(L]

(P1]
(P2]
(P3]
[R-S-W]
[S-V]
(V1]
(V2]
(V3]

(V-Z]

UNITARIZABILITY OF REPRESENTATIONS 187

T. J. EnricHr, Unitary representations for two real forms of a semisimple Lie algebra:
A theory of comparison, to appear in Proc. Special Year in Harmonic Analysis,
University of Maryland.

T. J. Enmicut, R. PartHASARATHY, N. R. WaLrach, and J. A. Worr, Classes of
unitarizable derived functor modules, preprint.

T. J. EnricHT AND N. R. WaLLacH, Notes on homological algebra and representations
of Lie algebras, Duke Math. ]J. 47 (1980), 1-15.

J. C. JantzeN, Modulen mit einem hochsten Gewicht, Lect. Notes in Math. 750,
Springer: Berlin-Heidelberg-New York (1979).

A. W. Knarp and E. STEIN, Intertwining operators for semisimple groups, II, Invent.
Math. 60 (1980), 9-84.

A. W. Knapp and G. ZuckermaN, Classification theorems for representations of
semisimple Lie groups, in Non-Commutative Harmonic Analysis, Lect. Notes in Math.
587, 138-159, Springer: Berlin-Heidelberg-New York (1977).

, Classification of irreducible tempered representations of semisimple groups,
Ann. of Math. 116 (1982), 389-501.

R. P. LaNcLaNDs, On the classification of irreducible representations of real algebraic
groups, mimeographed notes, Institute for Advanced Study, Princeton (1973).

R. PARTHASARATHY, A generalization of the Enright-Varadarajan modules, Compositio
Math. 36 (1978), 53-73.

, Criteria for unitarizability of some highest weight modules, Proc. Indian
Acad. Sci. 89 (1980), 1-24.

, Unitary modules with non-vanishing relative Lie algebra cohomology, to
appear in Proc. Int. Cong. Math., Warsaw, 1983.

J. RawnsrLey, W. Scammp, and J. A. WoLr, Singular unitary representations and
indefinite harmonic theory, J. Funct. Anal. 51 (1983), 1-114.

B. Seen and D. Voean, Reducibility of generalized principal series representations,
Acta Math. 145 (1980), 227-299.

D. Vogan, The algebraic structure of the representations of semisimple Lie groups I,
Ann. of Math. 109 (1979), 1-60.

, Representations of Real Reductive Lie Groups, Birkhiauser: Boston-Basel-
Stuttgart (1981).

D. Vocan, Understanding the unitary dual, to appear in Proc. Special Year in
Harmonic Analysis, University of Maryland.

D. Vocan and G. ZuckermaN, Unitary representations with non-zero cohomology, to
appear in Compositio Math.

(Received January 2, 1984)




	Cover Page
	Article Contents
	p.[141]
	p.142
	p.143
	p.144
	p.145
	p.146
	p.147
	p.148
	p.149
	p.150
	p.151
	p.152
	p.153
	p.154
	p.155
	p.156
	p.157
	p.158
	p.159
	p.160
	p.161
	p.162
	p.163
	p.164
	p.165
	p.166
	p.167
	p.168
	p.169
	p.170
	p.171
	p.172
	p.173
	p.174
	p.175
	p.176
	p.177
	p.178
	p.179
	p.180
	p.181
	p.182
	p.183
	p.184
	p.185
	p.186
	p.187

	Issue Table of Contents
	Annals of Mathematics, Vol. 120, No. 1, Jul., 1984
	Volume Information [p.iii]
	Front Matter [p.1]
	The Cone Theorem: Note to a Paper of Y. Kawamata, 119 (1984), 603-633 [pp.1-5]
	On Lusin's Restricted Continuum Problem [pp.7-37]
	The Sullivan Conjecture on Maps from Classifying Spaces [pp.39-87]
	Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling [pp.89-118]
	On a Set of Equations Characterizing Riemann Matrices [pp.119-140]
	Unitarizability of Certain Series of Representations [pp.141-187]



