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INTRODUCTION

Perhaps the most fundamental goal of abstract harmonic
analysis is to understand the actions of groups on spaces of
functions. Sometimes this goal appears in a slightly dis-
guised form, as when one studies systems of differential
equations invariant under a group; or it may be made quite
explicit, as in the representation-theoretic theory of auto-
morphic forms. Interesting particular examples of problems
of this kind abound. Generously interpreted, they may in
fact be made to include a significant fraction of all of
mathematics. A rather smaller number are related to the
subject matter of this book. Here are some of them.

Let X be a pseudo-Riemannian manifold, and G a
group of isometries of X. Then X carries a natural mea-
sure, and G acts on L2(X) by unitary operators. Often
(for example, if the metric is positive definite and com-
plete) the Laplace-Beltrami operator A on X is self-

adjoint. In that case, G will preserve its spectral
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decomposition. Conversely, if the action of G 1is transi-
tive, then any G-invariant subspace of L2(X) will be
preserved by A. The problem of finding G-invariant sub-
spaces therefore refines the spectral problem for A.

The prototypical example of this nature is the sphere
Sn—l, with G the orthogonal group O(n). If n is at
least 2, the minimal invariant subspaces for O(n) acting
on L2(Sn_1) are precisely the eigenspaces of the spherical
Laplacian. (This is the abstract part of the theory of
spherical harmonics.) If n is 2, we are talking about
Fourier series. The fundamental importance of these is
clear; but they may of course be analyzed without explicit
discussion of groups. For n = 3, the theory of spherical
harmonics leads to the solution of the Schrodinger equation
for the hydrogen atom. Here the clarifying role of the
group is less easy to overlook, and it was in this connec-
tion that the "Gruppenpest” entered quantum physics in an
explicit way.

A second example, still in the framework of pseudo-
Riemannian manifolds, is the wave operator. Viewed on a
four-dimensional space-time manifold, this is just the
Laplace-Beltrami operator for a metric of signature (3,1).

If the manifold has a large isometry group (for instance, if
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it is Minkowski space), then the space of solutions can
of ten be described terms of this group action.

An example with a rather different flavor is the space
X of lattices (that is, discrete subgroups isomorphic to
Zn) in R*. An automorphic form for G = GL(n,R) is a
smooth function on X, subject to some technical growth and
finiteness conditions. (Actually it is convenient to consi-
der at the same time various covering spaces of X, such as
(for fixed p) the space of lattices L endowed with a
basis of L/pL.) It is easy to imagine that functions on X
have something to do with number theory, and this is the
case. One goal of the representation-theoretic theory of
automorphic forms is to understand the action of G on the
space of automorphic forms. Because the G-invariant mea-
sure on X has finite total mass (although X is not com-—
pact), this problem is closely connected to the correspond—
ing L2 problem. An introduction to this problem may be
found in [Arthur, 1979].

Finally, suppose X is a compact locally symmetric
space. (Local symmetry means that -Id on each tangent
space exponentiates to a local isometry of X. An example
is a compact Riemann surface.) We seek to understand the

deRham cohomology groups of X. Here there is no group
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action in evidence, and no space of functions. However,
Hodge theory relates the cohomology to harmonic forms on X,
so the latter defect is not serious. For the former, we
consider the bundle Y over X whose fiber at p 1is the
(compact) group Kp of local isometries of X fixing p.
Harmonic forms on X pull back to Y as certain vector—
valued functions. On the other hand, Y has a large
transitive group G acting on it. (G may be taken to be
the isometry group of the universal cover of X; Y is then
the quotient of G by the fundamental group of X.) The
cohomology of X can now be studied in terms of the action
of G on functions on Y. Perhaps surprisingly, this has
turned out to be a useful approach (see [Borel-Wallach,
1980]).

With these examples in mind, we recall very briefly the
program for studying such problems which had emerged by 1950
or so. The first idea was to formalize the notion of group
actions on function spaces. In accordance with the general
philosophy of functional analysis, the point is to forget

where the function space came from.

Definition 0.1. Suppose G is a topological group. A repre-
sentation of G is a pair (w,V) consisting of a complex

topological vector space V, and a homomorphism w from G
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to the group of automorphisms of V. We assume that the map
from GxV to V, given by
(g.v) » w(g)v

is continuous. An invariant subspace of the representation
is a subspace W of V which is preserved by all the oper-
ators w(g) (for g in G). The representation is called
reducible if there is a closed invariant subspace W other
than V itself and {0}. We say that = is irreducible if

V is not zero, and w7 1is not reducible.

The problem of understanding group actions on spaces of
functions can now be formalized in two parts: we want first
to understand how general representations are built from
irreducible representations, and then to understand irredu-
cible representations. This book is concerned almost exclu-
sively with the second part. Nevertheless, we may hope to
gain a little insight into the first part along the way,
much as one may study architecture by studying bricks.

If we take G to be Z, then a representation is deter-
mined by a single bounded invertible operator, w(1). The
only interesting irreducible representations of G are the
one-dimensional ones (sending 1 to a non-zero complex num-
ber). The decomposition problem in this case amounts to

trying to diagonalize the operator w(1). There are some
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things to say about a single operator; but on infinite-
dimensional spaces, one needs more hypotheses to begin to
develop a reasonable theory. The easiest assumption to use
is that the space is a Hilbert space and that the operator
commutes with its adjoint. (Such operators are called nor-
mal.) In that case, the space can be decomposed in some
sense into an "integral” of eigenspaces of the operator.
Once we decide to focus on group actions on Hilbert
spaces, it is easy to see how these could arise naturally in
our original problem. If G acts in a measure-preserving
way on a measure space X, then it acts by unitary operators
on L2(X). The continuity condition in the definition of
representation comes down to this: if S is a subset of X
of finite measure, and g is a small element of G, then
g.S differs from S only in a set of small measure. This
is clear for smooth Lie group actions on manifolds with
smooth densities. The following definition therefore admits

many examples.

Definition 0.2. The representation (w,#¥) is called uni-
tary if # is a Hilbert space and the operators w(g) are

unitary (that is, they preserve the inner product in ¥).
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All of the L2 spaces mentioned in the examples provide
examples of unitary representations.

If ¥ 1is a closed invariant subspace of the unitary
representation (w,#), then the orthogonal complement 9l
of ¥ 1is also invariant, and

%=909.
We would like to iterate this process, and finally write #
as a direct sum of irreducible unitary representations. To
see why this is not possible, take G to be R, acting by
translation on L2(R). Any invariant subspace ¥ of #

corresponds to a measurable subset S of R, by
¥ ={f € Lz(m)l f vanishes almost everywhere outside S}.

(Here fA denotes the Fourier transform of f.) Since the
measure space R has no atoms, it follows that any non-zero
invariant subspace of LZ(R) has a proper invariant sub-
space.

On the other hand, the Fourier transform in this exam—
ple does exhibit L2(R) as a sort of continuous (or measur-
able) direct sum of translation invariant "subspaces," con-
sisting of functions with Fourier transform supported at a

single point §. These spaces are one-dimensional (consist-
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ing of multiples of the function exp(ixf)) and therefore
irreducible.

A fundamental theorem, going back to [Mautner, 1951],
guarantees the existence of such a decomposition in great
generality. The proof is based on von Neumann’s theory of

rings of operators.

THEOREM 0.3 (cf. [Dixmier, 1981]). Let G be a type I
separable locally compact group, and let (w,#) be a
unitary representation of G. Then w may be written
uniquely as a direct integral of irreducible unitary repre-

sentations of G.

For the definitions of direct integral and type I, we refer
to [Dixmier, 1981]. All Lie groups (even over local fields)
with countably many connected components are separable and
locally compact. Type I Lie groups include nilpotent, reduc-
tive, and algebraic ones. Examples of groups not of type I
are free groups on more than one generator, and certain solv-
able Lie groups.

There is no analogous general theorem for decomposing
non-unitary representations; yet these may be of the most
direct interest in applications. (We are rarely content to

know only that a solution of a differential equation exists
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in L2). Fortunately, L2 harmonic analysis often provides
a guide and a tool for studying other function spaces, like
P or Cw. We will not pursue this topic further; one
place to begin to look is in [Helgason, 1984].

Because of the theorem of Mautner, it is of particular
interest to understand the irreducible unitary representa-

tions of a group G.

Definition 0.4. Suppose G is a topological group. The
set of equivalence classes of irreducible unitary represen-

A

tations of G 1is written Gu'

We will later use the notation 8 for a certain larger
class of irreducible representations of a reductive Lie
group G.

The irreducible unitary representations of R are the
characters of R, the continuous homomorphsms of R into
the circle. These are just the functions of the form
X > eixy
with y real. With proper hindsight, the characters of fi-
nite abelian groups can be found in classical number theory.
By the late nineteenth century, Frobenius and Schur were

beginning to study the irreducible representations of non—

abelian finite groups. In the 1920°’s, Weyl extended their
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ideas to compact Lie groups ([Weyl, 1925], [Peter-Weyl,
1927]). (In fact, because of the simple structure of com—
pact groups, Weyl'’s results in that case were substantially
more complete than those available for finite groups. Even
today, the irreducible representations of compact connected
Lie groups are far better understood than those of finite
simple groups.) Weyl’s work is in many respects the begin-
ning of the representation theory of reductive groups; parts
of it are summarized in Chapter 1.

In the 1930°’s, the representation theory of noncompact
groups began to be studied seriously. The books [Pontriagin,
1939] and [Weil, 1940] each contain (among other things) a
rather complete treatment of the unitary representations of
locally compact abelian groups. At the same time, quantum
mechanics suggested the problem of studying the Heisenberg
group Hn' This is the 2n+l-dimensional Lie group of n+l
by n+l matrices having 1°'s on the diagonal, and O’s every-
where else except in the first row and the last column. Hn
is nearly abelian: its commutator subgroup coincides with
its one-dimensional center. Its unitary representations
were determined completely by the Stone-von Neumann theorem
(cf. [von Neumann, 1931]).

In [Wigner, 1939], the physicist Eugene Wigner (still

motivated by quantum mechanics) made a study of the irredu-
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cible representations of the Poincaré group. This is the
group of orientation-preserving isometries of (the pseudo-
Riemannian manifold) IR“1 with the Lorentz metric. He found
all of those which were of interest to him, but did not suc-
ceed in obtaining a complete explicit description of E;u.
The missing representations he constructed in terms of the
irreducible unitary representations of two subgroups of the
Poincaré group: the Lorentz group SO(3,1) (the isotropy
group of the origin in IR4), and its subgroup SO0(2,1).

Wigner’s analysis was based on studying the restriction
of a unitary representation to normal subgroups. The reason
that it could not succeed for S0(2,1) and SO0(3,1) is
that these groups (or rather their identity components) are
simple. Within a few years, their irreducible unitary repre-
sentations had been determined, in [Bargmann, 1947] and
[Gelfand-Naimark, 1947]. We will return to this branch of
the development in a moment.

Around 1950, Mackey extended Wigner’s methods enormous—
ly, into a powerful tool ("the Mackey machine") for studying
unitary representations of G in terms of those of a normal
subgroup N of G, and of the quotient G/N. Some of his
work may be found in [Mackey, 1976]. His results were ap-
plied to successively larger classes of groups over the next

thirty years; two high points are [Kirillov, 1962] and
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[Auslander—Kostant, 1971]. For algebraic Lie groups, this
study was brought to a fairly satisfactory culmination by
the following theorem of Duflo. (Notice that it is a direct

generalization of the result of Wigner for the Poincaré

group.)

THEOREM 0.5 ([Duflo, 1982]). Let G be an algebraic group
over a local field of characteristic 0. Then the irreduci-
ble unitary representations of G may be explicitly para-

metrized in terms of those of certain reductive subgroups

of G.

This is a slight oversimplification, but the precise state-
ment is as useful as (and more explicit than) this one.
There is a similar statement for all type I Lie groups,
involving semisimple Lie groups instead of reductive ones.
Some problems remain - for example, the explicit construc-
tion of the representations is not as satisfactory as their
parametrization — but to some extent the study of au is
reduced to the case of reductive groups. Here the subject
matter of the book itself really begins. We will conclude
the introduction with a quick outline of the material to be
discussed.

We begin with a definition.
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Definition 0.6. A Lie group G 1is called simple if

a) dim G is greater than one;

b) G has only finitely many connected components;

c) any proper normal subgroup of the identity
component of G 1is finite.
We say that G 1is reductive if it has finitely many con-
nected components, and some finite cover of the identity
component Go is a product of simple and abelian Lie
groups. It is semisimple if there are no abelian factors in
this decomposition. Finally, G is said to be of Harish-
Chandra’s class if the automorphisms of the complexified Lie

algebra defined coming from Ad(G) are all inmer.

This definition of reductive is chosen to please no one. It
does not include all the semisimple groups needed in Duflo’s
theorem for non-algebraic groups; but it is significantly
weaker (in terms of the kind of disconnectedness allowed)
than most of the definitions generally used.

The lowest dimensional noncompact simple group is
SL(2,R), the group of two by two real matrices of determi-
nant one. It is a two—fold cover of the identity component
of SO(2,1) and its irreducible unitary representations

were determined in the paper [Bargmann, 1947] mentioned
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earlier. We will not give a detailed account of his work;
this may be found in many places, including [Knapp, 1986]
and [Taylor, 1986]. The answer, however, contains hints of
much of what is now known in general. We will therefore
give a qualitative outline of it, as a framework for describ-
ing the contents of the book.

First, there are two series of representations with an
unbounded continuous parameter (the principal series). The
representations are constructed by real analysis methods.

An appropriate generalization, due to Gelfand and Naimark,
is in Chapter 3. These representations tend to contribute
to both the discrete and the continuous parts of direct

integral decompositions of function space representations.

Second, there is a series of representations with a
discrete parameter (the discrete series). These were origi-
nally constructed by complex analysis. They can contribute
only as direct summands in direct integral decompositions.
Harish-Chandra found an analogue of this series for any
reductive group in [Harish-Chandra, 1966]; this paper is one
of the great achievements of mathematics in this century. A
brief discussion of its results appears in Chapter 5. The
most powerful and general construction of such representa-

tions now available is an algebraic analogue of complex
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analysis on certain homogeneous spaces, due to Zuckerman.
It is presented in Chapter 6.

Third, there is a series with a bounded continuous para-
meter (the complementary series). They are constructed from
the principal series by an analytic continuation argument.
One hopes not to need them for most harmonic analysis prob-
lems; for automorphic forms on SL(2,R)., this hope is called
the Ramanujan-Petersson conjecture. The construction of com-
plementary series for general groups will be discussed in
Chapter 4; but we will make no attempt to be as general as
possible. Complementary series constructions have been
intensively investigated for many years (see for example
[Baldoni-Silva-Knapp, 1984] and the references therein), but
the precise limits of their applicability are still not at
all clear.

Finally, there is the trivial representation. For a
general reductive group, the trivial representation belongs
to a finite family of "unipotent representations.” In addi-
tion to a name, we have given to these objects a local_habi—
tation in Chapters 7 through 12. All that they lack is a
complete definition, a reasonable construction, a nice gen-
eral proof of unitarity, and a good character theory. (More

information can be found in [S, 1594].)
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The latter part of the book is largely devoted to a
search for a definition of "unipotent.” A vague discussion
of what is wanted appears in the Interlude preceding Chapter
7. Chapters 7 through 11 discuss various subjects closely
related to the representation theory of reductive groups, to
see what they suggest about the definition. Chapter 12 is a
short summary of some of the main results of the search; it
contains a partial definition of unipotent.

Implicit in this discussion is the hope that the ideas
described here suffice to produce all the irreducible uni-
tary representations of any reductive group G. Because the
constructions of complementary series and unipotent represen-
tations are still undergoing improvement, this hope is as
yet not precisely defined, much less realized. Neverthe-
less, a wide variety of partial results (for special groups
or representations) is available. Some of these are dis-
cussed in Chapter 13. I hope that the reader will be not
disappointed by this incompleteness, but enticed by the work

still to be done.



Chapter 1

COMPACT GROUPS AND THE BOREL-WEIL THEOREM

Our goal in this chapter is to recall the Cartan-Weyl
description of the irreducible unitary representations of
compact Lie groups, together with the Borel-Weil realization
of these representations. A good general reference for the
material is [Wallach, 1973]. The absence of more specific
references for omitted proofs in this chapter is not in-
tended to indicate that the results are obvious.

We begin with a little general notation. If G is a

Lie group, we will write

Go = identity component of G
@o = Lie(G) (the Lie algebra)
(1.1) q = Qo @R € (the complexification of gg)
U(g) = universal enveloping algebra of g
(go)* = real-valued linear functionals on go
g* = complex-valued linear functionals on g@gq-

19
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The circle group T of complex numbers of absolute
value 1 has Lie algebra iR. With this identification, the
exponential map for T is just the usual exponential func-
tion. We often identify T with the unitary operators on a
one—dimensional Hilbert space. Similarly, the multiplica-
tive group C* of non-zero complex numbers has Lie algebra
C; we identify it with the group of invertible linear trans—

formations of a one-dimensional complex vector space.

LEMMA 1.2. Suppose H is a connected abelian Lie
group. Write L for the kRernel of the exponential map in

o, and

€ 5] AL) € 2riZ)

Ag N i(%0)™.

-
]

a) Every irreducible unitary representation of H is
of dimension one, and may therefore be regarded as a con—
tinous homomorphism from H into T. Such a homomorphism
is necessarily smooth.

b) Passage to differentials (that is, to the Lie alge-
bra homomorphism attached to a group homomorphism) defines
an identification of A with ﬁu' If AN corresponds to

x7\, then
X, (exp X) = exp(N\(X))-
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c) Write H for the set of irreducible one-dimen-—
sional representations of H. Then passage to differentials
defines an identification of AC with H. In this way Hu

is exhibited as a real manifold with H as a complexifica-

tion.

Part (a) of this lemma is a consequence of spectral theory
in Hilbert spaces (cf. [Weil, 1940]). The rest follows
immediately from (for example) the identification of H with
%o/L given by the exponential map.

We turn now to the specific structure theory for com-

pact Lie groups that we will need.

Definition 1.3. Suppose K is a compact Lie group. A max-
imal torus in K 1is a maximal connected abelian subgroup Tq

of K.

A maximal torus T, 1is necessarily closed and therefore
compact. Any two are conjugate under the group K. If K
is the unitary group U(n) (of unitary operators on the
Hilbert space c? ), then T, may be chosen to be the group
of diagonal unitary matrices. It is a product of n copies
of U(1), which in turn is isomorphic to the circle group

T. Next, take K to be either the orthogonal group O(n)
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(consisting of real matrices in U(n)), or its identity
component SO(n) (consisting of elements of O(n) of
determinant 1). Then T, is a product of [n/2] copies of
SO0(2). The group SO(2) consists of rotations of the plane

R, and may therefore also be identified with T.

By a torus, we will mean in general a compact connected
abelian Lie group. For such a group, the kernel L of the
exponential map is a lattice in f5; so A and AtD coin—-
cide. Any finite-dimensional representation of a torus T
is a direct sum of irreducible representations. By Lemma
1.2, these may be identified with elements of A. If (m,V)
is the representation, then we write the decomposition as

(1.4) Ve ) V.
AEA
The subspaces Vy\ are called weight spaces, and (1.4) is

called the weight space decomposition of V. More expli-
citly,

(1.5) V)\ = {v eV| n(t)v = xk(t)v}

(notation as in Lemma 1.2(b)). We write

(1.6) A(V) = {n € A v, #0} .

the set of weights of V. It is often convenient to regard
A as a multiset, with the multiplicity of A equal to

dim VN
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Example 1.7. Suppose T 1is the group of diagonal matrices
in U(n). Using the identification of T with a product of
n circles, we can identify the Lie algebra £fo of T with
iR™. (This may also be regarded as the n by n skew-
hermitian diagonal matrices.) The kernel L of the exponen-
tial map is mzZ". Identify t* with C° using the obvious
pairing; then the lattice A of Lemma 1.2 is Z". Conse-
quently,

T =7
The identification works as follows. If m = (ml, - ,mn)

belongs to 7", then
n m,
xm[diag(zl,...,zn)] = | 1| (zi) .
1=
It is often easy to find the weight space decomposition

of familiar representations of T. Suppose for example that

V 1is the kth exterior power Akd:n. Then
A(V) = {(5,.....6)| 6, is Oor 1, and ) 5, = k}.

Each weight has multiplicity one. The weight spaces are
spanned by the standard basis vectors of the exterior alge-
bra.

As a second example, consider the action of T by con-
jugation on n by n matrices. (This is the complexified

adjoint representation (defined below) of U(n), restricted
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to T.) If we write {ei} for the usual basis of Z°, then
the weights of T are zero (with multiplicity n), and the
various ei—ej, for i not equal to j (with multiplicity
one). We leave to the reader the identification of the
weight spaces.

Any Lie group G acts on itself by conjugation. This
action has the identity as a fixed point, and so defines a
real representation (the adjoint representation) Ad of G
on the tangent space g, of G at e. The complexifica-
tion of this is a representation of G on g, still denoted
Ad. In the case of a compact Lie group K, the restriction
of Ad to a maximal torus Ty is a representation, to
which we can apply the discussion around (1.4). The non-
zero weights of Ty, are called roots; the set of all of
them is written
(1.8) ACE.£) C T C i(t0)™.

(Notice the slight inconsistency with the notation (1.6),
which would suggest including zero in A(¥,f).) Because of
the maximality of Ty, the zero weight space is precisely f.
We therefore have a root space decomposition of ¥:

(1.9) t=to ) t_.

Regarding the roots as linear functionals on t, we have

(1.10) t ={Xe€ t| for all H € ¢, [H,X] = a(H)X}.
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(This is a differentiated version of (1.5).) The root
spaces are all one-dimensional. It is clear from (1.10)
that complex conjugation on ¥ takes fa to f-a' (This
uses the fact, discussed in the next paragraph, that the
roots take purely imaginary values on £o.) The set of
roots is therefore closed under multiplication by -1.
Choose an element H' of if, with the property that
a(H*) is not zero for any a in A(%,t). (This is possible
since the set of roots is finite, and the kernel of each is
a proper subspace.) By the discussion preceding (1.4), all
weights take imaginary values on £,. In particular, the

roots take real values on H*. Define

(1.11) A*(%,£) = {a € A| «(H*) > O} ,

a set of positive roots for ¢ in ¥. Evidently

(1.12) A(E,t) = A*(2,£) U -A"(%,¢),

a disjoint union.

PROPOSITION 1.13. Suppose K 1is a compact Lie group and
To 1is a maximal torus in K. Any two choices of a set of

positive roots for t in ¥ are conjugate by the normali-

zer of To in Kg.

Definition 1.1k. Suppose K 1is a compact Lie group, Tq

is a maximal torus in K, and A* is a set of positive
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roots for f in ¥. The corresponding Borel subalgebra of

¥ is by definition
() b=te ) t .
a€A’?

The second summand on the right is the nil radical (that is,
the largest nilpotent ideal) of ®; it is denoted n. By
the remarks after (1.10), the complex conjugate of n, which

we denote n~, is

(b) =)t
a€A’t

Since £ 1is the complexification of a real subalgebra, it
is equal to its complex conjugate. The complex conjugate of

b 1is therefore

(c) ~ = £ @ n”
By (1.12),
(d) BN b = ¢.

We define the Cartan subgroup T associated to To and A*
to be the normalizer in K of &:

(e) T = {t € K| Ad(t)5 C b}.

Later (Definition 1.28) we will generalize this definition,
allowing certain subgroups between T and Ty. The special
case defined by (e) will then be called a large Cartan sub-

group.
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It is easy to show that the Lie algebra % 1is its own
normalizer in ¥. Conseqently the Lie algebra of T is
b N ¥y, which equals £ty by (d) in Definition 1.14. The
identity component of T is therefore Tg. A more subtle
point is that
(1.15) TNKy = To.
For connected compact Lie groups, a Cartan subgroup is
therefore just a maximal torus.

Fix now a negative definite inner product < , > on
%o, invariant under Ad(K); this is possible since K is
compact. The complexification of this inner product is a
non—-degenerate symmetric bilinear form on ¥, still denoted
<, >. 1Its restriction to if, 1is positive definite, so by
duality i(to)* acquires a positive definite inner product

(which we also call < , >).

befim’.tion 1.16. In the setting of Definition 1.14, a
weight A in T, is called dominant if

{a,\> 2 0,
for every root a in A*. A representation (w,V) of T
is called dominant if every weight occurring in its restric-

tion to T, is dominant.
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THEOREM 1.17 (Cartan-Weyl). Suppose K 1is a compact Lie
group, and T 1is a Cartan subgroup (Definition 1.14).

There is a bijection between the set ﬁu of irreducible
unitary representations of K and the set of irreducible
dominant unitary representations of T (Definition 1.16),
defined as follows. If (w,V) 1is an irreducible unitary
representation of K, define V' to be the subspace anni-
hilated by n (Definition 1.14). Then V' is invariant
under T, and the corresponding representation w* on V'
is irreducible and dominant.

Let us consider the extent to which this "computes” ﬁu’ If
K 1is connected, then Theorem 1.17 says that the irreducible
representations of K are parametrized by the dominant
weights. This is a completely computable and satisfactory
parametrization (cf. Example 1.18 below), although of course
one can ask much more about how the representation is re-
lated to the weight. If K is finite, then T 1is equal to
K, and the theorem is a tautology; it provides no informa-—
tion about f{u. In general, if K is not connected then T
is not connected either, and its representation theory can
be difficult to describe explicitly. Essentially the prob-
lem is one abc;ut finite groups, and we should not be unhappy

to treat it separately.



OOMPACT GROUPS AND BOREL-WEIL THEOREM 29

Example 1.18. Suppose K is U(n), T =Ty, is the group
of diagonal matrices, and

+ . .

A = {ei—ej| i < j}
(cf. Example 1.8). If we identify £ with c", we may
take < , > to be the standard quadratic form. The set of

dominant weights is then

{\ = (7‘1"'-"‘11)' A; €Z, and A, zxj if i < j},

the set of non-increasing sequences of n integers.

We turn now to the problem of realizing the representa-
tions described in Theorem 1.17. To do so requires con-
structing a certain complex manifold on which K acts

transitively. Here is a general recipe for doing that.

PROPOSITION 1.19. Suppose G is a Lie groupand H is a
closed subgroup. The set of G-invariant complex structures
on G/H is in natural bijection with the set of subalgebras
5 of g (the complexified Lie algebra of g), having the
following properties:

a) b contains Y, and Ad(H) preserves b;

b) the intersection of b with its complex conjugate

b~ is precisely §; and


Chengyu Du
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c) the dimension of b%/% is half the dimension of
a/h. In the usual identification of g% with the com-
plexified tangent space of G/H at eH, the subspaces b/§
and % /% correspond to the holomorphic and antiholomorphic

tangent spaces, respectively.

Proposition 1.21 will explain how to describe the holomor-

phic functions on G/H in terms of b.

PROPOSITION 1.20. Suppose G 1is a Lie groupand H is a
closed subgroup. The set of Cw homogeneous vector bundles
on G/H 1is in natural bijection with the set of finite-
dimensional representations of H, by sending a vector
bundle # to its fiber W over eH. Using this bijection,
we may identify the space Cw(G/H,ﬁ') of smooth sections of
# with the space of W-valued smooth functions f on G,
satisfying

a) f(gh) = T(h™")f(g)-

Here of course T denotes the isotropy action of H on W.

A proof of this result will be sketched in Chapter 3 (Propo-

sition 3.2 and Corollary 3.4).
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PROPOSITION 1.21. Suppose G/H carries an invariant
complex structure given by % (Proposition 1.19) and a
homogeneous vector bundle # given by W (Proposition
1.20). Then to make # a holomorphic vector bundle amounts
to giving a Lie algebra representation (also called T) of
5~ on W, satisfying

a) the differential of the group representation of H
agrees with the Lie algebra representation restricted to %;
and

b) for h in H, X in %, and w in W,

T(h)[7(X)w] = 7(Ad(h)X)[7(h)v]
The space T'(G/H.#) of holomorphic sections of # may be
identified with the space of W-valued smooth functions f
on G, satisfying Proposition 1.20(a) and the following con-
dition. For every X in b, we require that
(Xf)(g) = -7(X)(£(g))-

Here the action on the left comes from regarding the Lie

algebra as left-invariant vector fields on G.

To set up the Borel-Weil theorem, we need just one more

observation.

LEMMA 1.22. In the setting of Theorem 1.17, the orthogonal

complement of V' in V is
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V° = w(a")V.
Consequently, V" may be identified (as a representation of

T) with the quotient V/V°.

Proof. Write o for the complex conjugation automorphism
of ¥:
(1.23) o(X + iY) = X - iY (X,Y in ¥).
The inner product < , > on V satisfies

<w(Z)vy,va> = —<v,,m(0Z)v5>
(Here as usual we write 7 for the differentiated represen-—
tation of the Lie algebra.) Since og(n”) is n, an easy
formal argument now shows that the orthogonal complement of

w(n”)V is V'. The assertion of the lemma follows. o

THEOREM 1.24 (Borel-Weil). Suppose K 1is a compact Lie
group, T 1is a Cartan subgroup, and % is a Borel sub-
algebra normalized by T (Definition 1.14k). Fix an
irreducible representation (7.W) of T, and extend the
differentiated representation of £ to % by makRing n~
act trivially. Write # for the resulting holomorphic
vector bundle on K/T (Propositions 1.19, 1.20, and 1.21).
Let

V = T'(K/T.¥),
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K act on V by left translation of sections; the resulting
representation is denoted w. Then (w,V) is non-zero if
and only if (7.W) is a dominant representation of T. In
that case, (w,V) 1is the irreducible representation of K
attached to (7.W) by Theorem 1.17. That is, (T.W) is
naturally isomorphic to the representation (w*,V') of T

on the subspace of V annihilated by n.

Example 1.25. Suppose K is U(2), and T is the group of
diagonal matrices. K acts transitively on the projective
space OP' of complex lines in C€?. The stabilizer of the
line through the second coordinate is T; so K/T may be
identified with CP'. This defines the complex structure.

A typical homogeneous line bundle is the tautological
bundle, which puts over every point of CP' the line which
it "is.” In the identification of homogeneous bundles with
characters of T, which are in turn identified with Z>, the
tautological bundle corresponds to (0,1). That weight is
not dominant (cf. 1.18); so the Borel-Weil theorem says that
the bundle should have no sections. This well-known fact

simply means that the only holomorphic way to pick a point

in each line in C€*® is to pick zero everywhere.
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The dual line bundle to the tautological bundle asso-
ciates to each line the space of linear functionals on it;
this corresponds to the weight (0,-1), which is dominant.
We can find global sections of the bundle by fixing a linear
functional on C€? and restricting it to each of the lines.
All the holomorphic sections arise in this way; so the space

of sections forms a two-dimensional representation of K.

We are going to prove the Borel-Weil theorem; more pre-
cisely, we will show how to deduce it from Theorem 1.17. It

is helpful to introduce a definition.

Definition 1.26. Suppose H 1is a Lie group, and % is a
complex Lie algebra. Assume that we are given

i) an inclusion of the complexified Lie algebra % of
H into »; and

ii) an action, denoted Ad, of H on % by automor-
phisms, extending the adjoint action on .
A (%,H)-module is a complex vector space V (possibly
infinite—dimensional), carrying a group representation of H
and a Lie algebra representation of %, subject to the fol-
lowing three conditions. (For the moment we will write w

for these representations, but later it will usually be
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conenient to drop this in favor of module notation: h-v
instead of w(h)v.)

a) The group representation is locally finite and
smooth. That is, if v € V, the vector space span of w(H)v
is finite-dimensional, and H acts smoothly (or, equivalent—
ly, continuously) on this space.

b) The differential of the group representation (which
exists by (a)) is the restriction to % of the Lie algebra
representation.

c) The group representation and Lie algebra represen-—
tation are compatible in the sense that

w(h)w(X) = w(Ad(h)X)w(h)
For elements h in Hgy, condition (c) follows from (b).

If V and W are (6,H)-modules, we can form
HomB’H(V,W). This is the space of linear transformations
from V to W that are compatible with both representa-

tions.

The next result is a version of Frobenius reciprocity

appropriate for the Borel-Weil theorem.

PROPOSITION 1.27. Suppose G 1is a Lie group, H is a
closed subgroup, % defines a holomorphic structure on G/H

(Proposition 1.19), and W 1is a (% ,H)-module corresponding
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to a holomorphic vector bundle # on G/H (Proposition
1.21). Let V be a finite-dimensional representation of
G; by differentiation and restriction, we may regard V as

a (% ,H)-module. Then there is a natural isomorphism

HomB-’H(V,W) .

R

HomG(V, r'(G/H) .#)

Proof. Write ¢ for a typical element on the left, and ¢
for a typical element on the right. If these correspond
under the isomorphism, then
¢(v) = [2(v)]1(e)
[2(v)1(g) = ¢(w(g™")V).
(We are using the description of TI'(G/H,#) contained in
Proposition 1.21.) The verification that these formulas

define the isomorphism we want is left to the reader. o

Proof of Theorem 1.24. Let (£,X) be any finite-
dimensional representation of K. By Proposition 1.27,
HomG(X,V) = HomB-’T(X,W).
Now n~ acts trivially on W; so the right side is
HomT(X/‘g'(n_ )X1.W)
By Lemma 1.22, we therefore have

Hom,(X,V) = HomT(X’,W).
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By Theorem 1.17, the right side is always zero unless W is
dominant; and in that case it is one—-dimensional for a

unique irreducible representation X. o.

We will conclude this chapter with two reformulations
of Theorem 1.17, each of which will be convenient or instruc-

tive later on.

Definition 1.28. Suppose K is a compact Lie group. Use
the notation of Definition 1.14 (a)-(d). Write T' for the
large Cartan subgroup of Definition 1.14 (e). The small
Cartan subgroup associated to T, is

(a) T™ = {t € K| Ad(t) is trivial on t}.
A general Cartan subgroup associated to T, and A* is a
subgroup T between T~ and T*.

Suppose T 1is a small Cartan subgroup of K. Write
NK(T) for the normalizer of T in K. The Weyl group of
T in K is the quotient

(b) W(K.T) = N (T)/T.

If Ad(K) consists of inner automorphisms (that is, if K

is of Harish—Chandra’s class in the sense of Definition
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0.6), then the notions of small and large Cartan subgroup
coincide.

For the next definition, we need to make sense of the
length of a weight. This is defined using the inner product

<.,> on i(to)* (defined before (1.16).

Definition 1.29. Suppose T 1is a Cartan subgroup of K,
and (w,V) is a finite-dimensional representation of K.
An irreducible representation T of T is called extremal
in 7 if

a) T occurs in the restriction of nw to T; and

b) the length of any weight A of T (cf. (1.4) is

greater than or equal to the length of any weight of .
Here is the first reformulation of Theorem 1.17.

THEOREM 1.30 (Cartan-Weyl). Suppose K 1is a compact Lie
group. Write ®(K) for the set of K-conjugacy classes of
pairs (T,7), with T a small Cartan subgroup of K and T
in ’f‘

a) Fix a particular small Cartan subgroup T, with
Weyl group W. Then ¢(K) may be identified with "I\‘/W the

A

set of W orbits on T.
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b) There is a finite-to-one correspondence from 12
onto ¢(K), defined by associating to w the set of extremal
representations of small Cartan subgroups occurring in .

c) If K is of Harish-Chandra’s class (Definition

0.6), then the correspondence in (b) is a bijection.

We will not prove this result in detail. Note, however,
that (a) is a formal consequence of the conjugacy of all
maximal tori in K. The other fact needed in the proof (or
rather the reduction to Theorem 1.17) is that every represen-
tation of T is conjugate under W to a dominant one.
This in turn follows from Proposition 1.13.

The second reformulation of Theorem 1.17 is motivated
by the theory of characters (Definition 1.38 below). It
turns out that characters of compact groups are most natu-—
rally expressed as quotients of two multi-valued functions
(Theorem 1.40). These functions will be single-valued on
certain coverings of Cartan subgroups. In order to define

these coverings, we recall a standard general construction.

Definition 1.31. Suppose H™ is a topological group, F
is a closed normal subgroup, and H is the quotient group

H¥/F. Let G be another topological group, and T a
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homomorphism from G to H. Define a new group G~, the
pullback from H to G of H™, by
¢ = {(x.g) € (HG)| 7(x) = 7(g)}.

Here w denotes the quotient map from H~ to H. Then G~
contains a copy of F (as Fx{e}). Projection on the
second factor defines a surjection from G~ to G, with
kernel F. Finally, projection on the first factor gives a
map 7~ from G¥ to HY. We therefore have a commutative
diagram

G~ T—~> H~

L T

G —_— H
An important case is the extraction of nth roots of char-
acters. In that case, we take H to be the multiplicative
group C* of non-zero complex numbers. H™ is again c,
and the map w is

m(z) = z".

The group F is the group of nth roots of unity in Cx,
which is isomorphic to Z/nZ. We take G arbitrary, and T
any character of G. Then T~ is an nth root of 7 (in
the sense that n7t™ descends from G~ to G and coincides

with T there).
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Here is a useful condition for the equivalence of two

pullback covers.

LEMMA 1.32. Suppose G is a topological group, and T4
and T, are characters of G. Assume that there is a third
character ¢ of G, with the property that (with multiplica-
tion of characters written additively)
a) T, = Ty + np.
Then there is an isomorphism (depending on ¢) between the
coverings of G induced by nth roots of T, and T,.
Conversely, any isomorphism of the coverings compatible
with the projections to G and the inclusions of Z/nZ

arises from a unique character ¢ satisfying (a).

We leave this as an exercise for the reader.

Here are the coverings we need.

Definition 1.33. Fix notation as in Definition 1.28; in
particular, T is a Cartan subgroup of K. Write 2p for
the determinant character of T on n:

2p(t) = det(Ad(t)ln).
The differential of 2p 1is denoted by the same symbol; it

is the sum of the positive roots of f. The two—-fold cover



42 CHAPTER 1

T~ of T, defined by the square root p of 2p, is called
the metaplectic cover of T (for reasons which will become
clearer in Chapter 10 — see Proposition 10.17). The Weyl
denominator is the function

A(t™) = p((t¥)"*)[det (I - Ad(t)] )]

on TV; here of course t denotes the image of t~ in T.

Write { for the non-trivial element of the kernel of
the covering. Then p({) = -1; so
(1.34)(a) A(Cx) = -A(x).
Suppose X € t°; write exp~(X) for the exponential of X
in T~. Then an easy calculation shows that

(1.34)(b) AMexp™(X)) = T1T (ea(X)/2 _ e-a(x)/g).
a€A?t

It may happen that T has a character with differen-
tial p. In that case G is called acceptable. When G
is acceptable, Lemma 1.32 implies that the covering T~ is
isomorphic to Tx(Z/2Z), and the results below can be formu-
lated on T itself. For noncompact G, Harish-Chandra uses
an analogous assumption in much of his work on the discrete
series. If G 1is connected, it turns out that either G
or some double cover of G is acceptable; so there is
little loss of generality in making the assumption. Unfortu-
nately, the more general coverings of Definition 5.7 cannot

be trivialized by passing to a covering of G. We will
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therefore keep track of coverings here as well, as practice

for the general case.

PROPOSITION 1.35 (the Weyl denominator formula). In the
setting of Definitions 1.28 and 1.33, suppose t~ belongs
to the preimage (T )™ of the small Cartan subgroup in T.

Then

AR = 2 e(w)wp(t)).
wEW,
Here Wy denotes the Weyl group of T  in Kg, and e(w)

is the determinant of the action of w on f4.

This proposition is a special case of the Weyl character for-
mula, to which we will turn in a moment. First, however, we
should explain what is meant by the character wp of (T )~
that appears in the proposition. Write [(T )™~]' for the
covering defined by the square root of w(2p). This has a
well-defined character wp. To define wp on (T )™, we need
to define an isomorphism between the two coverings. It can
be shown that w(2p)-2p is of the form 2¢, with ¢ a sum
of roots. Any two sums of roots with the same differential
define the same character of T ; so ¢ is uniquely de-

fined. Lemma 1.32 now provides the isomorphism we need.
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Definition 1.36. Suppose T is a (large) Cartan subgroup
of the compact group K, associated to the Borel subalgebra
6. Let T~ be the metaplectic cover of T (Definition
1.33), and ( the nontrivial element of the kernel of the
covering map. A dominant regular metaplectic representation
of T 1is a representation 7 of Tv, with the following
properties:

a) T(C) = -1d; and

b) if A is any weight of (To)~ occurring in T,
then A is dominant and regular. That is,

<a,\> > 0,

for every positive root a of £ in ¥.
Here is the second reformulation of Theorem 1.17.

THEOREM 1.37 (Cartan-Weyl). Suppose K 1is a compact Lie
group, and T 1is a (large) Cartan subgroup. Then there is
a bijection between the set ﬁu of irreducible unitary
representations of K, and the set of irreducible dominant

regular metaplectic representations of T~ (Definition 1.36).

Proof. Notice first that representations of T are the

same as representations of T~ taking { to 1. With this
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identification, it is an easy exercise to check that tensor-
ing with the character p defines a bijection from the para-

meter set in Theorem 1.17 to that in Theorem 1.37. o

It is possible to make a variety of other reformula-
tions of Theorem 1.17 by combining the ideas in Theorems
1.30 and 1.37, or by including a Mackey-type analysis of the
representations of large Cartan subgroups. We leave this to
the imagination of the reader.

This proof of Theorem 1.37 offers no hint of why one
ought to introduce T~. Its usefulness first appears in the

theory of characters.

Definition 1.38. Suppose (w,V) is a finite-dimensional
representation of the group G. The character of w is the
(continuous) function

6, (g) = tr p(g)
on G. Notice that 6 is a class function: that is, it is

constant on conjugacy classes in G.

The character plays an important part in harmonic analysis,
particularly in connection with the Plancherel formula for
G. One piece of information that it obviously contains is

the dimension of =, which is 9_”(1). Rather than discuss-—
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ing anything more sophisticated, we will content ourselves

with justifying characters by the following easy result.

PROPOSITION 1.39. Two finite-dimensional irreducible repre-
sentations of a group G have the same character if and
only if they are equivalent. More generally, the characters
of any family of inequivalent irreducible representations

are linearly independent (as functions on G).

To prove this, one introduces the convolution algebra of
functions on G with finite support. In this way one is
reduced to the case of representations of algebras. There
the proposition follows immediately from the Wedderburn
theorem.

We would like to compute the characters of compact Lie
groups as explicitly as possible. Because they are class
functions, it is enough to compute them on some subset of G
that meets every conjugacy class. A (large) Cartan subgroup

has this property.

THEOREM 1.40 (the Weyl character formula: first version).
Suppose K 1is a compact Lie group, and T is a Cartan sub—
group attached to the Borel subalgebra b. Let w be an

irreducible representation of K, and T~ the corresponding
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irreducible dominant regular metaplectic representation of
Tv. Let T  be the small Cartan subgroup inside T (Defin-
ition 1.28). Write (77)~ for the restriction of T to
(T")>. Then for any t~ in (T )™, with image t in T,
we have

AGE™IB () = ) e(w) w(r )" (t™).
weEW,
Here A is the Weyl denominator (Definition 1.33); and

e(w) 1is the determinant of the action of w on f4.
The characters w(T )~ of (T )~ are defined just as in
the remarks after Proposition 1.35.

Weyl’s original proof of this theorem exploited the
connection of characters with the Plancherel formula. He
showed that there was a formula of approximately this form
(which follows from Theorem 1.30) and then used formal facts
about harmonic analysis on G to deduce the precise form.
Most of the known proofs have the same general shape,
although they may exploit different "formal facts.” A nice
algebraic account is in [Humphreys, 1972].

The Weyl denominator vanishes only on a lower dimen-—
sional set in TV, so knowledge of A91r on T~ determines
B‘IT almost everywhere. For many analytic purposes, this is
good enough. If ¥ 1is not abelian, however, the identity

element is one of the excluded points; so Theorem 1.40 as it
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stands does not compute the dimension of 7 (see the remark
after Definition 1.38). This defect may be remedied by
applying L’Hopital’s rule to evaluate the limit as t ap-

proaches 1. Here is the result.

COROLLARY 1.41 (the Weyl dimension formula). In the setting
of Theorem 1.40, fix a weight A in t* of 1. Then

dim 7 = (dim ™) T [ <a,A\>/<a,p>.
a€A’*

The most serious problem with Theorem 1.40 is that the
formula it gives is valid only on the small Cartan subgroup
T". For K in Harish-Chandra’s class (Definition 0.6), T~
coincides with T, and there is no problem. This is cer-
tainly the most important case; but for completeness, we
will sketch the extension of Weyl’s formula to all of T.

Notice first that T normalizes f,. By Definition
1.28(a), it follows that T normalizes T~, and therefore
also its normalizer in Kg. By Definition 1.28(b), this
means that T acts on the Weyl group Wo of T in K.

For w in Wy, define

(1.42) T, = {t €T| tew = w}.

An element w of Wy is determined by the image wb of ¥
under w. Since T normalizes b, on checks easily that

(1.42)° Tw = {t € T| t normalizes wb}.
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The characters 2p and 2wp of Tw therefore both make
sense. In addition, their difference has a natural square
root: the determinant of the action of Tw on

5/7(% N BW).
The reasoning after Proposition 1.35 now provides an action

of w on [(Tw)"’]".

THEOREM 1.43 (the Weyl character formula: second version).
In the setting of Theorem 1.40, suppose t~ in T~ has
image t in T. Put

Wo(t)

{weW| te T}

Then

Y e W) ()
weW ()
Here wr™~ 1is defined only on (Tw)~’ in accordance with the

A(t~)91r(t)

remarks preceding the proposition.

Most of the proofs of Theorem 1.40 may be adapted to yield
Theorem 1.43. This is true in particular of Weyl'’s original

proof .



Chapter 2

HARISH-CHANDRA MODULES

In this chapter, we will present the ideas developed by
Harish—-Chandra (mostly in [Harish—Chandra, 1953]) for reduc-
ing the infinite-dimensional representation theory of reduc-
tive groups to algebra. To begin, we need a little struc-
ture theory. Convenient references are [Knapp, 1986] or
[Warner, 1972].

Let G be a reductive group (Definition 0.6). Fix
once and for all a maximal compact subgroup K of G. Let
so be an Ad(K)-invariant complement for ¥, in go. (It
is much more usual to call this space pg. but we prefer to
reserve po for parabolic subalgebras.) Then G is diffeo-

morphic to the product of K and s, under the obvious map:
(2.1) G = Keexp(so).

This suggests that all the essential obstructions to passing

from the Lie algebra to the Lie group should involve only
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K. Harish-Chandra’s results make this precise for represen-
tation theory.

Choose an Ad(G)-invariant symmetric bilinear form
<, > on gp, positive definite on s, and negative defi-
nite on ¥5, and making these two subspaces orthogonal. We
will use the same notation for various restrictions and
complexifications of the form.

By (2.1), we can define amap 6 from G to G, by
(2.2) O(k-exp(X)) = keexp(-X).

It turns out that 6 is an automorphism of G, the Cartan
involution. We use the same letter for its differential, an

involutive automorphism of ggq.

Definition 2.3. Suppose (w,V) 1is a representation of a
Lie group. The space of smooth vectors Vw in V consists
of those v such that the map

g — w(g)v

from G to V 1is smooth.

Obviously Vm is invariant under the action of G. If V
is a reasonable complete space, such as a Frechet space,
then V* is dense in V. (To prove this, one needs only to

be able to integrate compactly supported smooth functions



52 CHAPTER 2

00
with values in V.) V  can be given a natural topology, so
[+ 00
that 7 defines a representation m# of G on V . This
representation is smooth, and may therefore be differenti-

ated to give a Lie algebra representation of g.

Definition 2.4. Suppose (w,V) is a representation of a
topological group G, and K is a compact subgroup of G.
The space VK of K-finite vectors in V consists of those
v such that the set w(K)v spans a finite-dimensional sub-

space of V.

The subspace VK is dense in V for reasonable complete
spaces V; again the integrability of compactly supported
smooth V-valued functions suffices. However, VK is not
in general invariant under G. Harish—-Chandra’s circumven-—

tion of this problem begins with the following easy fact.

PROPOSITION 2.5. Suppose (w,V) is a representation of a
Lie group G and K 1is a compact subgroup of G. Then the
space X = (Vm)K of K-finite smooth vectors in V is
invariant under the representation 1rm of g. In this way
X acquires the structure of a (g,K)-module (Definition
1.26).
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The (g.K)-module X is called the Harish-Chandra module of
w. Notice that X has no topology; everything we want to
say about such modules will be essentially algebraic in

nature.

Example 2.6. Let G be SU(1,1), the group of 2 by 2
complex matrices of determinant one, preserving the form

|z4]% - |z2|®? on C®. One checks easily that G consists

g(a.B) = [; E]
a

l«]?® - |B]® = 1.

of all matrices

such that

The group G acts on the unit circle T, by linear frac-
tional transformations:
g(a.B) ">z = (az + B)/(Bz + a) .
This gives rise to a representation m# of G on V =
L%(T). by
[7(£)£1(z) = £(g™"*2).
The operators w(g) are not unitary, because the action
does not preserve the measure. They are bounded, however.
We have
V' = C(T)

VK = trigonometric polynomials on T.
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It is a good exercise to compute explicitly the action of
the Lie algebra on the trigonometric polynomials, and verify
Theorem 2.10 below in this case. (This is essentially
carried out in section 1.1 of [Vogan, 1981], for example.)
There are exactly three proper closed invariant subspaces of
V: the constants; the boundary values of functions holomor-
phic in the disc; and the boundary values of the functions

holomorphic in the Riemann sphere minus the disc.

Our discussion of K-finite vectors will be clarified
by some general facts about representations of compact

groups.

PROPOSITION 2.7. Suppose K 1is a compact topological
group.

a) Suppose (w,V) 1is an irreducible representation of
K. If the space V admits at least one non-zero continuous
linear functional, then V 1is finite-dimensional.

b) Suppose (w,V) is a finite-dimensional
representation of G. Then there is an inner product < , >
on V making w a unitary representation. If w 1is irre-

ducible, then < , > is unique up to a scalar multiple.



HARISH-CHANDRA MODULES 55

Because of part (a) of this proposition, it is reasonable to
define I'E to be the set of equivalence classes of irreduci-
ble finite-dimensional representations of K (cf. Defini-
tion 0.4 and Lemma 1.2). Then 12 is the same set as ﬁu’
but we will use the former notation when the unitary struc-
ture is not given to us.

As a consequence of Proposition 2.7(b), any K-finite

representation V may be decomposed as

(2.8) V= ) V.

s€K

Here V6 is a sum of copies of 0&; the number of copies is
a well-defined cardinal number m(6.V), the multiplicity of

6 in V. By Schur’s lemma,

2.9) m(5,V) = dim HomK(Za,V);

here Z& is the space for a copy of &. We can use (2.10)
to define the multiplicity of &6 1in any representation V
{not necessarily K-finite); this amounts to considering the
multiplicity in the space of K-finite vectors. Similarly,
the subspace V(S is defined in general, and we have

(2.10) Ve= ) V.

6€K
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The subspace V6 is called the 6-primary or 6-isotypic

subspace.

Definition 2.11. A representation (w,V) of a compact
group K 1is called admissible if each irreducible repre-

sentation of K has finite multiplicity in V.

For example, any reasonable space of functions (continuous,
Lp, generalized, etc.) on a homogeneous space for K will
be admissible by Frobenius reciprocity: the multiplicity of
6 will be the dimension of the subspace of ZG fixed by an
isotropy group. This is proved in the same way as Proposi-
tion 1.27.

Here is the first serious result of the chapter.

THEOREM 2.12 ([Harish—Chandra, 1953]). Suppose G is a Lie
group, and K 1is a compact subgroup meeting every component
of G. Let (w,V) be an admissible representation of G
on a Banach space.

a) K-finite vectors in V are automatically smooth:
VK C Vm. In particular, the space X of K-finite vectors

is a (g.K)-module.
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b) There is a bijection between (g,K)-invariant sub-
spaces of X, and closed G-invariant subspaces of V. It
is defined in one direction by passage to K-finite vectors

and in the other direction by passage to closure.

Part (a) here is a consequence of the remark after Defini-
tion 2.4. For (b), one has to check that the closure of a
(a.K)-submodule is G-invariant. To see why there is some-—
thing to prove, consider the representation of R on L2(IR)
by translation. The smooth vectors are smooth functions
with all derivatives in L2, and the action of the Lie alge-
bra is by differentiation. The subspace of smooth functions
supported on [-1,1] is invariant under differentiation;
but its closure (which is LZ([-1,1]) is not translation
invariant. What is needed is a notion of amalytic vector,
and the existence of many of them. This was proved by
Harish-Chandra in the setting of the theorem (and in great
generality in [Nelson, 1959]). The main point is that
K-finite vectors turn out to be analytic (when = is
admissible).

The next point to check is that the definition of

admissible does not exclude all the interesting representa-
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ions. (For non-reductive groups, it usually does exactly

that).

THEOREM 2.13 (Harish—-Chandra). Suppose G is a reductive
Lie group and K 1is a maximal compact subgroup.

a) Any irreducible unitary representation of G is
admissible.

b) Suppose w; and w, are irreducible unitary
representations of G, and that the Harish-Chandra modules
of my and w,; (defined after Proposition 2.5) are isomor-
phic as (g.,K)-modules. Then w; and w, are unitarily

equivalent.

The idea of the proof of (a) is this. It is not difficult
to reduce to the case when G is connected. Then Segal had
shown that the unitarity assumption makes available enough
spectral theory to force the center Z(g) of U(g) to act
by scalars on Vm. Roughly speaking, Harish—-Chandra showed
that certain large pieces of the enveloping algebra are in
some sense integral over Z(g), and must therefore act in a
locally finite way. (This is the most difficult step.)
Admissible (g.K)-submodules of V° therefore exist. Using

the theory of analytic vectors, he deduced (a).
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Definition 2.1k. Suppose G is a reductive group, and K
is a maximal compact subgroup. Two admissible representa-
tions of G are said to be infinitesimally equivalent if
their Harish-Chandra modules are isomorphic as (g.K)-
modules. We write 6 for the set of infinitesimal equiva-
lence classes of irreducible admissible representations of

G; this set contains G by Theorem 2.13.

The reader may wish to compare our definitions of 6 in the
compact and abelian cases (Lemma 1.2 and after Proposition
2.6) and note that Definition 2.14 is consistent with those.
Theorem 2.13 allows one to recover at least unitary
representations from their attached (g,K)-modules. It is
natural to ask whether any (g.,K)-module arises from a repre-
sentation. This is not easy to prove, but at least for irre-

ducibles it is true.

THEOREM 2.15 ([Lepowsky, 1973]). Suppose G is a reductive
Lie group and K 1is a maximal compact subgroup. Let X be
an irreducible (g,K)-module (Definition 1.26). Then

a) X is admissible (Definition 2.11); and

b) X 1is isomorphic to the Harish-Chandra module of an
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irreducible representation of G on a Hilbert space.

In (b), we may assume that K acts by unitary operators.

The proof of (a) is essentially a part of the proof of
Theorem 2.13(a). The known proofs of (b) all produce the
more explicit result known as Harish—-Chandra’s subquotient
theorem. This says that X must actually occur in a cer-
tain standard family of representations known as the princi-
pal series. The subquotient theorem is of enormous impor-
tance for establishing general properties of representations
(the moral equivalent of a priori estimates in the study of
differential equations), but has been of surprisingly little
value in the search for more detailed information (exact

solutions, to continue the analogy).

COROLLARY 2.16. The set G of Definition 2.14 may be
identified with the set of equivalence classes of irre—

ducible (g,K)-modules.

To conclude this chapter, we give an algebraic

characterization of Gu as a subset of G.
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Definition 2.17. Suppose V is a (b,H)-module. An invar-
iant Hermitian form on V 1is a sesquilinear pairing <, >
from V to € satisfying

<hev,w>

v, (h™1)w>

Kev,w> = <v,X*w>,
for h in H, X in by, and v and w in V. The form
<, > 1is called positive definite if <v,v> 1is a positive

real number for every vector v in V.

It is trivial to see that the inner product on any unitary
representation of G induces a positive definite invariant
Hermitian form on its Harish—-Chandra module. The converse

is less trivial, but still true:

PROPOSITION 2.18 (Harish—Chandra). Suppose G is a reduc-
tive group, and K 1is a maximal compact subgroup. Assume
that X 1is an irreducible (g.K)-module admitting a posi-
tive definite invariant Hermitian form (Definition 2.17).
Then X is the Harish-Chandra module of a unique irredu-

cible unitary representation of G.



Chapter 3

PARABOLIC INDUCTION

In this chapter, we will describe the first great suc-
cess of unitary representation theory for reductive groups:
the idea of parabolic induction.

Suppose to begin with that G 1is a locally compact
group, and H is a closed subgroup. About 1950, Mackey
showed how to use a unitary representation ¢ of a subgroup
of H to construct a unitary representation
(3.1) @ = IndS(9)
of G. (Mackey’s work is summarized in his book [Mackey,
1976]. 1In case the homogeneous space G/H carries a nice
invariant measure, and ¢ is the trivial one-dimensional
representation, then ¢ is just the representation of G by
left translation on L?(G/H). To motivate the general case,
it is helpful to outline the proof of Proposition 1.20.

Here is a restatement of it.
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PROPOSITION 3.2. Suppose G 1is a Lie groupand H is a

closed subgroup. Then there is a natural bijection between
(equivalence classes of) r-dimensional homogeneous vector
bundles on G/H, and r-dimensional representations of the

group H.

Proof. Suppose ¥ is such a bundle, and w7 is the projec-
tion to G/H. To say that ¥ is homogeneous means that
there is a continuous action of G on ¥, compatible with
the action on G/H. In addition, we require that the action
of each element g restrict to a linear transformation from
the fiber '1/x (which is w7 *(x)) to ‘l/g.x. Write V for
the fiber ‘l/eH over the identity coset of H. The preced-
ing condition shows that the action of any element of H
defines an endomorphism of V; it is easy to see that this
defines a representation of H on V.

Conversely, suppose that V carries a representation
of H. Define an equivalence relation ~ on GxV by
(3.3) (gh,v) ~ (g.¢(h)v).
The quotient space of GxV by this equivalence relation is
written G *H V; it is easily seen to be a vector bundle on

G/H. (This uses the fact that G is locally a product of

H and a complementary submanifold. This is the only point
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at which we need G to be a Lie group.) The left action of
G on GxV preserves ~, and so makes G *H V a homogeneous
vector bundle. This construction inverts the preceding one.

Q.E.D.

The argument given here can be used to relate many pos-—
sible properties of homogeneous vector bundles to properties
of representations. Propositions 1.19 and 1.21 are of this
nature. For another example, invariant Hermitian forms on
7 (that is, G-invariant families of Hermitian forms on the

fibers) correspond to H-invariant Hermitian forms on V.

COROLLARY 3.4. In the setting of the previous proposition,
suppose (¢,V) 1is a finite-dimensional representation of
H,and ¥ =G xH V is the corresponding vector bundle on
G/H. Then the space of (smooth, continuous, or measurable)
sections of 7 may be identified with the space of (smooth,
continuous, or measurable) functions f from G to V,
satisfying

f(gh) = ¢(h™*)f(g)

for all g in G and h in H.

Proof. Let F be a section of ¥. Define f by

f(g) = (g7")F(gH).
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Since F(g) belongs to the fiber of ¥ over gH, the right
side of this formula belongs to the fiber over eH, which is
V. The function so defined has the properties required by
the proposition.

Conversely, suppose f is given. Define a map Fg
from G to GxV by

Fo(g) = (g.£(2))-

Then it is immediate from the definition in (3.3) that
Fo(gh) ~ Fo(g); so Fy induces a map F from G/H to ¥.
It is easy to check that F 1is a section, and that this

construction inverts the one above. Q.E.D.

In order to construct unitary representations, we need
to be able to integrate sections of vector bundles in a
translation-invariant way. The first difficulty with this
is that G/H does not in general admit a translation—
invariant measure. To deal with this, we need to recall a

few facts about densities on manifolds.

Definition 3.5. Suppose V is a real vector space, of di-
mension m. A (real or complex) density on V is a (real
or complex) multiple of Lebesgue measure on V. The space

D(V) of densities on V is a one-dimensional vector space.

Alternatively, one can think of a density as an equivalence
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class of pairs (w,e), with o € Am(V*) a (real or complex
valued) volume form on V, and € an orientation of V.
The equivalence relation is
(w,e) ~ (~w,-€).
If T is an automorphism of V, we make T act on densi-
ties by the requirement
I f(x) 4(Tu) = I f(Tx) du.

This makes T act on D(V) by the scalar |det T|™*.

Suppose M is an m-dimensional manifold. The density
bundle DM 1is the line bundle whose fiber at p is

DpM = D(TpM).

A smooth density on M is a section of the density bundle.
By the change of variable formula, a smooth density may be
identified with a (signed, or complex valued) measure on M,
which is a smooth multiple of Lebesgue measure on each coor-
dinate patch.

If d is a compactly supported section of DM, then

[ a
M

is well-defined; in the identification of densities with

measures, it is the total mass of M.

LEMMA 3.6. In the setting of Proposition 3.2, the (line)

bundle of densities on G/H is induced by the character
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|det(h acting on (g/Iy)*)l
|det(Ad‘7(h))/det(Adg(h)) |~*.

Sections of this bundle (at least compactly supported con-

5 /y(h)

tinuous ones) therefore have a well-defined integral, which

is invariant under the action of G on sections.

This result is a consequence of the standard identification
of the tangent space of G/H at eH with g¢/%. The func-

tion & 1is called the modular function of G/H.

PROPOSITION 3.7. Let G be a Lie group, and H a closed
subgroup. Suppose (¢,V) is a finite-dimensional unitary
representation of H. Recall from Lemma 3.6 the (positive
real-valued) modular function 6 = GG/H' Let v be the
vector bundle on G/H induced by the representation

¢ ® (6%) of H. Then the space of compactly supported
continuous sections of ¥ admits a G-invariant pre-Hilbert
space structure. (This structure is natural as soon as we
fix an identification of the space of 6% ® 6% with the

densities on g/%.

Proof. Suppose F, and F, are sections of ¥. Let f,

and f, be the corresponding V-valued functions on G
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(Corollary 3.4). Define a complex-valued function ® on G
by

o(g) = <f4(g).f2(2)>.
Because the operators ¢(h) preserve this inner product, we
compute

©(gh)

<E,(gh). £2(gh)>
<EE(h 1) p(h 1) E,(2). 67 (h ™ )o(h™ ) E2(g)>
= 5(h-1)<f1 (g) s f2(8)>~

It follows that © may be regarded as a section 2 of the

bundle on G/H induced by 6. By Lemma 3.6, this is the
density bundle. If F, and F, are compactly supported and
continuous, then so is ; so it can be integrated over
G/H. The integral is defined to be <F,,F3>. Q.E.D.

It is perhaps clear that the restriction to finite-
dimensional vector bundles has been made only to keep the
context as familiar as possible; our goal was only to moti-

vate the following definition.

Definition 3.8 (Mackey). Suppose G is a locally compact
group, H is a closed subgroup, and (¢,V) is an irreduci-
ble unitary representation of H. There is a character & =
6G/H of H, with the following property: functions on G
satisfying

o(gh) = &(h™*)u(g)



PARABOLIC INDUCTION 69

have a translation-invariant integral "over G/H." (More
precisely, if ® 1is supported on a set of the form UH,

with U compact, and bounded and measurable on U, then

this integral is finite.) Speaking loosely, we write

‘[G/H w(x)dx

for this integral.

We now define a Hilbert space W, consisting of measur-
able functions f from G to V, satisfying the following two
conditions. First,

(3.9)(a) £(gh) = 8*(h)e(h™ ) (e)

for all g in G and h in H. Second,

(3.9)(b) JG/H <F(x). £(x)>dx < .

Arguing as in the proof of Proposition 3.7, we see that the
function

w(g) = <f(g).f(g)>
has the right transformation property under H for the inte-
gral to be defined. Similarly, we see that an inner product
can be defined on W by

KFy . £ = J <F4(x),£2(x)>dx.
G/H

The group G acts on W by
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(3.9)(c) (2(2)f)(x) = £(g7'x).
With this structure, W is a Hilbert space, and ¢ 1is a
unitary representation of G on W, the induced representa—
tion from H to G of ¢:

¢ = Ind3(4).

Random induced representations are not often irreduci-
ble. As was hinted in the introduction, Mackey applied this
definition to produce irreducible unitary representations of
groups with a large normal subgroup N; the groups H from
which he needed to induce typically contained N. In light
of these facts, it is perhaps almost miraculous that large
families of irreducible representations of reductive groups
can be obtained by induction. This was discovered between
the late 1940°s and the middle 1950’s, primarily by Gelfand
and Naimark, Bruhat, and Harish-Chandra. Here are some

necessary structural preliminaries.

Definition 3.10. Suppose g 1is a complex reductive Lie
algebra. Recall that a Borel subalgebra of ¢ is by defini-
tion a maximal solvable subalgebra of g; that all of these
are conjugate under the group of inner automorphisms of g;
and that one may be constructed from a Cartan subalgebra and
a set of positive roots (Definition 1.14). A parabolic sub-

algebra p of g 1is one that contains a Borel subalgebra.
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Such a subalgebra is necessarily equal to its own normalizer
in g¢:
(3-11) p = {X € g| [X,p] C p}.
The nil radical n of p is the largest nilpotent ideal in
p. A Levi factor of p 1is a reductive subalgebra I of p
such that p = I+n; such a subalgebra always exists, and is
unique up to conjugation by exp(n).

Suppose G 1is a real reductive group, with Lie algebra
@o- A parabolic subalgebra py of go 1is one whose com-
plexification is parabolic in g. The corresponding parabol-
ic subgroup P of G 1is the normalizer of po in G:
(3.12) P = {g € G| Ad(2)(p) C 7).
(See the comment below, however.) Because of (3.11), the
Lie algebra of P is po, as the notation suggests. The
unipotent radical of P is the (normal) subgroup N =
exp(ng). There exist Levi subalgebras of po: for example,
(3.13)(a) Lo = po N Bpo
is one. (Here 6 is the Cartan involution defined in
(2.2).) If Iy, is such a Levi subalgebra, the correspond-
ing Levi subgroup L is the normalizer of Y5 in P. For
the choice in (3.13)(a),

(3.13)(b) L =P N 6P.
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For disconnected groups, it is convenient to extend the
definition of parabolic subgroup slightly. Fix pgo, and

write P* for the group defined above. Set

(3.12)' P = {g € P*|

Ad(g) lp is an inner automorphism of p}.

Then a parabolic subgroup of G corresponding to P is

defined to be one between P~ and P*.

Here is a basic source of parabolic subgroups. Suppose
G(R) is the set of real points of a complex reductive alge-
braic group G(C). Suppose % is a projective variety
defined over R, such that G(C) acts transitively on #(R),
and G(R) acts transitively on #(R). Then the stabilizer in

G(R) of a point of #%(R) is a parabolic subgroup of G(R).

Example 3.14. Suppose G is GL(n), and V is the stan-
dard n-dimensional representation of G. Let % denote
the Grassman variety of k-dimensional subspaces of V.

This satisfies the hypotheses above. The stabilizer in G

of the standard k-dimensional subspace is the group
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with A in GL(k), D in GL(nk), and B any k by nk
matrix. The natural Levi factor L of P is the subgroup
consisting of matrices with B equal to zero; it is isomor-
phic to GL(k) x GL(n-k).

To get all parabolic subgroups of GL(n), it suffices
to replace the Grassmanian by any partial flag variety {(con-
sisting of increasing sequences of subspaces of V of speci-
fied dimensions).

For a slightly different example, let G be the group
O(n,n) of linear transformations of IRzn preserving the

quadratic form

Q. gy) = (1) oot ()% = (,1)% = ().

Let # be the variety of totally isotropic n-dimensional
subspaces; that is, subspaces on which Q vanishes. Again
the hypotheses are satisfied. We take as our base point the
subspace

W= {(v.v)| v € R"}.
Restriction of linear transformations to W provides an

isomorphism of the Levi subgroup L of P with GL(n). Ve
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leave to the reader the task of describing P and L more

explicitly.

Notice that in both of these examples, the standard
maximal compact subgroup of G(R) still acts transitively
on P(R). (This requires a small argument in the second
case.) This is a general phenomenon, described in the fol-

lowing lemma.

LEMMA 3.15. Suppose G 1is a reductive Lie group, K is a
maximal compact subgroup, and P is a parabolic subgroup of
G.

a) G = KP. That is, every element of G may be writ-
ten (not uniquely) in the form kp, with k in K and p
in P.

b) The homogeneous space G/P may be identified with
K/(K n P).

c) The modular function & of G/P is trivial on
KN P; so there is a K-invariant measure on G/P. If o
is a function on G transforming according to & (cf.
Definition 3.8), then

JG/P w(x)dx = o(x)dx = IK w(K)dK.

K/(KNP)

Here is a little more useful structure.
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Definition 3.16. Suppose P is a parabolic subgroup of the
reductive Lie group G. Choose a Levi subgroup L of G
as in (3.13). Recall from (2.1) the Cartan subspace s,

the -1 eigenspace of 6. Define

ao = (center of 1p) N 5o

A

(3.17)(a)  s(m)o

exp(ao)
orthogonal complement of ep in sg
(o N t5) ® s(m)o

(L N K)exp(s(m)o)

mg

M

The abelian group A is isomorphic by the exponential map

to its Lie algebra; we call A a vector group. If we write
N for the unipotent radical of P, then we have a Langlands
decomposition

(3.17)(b) P = MAN,

a semidirect product with each factor normalizing the suc-
ceeding ones. In particular, L =MA. If G 1is connected,
or is the group of real points of a connected algebraic
group, then M commutes with A. In any case, M is a reduc-

tive group with compact center.

Because L is the semidirect product of M and A,

and the identity component of M acts trivially on A, it



76 CHAPTER 3

is very easy to describe the representations of L explicit-
ly in terms of those of M and A. We leave this task to

the reader, however.

Definition 3.18. Suppose G is a reductive Lie group, and
P = LN = MAN

is a Langlands decomposition of a parabolic subgroup of G.

Let ¢ be a unitary representation of L. We can regard ¢

as a representation of P, by making N act trivially; we may

occasionally denote this extended representation by ¢ ® 1.

The representation (parabolically) induced from L to G

by ¢ is
G
d = Indp(¢ ® 1).
The space of ¢ will be written dfq’. It consists of func-—
tions f from G to the space 1f¢ of ¢, satisfying the

following conditions:
v - - <
a) £(gp) = 5°(>"*)(p *)f(g) (all p in P and g
in G); and

b) JG/P <F(x),f(x)>dx < ®.

(Here 6 = 6G/P is as in Lemma 3.6.) Because of Lemma
3.15, such functions are determined by their restrictions to
K. The restrictions must satisfy

a)' f(km) = ¢(m *)f(k) (all m in KNP and k in

K); and
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b)' f belongs to L2(K,df¢).
Conversely, any function K satisfying (a)’ and (b)’ extends

uniquely to one on G satisfying (a) and (b).

Here are a few of the basic properties of parabolic

induction.

THEOREM 3.19 [Bruhat, 1956], Harish-Chandra). Suppose G
is a reductive Lie group, P = MAN is a parabolic subgroup,
and ¢ is an irreducible unitary representation of MA.
Write
¢ = Ind(P 1t G)(¢)

(Definition 3.18), a unitary representation of G.

a) ¢ depends (up to equivalence) only on the G-con-
jugacy class of the pair (MA,¢) (rather than on (P,¢)).

b) & is a direct sum of a finite number of irreduci-
ble representations.

c) For most ¢, & is irreducible.

WVhen P is a minimal parabolic subgroup, M is compact and
¢ 1is finite-dimensional. This is the setting in which the
theorem was proved by Bruhat. His arguments are fairly di-
rect, and are in the spirit of Mackey’s analysis of irreduci-

bility in the presence of normal subgroups. In the general
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case, some powerful machinery is needed - the ideas in
Mackey’s analysis seem to contribute almost nothing. (How-
ever, Gelfand and Naimark established some special cases of
(c) by showing that ¢ was already irreducible under some
subgroup of G, to which the Mackey theory did apply. This
idea is very powerful for GL(n), useful for the classical
groups, and (to date) essentially useless for the excep-
tional groups.)

Parts (a) and (b) of the theorem follow easily from
Harish—-Chandra’s theory of global characters (including the
regularity theorem of [Harish-Chandra, 1965]). (The theory
of intertwining operators of [Knapp-Stein, 1975] provides a
more direct proof of (a).) Harish—-Chandra obtained a pre-—
cise form of (c) in unpublished work from the early 1970’s.
A very general sufficient condition for irreducibility (that
is, another precise version of (c)) is implicit in Theorem
13.5, which comes from [Speh-Vogan, 1980].

The main point of Theorem 3.19 is that parabolic induc-
tion provides a way of building irreducible unitary represen-
tations of G from those of Levi subgroups. Of course one
would like to know exactly how much of Eu can be con-
structed in this way from proper parabolic subgroups. A pre-

cise result in this direction will be given in Theorem 13.5.
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Example 3.20. Let P = MAN be a minimal parabolic subgroup
of G. Then M and A commute, and M is compact. An
irreducible unitary representation ¢ of MA is therefore
of the form § ® v, with § an irreducible (finite-
dimensional) unitary representation of M and » a unitary
character of A. The induced representation ¢ will be
written I(f ® v), or sometimes IP(f ® »); it is called a
(minimal) principal series representation.

Let us analyze the parameter set for this series of
representations of G a little more closely. The group M
is in Harish—-Chandra’s class, because of (3.12)'. We can
therefore parametrize its representations using Theorem
1.30. Fix a Cartan subgroup T of M (Definition 1.14),
and define H = TA (a direct product). Then

H

{h € G| Ad(h) is trivial on §}.
In analogy with Definition 1.28(b), we define W = W(G,H)
to be the normalizer of H in G, modulo H. This group
acts on the set

H =TxA

u u
of irreducible unitary representations of H. Now Theorem
1.30 allows us to associate to any character 7T in Hu a

principal series representation I(v). By Theorem 3.19(a),

I(7) = I(wr).
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We have not given a detailed discussion of the language
of direct integrals of representations of G, needed to dis-
cuss abstract harmonic analysis problems. Nevertheless, it
is worth knowing that we already have enough representations
to solve an interesting problem. We will therefore state
the result, dealing with our lack of machinery by being a

little vague.

THEOREM 3.21 ([Harish-Chandra, 1958]; cf. [Helgason, 1984]).
Suppose G 1is a reductive Lie group in Harish-Chandra’s
class (Definition 0.6) and P = MAN is a minimal parabolic
subgroup. Define W as in Example 3.20, and use the nota-
tion there. Then

L?(G/K) = JK T I1(1 @ v)dv
u

Far more precise results about the action of G on func-
tions on G/K are available. Even Harish-Chandra’s orig-
inal proof gave more than this, and the problem has been
studied intensively. (One can consult for example
[Helgason, 1984].) Yet all of the deeper results involve,
in more or less explicit ways, the representations I(1 @ v);

and all are in some sense based on Theorem 3.21.
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If G is complex (say for simplicity in Harish—Chandra’s
class), then the representations I(7) of Example 3.20
suffice to decompose LZ*(G) as well. Even in that case,
however, they are far from all the unitary representations
of G. In the next chapter, we will explain how to push the
idea of induction a little further, to get some rather dif-

ferent representations.



Chapter 4
STEIN COMPLEMENTARY SERIES AND THE
UNITARY DUAL OF GL(n,C)

The notion of induced representation in Definition 3.8
depends on starting with a unitary representation; condition
3.9(b) in the definition of the space of the induced repre-
sentation makes no sense otherwise. However, the motiva-
tional material on vector bundles does not require a unitary
representation; so one should expect to be able to do some-
thing more generally. There are in general several possi-
bilities, depending on what kind of topological space is
wanted for the induced representation. In the case of para-—

bolic induction, the following definition is convenient.
Definition 4.1. Suppose G 1is a reductive Lie group and

P = LN is a parabolic subgroup (Definition 3.10). Assume

that (¢,df¢) is a representation of G on a Hilbert space

82
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such that the restriction of ¢ to K is unitary. Extend

¢ to all of P by making N act trivially. Define the

representation (parabolically) induced from L to G,
Ind>(4) = @,

as follows. The space Jf(p of ¢ consists of functions f

from G to 3f¢, satisfying

a) f(ep) = 8°(>")¢(> )(g) (all p in P and g
in G); and

b)' the restriction of f to K lies in Lz(K,dt¢).
Here 6 = 6G/P is as in Lemma 3.6. We have called the
second condition (b)' to emphasize the connection with the
conditions in Definition 3.18. Just as in that special
case, we may replace (a) by

a)' f(km) = ¢(m *)f(k) (all m in KNP and k in
K).
The space ’[}p is therefore a Hilbert space, and K acts

unitarily. In fact

(4.2) [Indp(#) ] = Indgn(#lyrp)-

The description (a)' of the representation space is called

the compact picture.

We retain the notation of the definition. It will be useful

to have explicit formulas for the representation in the
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compact picture. To that end, choose a minimal parabolic

subgroup

(4.3)(a) Prnin = MminAminNmin

contained in P. (The Lie algebra ap; of A will be a

maximal abelian subalgebra of the -1 eigenspace of 6 and

will be contained in L.) Multiplication then defines a

diffeomorphism

(4.3)(b) G K x Amin * Noind
we write this as

(4.3)(b) G = KAminNmin’

the Iwasawa decomposition of G (see for example [Helgason,

1978]). We write k, a and n for the coordinate func-—

tions on G for this decomposition: any element g of G

is

(4.3)(c) g = k(g)a(g)n(g)-

It is traditional to write H for the logarithm of a:
(4.3)(d) H(g) € 0o. exp(H(g)) = a(g).

Suppose now that f is a function satisfying (a)' and
(b)' of Definition 4.1. Then the extension of f to G

satisfying (a) of the definition is

(4.4) £(g) = 8%(a(e) )#(alz) ) (k(e)).

For x in K, one therefore calculates
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(4.5)  [2(e)f1(x) =
#(ale ' )n(g™'x)) {8 (ale™*x)) £ (2 (g *x))} .

To understand (4.5), one should keep in mind the fact (con-
tained in Lemmas 3.6 and 3.15) that, for fixed g, the map
x » k(g™ "'x)

induces a diffeomorphism of K/(K N P), with Jacobian
5(a(g"'x)). Consequently, the part of (4.5) in braces is
just the unitary action on L? induced by this diffeomor-
phism.

We now have at our disposal a substantially larger set
of representations. For instance, Example 3.20 can be gen-—
eralized to give a family of representations involving all
characters of A as parameters (not just unitary ones). Un-
fortunately, the new representations obtained in this way
are not given to us as unitary representations. Our goal is
to see that some of them are unitary anyway. To see that,
we now consider in abstract terms the ingredients needed to

make a representation unitary.

Definition 4.6. Suppose (w,#) 1is a representation of G

on a Hilbert space. The Hermitian dual 1rh of w 1is the

representation of G on the same Hilbert space # given by
(g) = w(g™")".

Here the star denotes adjoint of operators on #, and is de-

fined by

Tv,w> = v, Tw> (v.w in #).
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What we would like to do is replace the inner product
that is given to us, that is not preserved by w, by some
new inner product that is. Let us be cavalier about bound-
edness for a moment. Then any Hermitian form on # is of

the form

(4.7)(a) (v,w)A = <v,Aw>,

for A some self-adjoint operator on #. The condition

that the new inner product be G invariant may be written

h
(4.7)(b) Ar(g) = 7 (g)A.
This is precisely the condition for A to intertwine w
h h

and 7 ; that is, to be a G-equivariant map from m to = .
Conversely, suppose A satisfies (4.7)(b). It is easy to
check that A® does as well. If 7 is irreducible, we
should therefore expect A* to be a multiple of A. Replac-
ing A by an appropriate multiple of itself, we get A to
be self-adjoint. Now (4.7)(a) defines a G-invariant Hermi-
tian form on #. This discussion may be summarized as fol-
lows.

~
(False) PROPOSITION. Suppose w 1is an irreducible represen-
tation of G on a Hilbert space. Then w admits a non-zero

G-invariant Hermitian form if and only if w is equivalent
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to 1rh (Definition 4.6). In that case, there is a self

adjoint operator A, unique up to a real factor, that inter-
twines w and 1rh. The representation w 1is equivalent to

a unitary one if and only if the operator A is (positive

or negative) definite.

This proposition is false only because we were careless
about boundedness. The machinery of Chapter 2 is designed
to circumvent such problems. Using it, and the same formal

reasoning, we arrive at

PROPOSITION 4.8. Suppose w 1is an irreducible admissible

representation of G on a Hilbert space and that the inner
product is K-invariant. Then w is infinitesimally equi-
valent to a Lmitary,repres_gn;b.tion if and only if there is a

positive Hermitian operator

A: :#K - :lfK,
that intertwines the (g,K)-module structures defined by
and 1rh.

Recall that we are trying to make unitary some non—
unitarily induced repesentations. Evidently the next prob-

lem is to find operators A satisfying the requirements of
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the proposition. First we identify the Hermitian duals 1rh

in question.

PROPOSITION 4.9. In the setting of Definition 4.1, the

Hermitian dual of

¢ = IndS(9)
is
" = IndS(s").

That is, if the Hilbert space of Ind(¢) is defined by
(t.1)(a)' and (b)', then it coincides with the space of
Ind(4>h); and the operators of the representations satisfy

Ind($)(g) = [Ind(s™)(g™)1".

This is an easy consequence of the explicit formula (4.5)
for the operators and the remark following it. (Because of
the definition of the inner product in #., the proposition
is asserting the equality of two integrals over K/(K N P).
What is used finally is the change of variables formula for
integrals).

The next prodlem is this: when is Ind(¢) infinitesi-
mally equivalent to Ind(¢h)? For our purposes, enough equi-
alences of this nature will arise from Theorem 3.19(a). So

suppose P = MAN is a parabolic subgroup of the reductive
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group G. Assume for simplicity that G 1is in Harish-
Chandra’s class; in particular, M and A commute. Fix an
irreducible unitary representation & of M. For v in

A, set

(4.10)(a) I(E ® v) = IndS(E ® » ® 1),

a series of representations parabolically induced from MA
to G. In accordance with Definition 4.1, we can regard all
of these representations as realized on the same Hilbert

space, with the same restriction to K. By Proposition 4.9,

(4.10) (b) I(E 8 ) = I(E 8 (™).

By Lemma 1.2, we may identify A with a*. In this identi-

fication, the Hermitian dual of a representation corresponds

the to negative complex conjugate of a linear functional; so

(4.10)(b)"  Ip(E @ )" = I(E 8 (-2)).

At least in the case that IP(f ® v) is irreducible, Proposi-
tion 4.8 therefore says that we are seeking conditions under
which IP(‘g' ® v) is equivalent to IP(E ® (-v)).
Fix an element w in K, normalizing MA. Write w
for the image of ¥ in
W(G,MA) = NK(MA)/(M n K).

Then w acts on M and (linearly) on o*. Assume that

(4.10)(c) wef = §.
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For unitary characters v of A, Theorem 3.19(a) now guar—
antees that

(4.10)(d) IL(E ® v) = I(E ® wo).

The next theorem meromorphically continues this equivalence

to non-unitary v.

THEOREM 4.11 ([Knapp-Stein, 1980]). In the setting just
described, there is a rational family of intertwining oper-—
ators

{A(w:v)]| v € a*},
with the following properties. Write # for the common
Hilbert space of all the IP(§ ® »).

a) For v outside a countable locally finite union Z
of proper algebraic subvarieties of a*, A(w:v) is a linear
isomorphism from de to itself.

b) For v not in Z, A(w:v) is an infinitesimal
equivalence of IP(f ® v) with IP(§ ® wp).

c) Any K-finite matrix entry of A(w:v) is a
rational function of v.

d) If wPv=v, and v is not in Z, then

A(w:v)* = A(w:-wp).
In particular, if wo = -v, then A(w:v) is Hermitian.

e) If IP(EQD) is irreducible, then v is not in Z.
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Knapp and Stein prove this result by constructing the inter-
twining operators as explicit integral operators for certain
v, then proving that they can be continued meromorphically.
This approach leads to a wealth of detailed information
about the operators and their connections with harmonic anal-
ysis. We will be content with the properties listed here,
however. For that, a fairly easy non-constructive proof can

be given. Here is an outline of it.

Sketch of proof. We begin by writing explicitly the inter-

twining conditions being imposed. They are

(4.12)(a) A(w:v)IP(fﬁv)(k) IP(§WD)(k)A(w:v) (k € K)

(4.12)(b) A(w:D)IL(E®v)(Z) = I,(E®Wp)(Z)A(w:v) (Z € g).

Of course (4.12)(b) may be replaced by

(4.12)(b) " A(w:p)I;(E8v)(u) = Ip(E8w)(u)A(w:v) (u € U(g)).
For simplicity, assume that there is an irreducible re-

presentation p of K that occurs with multiplicity one in

#. VWrite ¥ for the set of » such that IP(§ ® v) is irre-

ducible, and %, for the intersection of ¥ with (iao)*.

It is known that ¢ is the complement of a locally finite

union R of algebraic subvarieties in o (Because of

(e). R will turn out to contain Z; it will almost always

be strictly larger.) In particular, $, is Zariski dense



92 CHAPTER 4

in o . For v in %o, define A(w:v) to be the unique
infinitesimal equivalence from IP(§ ® v) to IP(‘g' ® wp)
that restricts to the identity on ﬂu. The main point is to
prove (c) for v in $,: this makes sense since %, is

Zariski dense. This fact in turn depends on

LEMMA 4.13. Fix Z in g. In the setting (4.10), the ac-

tion of Z in # depends on the parameter v in an affine

way. More precisely, choose a basis Xl' ... ,Xr of a.
Then there are operators TO’TI’ e ’Tr on ﬁfK (depending
linearly on Z), such that
T
IL(E ® v)(Z) = T, + 2 »(X)T,
i=1

The lemma may be proved in a straightforward way by differen-

tiating (4.5); we omit the details.

COROLLARY 4.14. In the setting of Theorem L4.11, fix a basis
{vi} of qu. Suppose {wj} is any other finite set of vec-
tors in HK Then we can find elements {uji} of U(g),
depending rationally on v, so that
Wj = 2 ujivi
i

for all v for which the rational functions are defined.
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Sketch of proof. Possibly after expanding the set of wj
somewhat, one can find finitely many elements q of U(g).

such that

(4.15) qv; = ) i (0I5

with the coefficients f polynomial in v. Because of the
irreducibility of IP(‘g' ® v), we can arrange for the orig-
inal w’s to be in the span of the various Qv (for most

v). Solving (4.15) by row reduction gives the corollary. O

The fact that A(w:v) depends rationally on v is now a
formal consequence of the intertwining condition (4.12)(b)’,
Corollary 4.14, and Lemma 4.13. This is Theorem 4.11(c).

Because A(w:v) commutes with K, it preserves the
decomposition of ﬂfK into K-primary subspaces (cf. (2.8));

we write

(4.16) A(wiv) = ) Awi)

accordingly. Each of the summands is now a rational func-
tion from a. to End(dfa). Define Z to be the union over
6 of the poles of A(w:v)a, and the zeros of det(A(w:v)a).
Obviously Z satisfies the last assertion of Theorem
4.11(a); that the union is locally finite will follow from

(e) and the remarks after (4.12).
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By Theorem 4.11(c) and Lemma 4.13, both sides of the
equations (4.12) depend rationally on w». Since they are
true by definition on the Zariski dense set $y, they are
true everywhere. This is Theorem 4.11(b).

A formal argument shows that the adjoint A(w:v)*
intertwines IP(§ ® (-wp)) and IP(E ® (-v)). Furthermore,
the adjoint is still the identity on dfu. By definition, it
therefore agrees with A(w:(-wp)) for v in %, such that
w(-wp) is equal to -v. This latter condition is equiva-
lent to w?ev = v, proving Theorem 4.11(d) on $°. The gen-
eral case follows by a density argument.

The proof of Theorem 4.11(e) requires a little care.
Suppose vy is not in Z; we want to prove that IP(§ ® v,)
is reducible. If A(w:vp) is well defined, then (by the
definition of Z), it must not be invertible. Its kernel is
therefore a proper invariant subspace of IP(§ ® vy). (The
kernel cannot be all of JfK, because it does not meet ﬁu.)
We may therefore assume that A(w:v) has a pole at v,. It
is natural to consider the subspace on which A(w:v) is
finite at vy, and to ‘think that it should provide a proper
invariant subspace of JtK. It is not invariant, however, as
a careful attempt to write the obvious argument reveals.

The correct approach is to define
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(4.17) (de)o ={v € dtKl there is a polynomial function f
of v such that f(vy) = v, and A(w:p)f(v) is

finite at vo}

This is a proper IP(‘g' ® vg)-invariant subspace, proving

(e). a

The definition in (4.17) can be generalized, giving a
family of invariant subspaces parametrized by the submodules
of the local ring at v, in its quotient field. This fami-
ly is called the Jantzen filtration. It plays an important
part in representation theory (cf. [Jantzen, 1979] and
[Vogan, 1984], for example) but is very far from being well
understood.

Our efforts in the proof of Theorem 4.11 are now reward-
ed by unitary representations growing on trees (or at any

rate on crosses).

THEOREM 4.18. In the setting (4.10), assume that IP(‘g'@O)
is irreducible. Define a real subspace Sw of a* by

Sw = {v| wo = -v}.
Write R for the set of v for which IP(‘g' ® v) is reduci-
ble. Finally, let Cw denote the connected component of

the origin in Sw - R. Then IP(f ® v) is infinitesimally
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equivalent to an irreducible unitary representation of G

for every v in Cw'

Proof. Fix v in Cw' By Theorem 4.11, A(w:v) is a Hermi-
tian intertwining operator from IP(f ® v) to IP(f ® wr);
it depends rationally on wv. By the "only if" part of Propo-
sition 4.8, A(w:0) must be definite. By continuity,
A(w:v) must be definite as well. The theorem now follows

from the "if" part of Proposition 4.8. n]

The representations constructed in Theorem 4.18 are
called complementary series. The term is also applied in a
variety of generalizations; for this style of argument can
be pushed much further. Unitarity occurs either everywhere
or nowhere on a connected component of Sw - R. It often
happens that such a component will contain a few points
where unitarity is easier to prove or disprove. One can get
an immediate improvement by replacing R with the set Z of
Theorem 4.11. I have used R only because it is sometimes
easier to compute. Another possibility is to investigate
the nature of the poles and zeros of A(w:v) along R, and
to use this information to study the positivity of A.

(Zeros of even order do not affect positivity, for example.)



STEIN COMPLEMENTARY SERIES o7

For some hints about how complicated this study can become,

the reader may consult [Knapp-Speh, 1983] or [Duflo, 1979].
Here is a basic example. Suppose G is the general

linear group GL(2m,C) of invertible 2mx2m matrices. We

can take as a Cartan involution the map

(4.19)(a) 6g = (7).

the inverse conjugate transpose. Then

(4.19)(b) K = U(2m),

the group of unitary operators on 02“' Let P be the para-
bolic subgroup of Example 3.14, with k = m; as discussed
there, the Levi factor MA is GL(m,C)xGL{(m,C). To discuss
such groups, it is convenient to use the following notation:

if n = p1+...+pr, and Bi is a P;xp; square matrix, then

d(B ,B.)

1" r

denotes the block-diagonal matrix with the indicated diag-

onal blocks, and zeros elsewhere. We will also write I
for the pxp identity matrix. Then the group A is a

product of two copies of R, by

(4.19)(c) A=d(e™I_.e™I) (t€R).

Similarly, M is a product of two copies of what might be
(but never is) called - UL(m,C):
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(4.19)(d) M = d(m,.m3) (m:.l an mxm matrix, |det(mi)| = 1).

The group M has unitary characters §(k;,kz) (ki in Z),

defined by

k k
(4.20)(a) §(ky.k2)(d(my,mz) = [det(m,)] *[det(mz)] 2.
Similarly, the characters of A are parametrized by C2, by

(4.20)(b) (v1.p2)(d(x4.%z)) = [det(x;)]"*[det(x,)T'2.

In these coordinates, the modular function & for G/P is
trivial on M, and on A is given by
(4.20)(c) 6 = (2m,—2m).

Consider now the element

0 I
o~ m
w =
[—I 0]
m

of GL(2m.C). (We use the minus sign only to put W in
SL(2m,C). For our purposes that is unnecessary, but the

possibility of doing so shows that the construction works
for SL as well as for GL.) This element belongs to K
and normalizes MA; it acts there by permuting the two
GL(m,C) factors. Write w for the image of ¥ in W(G,MA)

(cf.(4.10)). Then

(4.21)(a) w(E(ks.kz2)) = E(kz.ky).

To be in the setting of (4.10), we should therefore restrict

attention to the case k,; = k,. Similarly, one sees that

the set Sw of Theorem 4.18 is
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(4.21)(b) Sw = {(o+it,-o+it)}.

Finally, we need to know the set R of reducibility

points for the non-unitarily induced representations. We
will take the result as a gift from non—unitary represen—

tation theory, without discussing a proof.

LEMMA 4.22. In the setting (4.19)-(4.21), the induced repre-

sentation
IL(E (k. k)8v)

is reducible if and only if v;-v, 1is a non-zero even inte-

ger.
Now we can apply Theorem 4.18, to get

THEOREM 4.23 ([Stein, 1967]). Suppose G = GL(2m,C). Fix
notation as in (#.19)-(4.22). For k in Z, t in R, and

o strictly between -1 and 1, the representation

Cyp (K. t:0) = IndS(E(k.k) ® (o+it,-o+it) 81)

is (infinitesimally equivalent to) an irreducible unitary

representation of G.

For o equal to zero, these representations are unitarily

induced. For o not equal to zero, they are called the
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Stein complementary series for GL(2m,C). The same construc-
tion applies over any local field . The parameter space
will be the product of an open interval with the set of uni-
tary characters of F~.

A few remarks about the parameters may clarify at least
the notation slightly. The unitary characters of GL(n,C)

are parametrized by ZxR, by the rule

(4.24)(a) x(k.t)(g) = [det(g)/|det(2) |1 |dec(e) |7'°.
Inspection of the definitions shows that
(4.24)(b) sz(k.t:a) = sz(0,0:a) ® x(k,t).
The dependence on k and t is therefore uninteresting.
In addition, the construction of the inner product required
an isomorphism
(4.24)(c) sz(k,t:a) = C2m(k,t:—a).
We may therefore confine attention to o in the interval
(0,1).

In view of the way Theorem 4.18 is proved, it may also
be helpful to understand a little about the behavior of the
induced representations as the continuous parameter varies.

For z in C, put

(4.25) I(z) = Ind3(£(0.0) & (z.-z) 8 1).

Lemma 4.22 says that I(z) is irreducible unless z is a

non-zero integer. We therefore concentrate on those repre-
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sentations. By the definition of induction and (4.20)(c),
I(-m) 1is the space of functions on G/P. It therefore con-
tains a copy of the trivial representation of G, on the
constant functions. Dually, I(m) is the space of densi-
ties on G/P. Elements of it may be integrated; those with
integral zero form an invariant subspace. The quotient of
I(m) by this subspace is the trivial representation of G.
For k an integer between O and m (inclusive), let

P, be the parabolic subgroup of Example 3.14. Set

k

G
(4.26) J(k) = IndP (1).

m-k

Then it turns out that J(k) is a subrepresentation of
I(-k) and a quotient of I(k). This is trivial for k = O,
and we have just checked it for k = m. The intermediate
cases are not so easy. Although all but the last are

infinite-dimensional, the representations J(k) decrease in

size as k increases, in a certain precise sense.

i e
For any non-negative integer r, let S

[ o
<
(f“_‘ £
do Ma.

Then K(r) is a subrepresentation of I(r) and a quotient

of I(-r). Again this is trivial for r = 0, but requires

(4.27) K(r) = IndS(E(r.r) ® (0.0) ® 1).

some proof for r positive. For r =0, J(0) =K(0). For
r=1, J(1) and K(1) are the only two composition fac-
tors of I(+1). For r greater than one, there are gener-

ally additional composition factors.
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The trivial representation of K occurs in I(z) with
multiplicity one. Let us normalize the intertwining opera-
tor A(w:z) (which takes I(z) <o I(-z)) to be the identi-
ty on the trivial representation of k. Then A(w:z) has
poles exactly at the negative integers, and zeros exactly at
the positive integers. (By a zero, we mean that the opera-
tor has a kernel; it is still non-trivial). For k between
O and m, the image of A(w:k) is the subrepresentation J(k)
of I(-k), described above. For r positive, the quotient
of I(-r) by the invariant subspace on which A(w:-r) has
a pole of less than maximal order (cf. (4.17) and the re-
marks following it) is K(r). (Another way to say this is
that if we kill the pole by renormalizing, the image of
A(w:-r) 1is K(r).)

There is much more to be said about I(z), but these
are some of the highlights. Further results, particularly
analytic ones, can be found in [Stein, 1967].

Miraculously, even this most primitive part of the
theory of complementary series provides all the unitary

representations of GL(n,C).

THEOREM 4.28 ([Vogan, 1986b]). Suppose G is GL(n,C).
Let w be an irreducible unitary representation of G.

Then we can find a parabolic subgroup P =ILN of G, and an
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irreducible unitary representation ¢ of L, with the fol-
lowing properties. Write L as a product of various
GL(pi,C) (as is always possible).

a) ¢ 1is a tensor product of irredcible unitary repre-
sentations ¢, of GL(pi,tD).

b) Indg(cp) = .

c) Either ¢, isa (one-dimensional) unitary charac—
ter of GL(pi,tD) (cf. (4.24)(a)); or p; is even, and ¢,
is a Stein complementary series representation (Theorem
L.23).

Conversely, if P = LN 1is a parabolic subgroup of G and
¢ 1is any irreducible unitary representation of L satisfy-
ing (c), then Indg(tﬁ) is an irreducible unitary represen—
tation of G.

Finally, the only equivalences among these induced
representations are those provided by Theorem 3.19(a). That

is, w determines the conjugacy class of (L,¢) under G.

The last two assertions (about irreducibility and inequiva-
lence) were essentially proved by Gelfand and Naimark more
than thirty years ago; they are not very difficult. Some
hints about how to prove the main assertions may be found in

Chapter 13.
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We conclude this chapter with a simple corollary of

Theorem 4.28.

OOROLLARY 4.29. Suppose G is GL(n,C), P =ILN isa
parabolic subgroup, and ¢ 1is an irreducible unitary repre-

sentation of L. Then Indg(np) is irreducible.



Chapter 5

COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY

One of Harish-Chandra’s fundamental insights was that
representations of real reductive groups should be parame-
trized approximately by characters of Cartan subgroups. As
we saw in Chapter 1, the Cartan-Weyl theory accomplishes
this when G 1is compact. For general G, parabolic induc-
tion provides representations associated to characters of
one Cartan subgroup (cf. Example 3.20). If G is complex,
there is only one conjugacy class of Cartan subgroups; so
Harish—-Chandra’s idea is completely implemented. Most real
groups have several conjugacy classes of Cartan subgroups,
however; so parabolic induction is not enough. Harish-
Chandra’s successful efforts (culminating in [Harish-
Chandra, 1966]) to overcome this problem lie at the heart of
his work, and constitute one of the great achievements of

modern mathematics. Using almost nothing but the ordinary

105
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abelian Fourier transform, he constructed by hand certain
spaces of functions on G; the necessary representations
appeared as the action by translation on these spaces of
functions. The simplest case is a construction of the spher-
ical harmonics on S° (which may be thought of as the group
SU(2).) Roughly speaking, he constructs a function first on
the tangent space at a point, as the Fourier transform of

the invariant measure on a (two-dimensional) sphere in the
cotangent space. Under appropriate conditions, this can be
lifted to S® by the exponential map. This gives a zonal
spherical function; others can be obtained by letting SO0(4)
act. Already in this case, the construction is ingenious,
and not trivial to carry out. For general G, the difficul-
ties are multiplied; I will not try even to outline the
ideas, or the deep theorems needed to implement them. Twenty
years of effort have not yet completely integrated this mate—
rial with the rest of mathematics (in the usual sense of
providing generalizations, proofs by standard techniques,

and so on).

Fortunately for mortals (or at any rate for mortal alge-
braists), these twenty years have produced several alterna-
tive approaches to the basic problem of finding some more
representations. This problem can be regarded as that of

solving some elliptic linear differential equations. Harish-
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Chandra essentially writes formulas for the solutions; but
if we are willing to forego these, we can hope to have less
trouble. In [Atiyah-Schmid, 1977], the index theorem is
used to guarantee the existence of some solutions. (Because
the domain is essentially G itself, which is non-compact,
this is by no means an easy exercise. Roughly speaking, the
substitute for compactness is in the G-invariance of the
problem.) A second approach is that of Flensted-Jensen.
There the idea is to obtain the required functions by a very
clever analytic continuation from those related to principal
series representations on GtD’ Although this is perhaps the
least obvious of the known methods, it may be technically
the simplest to carry out. A detailed account of it is in
[Knapp, 1986].

We will adopt a third approach. Before discussing it

in detail, we need some terminology.

Definition 5.1. Suppose G is a real reductive Lie group.

A subalgebra I, of go is called a Levi subalgebra if its
complexification I is a Levi factor of a parabolic subalge-
bra ¢ =1 +u of g (see Definition 3.10). (We do not
require that ¢ should be defined over R.) Equivalently,

a Levi subalgebra is one that is the centralizer in g, of

some semisimple element of go.
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Fix a Levi subalgebra 1, and a corresponding para-

bolic gq. Set

(5.2)(a) L* = {x € G| Ad(x) preserves I, and g},

the large Levi subgroup attached to I, and q. Next,
define the small Levi subgroup attached to 1o, by

(5.2)(b) L™ = {x € G| Ad(x) is inner on I, and q}

{x € L*| Ad(x) is inner on I}

largest subgroup of L* in

Harish-Chandra’s class
=L* NG .
Here G~ is defined by any of the first three equations,

applied to the case | = q = g. The equivalence of these
four definitions is a fairly easy exercise in structure
theory for reductive Lie algebras. Finally, a general Levi
subgroup attached to ¢ and I, is one between L~ and
L*. (This notation is consistent with that given for com-
pact groups in Definition 1.28 and for Levi factors of real
parabolics in Definition 3.10.)

Suppose L 1is a Levi subgroup. The Weyl group of L
in G is

W(G,L) = NG(L)/L,

the quotient of the normalizer of G in L by L. We will
be interested in this almost exclusively in the case when L

is small. Similarly, define
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W(g.X) = W(Gg.Lg)-

Here GC is any complex connected group with Lie algebra g,
and LtD is the connected subgroup corresponding to I. If
G is in Harish-chandra’s class, then W(g.,!) contains
W(G,L):; but this fails in general.

A Cartan subgroup of G is a Levi subgroup H of mini-
mal dimension (called the rank of G). For Levi subgroups,
the minimal dimension assumption is equivalent to requiring
that § be abelian, or that the image of Ad(H) in End(%)
be finite. In this case, the Weyl group W(g.§) is the Weyl
group of the root system of § in g (cf. [Humphreys,
1972]).

In the notation of the definition, G is in Harish-Chandra’s
class if and only if G = G. In that case the distinction
between small and large Levi factors disappears.

The main general construction of Levi subgroups is
this: 1if 3, is an abelian subalgebra of g, consisting

of semisimple elements, then
(5.3) L = {x € G| Ad(x)lz trivial}

is a Levi subgroup. As an example, suppose G is GL(2n,R).
The Lie algebra of G may be identified with the space of
endomorphisms of lR2n. Identify [R2n with C®, and let X

be the endomorphism of multiplication by i. The central-
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izer L of X in G consists of real linear transforma-
tions of C" that commute with multiplication by i; that

is, of complex linear transformations. Consequently

(5.4) L = GL(n.C) C GL(2n,R)

is a Levi factor. Using similar ideas, the reader may

easily exhibit U(r)xSO(n-r,n-r) as a Levi factor in
SO(n,n). To understand the technical problem associated
with small and large Levi factors, keep in mind that
SO0(2)xS0(2) 1is a small Cartan subgroup of 0(4), and
SO0(2)x0(2) is a large one.

Here is a helpful structural fact.

LEMMA 5.5. Any Levi subgroup of a reductive group G is
conjugate to a O-stable one. Two 0O-stable Levi subgroups

are conjugate by G 1if and only if they are conjugate by K.

Any 6-stable Levi factor L has a Langlands decomposi-
tion
(5.6) L = MA,
with the properties discussed in Definition 3.16. In parti-
cular, o 1is contained in the -1 eigenspace of 6, and the
centralizer of mg in M 1is compact. If L is small,

then A 1is central in L.
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We will also need an appropriate extension of Defini-

tion 1.33.

Definition 5.7. Suppose L 1is a Levi subgroup of G and
g =1+ u is a parabolic subalgebra normalized by L.
Write 2p(u) for the determinant character of L on u:
2p(u)(x) = det(Ad(x)],).
The differential of 2p(u) is denoted by the same symbol.
Its restriction to any Cartan subalgebra % of [ 1is the
sum of the roots of % in u. The metaplectic cover L”
of L 1is the two—-fold cover defined by the square root
p(u) of 2p(u). We will generally write { for the non-—
trivial element of the kernel of the covering map. A meta-

plectic representation of L~ is one that is -1 on C.

Following the line of reasoning given after Proposition
1.35, one can check that L~ depends only on L, and not on

the particular q used to define it.

LEMMA 5.8. Suppose 3o 1is an abelian subspace of the -1
eigenspace of B on go. Then the centralizer L of 3o

in G 1is the Levi factor of a real parabolic subgroup of G.
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Sketch of proof. Let X be a generic element of 35. The
eigenvalues of ad(X) on g are all real; so it makes

sense to define

Po = sum of the non-negative eigenspaces of ad(X).

This will be a parabolic subalgebra, with Levi

subalgebraequal to the centralizer of X in gg. Since X
was chosen to be generic, this centralizer is just the Lie
alge-bra [, of L. The rest of the argument is easy, and

we omit it. n]

We turn now to a continuation of the discussion at the
beginning of this chapter, on associating representations to
characters of Cartan subgroups. So suppose that H = TA is
a Langlands decomposition of a 6-stable Cartan subgroup of
G. Recall that this means that T 1is contained in K, and
A 1is a vector group. By Lemma 5.8, the centralizer of A
in G is the Levi factor of some parabolic subgroup P =
MAN of G. Necessarily M contains Tg, and TNM is a
compact Cartan subgroup of M. Assume that T and A com-

mute. (This is automatic if G is in Harish—Chandra’s
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class, but it excludes some interesting behavior in gener-
al.) Then T itself is a compact Cartan in M.

We are looking for a series of representations of G
parametrized by representations of H. Harish-Chandra pro-
posed to construct them in analogy with Example 3.20, as
follows. Any irreducible unitary representation T of H
is of the form p ® v, with p an irreducible unitary repre-
sentation of T, and v a unitary character of A. Suppose
we have some way to associate to p a unitary representa-
tion I(M:p) of M. Then we can define
(5.9) 1(Gi7) = IndS(I(M:p) @ v © 1),

a unitary representation of G.

In this way, one is led to concentrate on the case of a

compact Cartan subgroup. To state what Harish—-Chandra did

about this case, we need one more definition.

Definition 5.10. Suppose G is a locally compact unimodular
group. An irreducible unitary representation m of G is
said to belong to the discrete series if it is equivalent to
a subrepresentation of the translation representation of G
on L%(G). An equivalent condition is that for any v and
w in the space of w, the matrix coefficient <w(g)v,w>

should be square integrable as a function on G.
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If G is compact, every irreducible unitary representa-
tion is in the discrete series. Harish—-Chandra’s result is

an extension to non-compact G of Theorem 1.37.

THEOREM 5.11 ([Harish-Chandra, 1966]). Suppose G is a
reductive Lie group. The representations of the discrete
series of G are parametrized by G-conjugacy classes of
pairs (T,T), where

a) T is a large compact Cartan subgroup of G, normal-
izing a Borel subalgebra % of g; and

b) T 1is a dominant regular metaplectic representation
of T (Definition 5.7 and Definition 1.36).
In particular, the discrete series is non-empty if and only

if G has a compact Cartan subgroup.

We write I(7), or IB T(G:T), for the discrete series with
parameter T.
The result may also be formulated a little more along

the lines of Theorem 1.30, as follows.

THEOREM 5.12 ([Harish—Chandra, 1966]). Suppose G is a
reductive Lie group and T 1is a small Cartan subgroup of

G. Write W for the Weyl group of T in G (Definition
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5.1). Then there is a finite-to-one correspondence from the
discrete series of G onto the set of all regular metaplec-
tic characters of T", modulo W. This correspondence may be
described as follows. To each regular metaplectic character
T, one can associate a unitary representation I(T) = IT(T).
We have

a) I(r) is a direct sum of a finite number of discrete
series representations.

b) Every discrete series representation of G occurs
in some I(T).

c) For w in W, I(1) is equivalent to I(wr).

d) If 1T isnot in Wr, then I(7) and I(7') have
no irreducible constituents in common.
If G is in Harish-Chandra’s class, then the various I(T)
are all irreducible, and the correspondence above is a bijec—

tion.

A few small points require attention. First, we began
by hoping to attach representations of G to representations
of compact Cartan subgroups. The parameter set turns out in
the end to involve metaplectic representations. In the case
of compact groups, we cured this problem by replacing the
metaplectic representation T of T by p=70 (-p). We

cannot do that here, for a simple reason. We would like to
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recover T from pu, as p ® p. The difficulty is that if
ik 1is not regular, it does not define a set of positive
roots uniquely; so we do not know which p to use. In the
compact case this did not matter, for all possible choices
were conjugate under the stabilizer of p in W. In the
non—-compact case, W may be strictly smaller than the Weyl
group of the root system. The result (already in SL(2,R))
is that the same p is attached to several non-conjugate

T. There are ways around this problem, but none of them
leads to as simple a parametrization as in Theorem 1.17. On
the other hand, there are real advantages to using metaplec-
tic parameters (in writing character formulas, for example -
cf. Theorem 1.40). It therefore seems reasonable to use
them throughout.

We turn now to the problem of constructing the discrete
series representations of Theorem 5.11. Harish—-Chandra’s
approach was based on generalizing Theorem 1.40. We will
instead seek a version of Theorem 1.24. So fix », T, and T
as in Theorem 5.11. The most obvious imitation of Theorem
1.24 would put on G/T the complex structure defined by
(that is, having holomorphic tangent space corresponding to)
b, and the line bundle #  associated to the representation
p =780 (-p) (Propositions 1.19 to 1.21). The space V of

K-finite holomorphic sections of #~ is an admissible (g.K)-
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module. Unfortunately, it is the wrong one: the proof of
Theorem 1.24 shows that it contains a copy of any finite-
dimensional representation of G of highest weight p.
(Such a representation always exists if G is linear, since 7T
is assumed to be dominant and regular.) Finite-dimensional
representations of non-compact reductive groups are rarely
unitary and are never in the discrete series.

There is another obvious complex structure on G/T
available, however: the one defined by % . Let (u,W) de-
note the representation 7 ® p of T. We make it into a
(6,T)-module by letting n act by zero; then (Proposition
1.21) it defines a holomorphic vector bundle # on G/T.

If G is compact and Gg is non—-abelian, Theorem 1.24 guar-

antees that this bundle has no holomorphic sections at all:

(5.13) I'(G/T.¥#) = O.

It is not particularly difficult to prove this for general

G as well. We need not despair, however. A holomorphic
vector bundle has not only sections, but also higher coho-

mology groups.

Definition 5.14. Suppose # is a holomorphic vector bundle
on a complex manifold X. Write 9” for the sheaf of germs
of holomorphic sections of X. The cohomology group Hp(X,ﬂ)

is by definition the pth sheaf cohomology group of X
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with coefficients in 9”. By Dolbeault’s theorem, this is
isomorphic to the cohomology defined using the 3 operator

on (O,p) forms with coefficients in #.

The group G acts on the cohomology groups of a homogeneous
holomorphic vector bundle; so we can look for the representa-
tions we want there. In case G 1is compact, Serre duality

and Theorem 1.24 give

(5.14) HS(K/T,W) Z representation of

highest weight ™®(-p),

which of course is exactly what we want for I(r). Here S
is the dimension of K/T as a complex manifold. For G
non-compact, the cohomology groups are much more difficult
to analyze. (For example, they are generally infinite-
dimensional, and it is not clear that they carry Hausdorff
topologies. To prove that, one must show that 3 operator
has closed range.) Nevertheless, it is possible to study

them.

THEOREM 5.15 ([Schmid, 1967] and [Schmid, 1975]). Suppose
G 1is a reductive Lie group, T 1is a large compact Cartan

subgroup associated to a Borel subalgebra %, and T is a
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dominant irreducible metaplectic representation of T
(Definition 5.7). Assume (without loss of generality, by
Lemma 5.5) that T 1is contained in K. Write (u,W) for
the representation 7 ® p of T. Endow G/T with the holo-
morphic structure defined by % ; write # for the holomor-
phic vector bundle defined by p. Let S be the complex
dimension of K/T.

a) The Harish-Chandra module of the discrete series
representation IB,T(T) is isomorphic to the space of
K-finite elements in HS(G/T,ﬂ).

b) If i is not equal to S, then Hi(G/T,#') is zero.

c) K/T is a compact (complex) submanifold of maximal

dimension in G/T.

This is a reasonable generalization of the Borel-Weil theo-
rem (Theorem 1.24).

There is a distinction to be made here among three
problems: realizing representations that are already known
to exist, as in Theorems 1.24 and 5.15; proving the exis-
tence of representations, as in Theorems 1.17 and 5.11; and
constructing representations (that is, doing existence and
realization at the same time), as in Example 3.20 and

Theorem 4.23. Clearly the third possibility is the most
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desirable; the second without the first is in any case in—
adequate.

It is therefore a serious problem that the original
proof of Theorem 5.15 depends on knowing Theorem 5.11 in
advance. Although one can say quite a bit a priori about
the space V of K-finite elements in HS(G/T,V) from an
algebraic point of view, it is a difficult matter to impose
even an invariant pre-Hilbert space structure on V. To
some extent this problem exists already for compact groups.
Our proof of Theorem 1.24 invoked Theorem 1.17; eliminating
this dependence is possible but requires some moderately
sophisticated differential geometry. To approach Theorem
5.15 without Theorem 5.11 is far harder, but it is still
possible. To begin with, the Dolbeault cohomology should be
replaced by some kind of space of L? harmonic forms. (Of
course this is no change if G 1is compact, but the spaces
are very different in general.) Kostant and Langlands first
suggested that the discrete series could be realized on such
spaces. Their conjecture was proved in [Schmid, 1976],
still using Theorem 5.11. To make this into a construction
- that is, to prove a priori that the L? cohomology spaces
carry discrete series representations — is more or less the

point of [Atiyah-Schmid, 1977].
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Unfortunately, we want even more unitary representa—
tions than are provided by Theorem 5.11. There is some hope
of finding these by generalizations of Theorem 5.15, and
this hope has been partially realized in [Rawnsley-Schmid-
Wolf, 1983]. The reader should consult that paper for more
information. For the present, however, the analytic diffi-
culties are insuperable except in special cases.

The beginnings of a way out of these difficulties were
provided by Zuckerman in 1977 (see Chapter 6 of [Vogan,
1981]). In the setting of Theorem 5.15, one can think of
the idea in this way. The complex manifold G/T contains
K/T as a compact complex submanifold. Stein manifolds
cannot have non-trivial compact submanifolds; so G/T is
almost never Stein. Schmid showed, however, that G/T is
in a certain technical sense Stein away from K/T. Stein
manifolds have many holomorphic functions. One should there-
fore expect the only constraints on HS(G/T ,#) to come from
K/T. More precisely, anything that looks like the jet of a
class in this cohomology near K/T ought to arise from a
genuine global cohomology class. Zuckerman’s idea was to
set up a formalism to describe such jets and then to use
this formalism instead of the Dolbeault cohomology. The pro-
cedure gives only a Lie algebra representation, but Theorem

2.15 then immediately turns it into a group representation.
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Most importantly, the procedure can be generalized substan—
tially without much effort: we can build representations of
G out of representations of a wide class of Levi subgroups.
The next chapter is devoted to a description of Zuckerman’s

construction.



Chapter 6

COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY

We are going to study Zuckerman’s construction in de-
tail only under what may appear to be rather restrictive
hypotheses. We will therefore begin with a lemma intended

"to motivate them.

LEMMA 6.1. Suppose L 1is a Levi factor in G, associated
to a parabolic subalgebra ¢q = I+u in the complexification
(Definition 5.1). Assume that L is stable under the
Cartan involution 6 (cf. Lemma 5.5). Then at least one of
the following possibilities holds.

a) The centralizer of L in go (which is contained
in 1y) meets the -1 eigenspace sg of 6. In that case,
L 1is contained in the Levi factor of a proper real para—
bolic subgroup of G.

b) The parabolic q is 6-stable.

123



124 CHAPTER 6

This second condition is equivalent to
b)' The parabolic q 1is opposite to its complex conju-
gate q . That is,

qﬂq':I.

Proof. Recall from Definition 5.7 the one-dimensional repre-
sentation 2p(u) of L. Since 6 acts on L, it acts on
representations of L. Clearly

8(2p(u)) = 2p(6u);
the Lie algebra 6q is another parabolic with Levi factor
I. Define ¢ to be the quotient of these two characters,
and ¢ 1its differential in I*. Then ¢ is zero if and
only if q is 0O-stable. Furthermore ¢ is invariant
under the coadjoint action of L, and 06¢ is -—¢. Elemeilts
of s, have real eigenvalues in the adjoint representation.
Since ¢ is built from the adjoint representation, it fol-
lows that ¢ is real valued. (The equivalence of (b) and
(b)' is similar; we omit details.) Identifying 1o with
(Io)* by the form chosen before (2.2), we conclude that ¢
corresponds to an L-fixed element of sg3. The proposition

now follows from Lemma 5.8. O

We would like to be able to construct unitary represen—

tations of G out of unitary representations of Levi sub-
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groups of G. If we are willing to do this in a step-by-step
manner, Lemma 6.1 says that it suffices to consider two spe-
cial cases: Levi factors of real parabolic subgroups, and
Levi factors of O-stable parabolic subalgebras. Since we
have treated the first case in Chapter 3, we will concen-
trate now on the second. For the rest of this chapter, we
will therefore work with the following situation.

q = I+u is a parabolic subalgebra of g

6 preserves q, I, and u

(6.2)(a) 1

L

complexification of Ig4

a Levi subgroup for q.

Because 6 preserves everything, the Cartan decomposition

(2.1) gives
g=qN¥+qNs
(6.2)(b) u=uN¥f+uNs
L=(LNK) * exp(lpo N s0).
We write
(6.2)(c) R=dimufNsg, S =dimuf ¥.

The complex conjugate parabolic subalgebra q  gives rise to
a triangular decomposition

(6.2)(d) g=u+ 1 +a.

From Definition 5.7, we have the metaplectic cover L~ of

L and its metaplectic character

(6.2)(e) p(w) € (L)
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(The character is unitary for the following reason. By the
proof of Lemma 6.1, its differential vanishes on [ N s; so
it takes purely imaginary values on ggp:

(6.2)(f) p(u) € 1(1o N %)™.)

Because L N K preserves the decompositions (6.2)(b), we
have two more characters of L N K:

(6.2)(g) 2p(u N ¥) det(Adlum).

= character of L N K on As(u nt),

and (similarly) 2p(u N s). Obviously the sum of these two
characters is 2p(u).

In order to describe even the most elementary proper-
ties of Zuckerman’s construction, we need a long digression

on the center of the enveloping algebra.

Definition 6.3. Suppose ¢ is a complex reductive Lie
algebra. Write
(6.3)(a) Z(g) = center of U(g).
Fix a parabolic subalgebra and a Levi factor of it, q = [+u.
Write u~ for the nil radical of the opposite parabolic sub-
algebra, so that

ga=u+ 1 +u".
By the Poincaré-Birkhoff-Witt theorem, the enveloping alge-
bra decomposes as a vector space, as

U(g) = U(u) ® U(X) @ U(u").
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In particular, there is a direct sum decomposition

(6.3)(b) U(g) = U(1) & [uU(g) + U(g)u™].
(The sum within the square brackets is not direct.) Write
(6-3)(c) £ U(g) » U(Y)

for the projection on the first factor. Let Z be any ele-
ment of the center of I such that ad(Z) has positive
eigenvalues on u. Then the restriction of §~ to the cen-
tralizer of Z 1is a homomorphism of algebras.

Recall the one-dimensional representation p(u) of I
(Definition 5.7). Define a map Tq from Y into U(I) by
(6.3)(d) T (X) = X + p(u)(X).

Because p(u) is a Lie algebra homomorphism, so is T . It

therefore extends uniquely to a homomorphism of algebras
Tq: u(xr) » u(x).

Because it has an obvious inverse, Tq is actually an auto-

morphism. The Harish-Chandra map is

(6-3)(e) E=F =T, °&.

a map from U(g) to U(Y). This map respects the adjoint

action of the group L:

(6.3)(£) E[Ad (x)(w)] = Ady(x)(E(u)) (x€L, u€l(g))-

Restricted to the centralizer of any element Z as above,

it is a homomorphism of algebras. In particular, we have

the Harish-Chandra homomorphism

(6.3)(g) §: Z(g) ~Z(1).
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Suppose G is a reductive group with complexified Lie
algebra g. Write
(6.3)(h) ZG(g) = Ad(G)-invariants in U(g) C Z(g).
The containment is an equality if and only if G belongs to
Harish-Chandra’s class. Because of (6.3)(f), we can re-

strict £ to

(6.3)(4) E: Z4(e) > 2 (1)

THEOREM 6.4 (Harish-Chandra; cf. [Humphreys, 1972]). Sup-
pose we are in the setting of Definition 6.3.

a) The Harish-Chandra homomorphism § of (6.3)(g)
depends only on I, and not on q. Consequently, we can
write

£ 2(e) » z()"(& D)
(Definition 5.1).
b) §I is injective.
c) If Y =% 1is a Cartan subalgebra, then
£ 2() > s(n)" SV
is an isomorphism. In the setting of (6.3)(i), write W
for the group of automorphisms of IL(I) generated by
W(G.L) and W(g.!). Then we have

d) The map

£0 2gle) » (0" .

is injective.
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e) Suppose that L =H 1is a Cartan subgroup and that
W(G.H) has a representative in each connected component of
G. (This is automatic if H 1is small and is either funda-

mental or maximally split.) Then §L is an isomorphism.

Definition 6.5. We use the notation of Definition 6.3. Fix
a Cartan subalgebra § of g. Each element A of Iy* de-
fines a ring homomorphism
x\¢ S(§) > €,
by evaluation at A. This gives rise to
H=fa=x°%
a homomorphism from Z(g) to C. We call such a homomor-
phism an infinitesimal character. Equivalently, there is a
maximal ideal
.9’)\ = ker f)\
in Z(a). Again Theorem 6.4 makes §17 an integral ring
extension; so all maximal ideals in ¥%(g) arise in this
way. We write
Max Z(g) = 5 /W(g.5).
A similar discussion applies to EZG(g).
More generally, suppose I is a Levi subalgebra of g,
and Y is an infinitesimal character for . Define
E,=E, =Vo°E.

a homomorphism from Z(g) to C.
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We say that a g module V has infinitesimal charac-
ter A (or f)\) if V 1is annihilated by .9’)\:
Zev = ‘g'x(z)' (z € Z(g). v € V).
Again, a similar definition applies to 2G(g). Ve will say
G-infinitesimal character if it is necessary to emphasize

the distinction.

LEMMA 6.6 (algebraic Schur’s lemma; see [Dixmier, 1974]).
Any irreducible g module has an infinitesimal character;
that is, Z(g) acts by scalars on it. Any irreducible

(g.K)-module has a G-infinitesimal character.

We could now begin to describe Zuckerman’s construc-
tion, but a final remark about the case of real parabolics

may be instructive.

PROPOSITION 6.7. In the setting of Definition 4.1, suppose
that the representation ¢ of L has L-infinitesimal
character ¢ (Definition 6.5). Then the representation
IndIG,(«#) has G-infinitesimal character fL,\# (Definition
6.5).
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This is proved from the definitions by a very simple calcula-
tion; details may be found in [Wallach, 1973] or [Knapp,

19867, for example.

THEOREM 6.8 (Zuckerman, Vogan; see [Vogan, 1981] and [Vogan,
1984]). Suppose L 1is a Levi subgroup of the reductive
group G, attached to the O-stable parabolic subalgebra
q = I+u. Use the notation (6.2); in particular, L~ is the
metaplectic double cover of L, and S 1is the dimension of
u N ¥. Then there is a family

# = (2 ) (j=0.1,....S)
of functors from the category of metaplectic (Y,.(L N K)N)-
modules, to the category of (g.K)-modules, with the follow—
ing properties. Let Z be an (L,(L N K)N)—module.

a) & takes short exact sequences of metaplectic
(t,(L N K) )-modules to long exact sequences of (g.K)-
modules.

b) If Z has finite length, then so do all the QRjZ.
Let % be a Cartan subalgebra of 1. Assume from now on
that Z has L-infinitesimal character A in I)* (Defini-
tion 6.5).

c) ?Rj(Z) has G-infinitesimal character A.

d) Assume that for each root a of % in u ,
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Red\,a> 2 O.
Then Qij(Z) is zero for j not equal to S.

e) Under the hypothesis of (d), any non-degenerate
Hermitian form on Z induces one on ?RS(Z). If the former
is definite, so is the latter. That is, if Z 1is infinites-
imally unitary, then so is ?RS(Z).

f) Assume that for each root a of % in u ,

Re<d,a> > O.
Then if Z 1is non-zero, so is ﬂis(Z)

g) Suppose that L =T is a large compact Cartan sub-
group of G (so that q = b is a Borel subalgebra), and
that T is an irreducible dominant regular metaplectic repre-

sentation of T. Then Harish-Chandra’s discrete series is

Iy (1) = (% ().

(The only result not due to Zuckerman here is the statement
about definiteness in (e).)

We call the functors %’ cohomological parabolic induc-
tion. Because of its special importance, we will use a spec-
ial notation for ng:

(6.9) I . =@ )S

) q.L q,L” -~
The reader should be warned that the functor 9§S considered
here differs by tensoring with p(u) from the one defined

in [Vogan, 1981]. Letters of complaint on this point may be
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addressed to M. Duflo, who crystallized for me some previous-
ly half-formed ideas about it.

Notice that the "dominant regular” condition in (g) is
the same as the condition in (f). The rest of the theorem
therefore guarantees the existence of the proposed discrete
series as unitary representations. (This is circular unless
one uses the proof in [Wallach, 1984] for (e).) It is fair-
ly easy to show that (ﬁ5.T)S(T) is irreducible. To show
that it belongs to the discrete series requires some of
Harish-Chandra’s basic ideas about the Schwartz space of G,
but far less serious analysis than is needed for Harish-
Chandra’s proof of Theorem 5.11. To show that every dis-
crete series is of this form is still more difficult, but
can be done using some of the ideas of Langlands and others
discussed in Chapter 13.

The philosophical content of Theorem 6.8 is this.
According to Proposition 1.19, q defines a complex struc-
ture on G/L (cf. Lemma 6.1(b)’). Write
(6.10) W=228 Cp(u).
Since Z and p(u) are both metaplectic, W descends to
an (I,(L N K))-module. Asume that W is the Harish-Chandra
module for a representation (w,ﬂb) of L. After replacing

ﬁb by the subspace of smooth vectors, we may assume that I
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acts on it. Extend @ to a module for q by making u
act trivially. Then  defines a (possibly infinite-
dimensional) holomorphic vector bundle # on G/L (Propo-
sition 1.21). Definition 5.14 therefore provides sheaf
cohomology groups, on which G acts. It is conjectured
that

(6.11) (ﬂiq,L)j(Z) & Harish-Chandra module of HJ(G/L.¥).
Theorem 5.15 (in conjunction with Theorem 6.8) is a special
case of this conjecture.

Conjecture (6.11) sheds some light on Theorem 6.8.
Most obviously, it explains why we should get a family of
functors instead of just one. As an analogue of parabolic
induction, the functor QES has as its main flaw the strong
requirement in Theorem 6.8(e) needed to guarantee unitarity.
This is a completely unavoidable problem, however. The dis-
cussion after Theorem 5.12 included the observation that
even if L is compact, H°(G/L.#) may contain a (non-
unitary) finite-dimensional representation. A slightly more
sophisticated argument will produce non—unitary finite—
dimensional representations inside HS(G/L,V) as well.
Conjecture 6.11 then suggests that QRS does not preserve
unitarity in these cases, and in fact one can prove that
very easily. A second unsatisfactory point is that ?RS

depends on ¢, and not just on L (compare Theorem 3.19).
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The same examples show that this is definitely the case,
however: in the setting of Theorem 6.8(g), we can sometimes
find a T and two different Borel subalgebras, such that
one of the functors produces an irreducible discrete series
representation, and the other something containing a finite-
dimensional representation. If T is allowed to be singu-
lar, we can sometimes choose the two Borel subalgebras both
to satisfy the condition in (d) of the theorem, and get two
different unitary representations of G.

We turn now to the construction of the functors ?R‘].

Definition 6.12. Suppose g is a Lie algebra and % is a
subalgebra. Let V be any § module. The produced module
from % to g is
(6.12)(a) prog(V) = Hom, (U(g).V).
The Hom is defined using the left action of % on U(g)
and made into a @ module using the right action. More
precisely, a linear map ¢ from U(g) to V must satisfy

$(Zu) =Z - (¢(u)) (Z€p, uel(a))
in order to belong to the produced module. In that case, an
element X in g acts by

(X+4)(u) = ¢(uX).

The order of vanishing filtration of pro(V) is the decreas-

ing filtration defined by
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(6.12)(b) [pro(V)] = {¢ € pro(V)| ¢(u) = 0, all u € U _(g)}
Here Un(g) is the subspace of U(g) spanned by products
of at most n elements of g. Notice that pro(V) is com-
plete for this filtration.

Suppose that M 1is a Lie group and we are given the
ingredients of Definition 1.26 for the pair (g.M). Assume
in addition that % contains m and that Ad(M) preserves
; then (%.M) also satisfies the requirements of Definition
1.26. Suppose now that V is an (§,M)-module. We can de-
fine an action of M on prog(V) by

(b+9)(u) = be(¢(Ad(b™*)u)).
This action is usually not locally finite (Definition 1.26
(a))., but we can certainly consider the largest subspace
where it is locally finite. In analogy with Definition 2.4,

we denote this by a subscript M and define

M
(6.12)(b) progg’M;(V) = Hom (U(s) . V)

[+ ]
By way of motivation, we return first to the C cate-

gory.

PROPOSITION 6.13 (invariant Taylor series). Suppose G is
a Lie group, H 1is a closed subgroup, ¥ 1is a finite-
dimensional homogeneous vector bundle on G/H, and (w,V)

is the corresponding representation of H (Propositions
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1.20 and 3.2). VWrite CQ(G/H,‘V) for the space of smooth
sections of v and X for the subspace of sections vanish-
ing to infinite order at eH. Then there is a short exact
sequence of representations of g and of H

0->X> Cm(G/H,‘ﬂ) > prog(V) - 0.

The second map preserves the order of vanishing filtrations.

Proof. Write A for the action of U(g) on smooth func-
tions by infinitesimal left tramslation. For X in g, this
is given by

(6.14)  (AMX)f)(g) = (d/dt)(f(exp(-tX)g)) |, -

The action is extended to- U(g) so as to give an algebra
representation. Suppose then that F is a smooth section
of Y. Identify it with a function f from G to V, by
Corollary 3.4. Define a map ¢ from U(g) to V by
(6.15) ¢p(u) = (A(w)f)(e).

That this map belongs to the produced module, and has the
required properties, follows from Corollary 3.4 and elemen-
tary arguments. (One needs to know at some point that a
smooth function can have any prescribed Taylor series, but
this is a standard fact from analysis.) We omit the de-

tails. o.



138 CHAPTER 6

COROLLARY 6.16. In the setting of Proposition 6.13, assume
that G/H 1is connected. Then the space C"’(G/H.'ﬂ) of real-
analytic sections of Y embeds in proz(V). More precisely
(even if G/H 1is not connected), the space of germs at eH

of real analytic sections embeds in pro(V).
Next, we introduce a complex structure.

PROPOSITION 6.17. In the setting of Proposition 6.13, sup-
pose G/H has an invariant complex structure given by b~
(Proposition 1.19), and that ¥ has a holomorphic structure
given by a (%,H)-module structure on V. Write ¢ for the
sheaf of germs of holomorphic sections of Y. Then there is
a natural inclusion
yeH > prog(V),
preserving the actions of U(g) and the order of vanishing

filtrations. If yeH is completed with respect to this fil-

tration, the map becomes an isomorphism.

This is clear from Proposition 1.21 and Corollary 6.16. The
completion of a space of germs of holomorphic sections with
respect to the order of vanishing filtration is just the

space of formal power series sections.
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From this point on, we will be considering some more
subtle operations on (g.K)-modules. Some of these cannot
be carried out, or require much more care, in the general
context of Definition 1.26. It is therefore convenient to

introduce a more restrictive version of that definition.

Definition 6.18. Suppose (%,M) is a pair satisfying the
hypotheses (i) and (ii) imposed on (6,H) in Definition
1.26. Assume in addition that

iii) M is compact.

Suppose X is an (§,M)-module. Write Xd for the
M-finite vectors in the dual space of X. In notation like
that of Definition 6.12,

a) x4 = Home (X, C),,.

This is again an (§,M)-module, and the functor sending X
to X3 is exact. We call X the M-finite dual of X.

Similarly, let Xh denote the (§,M)-module whose
underlying real vector space is Xd, but whose multiplica-
tion by i (the square root of -1) is the negative of that
for Xd. The actions of % and M on Xh are unchanged
from the actions on Xd. There is a non-degenerate sesqu-

linear pairing between X and Xh We call Xh the Hermi-

tian dual of X. An (§,M)-invariant sesquilinear pairing
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between X and another (§,M) module Y amounts to a map

from Y to Xh.

The assumption that M be compact simplifies the proof
that the category of (%,M)-modules has enough injectives
and allows one to prove that there are enough projectives.
One can therefore speak of

i
b Ext
) (9.4)
(the derived functors of Hom). In particular, we define
i
(%.M)

the relative Lie algebra cohomology groups.

¢) H(§,M.X) = Ext (C.X),

A detailed discussion of the category of (§.,M) mod-
ules and its Ext functors may be found in [Borel-Wallach,

1980] or [Vogan, 1981].

Definition 6.19 (Zuckerman). Suppose K 1is a Lie group, g
is a Lie algebra, and we are given the ingredients of Defini-
tion 6.18 for the pair (g.K). Let M be a closed subgroup
of K; then we have these ingredients for (g.M) as well.

We define a functor (the K-finite vectors in functor),

_ r(g.K)
I'=Tqm)

from (g,M) modules to (a.K) modules, as follows. Let X

be a (g.M) module. Set
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(T'o) (X) = {v € X| dim U(¥)v < ®},
the space of ¥-finite vectors. By elementary Lie group
theory, this space carries a representation of the universal
cover (Ko)~ of the identity component of K. Write 2Z
for the kernel of the covering map, and
To(X) = {v € (To) (X)| z*v = v, all z € Z}.
Obviously TIo(X) carries a representation of Ky. Call
this representation w for a moment (although we will soon
return to module notation), and write p for the representa-
tion of M on X. Set
I, (X) = {v € To(X)| 7(m)v = p(m)v, all m € M N Ko}.

Let K; be the subgroup of K generated by K, and M.
Then there is a unique action of K; on TI,(X), extending
both # and p. Finally, set

r(x) = Indléi(ri(X)).
with induction defined formally as in Definition 3.8. (The
hypotheses of that definition are not satisfied here, but
that only means we cannot get a Hilbert space.) We make g

act on the induced representation by

(X-£)(k) = (Ad(k™*)(X))*(£(K)).

Although this definition requires care, it should not be re-
garded too seriously; all we want is (to make sense of) the

"subspace” of X on which the action of ¥ exponentiates



142 CHAPTER 6

to K. If K and M are connected, and K 1is simply con-
nected, then I'(X) is the (easily defined) subspace of

f-finite vectors in X. One should keep this case in mind.

Definition 6.20 (Zuckerman; see [Vogan, 1981]). We use the
notation of (6.2). Suppose Z is a metaplectic (1, (LNK))-
module. Write

V=29 Cp(u)
(compare (6.10)). By (6.2)(e), W is an (X, (LNK))-module.
Extend W to a (q.(LfK))-module by making u act trivial-

ly. Define (following Definition 6.12)

,LNK
= progg,m;(W) .

We define (following Definition 6.19)

X

o _ r(a.K)
(6.20)(a) (?Rq,L) (2) = T(g,mK)(X)-

It is a simple matter to verify that #%° is a left exact
functor. Because the category of (I,(I.ﬂK)N)—modules has
enough injectives, we can define

(6.20) (b) (sviq’L)i = 1™ right derived functor of #°.

In fact all the functors involved in the definition of &%
are exact and take injectives to injectives, except for T.
We could therefore define Qii by replacing I by its ith

right derived functor in (6.20)(a).
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Here are some comments about the proof of Theorem 6.8.
Part (a) is elementary homological algebra (except that we
have not yet explained why ?Ri is zero for i greater than
S). Consider next (c). Then obviously W (Definition
6.20) has infinitesimal character A + p(u). We now apply

the following infinitesimal version of Proposition 6.7.

LEMMA 6.21. In the setting of Definition 6.3, suppose W
is a module for I , extended to q by making u act triv-
ially. Suppose z is in Z(g), and ‘g'N is the map of
(6.3)(c). Then E (z) is in Z(X) and so defines a q-
module map ¢ from W to W. Write ¢ for the g module
map induced (by functoriality) on prog(W) (Definition
6.12). Then the action of z on pro(W) is given by ¢.
In particular, if W has infinitesimal character
Ap(u), then pro(W) has infinitesimal character N (Defi-

nition 6.5).

It is easy to see that the functor I preserves G-infinite-

simal character. Lemma 6.21 therefore leads to

COROLLARY 6.22. In the setting of Definition 6.20, suppose

z is in ZG(Q). Write E(z) for its image in ZL(I) un-
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der the Harish-Chandra map (6.3)(i). Write ¢ for the
action of E(z) on Z, and <I>i for the map induced (by
functoriality) on L’Ri(Z). Then (Pi is the action of z on

mi

This includes Theorem 6.8(c).

To continue the proof of Theorem 6.8, it is necessary
to analyze the restriction of i‘ki to K. The only diffi-
culty is in understanding the derived functors of I'. For

that, we begin with an easy lemma.

LEMMA 6.23. In the setting of Definition 6.19, suppose X
is a (g.M)-module. Write %X for the underlying (¥,M)-
module. Then

(s.K) (1K)
g X) =Tiew)

(Here we have used ¥ on the left to denote the underlying

(¥X).

(¥.K)-module for a (g.K)-module.) The same result holds

for the derived functors.

Proof. The result for I follows by inspection of Defini-
tion 6.19. For the derived functors, it suffices to show
that there are enough injective (g,M)-modules that are
injective as (¥,M)-modules. To see this, let Y be any

locally finite representation of M. Then
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I= Homm(U(g),Y)M
(Definition 6.12) is an injective (g,M)-module, and there
are enough injectives of this kind ([Vogan, 1981], Corollary
6.1.24). But
%I = Hom (U(%).Hom(S(g/%).Y))y

is an injective (¥,M)-module. o.

Another basic fact is that I' is an adjoint to another

kind of forgetful functor.

LEMMA 6.24 (Zuckerman; see [Vogan, 1981], Lemma 6.2.10). In
the setting of Definition 6.19, suppose V is a (g.K)-
module. Write %X for the underlying (g.M)-module. Then
there is a natural isomorphism

Hom(g’K)(V,I'X) = Hom )(W.X).

(¢.M
This is fairly clear from the definition of I'. An immedi-
ate consequence (using Lemma 6.23) is a corresponding state-—

ment about derived functors.

PROPOSITION 6.25. In the setting of Definition 6.19, sup—
pose V is a (locally finite) representation of K. Then

there are natural isomorphisms
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Ho"k(v,rjx) x Etht,M) (V.X)
= Ext‘g t.M) (ﬂ:,HOmC(V'X)M)
= ) (¢, M, Homg,(V.X),) -

(We have omitted various forgetful functors.)

This proposition is the tool that allows one to compute
the functors %) as representations of K. We will return
to that task in a moment. First, however, we study Hermi-

tian forms.

LEMMA 6.26 (Poincaré duality; see [Borel-Wallach, 1980] or
[Knapp-Vogan, 1986]). In the setting of Definition 6.18,
suppose X is an (§,M)-module. Write t for the dimen-
sion of %§/m. Then
C, = A" (4/m)

is a one-dimensional representation of M in a natural way.
We make Ct into an (I),l\;)-module by making an element H
of § act by det(ad(H)); that is, by the scalar by which
it acts on the top exterior power of §.

Then there is a natural isomorphism

H (5. M.%)° = B 6.0x% @ €,).



COHOMOLOGICAL PARABOLIC INDUCTION 147

Sketch of proof. The cohomology is computed by a certain
complex
(6.27) Homy (A* (§/m) ,X)
(see for example [Borel-Wallach, 1980]). Exterior multipli-
cation defines an isomorphism

AY " (5/m) = Hom(Al(5/m). A (5/m)).
Evidently the dual of the complex (6.27) may therefore be
identified with

Homy, (A" (9/m) X" ® A% (9/m))

One can check that in this identification, the transpose of
the differential for X is the differential for Xcl ® Ct.
It follows that

H (5.1, = 185 5. mx% 0 € ). 0.

THEOREM 6.28 ([Enright-Wallach, 1980]). In the setting of
Definition 6.19, let X be a (g.M)-module. Write t for
the dimension of ¥.,m. Then
€, = A°(t/m)

is a one-dimensional representation of M in a natural way.
Make Ct into a (g.M)-module by making g act trivially.
Then there is a natural isomorphism of (g.K)-modules

P =i e cy).

In particular, suppose that M acts trivially on At(t/m).
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Then a (non-degenerate) invariant Hermitian form on X
induces a (non-degenerate) invariant Hermitian form on

r2(xy.

Sketch of proof. Let V be any finite—dimensional repre-
sentation of K. A calculation using Proposition 6.25 and
Lemma 6.26 shows that
HomK(V.I"i(X)h) ~ HomK(V,I‘t_i(Xh ® C,))

in a natural way. It follows that the desired isomorphism
exists on the level of representations of K. Enright and
Wallach now use a clever formal argument to deduce that a
sufficiently nice isomorphism as representations of K must
automatically respect the action of G as well; we refer to

their paper for the details. u]

PROPOSITION 6.29 (Shapovalov). In the setting of Definition
6.20, an invariant Hermitian form on Z induces one on
~ IJTK)
X~ = ina{8: Z0C )
(o~ k) @ Cpu))
Under the hypothesis of Theorem 6.8(d), the induced form is

non-degenerate, and X is isomorphic to X.

This is more or less routine; details may be found in
[Vogan, 1984]. (Shapovalov proved much deeper results about

the form on the induced module.)
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We now return to the analysis of the K-types of ij(Z).

Definition 6.30. In the setting of Definition 6.20, suppose

ZI_nK is a metaplectic (q N ¥,(L N K)" )-module. Set

wl.ﬂK = ® cp(u)
Xe = pro((a N £,L NK) 1 (£.K)) (W)
o k.K
Fene, o) Grg) =T &,u’m)(":)-
(ﬂkqnt I_nK)l =itk right derived functor of %#°.

These are essentially taken from Definition 6.20, applied to
K instead of G. The only difference is that we do not re-
quire u N ¥ to act trivially on Z]J‘IK As in the earlier

definition, we could simply take derived functors of T.

PROPOSITION 6.31. In the setting of Definition 6.30, sup-—
pose ZI.nK is finite-dimensional. Let ”LﬂK be the holo-
morphic vector bundle on K/(L N K) associated to me" we
have endowed the base space with the complex structure given

by (q N ¥) . Then there is a natural isomorphism

Fne 1) G 2 H L NK)LH )

(Definition 5.14).

This is another special case of the conjecture (6.11); it is

due to Zuckerman (unpublished). Its importance was first
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emphasized in [Enright-Wallach, 1980], where one can find a
proof. The idea is that both sides of the equality in the
proposition are adjoint to the same relative Ext functors.
More precisely, writing Si for either side and V for any
representation of K,

(6.32) Hom, (V.S') = Extzqnf’mK)(V,W).
When S’ comes from the right side in the proposition, this
is a generalization of Proposition 1.27. (It goes back to
[Bott, 1957].) For S:.l coming from the left side in the

proposition, it follows from Proposition 6.25 and a version

of Shapiro’s lemma.

Definition 6.33 (cf. [Vogan, 1981], Theorem 6.3.12). In the
setting of Definition 6.20, the order of vanishing along %
filtration is the decreasing filtration of X (by (¥,LNK)-
submodules)

(6.33)(a) X, ={¢¢€ X| ¢(u) =0, allue€ U_(2)U(¥)}.

In particular, X, 1is the subspace of maps vanishing on

U(%); so

IR

(6.33)(b)  X/Xo = Hom (\, (U(t). W)y

progf’.'lgr’]K]_AK) (wW).

More generally, it is easy to check that
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(6.33)(c) X /X = Homqm(U(f).s“((s/qns) ) ® W)

= progzh]i{“(]}“()(sn(s/qﬂs)*mv).

The idea now is to use the order of vanishing along ¢
filtration to compute I iX as a representation of K.
Because of Lemma 6.23, this is permitted in principle.
Because the filtration is infinite, there is a minor techni-
cal problem about convergence of a spectral sequence. It

can be handled by a simple trick, however. The result is

THEOREM 6.34 (generalized Blattner formula); (see [Vogan,
1981], Theorem 6.3.12). In the setting of Theorem 6.8 and
Definition 6.19, assume that Z has finite length. Write
ﬂn for the holomorphic vector bundle on K/LfK correspond—-
ing to the (qN¥,LNK)-module
S ((s/ans)™) ® W.
a) ﬂij(Z) =0 for j greater than S.
b) All the %j(Z) are admissible (Definition 2.11).
c) As virtual representations of K,
Y (1)) = ) )ik ).
J j.n
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The right side of the formula in the theorem may be computed
using Bott’s generalization of the Borel-Weil theorem (cf.
[Bott, 1957)].

The corner of the spectral sequence in the proof of
this theorem arises as follows. The order of vanishing fil-
tration gives a surjective map

pro((""l’{m) W) » pro:("gt ,LNK) wv).
Now apply the derived functors of I (using Lemma 6.23).

We get

COROLLARY 6.35. In the setting of Definitions 6.20 and
6.30, there is a surjective map of K-modules
#(2) > &y 10 (D)

We return now to our discussion of the proof of Theorem
6.8. Part (b) follows from Theorem 6.34(b). For (d)
through (g). we may as well assume (perhaps after replacing
Z by 76 Zh) that Z carries a non-degenerate invariant
Hermitian form. By Proposition 6.29, X = pro(W) does as
well. Notice that S is half the dimension of K/LMK. The
decomposition

INEZ(uN¥)d (v NE),

and the invariant pairing between the two summands induced

by our fixed bilinear form on g, show that L N K acts



OOHOMOLOGICAL PARABOLIC INDUCTION 153

trivially on the top exterior power of ¥/1 N ¥. By Theorem
6.28, QRS(Z) carries a non-degenerate form, as required by
Theorem 6.8(e). In addition,

()P = 2573(z).
If j 1is greater than S, the left side is zero by Theorem
6.34(a). If j is less than S, the right side is zero for
the same reason. Theorem 6.8(d) follows. The statement
about definiteness in Theorem 6.8(e) is rather hard. Proofs
may be found in [Vogan, 1984] or [Wallach, 1984].

For the remaining statements, notice that Theorem
6.8(d) and Theorem 6.34(c) compute 9§S(Z) as a representa-
tion of K (under the hypothesis of Theorem 6.8(d)). The
non-vanishing statement in Theorem 6.8(f) is proved using
Corollary 6.35, by exhibiting a representation of L N K
that is not killed by (%qn!,l.nK)s' For (g). [Schmid,
1975] contains a characterization of any discrete series
representation in terms of its restriction to K. Theorem
6.34 allows one to check that SRS(T) satisfies the condi-
tions of that characterization.

To conclude this chapter, we discuss the unitary repre-
sentation theory of GL(n,R). Details may be found in
[Vogan, 1986b]. To see how the theory differs from the case

of. GL(n,C), we begin with a series of representations
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studied by B. Speh in [Speh, 1981]. Suppose n = 2m, and
consider the Levi subgroup

(6.36)(a) L = GL(m,C)

of G (cf. (5.3)). Recall that X denotes the element of
go corresponding to multiplication by i (when IR2m is
identified with Cm) The eigenvalues of ad(X) turn out
to be 0 and +2i. Put

(6.36)(b) u = +2i eigenspaces of ad(X)

(6.36)(c) q=1+ u.
Then q 1is a parabolic subalgebra of g, opposite to its
complex conjugate. If we take the Cartan involution 6 on
G to be inverse transpose, then 6X is X; so q is 6-
stable.

For each integer k, define a unitary character Xy of
L by
(6.37) x (&) = det(2)/|det(&)].
(Here we refer to the determinant function on GL(m,C).) In
the notation of Definition 5.7, one can calculate that
(6.38) (=) 2p(4) = X
This has a square root (namely xm). It follows that the
metaplectic cover of L~ of L (Definition 5.7) is isomor-
phic to L x Z/2Z, and that metaplectic representations of

L may be identified with representations of L. (To use
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this identification in Definition 6.20, for example, one sim-—
ply replaces tensoring with cp(u) by tensoring with xm.)

We are going to consider the representations

S

(6.39) X, = £0q)
of GL(2m,R). Theorem 6.34 suggests looking first at K,
which in this case is the orthogonal group O(2m). Because
of Proposition 6.31, the following result is a special case

of the Bott-Borel-Weil theorem (cf. [Bott, 1957]).

LEMMA 6.40. In the setting above, put

vV = (ﬁqﬂf ’]_nK) (xk—l) .

a) If k <O, then Vk is zero.

b) If k = 0, then Vk

the determinant characters of O0(2m).

is the sum of the trivial and

c) If k=1, then Vk is the representation of
o(2m) on A™(C™).

d) If k 21, then Vk is an irreducible representa-
tion of O(2m). It is the kth Cartan power of V,. In
appropriate standard coordinates, it has highest weight

(k,....k).

The shift by -1 in the definition of Vk is made to simpli-

fy the remaining statements.
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Corollary 6.35 now guarantees that Xk is non-zero as
long as k 1is at least —1. On the other hand, the condi-
tion in Theorem 6.8(d) amounts to

k>m-1
in the present case. There is therefore a range of values
of k for which the general theory does not guarantee nice
behavior of Xk, but for which the restriction to K looks
reasonable. It is possible to improve substantially on the
general theory, to make it cover most of this range. We will
return to this point in Chapter 13 (Theorem 13.6). For now,

we simply state what happens here.

PROPOSITION 6.41. In the setting of (6.36) and (6.37), the
Harish-Chandra module

X = Iq,L(xk)
for GL(2m,C) (notation (6.9)) is irreducible and infinites-
imally unitary for k > 0. It contains the representation
v1':4-1
the sense of [Vogan, 1981].

of O(2m) (cf. Lemma 6.40) as its lowest K-type in

When k is -1, Xk is neither irreducible nor infinit-

esimally unitary.
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The main point here is that Xk is unitary for non-
negative k. This is due to Speh. (One must bear in mind
that this result was proved before Theorem 6.8(e) was avail-
able.) What Speh did was show that Xk actually appears as
a constituent of the (unitary) representation of GL(2m,R)
on a certain space of square-integrable automorphic forms.

When k 1is zero, Xk is equivalent to a representa-
tion induced from the real parabolic subgroup of GL(2m,R)
with Levi factor GL(m,R) x GL(m,R), by a certain one—
dimensional unitary character. For k positive, Xk is
not equivalent to any representation induced from a proper
real parabolic subgroup of G. This behavior shows the
differences in the unitary representation theory of GL(n,R)
and GL(n,C). It is necessary to introduce cohomological
induction to get all the representations; and when that is
done, the problem of finding all equivalences among the var-
ious constructions becomes rather delicate. We will not try
to formulate the answer precisely here, but the following

theorem contains the main point.

THEOREM 6.42 ([Vogan, 1986b]). Any irreducible unitary
representation of GL(n,R) may be obtained by iterating the

processes of parabolic induction (Definition 4.1) and coho-



158 CHAPTER 6

mological parabolic induction (Definition 6.20), starting
from two Rinds of representations: one-dimensional unitary
characters, and Stein complementary series (cf. Theorem

¥.23).

We actually need the Stein complementary series over both R
and C. As was pointed out after Theorem 4.23, the choice

of ground field hardly affects their construction.
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THE IDEA OF UNIPOTENT REPRESENTATIONS

Theorem 6.42 is a model of what one would like to know
for any reductive group: that any unitary representation is
obtained by systematic processes from a small number of
building blocks. The systematic processes should certainly
include unitary induction from real parabolic subgroups
(Definitions 3.8 and 4.1), and cohomological parabolic induc-
tion (Definition 6.20). For our purposes, we will regard
the formation of complementary series (as in Theorem 4.23)
as another "systematic process,” even though the limits of
its applicability are not nearly so well understood as in

the first two cases. We are therefore led to

Problem I.1. For each reductive group G, describe a nice

class %(G) of unitary representations of G, with the fol-

lowing property. Let w7 be any irreducible unitary repre-

159
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sentation of G. Then there is a Levi subgroup L of G

(Definition 5.1), and a unitary representation m in

%(L), such that w is obtained from wm, by a complementary

L
series construction, followed by real parabolic induction,

followed by cohomological parabolic induction.

(The letter % may be taken to stand for building block.)
In the sense intended here, the Stein complementary series
for GL(2m,C) are obtained from the one-dimensional unitary
character §(k.k)®(it,it) of GL(m)xGL(m) (cf. Theorem 4.23).
(Replacing this by the non—unitary character §g(k.,k) ®
(o+it,-o+it) (from which one actually induces in the end)
is regarded as part of the complementary series construc—
tion.)

Dan Barbasch has pointed out that this problem is
almost certainly phrased too optimistically in at least one
important respect. Under special conditions, a non-unitary
Hermitian representation can give rise to unitary representa—
tions by a complementary series kind of procedure: one
deforms an indefinite induced inner product through some
poles until it becomes definite. If this is really the most
natural construction of these representations, then they

will not fit into the scheme proposed in Problem I.1. It is
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not yet clear how to deal with this difficulty. It should
not interfere with the less ambitious and more precise
conjectures stated later, however.

For G a product of copies of GL(n,R) or GL(n,C),
Theorems 4.28 and 6.42 suggest that one can take %(G) to
consist of the set of one-dimensional unitary characters of
G. At any rate we must include these char-acters in %(G);
for they cannot be obtained from any smaller group in the
manner suggested.

This immediately suggests the hope that one might take
#(G) to consist of the unitary characters of G in gener—
al. This hope fails for the first time when G 1is the
group Sp(2n,C), of linear transformations of c2n preserv-
ing a non-degenerate symplectic form. G has a beautiful
unitary representation @ on L2(03rl ). called the metaplec—
tic representation. It was originally constructed in
[Shale, 1962]; a nice account of it may be found in [Howe,
1980]. (The analogous representation for the real field is
discussed briefly in Example 11.26.) The representation o
is a direct sum of two irreducible pieces o and © . If
n is at least two, neither w+ nor @ may be constructed
by real or cohomological parabolic induction from a proper
parabolic subgroup; and neither piece is any kind of comple-

. . + .
mentary series. (If n is 2, © appears as a subquotient



162 INTERLUDE

at the end of a complementary series. Such a "construction"
proves that m+ is unitary but does not compute its charac—
ter; Problem I.1 is not intended to allow it.) We are there-
fore obliged (by the conditions of Problem I.1) to allow P
in %(Sp(2n.,C).

Having admitted ot to %(Sp(2n,C)) for n at least
2, we would be hard pressed to construct a nice theory ex-
cluding it for n equal to 1. But a symplectic form on C?
is just a volume form; so Sp(2.C) is just SL(2,C). This
suggests that even for SL(n), we ought to allow %(G) to
contain more than the unitary characters. To put it another
way, it seems unreasonable to choose %(G) to be the small-
est set solving Problem I.1. Rather, we will seek some
interesting larger set, defined more or less independently
of Problem I.1, with the hope that it will solve that prob-

lem by magic. A little more precisely, we pose

Problem I.2. For each semisimple Lie group G, des-
cribe a finite set A(G) of irreducible unitary representa-
tions, with the following properties.

i) Suppose T 1is a representation of G. Write mg
for the restriction of w7 to the identity component G, of
G. Then 7 belongs to AU(G) if and only if each constitu-

ent of my belongs to AU(Gy).
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ii) Suppose G is reductive. Define %(G) to con-
sist of all irreducible unitary representations of G whose
restriction to the commutator subgroup G' of G is a sum
of elements of %U(G'). Then %(G) should satisfy the
condition in Problem I.1.

iii) Suppose G is semisimple. Then any representa-
tion of G which is trivial on the identity component
belongs to %U(G).

Suppose G is semisimple, and %(G) is defined. A unitary
representation of G will be called unipotent if it is a

direct sum of elements of AU(G).

The requirements posed in Problem I.2 are much too weak
to determine what representations ought to be considered uni-
potent. In the course of the next five chapters, we will
consult a series of oracles, with the aim of adding to the
list of requirements. Finally we would like it to be so
long - even without condition (I.2)(ii) - as to specify
U(G) completely. (This goal will not be attained.) The
question of whether (I.2)(ii) holds is then a separate
issue, essentially equivalent to the classification of the

unitary representations of all reductive groups.



Chapter 7

FINITE GROUPS AND UNIPOTENT REPRESENTATIONS

The first oracle that we will consult is Lusztig’s work
[Lusztig, 1984] on (complex) .representations of finite
Chevalley groups. In the first half of this chapter (through
Corollary 7.16) G will always denote a reductive algebraic
group defined and split over the finite field F':l (with q
elements). We will require G to have connected center.
The group G(Fq) is a finite Chevalley group. Write
(7.1) B(e) = T(e)N(e)
for a Levi decomposition defined over Fq of a Borel sub-
group of G. (The "e" represents the identity element of
the Weyl group; the notation will be generalized in a
moment.) Because G 1is assumed to be split, T(e)(Fq) is
a product of copies of the multiplicative group of Fq’

Two examples will illustrate most of the main points:

the groups
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(7.2)(a) G = GL(n),
of all invertible nxn matrices; and
(7.2)(b) G = SO(2n+1),
consisting of (2n+1)x(2n+1) matrices preserving the (maxi-
mally isotropic) quadratic form

QxgrXg s 0%y ) = (xo)2 XXy F XXy hot Xy X
on (2n+l)-dimensional space. In the first case, we can
take T(e) to consist of all diagonal matrices and N(e)
to consist of strictly upper triangular matrices. In the
second, T(e) may be taken to be diagonal matrices of the
form

d(1.z,.(2) oz (2) 7))

we are using the notational convention of (4.19). We omit
the description of N(e).

Just as for real groups, representations are associated
roughly to characters of Cartan subgroups. More precisely,
fix a maximal torus T of G, defined over Fq, and a char-
acter 6 of T(Fq). In [Deligne-Lusztig, 1976], a virtual
representation
(7.3) Rp(8)
of G(Fq) is defined. This construction is entirely analo-
gous to the various kinds of parabolic induction introduced

earlier for real groups. For example, if T = T(e), then

G(F.)
(7.4) R.(6) = IndB(e‘)‘(F (8-
q
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The representations RT(G) are irreducible for "most”
choices of 6; and every irreducible representation of G(Fq)
occurs in one of them. To describe all the irreducible
representations of G(Fq). it therefore suffices to decom-
pose all of the RT(G) into irreducible representations.
The most difficult case, and the one to which Lusztig even-

tually reduces the general case, is when 6 is trivial.

Definition 7.5. A unipotent representation of the finite

Chevalley group G(Fq) is one occurring in some RT(l).

Because the Frobenius automorphism acts trivially on
the rational characters of the split torus T(e) - that is
what split means — it must act by a G-inner automorphism on
the characters of any torus defined over Fq. That is, it
must act by some element of the Weyl group W for G. This
turns out to define a bijection between G(Fq)—conjugacy
classes of maximal tori defined over Fq and conjugacy
classes in W. Write T(w) for a torus in the class corre-
sponding to an element w of W; this notation is consis-
tent with the earlier choice of T(e). Put
(7.6) Rw = R'l‘(w)(l)'

By the preceding remarks, Rw depends only on the conjugacy

class of w.
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For w equal to the identity element e, (7.4) shows
that Re is equal to the representation of G(Fq) on the
space of functions on G(Fq)/B(e)(Fq). A fairly straight-
forward analysis of this space leads to the following clas-

sical result.

PROPOSITION 7.7. The irreducible representations of G(Fq)
occurring in Re are in a natural one-to-one correspondence

with the irreducible representations of the Weyl group of G.

The Weyl group arises because it parametrizes the double co-
sets of B(e)(Fq) in G(Fq). Write

(7.8)(2) X(o) € G(Fq)A

i’or the irreducible representation corresponding to a repre-
sentation o in ﬁ It is convenient to twist the most
obvious version of this parametrization by tensoring with
the sign representation of W. With this convention,
(7.8)(b) X(sgn) = trivial representation of G(Fq)

(7.8)(c) X(1)

We now have a family of virtual characters of G(Fq)

Steinberg representation of G(Fq).

parametrized by conjugacy classes in W, and a family of irre-
ducible representations parametrized by W. It is natural
to hope that these might be related by the character table

A

of W. Explicitly, define for o in W
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(7.9)(a) R = [W]™* ) tro(w)R.
wew

Notice that Ra is only a rational (as opposed to integral)
combination of irreducible characters. In case G 1is
GL(n), Ra is simply equal to X(o). In general, the sit-
uation is more complicated; X(o) occurs in Ra’ but other
representations do as well. The Rcr are have far fewer
irreducible constituents than the Rw’ but they are not irre-

ducible or disjoint. Nevetheless, we always have

(7.9)(b) R

Steinberg representation of G(Fq)

R trivial representation of G(F ).
sgn q

Definition 7.10. Let LR-equivalence be the equivalence
relation on W generated by the requirement that
O~MR T if R and R_ share an irreducible constituent.
o T
An equivalence class is called a double cell.
A unipotent representation X of G(Fq) (Definition
7.5) is said to be attached to the double cell € if X

occurs in Ra’ for some representation o of W belonging

to €. Set
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9U(€) = set of irreducible representations of G(Fq)
attached to €
D {X(0)| o € ¢}.
(This last containment requires proof.)
>

It is shown in [Lusztig, 1984] that this definition of
double cells is equivalent to the one implicit in [Kazhdan-
Lusztig, 1979], which is made in terms of Hecke algebras and
the Kazhdan-Lusztig polynomials. This makes possible some -
other formulations of Definition 7.10. None is particularly
simple or geometric, however.

Two particular double cells are worthy of special men-
tion. First, the trivial representation is a double cell by
itself, and the only unipotent representation attached to it
is the Steinberg representation. Similarly, the sign repre-
sentation of W 1is a double cell, attached only to the
trivial representation of G.

Definition 7.10 partitions the unipotent representa-—
tions according to double cells in W. The most important
remaining step is to understand the set of double cells; but
we intend to postpone that question and consider instead the

fine structure of the sets (4).
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Definition 7.11 (cf. [Lusztig, 1984], section 4.3). Suppose
A is a finite group. Consider the set of all pairs (x,%€),
with x in A and € an irreducible representation of the
centralizer ZA(x) of x in A. The group A acts on the
set of such pairs, as follows. If g is in A, then compos-
ing € with conjugation by g defines a representation =
of

8(Z,(x))g™" = Z,(exe™").
Define M(A) to be the set of A orbits of pairs (x,w)
as above. Notice that #(A) contains both K (as the set
of pairs (e,w); the action of A on such pairs is trivial)
and the set of conjugacy classes in A (as the set of or-
bits of pairs of the form (x,1)). If A is abelian, then

H(A) = A x A.

THEOREM 7.12 ([Lusztig, 1984], Chapter 4). Let G be a
connected reductive algebraic group, defined and split over
the finite field Fq. Assume that G has connected center.
Write W for the Weyl group of G. Fix a double cell <€

of representations of W (Definition 7.10). Then one can
attach to € a finite group A(€) with the following pro-
perty: the set %U(€) of unipotent representations of G(Fq)
attached to € (Definition 7.10) is in one-to-one correspon-

dence with M(A(€)) (Definition 7.11).
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This is a very deep result, involving both powerful general
methods and extensive case-by-case calculations. The group
A(€@) 1is defined case by case, although Lusztig gives a gen-
eral definition a posteriori in Chapter 13 of [Lusztig,
1984].

In the correspondence given by Theorem 7.12, write
(7.13)(a)  X(x.7) (x € A(®), T € (ZA(‘e)(x))A
for the representation of G(Fq) corresponding to the equi-
valence class of the pair (x,m). We have already assigned
to each o in € a unique representation X(o) in (%)
(notation (7.8)). This provides an injective map
(7.13)(b) € > H(A(®)),
which we write as
(7.13)(c) o - m{o).
It turns out that every conjugacy class in A(€) (regarded
as an element of WM(A(®)); see Definition 7.11) is of the
form m{o). If x is in A(€), we can therefore define
(7.13)(d) o(x) € W.

Lusztig computes the multiplicity of each irreducible
representation in each Ra(x) ([Lusztig, 1984], Theorem

4.23). A special case is
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THEOREM 7.14. In the setting of Theorem 7.12, fix x €
A(€), and an irreducible representation w of A(€). Then
the irreducible representation X(e,7) of G(Fq) (Theorem
7.12) occurs in Ra(x) (cf. (7.13)(d) and (7.9)) with multi-
plicity

12y )0 | ex (n()).

The formula here suggests using Fourier inversion on the
finite group A(€). Specifically, write [x] for the conju-
gacy class of an element x of A(€), and [A(€)] for the
set of all conjugacy classes. Fix an irreducible representa-
tion & of A(€), and define

(7.15) Zs = z tr (8 (X))R,
[x]e[A(€)]

(notation (7.13)(d) and (7.9): 5 denotes the representa-

(x)

tion dual to 6). In terms of the Zﬁ, Theorem 7.14 may be

reformulated as

COROLLARY 7.16. In the setting of Theorem 7.12, fix an
irreducible representation 6 of A(€), and define a ra—
tional virtual character 25 (of G(Fq)) by (7.15). Then
for any irreducible representation w of A(®), the repre-

sentation X(e,mw) of G(Fq) occurs in Zs with multipli-
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city one if w 1is equivalent to 6, and multiplicity zero

otherwise.

Corollary 7.16 does not say that the Zb are irredu-
cible characters; they will in fact contain many unipotent
representations. (Except for a sign appearing only in E;
and Eg, the multiplicity of X(x,7r) in Z‘5 turns out to be

the multiplicity of & in the representation

Indggg(w)
of A(€).) The problem is that there are more unipotent re-
presentations than Rw’s; so one cannot hope to find formulas
for the irreducible representations in terms of the Rw’s.

These results on finite Chevalley groups suggest that
any representation of a real reductive group obtained (by a
combination of real and cohomological parabolic induction)
from a trivial character of a Cartan subgroup ought to be
regarded as unipotent. We will certainly require this; but
the resulting set of representations is much less rich than
the analogy with finite groups would suggest.

To explain this in more detail, let us consider the
case of complex groups. For the rest of this chapter, we
will therefore fix
(7.17)(a) G = a complex connected reductive

algebraic group
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In addition to the usual structure we have introduced for
general reductive groups (such as K, 0, and so on), we
choose
(7.17)(b) B = TAN a Langlands decomposition

of a Borel subgroup.
It follows automatically that T is a maximal torus in K.
Write
(7.17)(c) H = TA.
Then H 1is a representative of the unique conjugacy class
of Cartan subgroups of G. One constructs representations
of G from characters of H by induction from B
(Definition 4.1). Finally, set
(7.17)(d) ¥ = W(G,H),
the Weyl group of H in G (cf. Definition 5.1).

Because of the presence of the modular function 6 in
the definition of induction, there are two natural candi-
dates for the "right" generalization to complex groups of
the representation Re (cf. (7.6)) for a finite Chevalley
group. The first is
(7.18)(a) 1(0) = IndS(1).

This is a unitary representation of G, belonging to the
minimal principal series (Example 3.20). Some of the anal-

ysis leading to Proposition 7.7 may be applied to I(O).
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This was begun in [Bruhat, 1956]. One finds a family of
intertwining operators

(7.18)(b) A(w): I(0) » I(0),

parametrized by the Weyl group W. (Up to a normalizing
constant, A(w) is just the operator A(w:0) of Theorem
4.11.) It can be shown that the map sending w to A(w)
is a representation of W, and that every intertwining
operator for I(0) is a linear combination of the various
A(w). (Bruhat’s original results were not this complete,
but they were of this nature.) It follows easily that the
irreducible constituents of I(0) are parametrized by cer-
tain representations of W: those that appear in the repre-
sentation (7.18)(b) of W.

So far the analogy with Proposition 7.6 appears per-—
fect. Unfortunately, it turns out that the operators A(w)
are all the identity ([Kostant, 1969]). (This is by no
means a trivial fact; the definition of A(w), which was
omitted, is quite subtle.) Therefore I(0) is irreducible;
the beautiful theory for finite Chevalley groups that begins
with Proposition 7.6 has no counterpart here. We can call
I(0) unipotent; but (since I(0) is not the trivial repre-
sentation of G unless G is abelian) condition (I.2)(iii)

(in the preliminary requirements for unipotent representa-—
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tions formulated in the Interlude) will not allow it to be
the only unipotent representation.

The second possible analogue of Re is the space of
functions on G/B. By Definition 4.1, this is
(7.19) I(-p) = Ind3(57%).
The difficulty with this representation is that it is not
naturally unitary (since G/B admits no G-invariant mea-
sure); and in fact I(-p) generally has some non-unitary
composition factors. On the other hand, I(-p) does con-
tain the trivial representation (on the subspace of constant
functions). It is therefore reasonable to try to decompose
I(-p) into irreducibles, looking for something like Propo-
sition 7.7. To explain the situation, we need a slightly
more detailed description of the characters of H.

Recall that H, as a Cartan subgroup of a complex
group, is itself complex; so its Lie algebra %, is also
complex. On the other hand, we are interested in the under-

lying real Lie algebra, and its complexification §.

LEMMA 7.20. In the setting (7.17), there is a decomposition
a) § = IyL + I;R; here I;L and IyR are each naturally
isomorphic to %o. In this decomposition, £ corresponds

to the skew diagonal, and a to the diagonal:

b) ¢ = {(X.X)| X € (%)},
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c) = {(X.X)] X € (5)"}.
These definitions provide identifications of t and e
with bo. Fix A and p in (%) . Then the weight

(\p) €y

exponentiates to H if and only if A-u exponentiates to
T. (Here we use the identification above to regard A-p as
an element of t*.)

Finally, the Weyl group W‘B of § in g (Definition
5.1) may be identified with a product of two copies of W,

acting separately on the two factors in (a) above:

d) w =WLxWR.

cC
The real Weyl group W(G,H) is the diagonal subgroup.

This is very easy. A more complete description of the var-
ious decompositions may be found in [Vogan, 19817, section

T.1.

Definition 7.21. In the setting (7.17), fix A and p in
(I;o)*. Assume that A-u exponentiates to T, so that we
get a character (D(y\ 1) of H (cf. Lemma 7.20). Define
G
I(A, =1I
(A.p) = Indg(C, )
(cf. (4.10)), a principal series representation of G. By

(4.2),

I g = (6, ).
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By Theorem 1.30, this restriction to K contains the represen-
tation Fk—u of extremal weight A-u exactly once. Write

J(A.p1)

for the unique irreducible subquotient of I(A,n) that con-

tains the representation Fk—u of K.
Write
(7.22)(a) 4o = A(go.%o)

for the set of roots of §y in go (regarded as complex
Lie algebras). In the identification of Lemma 7.20(a), the

roots of ) in g are

(7.22)(b) A = Al u AR
Write
(7.22)(c) At = (b u BBy

for the set of positive roots defined by n. Finally, write

*

(7.22)(4d) pc = (p.P) €%

for half the sum of the positive roots; here
*

(7.22)(e) P € (%o)

is half the sum of the roots for %, in go-
Using the notation of Definition 7.21 and (7.22), we
can write the representation I(-p) of (7.19) as
(7.23) I(-p) = I(-p.-p).
Recall that we are seeking a formula analogous to that of

7.9(a) for the trivial representation. Here it is.



FINITE GROUPS 179

PROPOSITION 7.24 (Zuckerman; see [Vogan, 1981], Proposition
2.2.10). Suppose G is a complex connected reductive alge-
braic group. In the notation of Definition 7.21, there is

an equality of virtual representations of G

C= z sgn(w) I(-p.-wp).
weW

The proof is largely formal; the result is essentially equi-
valent to the Weyl character formula (Theorem 1.40). It is
necessary only to understand some kind of character theory
for (g.K)-modules.

To understand this and subsequent formulas properly, we

need some further information about the representations

I(A,pn).

LEMMA 7.25 (Zhelobenko; see [Duflo, 1975]). In the setting
of Definition 7.21, two representations I(A,n) and
I(A',u') have the same irreducible composition factors -
that is, the same image in the Grothendieck group of finite
length (g.K)-modules - if and only if there isa w in W
such that

WA = A’ and wp =p'.
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Modulo these equivalences, the I(A,u) form a basis of the

Grothendieck group.

Example 7.26. Suppose G is SL(2,C). Then it turns out
that
I(-p.p) = J(-p.p)

is irreducible. By Lemma 7.20, the character from which it
is induced is

-p-p=-2p
on the compact part T of the Cartan subgroup; it is

-p+p=0
on the split part A. In particular, it is unitary; so
I(-p.p) 1is a unitary principal series representation. Its
restriction to K = SU(2) consists of every odd-dimensional
representation except th_e trivial one.

The representation I(-p,-p) (on functions on the
Riemann sphere G/B - see (7.23)) is induced from a charac-
ter trivial on T, but not trivial on A. Its restriction
to K consists of all odd-dimensional representations of
SU(2). Because the constant functions transform by the
trivial representation of K, Definition 7.21 gives

J(-p.-p) = C.

The quotient representation (on functions modulo constants)
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turns out to be irreducible and isomorphic to J(-p.p). In
the Grothendieck group, therefore,
I(-p.-p) = J(-p.-p) + J(-p.p).
Consequently
C = J(-p.-p) = I(-p.-p) - I(-p.p).

which is the formula of Proposition 7.24 in this case.

Proposition 6.7 and Lemma 7.25 may be combined to give

the following result.

PROPOSITION 7.27. In the setting of Definition 7.21, fix A
and p so that A exponentiates to T. Define
W(p) = {w € W| wp - p is a sum of roots}
Wu = stabilizer of u in W.
Regarded as an element of the Grothendieck group of finite
length Harish-Chandra modules, I(A,wu) depends only on the
double coset
WAqu.

Let X be any irreducible Harish-Chandra module for

G, on which Z(G) and %(g) (Definition 6.3) act as in

I(A,1). Then there is a unique expression

X = z a(w)I(A,wu),
w € WA\W(u)/Wu
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with a(w) an integer; this formula is to be interpreted in

the Grothendieck group.

This proposition allows us to regard the various
I(A,wn) as roughly analogous to the Rw of (7.6), and
Proposition 7.24 is an encouraging analogue of (7.9)(b).
The analogy with (7.9)(a) would suggest considering such
virtual representations as

Y 1(-p.-p).

This turns out to be a rather bad idea, however. In Example
7.26, it gives

2J(-p.p) + J(-p.-p).
which is not a simpler object than the individual principal
series representations. Part of the problem is that (in
contrast to Rw) I(A,wp) 1is not constant on conjugacy
classes. It is therefore less natural to average I(A,wu)
over characters of W(u).

A better analogue of the Steinberg representation is
I{0,0) (called I(O) in (7.18)). It has the character
formula
(7.28) 1(0,0) = [W|™* ) 1(0,w-0),
which is rather like the one in (7.9)(b). This suggests

that the unipotent representations of G might indeed
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correspond roughly to representations of W, but with dif-
ferent representations of W requiring different infinites—
imal characters. That turns out to be the case. It is not
yet convenient to state in detail what is true in this dir-

ection, but here is a weak version.

THEOREM 7.29 ([Barbasch-Vogan, 1985]. Suppose G is a
complex connected reductive algebraic group. To each of
certain double cells € in W (Definition 7.10), one can
associate a unique antidominant integral weight A = A(®)
in (I)o)* (notation 7.17). Assume that € is such a cell.

For o in %€, define

R = W™ ) tr(o(m)I(nme).
weW

a) The virtual representation Rcr is zero unless o
is of the form o(x), for some x in A(€) (notation
7.13). In this case we write Rx for Ra'

b) For each irreducible representation T of A(®),
there is an irreducible (g.,K)-module X(w). In the
Grothendieck group,

X(m =A@ ) tr(r(x)R,.
X€EA(®)
c) The formula in (b) may be inverted to give

R = ) e (m(x))X(m).
TEA(€)
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A complete statement (saying when A(€) exists and how to
construct it) will be given in Proposition 8.34. The cell
of the sign representation will be attached to the weight
-p, and that of the trivial representation to 0. This
theorem therefore provides a common generalization of the
irreducibility of X(0) (cf. (7.18)), and Proposition 7.24.

Theorem 7.29 should be compared with Corollary 7.16.
It is of the same general form, but substantially sharper.
What happens is that the set of representations under
consideration is much smaller in the complex case; so the
formula analogous to Theorem 7.14 (which is Theorem 7.29(c))
can be inverted.

Theorem 7.29 has at least three serious faults. First,
it gives no hint of how to realize the representation X(w).
Second, it treats only complex groups. Third, it does not
say whether X(w) is unitary. Barbasch has made enormous
progress on resolving the last of these problems (see Chap-

ter 8). The first two are nearly untouched.



Chapter 8
LANGLANDS® PRINCIPLE OF FUNCTORIALITY

AND UNIPOTENT REPRESENTATIONS

Langlands’ principle of functoriality is a philosophy
about when automorphic forms on two different reductive
groups ought to have something to do with each other. It is
more properly the object of a lifetime of devoted study than
of a few pages of generalities. I cannot hope to do justice
to its motivation, to what is known to be true about it, or
even to what is known to be false. (Lack of space is a suf-
ficient excuse on all counts, and my expertise need not be
considered.) But because we are looking only for guidance
in finding a good definition of unipotent representations,
we can afford to be careless about almost everything.

If F is a finite group, then the number of irreduci-
ble (complex) representations of F 1is equal to the number

of conjugacy classes in F. Only under special conditions

185
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can one expect to find a natural bijection between these two
sets, however. If F is finite abelian, then we could de-
fine its dual group to be

(8.1)(a) 9%  Hom(F.C¥).

This is almost by definition the same as the group f‘ of
characters of F, introduced in Lemma 1.2. We prefer to say
that there is a bijection

(8.1)(b) {elements of dF} > {characters of F}.

Here is another example of the same flavor, a little
closer to Langlands’ basic idea. Let T be a compact con-
nected abelian Lie group. We will summarize these assump-
tions by saying that T is a (compact) torus. Define
(8.2)(a) X (T) = 2wi-ker(exp),

a lattice in the real subspace ity of the complexified Lie
algebra t of T. If we identify the unit circle T with

2wiR/2wiZ, then

(8.2)(b) x*(lr) =Z.
An easy argument now provides a natural isomorphism
(8.2)(c) X (T) = Hom(T.T).

Because of this, we call X (T) the lattice of integral
one-parameter subgroups of T. Using the identification
(8.2)(c), we can recover T from X (T), by means of the

natural isomorphism

(8.2)(d) T 2 X (T) &, T;
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the map from right to left sends h ® z to h(z).
Put
(8:2)(e)  X(T) = (A€ £ MK (D)) C 7}
x HomZ()g‘(T),Z).
the dual lattice to X (T). This is the lattice A of
Lemma 1.2, which is equal to ACD in this case. By Lemma
1.2(b) or (c),

(8.2)(f) X'(T)

IR

Hom(T,T)

T.

IR

The duality between the lattices X (T) and X*(T)
suggests that we define the dual torus to T as
(8.3)(2) I = X*(1) 8, T.

Then there are natural isomorphisms
X, (‘1) = X(1)
(8.3)(b) K9y = x (1)
4y = 1.
A more pedestrian form of the first two isomorphisms is

(8.3)(c) dg o ¢*,

PROPOSITION 8.4. Let T be a compact torus, and dT the
dual torus. Then there is a natural bijection between the
characters of T (that is, homomorphisms from T to the

unit circle T) and integral one-parameter subgroups of dT

(that is, homomorphisms from T to dT)
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This is just a reformulation of (8.3)(b).
As an immediate consequence, we get a first hint at

Langlands’ functoriality principle.

COROLLARY 8.5. Suppose S and T are compact tori.
Assume that we are given a mapping

w: dS - d‘l'
between the dual tori. Then there is a natural map (called
transfer)

tr(w): § > 'i\'
takRing characters of S to characters of T. That is, the

set of characters of a torus is a covariant functor of the

dual torus.

For a character of S gives a map of T into dS, and thus
(by composition with ®) a map of T into dT This last
map corresponds to a character of T.

This result should not be taken too seriously as it
stands. The map & actually induces a map

d .

(8.6) w: T>S;
so a character of S induces one of T by composition with

d(.). This covariant dependence of the group of characters on
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the dual torus is therefore really just the contravariant

dependence on T.

Next, suppose K 1is a compact connected Lie group.
Fix a maximal torus T in K. Write R for the set
A(%,t) of roots of ¢ in ¥. By (1.8),
(8.7)(a) R C X (T).
Each root a gives rise to a subgroup of K 1locally iso-
morphic to SU(2) (the two by two unitary matrices of
determinant one); that is, to a map
(8.7)(b) v, Su(2) » G.
Define a map a¥ from T to T by
(8.7)(c) a’(z) = ¥ (d(z.z27")):
here d denotes the diagonal matrix with the indicated en-
tries. By (8.2)(c), we can regard a” as an element of
X, (T). and so as an element of {. If we identify £ and
t* using an invariant bilinear form as usual, then
(8.7)(d) a¥ & 2a/(a,a).
We call a“¥ the coroot corresponding to a. Put
(8.7)(e) RY = {a"| @ € R}

C X (T).

When more precision is necessary, we will write AY(¥,t)

instead of RY.
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The quadruple (X*(T),R.)&(T),R") is called a root
datum for K. By the conjugacy of maximal tori in K, the

root datum is unique up to isomorphism.

Definition 8.8 (Grothendieck-Demazure; see [Springer.
1979]). An abstract root datum is a quadruple (L,®,LV,97),
subject to the conditions (i) - (iv) below. First, L and
LY are assumed to be finitely generated free abelian

groups, with

IR

i) LY =2 Hom(L,Z).

The resulting pairing from LxLY into Z 1is written < , >.
Next, ¢ and ¢ are assumed to be finite subsets of L
and LY, respectively. They are assumed to be in one-to-one
correspondence, by
ii) a e .
Assume that
iii) for all a in &, <a,a™> = 2.
If a belongs to ¢, define an endomorphism S, of L by
sa(x) =x - <x,aa.
The endomorphism S~ of LY is defined similarly. Be-
cause of (iii), s, and s . are involutions. Assume that
iv) for all a in &, sa(di) C ¢, and sav(di") C ov.
A root datum is said to be reduced if it has the addi-

tional property
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v) if a € §, then 2a € &.
This turns out to imply the corresponding property for ¢v.
If ¥ =(L,5,LV,9Y) is a (reduced) root datum, then
the symmetry of the axioms implies that d\ll = (L ,9 ,L,9)

is as well; it is called the dual root datum to V.

Here is the Grothendieck-Demazure formulation of the

standard structure theory for compact connected Lie groups.

PROPOSITION 8.9. Suppose K 1is a compact connected Lie
group. Then the root datum ¥ of K (defined in (8.7)) is
an abstract reduced root datum. Suppose K' 1is another com-
pact connected Lie group, with root datum ¥'. Then K is
isomorphic to K' 1if and only if ¥ 1is isomorphic to V'.
Conversely, if V¥ is an abstract reduced root datum,
then there is a compact connected Lie group K with root

datum isomorphic to V.

Suppose K 1is a compact connected Lie group. A dual
group for K 1is by definition a compact connected Lie group
dK with root datum dual to that of K. To say what this
means more concretely, fix maximal tori T for K and T’

for dK First, there should be given a distinguished class

of isomorphisms
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(8.10)(2) g drsT
from the dual torus of T (cf. (8.3)) to T'. Any two of
these isomorphisms should differ by an element of the Weyl
group of T in K. Fix sucha §. It will induce isomor-
phisms
(8.10)(b) E: X(T) » X (T")
E: X (T') » X (T)

(because of (8.3)(b)). Then the remaining condition is
(8.10)(c) E(A(E.t))

(A% £))

The notion of dual group for a non-abelian compact Lie

Ne XD

AY(E.t).

group is considerably more subtle than the one for tori.
The dual group dK exists only because of an abstract exis-—
tence result (Proposition 8.9), and not because of a simple
construction like (8.3)(a). One consequence of this is that
duality is no longer a contravariant functor: a map between
compact groups does not always give rise to a map in the
other direction on dual groups.

Here are some examples of pairs (K,dK); we leave to
the reader the task of computing the root datum in each

case.
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(U(n).U(n))
(8.11) (SU(n).PSU(n))
(80(2n).S0(2n))

(SO(2n+1),Sp(n))

LEMMA 8.12. Suppose K 1is a compact connected Lie group,

and dK is a dual group. Fix maximal tori T and T' for
K and dK, respectively. Then the Weyl groups W(K.T) and
W(dK,T') (Definition 1.28) are isomorphic, by an isomorphism

unique up to inner automorphisms.

Proof. We can regard W(K,T) as acting on X*(T). A basic
fact about compact groups is that W(K,T) is generated by
the endomorphisms S, defined in Definition 8.8. Because
of the duality between X*(T) and X*(T). it makes sense to
talk about the transpose of sa , as an automorphism of
X*(T). An easy calculation from the definition gives

t

S =s_.

a a

It follows that W(K,T) is isomorphic to the group of auto-
morphisms of X*(T) generated by the S, by the map

wo Syt

On the other hand, the isomorphisms (8.10)(b) and (c) show
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that this latter group is isomorphic to W(dK,T'), by an iso-
morphism unique up to inner automorphism. n}

Any torus in dK is contained in a maximal torus. Com-
bining Proposition 8.4, Lemma 8.12, and Theorem 1.30, we

arrive at the following result.

PROPOSITION 8.13. Let K be a compact connected Lie group
and dK a dual group (cf. (8.10)). Then there is a natural

bi jection between the irreducible representations of K and

the dK—conju.gacy classes of homomorphisms from T to dK

COROLLARY 8.14. Suppose K and H are compact connected
Lie groups. Assume that we are given a mapping

o: 915 %
between the dual groups. Then there is a map from irredu-
cible representations of H to irreducible representations

of K.

We have not given the induced map in Corollary 8.14 a name,
because it is not a good transfer. The problem is that it
is based on Theorem 1.30: it essentially parametrizes repre-—
sentations by their highest weights. As we have seen

already in the Weyl character formula (Theorem 1.37), this
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is not a good parametrization for the purpose of harmonic
analysis. We could fix the problem here, but the effort
would be wasted; there are no interesting transfers of the
kind we want between compact groups. We therefore proceed
directly to the next level of (forgive me) complexity.
Suppose now that G 1is a connected complex reductive
algebraic group, and that K is a maximal compact subgroup.
We use the notation (7.17). Recall that H is a Cartan sub-

group of G.

THEOREM 8.15 (Zhelobenko; see [Duflo, 1975]). Suppose G
is a connected complex reductive algebraic group, H is a
Cartan subgroup, and W 1is the Weyl group of H in G.
Then there is a bijection

HW o G
from the set of W-conjugacy classes of characters of H,
onto the set of irreducible admissible representations of
G. It may be defined as follows. Choose H as in (7.17).
Fix a character of H, associated to a pair (A,n) of ele-
ments of (I)o)* (Lemma 7.20). Then the corresponding repre-—

sentation of G is J(A,u) (Definition 7.21).

This is a rather serious result. We will not discuss the

proof (but see Theorem 13.1).
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We have implicitly fixed already a maximal torus T in
K. Fix a dual group dy of K (cf. (8.10)), and a maximal
torus in dK We will use a choice of the isomorphism in
(8.10)(a) to identify this latter torus with dT, and write
(8.16)(a) dr ¢ %.
Choose a complexification dG of dK; this is just a com—

plex connected reductive group having dI( as a maximal
d

compact subgroup. We call G a dual group for G. Put
(8.16)(b) dH = centralizer of d'l' in dG,

a Cartan subgroup of dG. It is a complexification of dT,
and so a dual group of H, as the notation indicates. Lemma
8.12 allows us to fix an identification of the Weyl groups
for G and Y%:
(8.16) (<) w(e.H) = w(%.%).
Finally, (8.3)(c) gives
(8.16)(4) d = g*.

The examples in (8.11) can be translated immediately

into examples of pairs (G,dG). The most important of these

is the pair (GL(n,C),GL(n,C)).

LEMMA 8.17 (Langlands). Suppose T 1is a compact torus and
H its complexification. Write dT for the dual torus (cf.

(8.3)(a)) and dH for its complexification. Then there is
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a natural bijection from characters of H to homomorphisms

of Cx into d'l-l

This is elementary. (Langlands’ contribution was to notice
that the fact might be interesting, and to generalize it to

tori over any local field).

Definition 8.18. A continuous homomorphism ¢ of C* into
a reductive group is called quasi-admissible if ¢(Cx) con-

sists of semisimple elements.

Combining Lemma 8.17 with the conjugacy of Cartan sub-

groups gives the following reformulation of Theorem 8.15.

THEOREM 8.19. (The Langlands classification for complex
groups). Suppose G 1is a complex connected reductive
algebraic group, and dG is a dual group for G (cf.
(8.16)). Then there is a natural bijection between the
irreducible admissible representations of G and the dG—
conjugacy classes of quasi-admissible homomorphisms of c*

into 9¢ (Definition 8.18).
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This theorem gives rise at last to interesting cases of

"Langlands functoriality."

COROLLARY 8.20. Suppose G and G are connected complex
reductive algebraic groups. Assume that we are given a
holomorphic homomorphism

o: 955 %
between the dual groups (cf. (8.16)). Then there is a
natural map (called transfer)

tr(w): § > 6
from irreducible admissible representations of S to irre-

ducible admissible representations of G.

Langlands’ principle of functoriality asserts that the
essentially formal correspondences of Corollary 8.20 can
have analytic content. For example, if the representation
m of S appears in a space of square-integrable automor-
phic forms for S, then one might expect tr(w)(w) to
appear in such a space for G. It is a difficult matter to
find precise and correct statements of this form, and I do
not intend to try. The idea that we want to extract from
Langlands’ principle is that if 7 is a unitary representa-

tion of S, then tr(w)(w) is a good candidate for a uni-
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tary representation of G. (Any representation appearing in
a space of square-integrable automorphic forms is necessar-
ily unitary.)

To see that this is a reasonable idea, consider the spe-—
cial case when S 1is equal to the Cartan subgroup H of
G. The construction of dual groups in (8.16) provides an
inclusion
(8.21)(a) w: % - 9.
The corresponding transfer is defined as follows. An irredu-
cible admissible representation of H is a character, say
X. Extend x to the Borel subgroup HN, by making it tri-
vial on N. Form the induced representation I(x) (Defini-
tion 7.21). Let J(x) be the irreducible subquotient of
I(x) containing the representation of K of extremal
weight x|T (Definition 7.21). Then
(8.21)(b) tr(w)(x) = J(x),
as one sees by tracing through the definitions. If x is a
unitary character, then so is I(x) (Theorem 3.19); so
J(x) 1is unitary as well.

On the other hand, transfer does not always preserve
unitarity. For example, let G be GL(3,C). By the remark
after (8.16), the dual group dG is again GL(3,C). Let S

be PGL(2,C), so that US is SL(2.C). The adjoint repre-
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sentation of dS on its (three-dimensional) Lie algebra
gives a homomorphism
(8.22)(a) o % 5 9.
We want to compute the transfer on Stein complementary
series for SL(2,C). Write C(o) for the restriction to
SL(2) of the complementary series C,(k,t:o) defined in
Theorem 4.23 for GL(2): this is independent of the para-
meters k and t. This is a unitary representation for o
smaller than 1. Define

pgc = (p.pP)
as in (7.22)(d); we may use a superscript to specify the
group. A calculation shows that
(8.22) (b) C(o) = J(op°.0p>)
(8-22)(c) tr(0)(C(0)) = J(op°.00%).
It turns out that the representations of GL(3,C) appearing
on the right are unitary only for o less than or equal to
1/2. Transfer therefore fails to preserve unitarity.

The problem here is not with the functoriality princi-
ple, but with our abuse of it. The motivation to look for
preservation of unitarity came from the preservation of auto-
morphic forms. The Ramanujan-Petersson conjecture, however,
asserts that the representations C(o) do not appear on

nice spaces of square-integrable automorphic forms. Func-



LANGLANDS FUNCTORIALITY 201

toriality therefore should not encourage us to believe that

they will transfer to interesting representations.

OONJECTURE 8.23 (cf. [Arthur, 1983]). Suppose G and S
are complex connected reductive algebraic groups, and

o: %5 9
is a holomorphic homomorphism. Let X be a unitary charac-
ter of S. Then the representation tr(w)(x) (Corollary

8.20) is unitary.

Arthur makes a far more detailed analysis of the conjectural
role of these representations in the theory of automorphic
forms. We will not formulate here Langlands’ analogue of
Theorem 8.19 for real algebraic groups. Once that is done,
there is no difficulty in extending Corollary 8.20, and Con-
jecture 8.23; we refer to [Arthur, 1983] for more informa-
tion.

Before discussing how to compute the representations in
Arthur’s conjecture, we present the most persuasive evidence

of its validity now available.

THEOREM 8.24 (Barbasch). Conjecture 8.23 is true if G is

a (complex) classical group.
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This theorem produces many previously unknown unitary repre-—
sentations for almost all the classical groups except GL(n).
The proof is elegant in structure but very difficult to
carry out. The idea may well apply to the case of real
classical groups, but their character theory is not yet
sufficiently developed to attempt this.

We turn now to the problem of identifying the repre-

sentations in Conjecture 8.23.

Definition 8.25 (cf. [Barbasch-Vogan, 1985]). Suppose G
is a complex connected reductive algebraic group. A repre-
sentation m of G is called spherical special unipotent
if it is of the form tr(w)(C), for some ® as in Corollary
8.20. That is, we require w7 to be the transfer of the
trivial representation of some other group S.

d

Suppose S is PGL(2,C), so that S is SL(2,C).

Fix a holomorphic homomorphism

(8.26)(2) ¥: SL(2,C) » Y.
Define
1 0
(8.26)(b) H = d\p[ ]
v 0 -1

After replacing ¥ by a conjugate under dG, we can and do
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assume that H, is a dominant element of dI70. Under the

v
identification (8.16)(d), H‘# therefore corresponds to an
element of (I)o)*. Define
.26 A, =4,
(8.26)(c) , =,

regarded as an element of (I)o)*. An important example is
the case when G is itself equal to PGL(2,C), and ¢ is

the identity. Then (in the notation of (7.22) or (8.22)),

PGL(2
(8.26)(d) A, =P (),
PROPOSITION 8.27. Use the notation just described.
a) The trivial representation € of G is J(p.p).
b) The transfer (via V) from PGL(2) to G of the
trivial representation is J()\\p,k\u):
t C) = ALN).
r(¥)(€) = J(A,.A)
This representation of G contains the trivial representa-

tion of K.

dG,

c) There is a homomorphism \[ap from SL(2,C) to
with the property that

A = p.
P
d) The transfer via \Ilp of the trivial representation

of PSL(2) to G is the trivial representation of G.



204 CHAPTER 8

Proof. By (7.19), and (7.23), the trivial representation is
a subrepresentation of I(-p,-p) (appearing as the space of
constant functions on G/B). By Lemma 7.25, the trivial
representation is therefore a composition factor of I(p,p).
Since the trivial representation of G contains the trivial
representation of K, which has highest weight

O=p-0p,
part (a) follows from Definition 7.21. Part (b) now follows
from (a) (applied to the group PGL(2,C)) and the definition
of transfer. Part (c) is due to Dynkin; a nice account is
included in [Kostant, 19597. In light of (a) (for G this

time), part (d) is a special case of (b). o.

COROLLARY 8.28. The spherical special unipotent representa-
tions of G are those of the form J(?\“‘,)\‘#) (Definition
7.21), with 7\"‘ constructed from a homomorphism of SL(2,C)

into dG as in (8.26). Each contains the trivial represen-

tation of K.

Corollary 8.28 says that the spherical special unipo-
tent representations may be obtained from a far less general
kind of functoriality than Definition 8.25 would suggest.

The homomorphisms of SL(2) into a reductive group G were
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completely determined by Dynkin; there are only finitely
many possibilities, up to conjugation in G. (If G is a
classical group, the question amounts to determining the set
of representations of SL(2) of a given dimension that pre-
serve some kind of bilinear form.)

Next, we will see how to construct the rest of the

representations of Conjecture 8.23.

PROPOSITION 8.29. Suppose G is a complex connected reduc-
tive algebraic group and w7 1is a representation of G as
in Conjecture 8.23. Then there are
i) a parabolic subgroup P = 1IN of G;

ii) a spherical special unipotent representation T
of L; and

iii) a unitary character § of L,
with the property that the representation w 1is contained
in

Ind(T @ ).

The proof is easy, but we will omit it. There is in fact a
canonical choice for the conjugacy class (L,7,.§).

The induced representations in Proposition 8.29 can be
reducible. Since our goal is to find unitary representa-
tions, it is not reasonable to neglect the other constitu-

ents of Ind(t ® £€) (other than the one arising in Conjec-
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ture 8.23). This suggests that the result of the transfer
should be, not the single representation provided by the
formal correspondence of Corollary 8.20, but some finite
family of representations. Arthur arrived at the same con-
clusion on the basis of much more sophisticated ideas about
the functoriality principle (the notion of "stability").

Here is a version of his idea.

CONJECTURE 8.30. Suppose we are in the setting of Conjec-
ture 8.23. Define
i) Z(w) = centralizer in dG of w(dS).

(This is a reductive algebraic group, but it need not be
connected.) VWrite

ii) C(w) = Z(w)/Zo(w),
the group of connected components of Z(w). Then there are
a certain quotient A(w) of C(w), and a finite family
%(w,x) of irreducible unitary representations of G asso-
ciated to @ and the fixed unitary character x of S.
These have the following properties.

a) The representation tr(w)(x) belongs to %F(w.,x).

b) There is a surjection from ¥ onto the group of
characters of A(w); and tr(w)(x) maps to the trivial

character.



LANGLANDS FUNCTORIALITY 207

Arthur also requires that the surjection in (b) relate
nicely to the theory of endoscopic groups. Just as in the
case of Conjecture 8.23, there is a directly analogous for-—
mulation for real algebraic groups. The experts may notice
that Conjecture 8.30 is stated under much more general hypo-
theses than those of [Arthur, 1983], and that the conclusion
is weaker. (In his setting, Arthur asked for bijectivity in
(b) above.) It seems that Arthur’s formulation is too
strong. Nevertheless, it is precisely right in an important

special case.

THEOREM 8.31 ([Barbasch-Vogan, 1985]). Suppose G is a
connected reductive algebraic group, and

v: sL(2.c) » %
is a holomorphic map. Define C(y) as in Conjecture 8.30,
and let A(y) be Lusztig’s canonical quotient of C(y)
([Lusztig, 198k], 13.1, or [Barbasch-Vogan, 1985], 4.4).
Let w be any irreducible representation of the (finite)
group A(y). Then there is an irreducible (g,K)-module

X(y,m)

naturally attached to w. For w equal to the trivial

representation of A(Yy), we have

X(\[l,l) = tr(q’)(c) = J()\\I”)\\I‘).
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We have been a little imprecise in the matter of defining
A(y) here. In fact, one has to work inside the centralizer
of yY(-I), and not inside all of dG.

The requirements of Arthur’s conjecture related to endo-
scopy are satisfied by the correspondence described by
Theorem 8.31. What is missing from [Barbasch-Vogan, 1985]
is a proof that the representations X(y,7) are unitary.

Barbasch has since proved this for the classical groups;

this is essentially Theorem 8.24.

Definition 8.32 ([Barbasch-Vogan, 1985]). Suppose G is a
complex connected reductive algebraic group. A representa-
tion of G is called special unipotent if it is of the form
X(y.7) (cf. Theorem 8.31) for some ¥ mapping SL(2,C) to

d;.

We will conclude this chapter by explaining the rela-
tionship between Theorems 7.29 and 8.31. Fix a map ¢ and
other notation as in (8.26). Assume that
(8.33)(a) Y(-I) € center of dG.

Here I refers to the identity matrix in SL(2,C). This is
equivalent to
(8.33)(b) A, is an integral weight.

v
Put
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(8.33)(c) ={w €W wA, =2,}.

v
¥ v N 4
Let p v be the product of the positive roots orthogonal to

7\‘,‘, a polynomial function %o. If w belongs to W‘p, then

wep, = det(w)p‘p.
The translates of p " under W span a vector space (V ‘p)';
the representation (a\#)' of W on it is irreducible. Put
(8.33)(d) oy, = (a‘p)' ® sgn;

here sgn denotes the sign representation of W. Finally,

write

(8.33)(e) ‘e\#

for the double cell in W containing a\p (Definition
7.10).

PROPOSITION 8.34. In the setting above, the double cell <e\p

determines the weight 7\\,} up to conjugacy. The group A(y)
of Theorem 8.31 is canonically isomorphic to the group A(‘e‘p)
attached to the double cell (Theorem 7.12).

a) The Weyl group representation % is o(e) (nota-
tion (7.13)).

b) Suppose 7w 1is a character of A(y). The (g.K)-
module X(w) of Theorem 7.29 coincides with X(y,m)

(Theorem 8.31).
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This finally provides an (indirect) description of the
weight A of Theorem 7.29 and the set of double cells aris-
ing there; the idea is to look at all possible ¢ (subject

to (8.33)(a)) and see what turns up.



Chapter 9
PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS

In this chapter, we will outline a little of the theory
of primitive ideals in the enveloping algebra U(g) of a
reductive Lie algebra. As usual, we wish to go only far
enough to see how that theory impinges on unitary representa-
tion theory. A more complete (and less utilitarian) outline

may be found in [Joseph, 1983].

Definition 9.1. Suppose R 1is a (possibly non-commutative)
ring with 1, and M 1is a left R-module. The annihilator
of M is the two-sided ideal

Ann M = {r € R| rm = 0, all m € M}.
M is called simple if it is not zero and it has no proper
submodules. An ideal in R is called (left) primitive if

it is the annihilator of a simple (left) module. Set

211
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Prim R = {primitive ideals in R},

the (left) primitive spectrum of R.

Primitive ideals are in many respects the best generaliza-
tion to non-commutative rings of maximal ideals in the commu-
tative case. The following proposition gives some hint of

this.

PROPOSITION 9.2. In the setting of Definition 9.1, any max-
imal ideal is primitive. If R 1is commutative, any primi-

tive ideal is maximal.

Proof. Let I be a maximal ideal. By Zorn’s lemma, there
is a maximal proper left ideal m containing I. It is
easy to check that the module R/m 1is simple and has anni-
hilator I.

Conversely, suppose R is commutative, M is simple,
and m is a non-zero element of M. Let m be the annihi-

lator of the element m. Then

Amn(Rem) = m
Rem =M
M= R/m.

(The first statement uses the commutativity of R; the

second uses the simplicity of M; and the third follows from
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the second.) Because of the first two statements, we must
show m is maximal. By the third, this is equivalent to

the simplicity of M. o.

Here is an assortment of useful technicalities.

Definition 9.3. Suppose R 1is a ring with 1 and I is an
ideal in R. We say that I 1is prime if it is proper and
the following condition holds: whenever J and J' are
ideals containing I, and JJ' is contained in I, then
either J or J' is equal to I. I is called completely
prime if it is proper and the following condition holds:
whenever r and s are elements of R, and rs belongs to
I, then either r or s belongs to I.

R is called prime (respectively completely prime, prim-
itive) if the zero ideal is prime (respectively completely
prime, primitive). R 1is called simple if the zero ideal is

maximal and proper.

PROPOSITION 9.4. A maximal ideal is primitive; a primitive

ideal is prime; and a completely prime ideal is prime. No

other implications hold among these properties in general.
If R 1is commutative, completely prime is equivalent

to prime, and primitive is equivalent to maximal.
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Proof. We know most of this from Proposition 9.2. Suppose
I is primitive; say I 1is the annihilator of the simple
module M. We want to show that I is prime. Suppose J
and J' contain I but neither is equal to I. Because
J' is strictly larger than the annihilator of M, J'M is
a non—-zero submodule of M. Since M 1is simple, it coin-
cides with M. Consequently J(J'M) is also non-zero.
Therefore JJ' does not annihilate M; so JJ' 1is not
contained in I, as we wished to show.

To see that maximal does not imply completely prime,
take R to be the ring of nxn matrices and I to be the
zero ideal. Since R 1is simple, I is maximal, primitive,
and prime. But if n is at least two, there are non-zero
nilpotent elements in R; so I cannot be completely prime.

The rest of the proposition will be left to the reader.
(The only non-trivial part is the construction of a non-

simple primitive ring.) o.

The example of the difference between prime and com—
pletely prime may be pushed to suggest a connection with

unitary representations.
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PROPOSITION 9.5. Suppose G 1is a noncompact connected
simple Lie group, and F 1is a finite-dimensional irredu-
cible representation of G.
a) F 1is unitary if and only if F has dimension 1.
b) Amnn(F) 1is a completely prime ideal if and only if

F has dimension 1.

Proof. For (a), the commutator subgroup of G is all of

G; so any one—-dimensional representation is trivial, and
therefore unitary. Conversely, suppose F is unitary. Then
G maps into the (compact) unitary group of F. Because G
is simple, it follows that either F 1is trivial or G is
compact. We are assuming G is not compact; so (a) fol-
lows.

For (b), the irreducibility of F guarantees that
every endomorphism of F comes from the enveloping algebra
of g:

U(g)/Ann F = End(F).
We saw in the proof of Proposition 9.4 that End(F) is com—

pletely prime only when F is one-dimensional. o.

Inspired by a variety of much deeper examples, Joseph

suggested that unitary representations should be closely con-
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nected with completely prime ideals, at least for complex

groups. Here is a result along those lines.

PROPOSITION 9.6 ([Vogan, 1986a], Proposition 7.12). Suppose
G 1is a complex connected reductive algebraic group, and X
is an irreducible unitary (g,K)-module. Then Ann(X) is a
completely prime primitive ideal in U(g). More precisely,
write

Ug) = U(g") @ U(g").
in accordance with (7.22). (Thus gL and gR are each iso-
morphic to go.) Then

Ann(X) = IF ® U(g®) + U(a") & I}

U(g)/Amn(X) & (U(a")/1H) @ (u(®)/1d).

The ideals IL and IR are each completely prime.

The proof is quite easy but requires a little notation. We

refer the reader to [Vogan, 1986a] for details.

Definition 9.7. Suppose G is a complex connected reduc-
tive algebraic group. Define gL and gR (both isomorphic
to the Lie algebra go of G) as in (7.22). If X is any
g-module, set

Lann(X) = U(g") N Ann(X)

C U(g") = U(go).
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the left annihilator of X. Similarly, we define the right

annihilator RAnn(X).

Unfortunately, the analogue of Proposition 9.6 is false
for real groups (for example if G is compact). It is true
for SL(n,R), however, as a consequence of the classifica-
tion of all unitary representations in that case. This sug-

gests a weak version that might be true in general.

CONJECTURE 9.8. Suppose G is a quasisplit real reductive
algebraic group and X is a unitary (g,K)-module of finite
length. Assume that X is stable in Langlands’ sense; that
is (roughly speaking), that the distribution character of X
is constant on the intersection with G of strongly regular
semisimple conjugacy classes for the complexification G(C).
Then U(g)/Ann(X) has no non-zero nilpotents. In particu-

lar, if Ann(X) is prime, then it is completely prime.

Langlands’ functoriality principle suggests that one might
be able to lift X to a representation of G(C) in some
sense. If this were possible, the conjecture might follow
from Proposition 9.6.

Proposition 9.6 produces completely prime primitive

ideals from unitary representations. Our main interest is
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in finding unitary representations, however; so we need to
know the extent to which Proposition 9.6 admits a converse.
The obvious converse (that every irreducible representation
whose annihilator is completely prime must be unitary) is
false for G equal to C*: the ideal must also be self-

adjoint in a certain sense. Here is a definition.

Definition 9.9. Suppose g, is a real Lie algebra with
complexification g. Write
u - uh

for the (conjugate linear) anti-automorphism of U(g) de-
fined by

X + inP = x + 1Y
for X and Y in gg. If I is an ideal in U(g), then
its image Ih is as well. We say that I 1is self-adjoint

if I is equal to Ih.

Once this additional condition is imposed, the converse is
true for commutative G; but it fails for SL(2,C), for
(easy) reasons connected with the complementary series.
Another of our interests is avoiding the problem of comple-
mentary series; so we would like a way to say that an ideal

has nothing to do with them. This requires a small digres-
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sion on the analogue of Mackey induction (Definition 3.8)

for ideals.

Definition 9.10 (cf. [Dixmier, 1974]). Suppose g is a
complex Lie algebra and % 1is a subalgebra. Let J be an
ideal in U(%); say J is the annihilator of a representa-
tion V of Y§. Let & be the modular character of g/%;
this is the one-dimensional representation of % defined by
6(X) = [tr adg(X)] - [¢tr adI’(X)].

Let V' be the tensor product of V with the character &,
and J' the annihilator of V'. Put

W= prog(V‘)
(Definition 6.12). The ideal induced by J is

I = Ann(W);

we also write it as prog(J).

This definition differs very slightly from that in [Dixmier,
1974]. If G is a connected group with Lie algebra g,
then

(9.11)  pro(J) = {u € U(g)| Ad(g)(u) € J'U(g). all g in G}.
Dixmier’'s definition would have instead U(g)J'. Ours is
more obviously compatible with group-theoretic induction

(cf. Proposition 6.13).
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The next result is well-known; the proof outlined uses

the ideas in [Conze, 1973].

LEMMA 9.12. In the setting of Definition 9.10, suppose J
is a completely prime ideal in U(%). Then the induced

ideal I 1is a completely prime ideal in U(g).

Sketch of proof. Fix a connected group G with Lie algebra
g. Proposition 6.13 says that W looks like a space of sec-
tions of a vector bundle (on G/H). We want U(g)/I to
look like a ring of differential operators on the bundle.
Write A for the ring U(%)/J', and B for U(g)/I. Because
I 1is a two-sided ideal, it is invariant under the action ad
of g, and so also under the action Ad of G. It follows
that Ad is defined on B. Recall the order of vanishing
filtration (Definition 6.12) of W. An endomorphism of W
is said to be of order (at most) k at the identity if it
maps Wk into Wg. Notice that the endomorphism given by
the action of an element of Uk(g) has order at most k at
the identity. An element b of B is said to be of order
(at most) k if Ad(g ')(b) has order at most k at the
identity, for all g in G. The filtration of W may be
described as

Wo={s¢€ W| up € Wy, all u € U ()}
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Using this and the ad-invariance of order, one can check
that an element of order k maps W into W . for all
m. It follows that if u has order k, and v has order
j, then uv has order k+j.

The ring B therefore has an increasing filtration
{Bk}, compatible with (but not necessarily equal to) the one
induced by {Uk(g)}. To prove that B is a completely
prime ring, it suffices to prove that gr(B) is. For that
we need a symbol calculus. Notice first that

W W Homc(sm(gm) V)
= s"((a/9)™) ® V'
we will call this space gr(W)m. If T is an endomorphism
of W of order k at the identity, then T induces an
element
0, (T)(e) € Hom(gr (W), .er(W),)
Sk(glly) ® Hom(V',V'),

IR

called the k™P-order symbol of T at the identity. An
element u of U(g) of order k at the identity can be
written

u= hrxr * 2 jéys”
with x_ in U (a). h in U(y), yg in U(g). and ig
in J'. (This is a consequence of the Poincaré-Birkhoff-
Witt theorem, but it requires a little thought.) Then it

follows from the definition that
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o (u)(e) = ) erlx )a,
€ sX(a/%) ® A.
Here a is the image of hr in A.
We now have a symbol map at the identity
0 () (e): erB > S(a/%) ® A.

If b belongs to Bk’ the symbol of b is defined to be
the function on G with values in S (g/h) ® A, defined by
o (B)(2) = oy (Ad(g™*) (B)) (e).

One can check that the symbol is a holomorphic function of
g. (For a fixed b, its values are in a finite-dimensional

subspace of Sk(g/b) ® A; so "holomorphic™” makes sense.)
The symbol vanishes if and only if b belongs to Bk+1'
Finally, one can show that if wu 1is in Bk’ and T has
order j at the identity, then Tu has order k+j at the
identity; and

%4 j(T2)(e) = [0 (T)(e)1lo;(u)(e)].
We have therefore embedded gr(B) in the ring of holomor-
phic functions on G with values in S(g/%) ® A. This ring

clearly has no zero divisors. o.

In the setting of Definition 9.7, assume that P = MN
is a parabolic subgroup of G, and that XM is a Harish-

Chandra module for M, with left annihilator IM' (We are
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writing M instead of L for the Levi factor to avoid con-
fusion with the L that means left.) Set
G
(9.13)(a) X = IndP(XM).
a Harish-Chandra module for G, and

(9.13)(b) I = LAnn(X).
Then
(9.13)(c) I= pro:z(IM)

(Definition 9.10), as is easy to check.

THEOREM 9.14 ([Joseph, 1980]). Let g be a complex semi-
simple Lie algebra. Then there are only finitely many com—
pletely prime primitive ideals in U(g) which are not
induced from any completely prime primitive ideal on a
proper parabolic subalgebra (in the sense of Definition

9.10).

This is an extremely difficult result. Its proof does not
easily provide a list of the missing completely prime prim-—
itive ideals; in fact much of Joseph’s subsequent work is
aimed at doing that.

Theorem 9.14 suggests (in conjunction with Proposition

9.6 and (9.13)(c)) the following conjecture.
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(False) CONJECTURE 9.15. Suppose G 1is a connected complex
semisimple Lie group, and X 1is an irreducible Harish-
Chandra module for G. Assume that Ann(X) is a self-
adjoint completely prime primitive ideal, not induced from a

proper parabolic subalgebra. Then X is unitary.

Before considering what is wrong with this conjecture,
let us consider what is right with it. The only obvious
completely prime ideal that fails to be induced is the aug-
mentation ideal goU(go). The only irreducible Harish-
Chandra module of which it is the annihilator is the trivial
representation, which is unitary. For SL(n,C), Moeglin has
proved that the augmentation ideal is the only non-induced
completely prime ideal; so Conjecture 9.15 is true in that
case.

The next simplest non-induced completely prime ideal is
in the enveloping algebra of sp(4,C) (type B, or C;). It
is the left annihilator I of the metaplectic representa-
tion (mentioned in the Interlude). In primitive ideal
theory, I 1is called the Joseph ideal, because of its con—
struction in [Joseph, 1976]. In fact, it can easily be

shown that any irreducible Harish-Chandra module with left
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and right annihilators equal to I 1is a component of the
metaplectic representation, and therefore unitary.
The theory of special unipotent representations, de-

scribed in section 8, also fits well with Conjecture 9.15.

PROPOSITION 9.16 ([Barbasch-Vogan, 1985]). In the setting
of Theorem 8.31, we have (for fixed V)

{X(¥,m)} = {Harish—Chandra modules X| Ann(X) = Ann X(y,1)}.

This is really the definition of special unipotent used in
[Barbasch-Vogan, 1985]. One should keep in mind that
X(y,1) = tr(y)(trivial)

(with the transfer tr defined by Corollary 8.20). Now
Theorem 8.24 becomes evidence for Conjecture 9.15 as well;
for most of the ideals involved here are not induced.

I do not know any counterexamples to Conjecture 9.15
for the classical groups. In type G,, however, there is a
problem. Joseph has shown that there are exactly two com—
pletely prime primitive ideals I, and I, in the envelop-
ing algebra, such that each quotient U(g)/Ii has Gelfand-
Kirillov dimension 8 (see [Joseph, 1981] and [Vogan, 1986a],
section 5). These ideals are not induced. There are unique

irreducible Harish-Chandra modules X, and X, such that
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LAnn(Xi) = RAnn(Xi) = Ii'

However, Duflo’s results in [Duflo, 1979] show that only one
of these two representations (say X;) is unitary. Accord-
ing to the Dixmier conjecture as formulated in [Vogan,
1986a], I, corresponds to a certain non-normal algebraic
variety, and I, to its normalization. This is a small and
subtle distinction, and it is hard to see how it can direct-
ly affect representation theory. (One might hope that the
ring R, = U(g)/I, is itself "non-normal” in some sense,
and that this causes the problem. Joseph’s work suggests
that a reasonable definition of normal for a primitive
quotient R of U(g) is that R should be the largest
Harish—-Chandra module in Fract(R). This condition is
satisfied for R,, however.)

Without understanding the G, example, we can still
use it to guide a reformulation of Conjecture 9.15. We
begin by recalling from [Vogan, 1986a] a part of the Dixmier

conjecture alluded to above.

CONJECTURE 9.17. Suppose G is a connected reductive alge-
braic group, with Lie algebra go. Fix an orbit Y° of G
on ga;, and write Y for its closure. Fix an irreducible
affine algebraic variety V, endowed with

1) an algebraic action of G, and



PRIMITIVE IDEALS 227

2) a finite, G-equivariant morphism w from V onto
Y.
Then there is canonically associated to V a completely
prime primitive algebra A = A(V), endowed with

i) an algebraic action (called Ad) of G by automor-
phisms, and

ii) a G-equivariant (for the adjoint action on U(g))
algebra homomorphism ¢ from U(g) to A, making A a
finitely generated U(g)-module.
We require in addition that the differential ad of Ad be

ad(X)a = Xa - aX

for all a in A(V), and that A(V) be isomorphic as a
G-module (but not as an algebra) to the ring of algebraic

functions on V.

The Dixmier conjecture says that this association should
provide a bijection from varieties satisfying (1) and (2),
onto completely prime primitive algebras satisfying (i) and
(ii).

The conditions in Conjecture 9.17 are not sufficient to
specify A(V) wuniquely in general; but for the non-induced
cases, they probably suffice. The problem of finding a can-

didate for A(V) can be reduced to those cases. Many inter-
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esting examples are known, but there are few good general
results.

To set the stage for an improvement on Conjecture 9.15,
we need some (conjectural) supplementary information about
the Dixmier correspondence. Algebraic geometry would sug-
gest that the simple algebras should correspond to closed
orbits. This is very far from true; it is not at all clear
how to guess when A(V) is simple. Here is a possible suf-

ficient condition, however.

CONJECTURE 9.18. In the setting of Conjecture 9.17, assume
that Y° is a nilpotent orbit and that the variety V is
normal. Then the algebra A(V) is simple; so the kernel
I(V) of the homomorphism ¢ (Conjecture 9.17(ii)) is a

completely prime maximal ideal in U(g).

"Nilpotent” will be defined carefully after (10.19) below.
We call the primitive ideals I(V) unipotent primitive
ideals.

Here at last is a possible partial converse for Propo-

sition 9.6.
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CONJECTURE 9.19. Suppose G is a connected reductive alge-—
braic group, Y° is a nilpotent orbit in (go)*, and Y is
the closure of Y°. Fix an irreducible, normal, affine alge—
braic variety V, endowed with a G action and a finite
equivariant morphism onto Y. Let I(V) be the (completely
prime) maximal ideal of Conjecture 9.18. Let X be any
irreducible Harish—Chandra module having left and right anni-

hilator equal to I(V). Then X is unitary.

"Definition” 9.20. Suppose G 1is a complex connected reduc-
tive algebraic group. An irreducible representation of G
is called unipotent if its left and right annihilators are

both equal to one of the ideals I(V) in Conjecture 9.19.

The quotation marks are there because I(V) has not
really been defined; so unipotent is not defined either.
For classical G, there is an explicit candidate for I(V)
(defined on a case-by-case basis); so the definition is com-
plete. Since Barbasch has determined the unitary representa-—
tions of classical complex groups, one could in principal
check Conjecture 9.19 in that case. This has not been done.

Definition 9.20 is not sufficiently precise to decide
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whether special unipotent representations (Definition 8.32)
must be unipotent. Certainly this ought to be true.

We would like to understand the varieties V that
appear. In the setting of Conjecture 9.17, the fact that
coadjoint orbits are even-dimensional means that Y-Y° has
(complex) codimension two in Y. It follows that Y° and
Y have the same fundamental group w,;(Y). This group is
finite. By Zariski’s Main Theorem, the normal varieties
mapping finitely onto Y are in one-to-one correspondence
with the coverings of Y°, and hence with subgroups of

m7,(Y). All of this can be done equivariantly; and we get

LEMMA 9.21. Suppose G 1is a connected reductive algebraic
group, Y° is an orbit in (go)*, and Y is the closure of
Y°. Fix a point y in Y°, and put

H = stabilizer of y

y
Ho

identity component of Hy

7, (G.Y) = Hy/Ho.
Write I(Y) for the set of equivalence classes of irreduci-
ble, normal, affine algebraic varieties V endowed with the
structures (1) and (2) of Conjecture 9.17. Then IHI(Y) is
in bijection with the set of conjugacy classes of subgroups

of w.(G.Y), as follows. Fix such a covering V, and a pre-
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image v of y in V. VWrite HV for the stabilizer of v
in G. Then

Ho CH CH ;

v oy

so

lT1(G,V) = HV/HO
may be regarded as a subgroup of w,(G,Y). The bijection
sends the equivalence class of V to the conjugacy class of

7,(G,V).

Exomple 9.22. Suppose G is Spin(9,C) (the double cover
of G' = S0(9,C)). We may regard (go)* as the space of
9x9 complex skew-symmetric matrices. Let Y° be the
coadjoint orbit consisting of nilpotent matrices with Jordan
blocks of size 5, 3, and 1. Then one can check that
T, (G',Y) 2 (Z/2Z) x (Z/2Z)

m:(G.Y) & (Z/4Z) x (Z/2Z) (the dihedral group).
Write D for the dihedral group. Here is a description of
the ideals I(V) corresponding to various coverings of Y
(and hence to subgroups S of D). Each I(V) is a maxi-
mal ideal, and therefore (by an observation of Dixmier) is
determined by its intersection with the center of U(gg).
By Harish-Chandra’s theorem (Theorem 6.4), this intersection
is determined by an element A (or A(S)) in the dual

(I;o)* of a Cartan.subalgebra. There is a standard way to
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identify (I)o)* with C* (see [Humphreys, 1972]); so
finally I(V) is determined by an element of C*, still
written A.

To Y itself (that is, to the subgroup D), we attach
(44.%4.%4,0). This is one of the parameters )\\I‘ of (8.26); so
the (unique) corresponding unipotent representation is spe-
cial unipotent. It is unitarily induced from the trivial
representation on (the parabolic subgroup with Levi factor
locally isomorphic to) GL(1)xGL(2)xS0(3).

To one of the two (Z/2Z)? subgroups of D, we attach
(%4.%.%.%). This is again special unipotent; the two repre-
sentations attached are the two constituents of the repre-
sentation induced from the trivial representation on
GL(2)xGL(2).

To the second (Z/2Z)? subgroup, we attach (1,%,0,0).
This is not special unipotent. Since SO(5,C) is isomor-—
phic to Sp(4.C) modulo its center Z, the component of the
metaplectic representation trivial on Z gives a unitary
representation of SO(5). The unipotent representations
here are the two components of the representation induced
from the metaplectic representation on GL(1)xGL(1)xS0(5).

To one of the classes of non-normal Z/2Z subgroups,
we attach %(3.3,1,1). This is not special. The unipotent

representations are unitarily induced from two unipotent
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representations of GL(4), attached to the double cover of
the nilpotent orbit with Jordan blocks of sizes 2 and 2.

To the other class of non-normal Z/2Z subgroups, we
attach (1,%,%.%4). The two unipotent representations are
unitarily induced from GL(2)xSO(5).

To the trivial subgroup of D - that is, to the uni-
versal cover of Y - we attach (1,%4,%,0). There are five
unipotent representations with annihilator I(V): four
complementary series induced from various characters of
GL(1)xGL(2)*xS0(3), and one induced from a character of
GL(2)xGL(2). This latter representation is twice as large
as the first four. In light of Theorem 8.31, this suggests
that the five representations should be parametrized by the
irreducible representations of D.

It is not completely clear what the weights attached to
the two other subgroups of D ought to be. Possibly one
simply uses again the weight attached to all of D. This
would satisfy many of the formal requirements of Conjecture

9.17.

Several things emerge from this example. First, the
algebras A(V) of Conjecture 9.17 do not vary nicely with
V, for fixed Y. Second, the more obvious conjectures about

how to parametrize the unipotent representations attached to
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V seem to fail: the representations are related in some way
to the character theory of the fundamental groups of Y and
V, but not by a result as clean as Theorem 8.31. Finally,
the weight A attached to V seems to increase slightly in
size with V. This suggests that the weight attached to the
normalization of Y (the smallest covering under consider-
ation) should be the smallest infinitesimal character admit-
ting a primitive ideal attached to the orbit Y°. This
weight is explicitly computable; an incomplete result in
that direction may be found in Proposition 5.10 of

[Barbasch-Vogan, 1985].



Chapter 10

THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS

To understand the origins of the method of coadjoint
orbits, we must return for a moment to the general setting
of the introduction. Suppose G is a nilpotent Lie group.
Then G has a rich supply of normal subgroups. As ex-
plained before Theorem 0.5, this makes it possible to
describe the representation theory of G in terms of that
of smaller groups; eventually one comes down to the case of
abelian groups and ordinary characters (Lemma 1.2). All of
this was well understood in the 1950°’s, thanks to the work
of Mackey and others. Unfortunately, the answers provided
by this method were a little difficult to understand syste-
matically and interpret. The simplest non-abelian nilpotent
group is the three-dimensional Heisenberg group (mentioned
and defined in the introduction). It has a family of char-

acters parametrized by R?, and a family of infinite-
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dimensional representations parametrized by R\{0}. This is
certainly explicit, but it is only an answer; there is noth-
ing compelling, enlightening, or beautiful about it.

In the 1960’s, Kirillov and Kostant found a way of
thinking about representations which overcomes these prob-

lems. Here is its first great success.

THEOREM 10.1 ([Kirillov, 1962]). Suppose G 1is a connect-
ed, simply connected nilpotent Lie group. Write go for
the real Lie algebra of G, and gz: for its dual. Then the
irreducible unitary representations of G are in a nat-ural
one-to-one correspondence with the set of orbits of G on

%
So-

This correspondence has excellent properties with respect to
restriction of representations and harmonic analysis.

The proof of Theorem 10.1 (in contrast to its state-
ment) introduced no fundamentally new ideas; it is a calcu-
lation with the Mackey machine. Our interest lies in the
fact that the result is formulated in a way that makes sense
when the Mackey machine does not.

To say more, we need some notation. For the time
being, G can be an arbitrary Lie group. Of course the

2 2
action of G on gg is the coadjoint action Ad : if
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A 1is a linear functional on gg, then the linear functional
Ad*(g)O\) is defined by

(10.2) AT (8) (N (X) = A(Ad(g™)(X))-

(If Ad(g) is computed as a matrix in terms of some basis
of g@g, then the matrix for Ad*(g) in terms of the dual

%
basis of go is the inverse transpose.)

Example 10.3. Suppose G is the three-dimensional Heisenberg
group, regarded as real upper triangular three by three ma-

trices with ones on the diagonal. Put

1 X z
g(x.y.z2) =10 1 y
0O O 1

In terms of the basis (elz,e23.e13) of @p., the adjoint

action has matrix

1 0 O
Ad(g(x.y.z)) =10 1 O
x 1

The orbits of the adjoint action are therefore the lines

ae12 + be23 + IRe13

(for a and b fixed, not both zero); and the points

ce13.



238 CHAPTER 10

We get therefore a two—-parameter family of lines, and a one-

parameter family of points. The coadjoint action has matrix

1 0 -y
Ad*(g(x,y,z)) =0 1 x
o 0 1
Its orbits are the planes
{)\l )‘(313) = C},

for ¢ a fixed non-zero constant, and the points that take
the value O on e3- We therefore get planes parametrized

by R\{0}, and points parametrized by R>.

The example has two purposes: to show the geometric life
that Kirillov’s theorem gives to the parametrization of Eu;
and to emphasize that the adjoint and coadjoint actions look
quite different in orbit structure.

Suppose again that G is an ar'bitrary Lie group, and
that A belongs to g:,‘. Write G(A) and g(A)o for the
isotropy group of the coadjoint action at A, and its Lie
algebra. Then
(10.4)(2)  G(\) = {g € | AT (B)(N) = A
(10.4)(b)  a(N)o = {X € go| A([X.Y]) = 0, all Y € go}.

An immediate consequence of (10.4)(b) is that A defines a

Lie algebra homomorphism from g(A)g into R. Recall from
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Chapter 1 that we identify the Lie algebra of the circle

group with iR.

Definition 10.5. In the setting just described, we say that
A is integral if the homomorphism

iA: g@(A)o = Lie(T)
is the differential of a group homomorphism

m(A)o: G(A)o =» T;

that is, of a unitary character of G(A)q.

As Lemma 1.2 might suggest, the point of the integral-
ity assumption is to eliminate the hypothesis that G be
simply connected in Theorem 10.1. If G is nilpotent, the
kernel of the exponential map is a discrete subgroup of the

center of the Lie algebra. We get

COROLLARY 10.6 (to Theorem 10.1). Suppose G 1is a connect-
ed nilpotent Lie group. Then the irreducible representa—
tions of G are in natural one-to-one correspondence with

the integral orbits of G on g’:.

A fairly complete analogue of this result is available
for connected type I solvable Lie groups (see [Auslander-

Kostant, 1971]. Further generalizations necessarily involve
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a serious weakening of the conclusions: the complementary
series for SL(2,R) (Theorem 4.23) do not correspond to any
coadjoint orbits. (There are also problems for compact
groups. The most sophisticated version of the correspon-—
dence attaches the trivial representation to each of several
orbits if G is compact but not abelian.) One of the best
results available is that of Duflo (Theorem 0.5); the para-
metrization he gives uses coadjoint orbits and reduces
exactly to that of Kirillov if G is nilpotent. (If G is
reductive, Theorem 0.5 says only that E,u is in a natural
one—to—-one correspondence with E:u)

If we cannot hope to generalize Theorem 10.1 to reduc-
tive groups, we might at least hope for some inspiration.
For example, there ought to be a simple way to attach a
representation to an orbit. Kostant, Duflo, and others have
made great progress on this problem; but it is still nowhere
near a satisfactory resolution. Here is a very brief sketch
of some of their ideas.

Suppose again that G is a Lie group and A is an
orbit of G on gg,:. Write A for a typical point of A,
and use the notation of (10.4). We want to endow the
manifold A with a symplectic structure. This means that
we need a non—degenerate symplectic form @, on the tangent

space at each point Oy - The forms must vary smoothly with
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A. They will then define a 2-form ® on A, and the final
requirement for a symplectic structure is that

(10.7)(b) do = 0.

The tangent space to a homogeneous space is naturally isomor-

phic to a quotient of the Lie algebra:

(10.7)(e) T, (A) = go/8(N)o-
Define a bilinear form on go by
(10.7)(d) w)\(X,Y) = N([X.Y]).

This is obviously skew-symmetric. By (10.4)(b), its radical
is precisely g(A)o. Consegently, @, may be regarded as a
non-degenerate symplectic form on T)\(A). That (10.7)(b) is
satisfied follows from a short calculation. It is clear
from the naturality of the definition that the symplectic
structure ® is G-invariant.

One of the things that a coadjoint orbit is, therefore,
is a G-space with an invariant symplectic structure. To
attach a representation to such things, we should consider
how they might arise in connection with a familiar construc-
tion. One answer is that the cotangent bundles of a homo-
geneous space has an invariant symplectic structure . Here
is a slight generalization. Suppose that M is a manifold
and that ¢ is a complex line bundle on M. Recall that a
connection on ¢ is a map v that assigns to each vector

field X on M a first-order differential operator W

Xon
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sections of ¥. In addition to various linearity proper-
ties, v 1is required to satisfy
(10.8)(a) vx(fs) = (X<f)s + fvxs,
for f a smooth function and s a smooth section of <.
It follows that the difference of two connections is a map
from vector fields on M to zero-th order differential oper-
ators on ¥; that is,
(10.8)(b) Vg = v)’( = multiplication by gy
here the dependence of g on X is Cw-linear. This means
that g is a section of the complexified cotangent bundle
T (M)g.-

If ¢ 1is Hermitian, there is a sesquilinear pairing
<, > taking a pair of sections of ¢ to a function on M.
We can define the adjoint v* of a connection by the re-
quirement
val’s2> + <sl, ;sz> = X°<sl,s2

for a real vector field X. We say that v is real if it

(10.8)(c) < >
is equal to its adjoint. The difference of two real connec-
tions is a section of the real cotangent bundle.

Arguments like this lead to the following result.

PROPOSITION 10.9 (Urwin; see [Kostant, 1983]). Suppose ¢

is a Hermitian line bundle on an m-dimensional manifold M.
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Then there is an m-dimensional affine bundle € = €(¥)
over M with the following properties.

a) The vector bundle corresponding to € is the cotan-—
gent bundle.

b) The space of sections of € 1is the space of real
connections on <.

c) The total space of € carries a natural symplectic
structure.
Assume now that a group G actson M and ¢¥. Then G
acts on €, and there is a natural G-equivariant map

TR S s’;-

Assume that there is an open orbit V of G on €. Then
the restriction of pn to V is a covering map onto a
single coadjoint orbit A, respecting the symplectic struc—

tures.

(Recall that an affine space A for a vector space V is
just a copy of V with the origin forgotten. More formal-
ly, A 1is required to be a principal homogeneous space for
V - that is, a homogeneous space for which all isotropy

groups are trivial. Affine bundles for vector bundles can

now be defined in an obvious way.) »



244 CHAPTER 10

Definition 10.10. Suppose G is a Lie group and A is a
coadjoint orbit. A real polarization of A 1is a pair
(M,#) consisting of a homogeneous space and a homogeneous
Hermitian line bundle for G, such that some open orbit of
G on the connection bundle € 1is a covering of A. The
polarization is said to satisfy the Pukanszky condition if
G acts transitively on €.

If a real polarization exists, we say that A is real

polarizable.

Polarizations can be described intrinsically.

PROPOSITION 10.11. In the setting of Definition 10.10, fix
N in A. Then real polarizations correspond in a one-to-
one way to pairs (P,1rP), subject to the following
conditions:

a) P is a closed subgroup of G containing G(A)o
(cf. 10.4);

b) 1rP is a one-dimensional unitary character of P
with differential i7\|P; and

c) The dimension of G/P is half the dimension of A.

Notice that only integral orbits can have real polariza-

tions. When a real polarization exists, one can attach to
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A the representation induced (from P to G) by Tp-
Kirillov showed that all coadjoint orbits admit real polari-
zations in the (simply connected) nilpotent case. This is
not so if G 1is solvable. Auslander and Kostant showed

that one could get by with some complex analysis and the

following definition.

Definition 10.12. Suppose A is a coadjoint orbit for the
real Lie group G. Write g for the complexified Lie alge-
bra of G. We say that A is algebraically polarizable if
there is a complex subalgebra p of g such that

a) p contains g(A):;

b) A([p.p]) = O; that is, the restriction of A to »p
is a one-dimensional character;

c) the dimension of g/p is half the dimension of
a/a(N\); and

d) the sum of p and its complex conjugate is a sub-
algebra q of g.
We call p an algebraic polarization of A at A. It is
called purely complex if q is all of g.

Fix a polarization p. Set

Qo

subgroup with Lie algebra qq

Ho

subgroup with Lie algebra p N g¢:

the complexified Lie algebra of H is the intersection of
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p and its complex conjugate. Write Q and H for any
subgroups with identity components Qo and H,, such that
e) H normalizes p; and

f) Q contains H.

Here is an outline of how a polarization leads to a
representation. By Proposition 1.19, p defines a complex
structure on M = Q/H. If in addition iA is the differ-
ential of a character ™ of H, then this character de-
fines a homogeneous holomorphic line bundle ¢ on M. The
way to get a representation in this case is as follows.
First, form a representation 1rQ of Q on a space of LZ
holomorphic sections of ¥. Next, induce from Q to G.

The main difficulty (which can be avoided if G is solv-
able) is that ¢ may have no holomorphic sections. This is
essentially the problem discussed in Chapters 5 and 6 when
G 1is reductive. It is by no means completely resolved even
in that special case.

A little technical guidance is available from the con-—
structions discussed so far. In the case of a real polariza-
tion, we were to induce from the subgroup P. The defini-
tion of induction (Definition 3.8) involves twisting the
inducing representation by a square root of the modular func-

tion for G/P. The examples of Chapters 1, 5, and 6 show
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that it is reasonable to do that in the case of holomorphic
induction as well. In the setting of Definition 10.12, we
define the modular character of H by

(10.13)(a) Gp(h) = det(Ad(h))|g /o

This is a complex-valued character of H; it is real-valued
if the polarization is real, and it has absolute value one
if the polarization is purely complex. As in Definition
1.31, Bp gives rise to a double cover of H on which 6p
has a canonical square root:
(10.13)(b) (%)%‘ H -~

Finally, we arrive at

Definition 10.14. Suppose G is a Lie group, A is a coad-
joint orbit, and A is in A. A polarization of A at A
is a quadruple (p.Q.H,m ) with the following properties:

a) p, Q, and H are as in Definition 10.12; and

b) ™ is an irreducible unitary representation of H
(cf. 10.13), such that d1rH is a multiple of the restric-
tion of iA to Bg.

c) ™ takes the value -1 on the non-trivial element {
of the covering map in (10.13)(b) (cf. Definition 5.7).

We say that A 1is polarizable if a polarization at A

exists.
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To such a set of data, the orbit method can at least
attempt to associate a representation (along the lines
described after Definition 10.12).

When G is a reductive group, this point of view can
lend coherence to the rather oddly assorted constructions of
unitary representations presented in Chapters 3 and 6. It
can often suggest important technical improvements; the
introduction of metaplectic coverings happened in that way.
The ideas around Definition 10.14 provide no more new repre-

sentations, however.

PROPOSITION 10.15 ([Ozeki-Wakimoto, 1972]). Suppose go is
a real reductive Lie algebra and p 1is a polarization at A
in gz. Then p is a parabolic subalgebra of g, and p

has a Levi factor defined over R.

Because of this proposition, we should concentrate our
attention on non-polarizable orbits. There is no very good
systematic theory for attaching representations to non—
polarizable coadjoint orbits (but see [Torasso, 1983] or
[Guillemin-Sternberg, 1978] for some ad hoc successes).
What we seek is only guidance about what unipotent repre—
sentations ought to be, however; so the lack of an actual

construction does not make this approach useless.
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To begin, we need to know which orbits to look at. The
existence of a polarization at A in the sense of Defini-
tion 10.14 does not guarantee that the orbit is integral; it
says rather that iA exponentiates to a "metaplectic” char-
acter of the two-fold cover of G(A), defined by the square
root of 6p (cf. Definition 5.7). We ought therefore to
replace the condition of integrality (Definition 10.5) by
this one. Unfortunately, the new condition is phrased in
terms of a polarization. The next definition cures that

problem.

Definition 10.16 (see [Duflo, 1980] or [Duflo, 19827).
Suppose G 1is a Lie group, and A is a coadjoint orbit.
Fix a point A in A. Write VA for TA(A) and w for
the symplectic form on VR (cf. (10.7)). VWrite Sp(wx) for
the group of linear transformations of VR preserving @
(the symplectic group). The isotropy action then provides a
homomorphism

\F G > Sp(w).
The symplectic group has a distinguished two-fold covering
Mp(mx) (the metaplectic group). If VR is zero, it is
Z/2Z; otherwise, it may be characterized as the unique con-

nected two—-fold cover. Define G()\)~ to be the pullback of
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the covering Mp(mx) via T (Definition 1.31), the meta-
plectic cover of G(A):

1> 2Z/2Z » G(A)” > G(A) > 1.
Write ( for the non-trivial element of the kernel of the
covering map.

A representation w7 of G(7\)~ is called metaplectic
if w({) = -I. It is called admissible if it is metaplectic
and

dr(X) = (iA(X)) - I
for all X in g(A)o. The orbit A is called admissible
if there exists at least one admissible representation of

c(n)~.

PROPOSITION 10.17. Suppose G is a Lie group, and A is a
polarizable coadjoint orbit (Definition 10.14). Then A is
admissible. More precisely, the covering (10.13)(b) re-

stricts to the metaplectic covering of G(A) N H; so a polar-
ization at AN gives rise to an admissible representation of

G(\) NH'.

The proposition shows that the notion of admissible captures

the coverings we want.
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We turn now to the study of the structure of coadjoint
orbits in the reductive case. For the balance of this sec-
tion, we return to our usual hypothesis that G is a reduc-
tive Lie group. Fix an Ad(G)-invariant form < , > on gq
as described after (2.1). This induces an isomorphism
(10.18)(a) ki @6 » Go.
defined by the property that
(10.18)(b) <k(A).Y> = A(Y)
for all Y in go. We may write

X7\ = k(A).
The map «k 1is a linear isomorphism, intertwining the coad-
joint and adjoint actions:
(10.18)(c)  x(Ad (2)(N)) = Ad(g) (x(N))-

Recall (from [Humphreys, 1972], for example) that every
element X of ga¢ has a Jordan decomposition
(10.19) X = XS + Xn,
characterized by the properties that ad(Xs) is semisimple
(as an automorphism of gg); ad(Xn) is nilpotent; Xn
belongs to [g.g¢]; and [Xs,Xn] = 0. It follows that Xn
acts nilpotently in every finite-dimensional representation
and that Xs acts semisimply in every completely reducible

finite-dimensional representation. We say that X is semi-
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simple (respectively nilpotent) if X is equal to Xs
(respectively Xn).

We say that an element of g: is semisimple
(respectively nilpotent) if «k{(A) is. By (10.18), every
element of g:—: has a Jordan decomposition
(10.20) A= 7\S + )‘n'

Here are some of its properties.

PROPOSITION 10.21. Suppose G 1is a reductive group, and A
belongs to g:,‘. Write
A= 7\s + )\n

for the Jordan decomposition of A.

.a) The isotropy group G()\s) is reductive; in fact it
is a Levi subgroup of G (Definition 5.1).

b) The restriction of 7\n to g()\s)o is nilpotent.
Its isotropy group for the coadjoint action is

G()\s)ﬂO\n) = G(A).

c) The restriction of )\n to g(A)o 1is zero.

d) The G orbit of A is algebraically polarizable
(Definition 10.12) if and only if the G()\S) orbit of }\n

is algebraically polarizable.
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The first three parts of this proposition are routine, and
the last is a fairly easy consequence of them. Perhaps the
most serious fact one needs to know about the Jordan decom-
position in go is that if Y commutes with X, then Y

commutes with Xs.

COROLLARY 10.22. Suppose G 1is reductive and A 1is a nil-
potent element (cf. (10.20) in gﬁ. Then the orbit A of
A is integral (Definition 10.5). It is admissible
(Definition 10.16) if and only if the metaplectic double

cover of G()\s)o is disconnected.

Proof. By Proposition 10.21(c), A 1is trivial on g(A)o-
The trivial character of G(A)o therefore satisfies the
requirement in Definition 10.5. For admissibility, we need
a representation T of G(7\)~ with certain properties. It
is equivalent to find one 7y on G()\); with these pro-

perties. (If we have wy, then

IndG()\):('tro)
G(A)o

works for w; and if we have w, then its restriction has
the right properties for mg.)
Because A 1is trivial on g(A)o., we must be trivial

on the identity component of G()\);. This is compatible
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with the requirement that wo({) be -1 exactly when the

group is disconnected. o.

This corollary provides additional evidence that admis-
sibility is a more appropriate condition than integrality.
It is fairly well known that certain nilpotent coadjoint
orbits ought not to be associated to any unitary represen-—
‘tation. An example is the minimal orbit for the symplectic
group Sp(2n,R) (with n at least 2). It is associated to
the metaplectic representation of the metaplectic double
cover Mp(2n,R) but not to any representation of the sym—
plectic group itself. The reason offered by the orbit
method is that the orbit is not admissible (except for the
covering group).

On the other hand, admissibility alone is still not a
sufficient condition to guarantee the existence of a repre-
sentation attached to the orbit. To see this, take G to be
PSL(2,.R), and A to be a non-zero nilpotent orbit (cf.
Example 11.3 below). One can check that A is admissible,
and even polarizable. (The polarization fails to satisfy
the Pukanszky condition, however). There is no representa-
tion of PSL(2,R) attached to A — the best candidate is a
limit of discrete series representation for SL(2,R), and

this fails to pass to the quotient PSL(2,R).
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The nature of the relationship we want between the

orbit method and unipotent representations is this.

"Definition” 10.23. Suppose G is a reductive Lie group.
An irreducible representation of G is called unipotent if
it is a constituent of a representation attached to an admis-

sible nilpotent coadjoint orbit.

This should be compared to Definition 9.19. The quotation
marks are needed because we do not know how to define the
representation attached to an orbit.

A natural guess is that the set of representations
attached to the orbit of A should be parametrized by the
irreducible admissible representations of G(7\)~ (Defini-
tion 10.16). Theorem 1.37 can be interpreted as evidence of
this, along with its generalization Theorem 5.12. There are
two kinds of problems with the existence of such a parame-
trization. First, there are the considerations of Chapter 9
for complex groups; these should certainly be compatible
with the orbit method. Example 9.22 seeks to attach at
least ten different representations to a single orbit; there

are only five irreducible admissible representations of

G(A)".
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There is a much more serious problem, however. Suppose
M = G/P is a homogenous space and ¢ 1is a Hermitian line

bundle on M corresponding to a unitary character w;, of

P
P. Assume that the representation

G
(10.24)(a) T = Indp(wp)

is irreducible. Define the bundle € of real connections
on ¥ and the map p as in Proposition 10.9. Then the

orbit correspondence ought to associate

c to the image of

,J,Z

(10.24)(b) o © n(e).

This image is easily computed from the proof of Proposition
10.9 (which we omitted). The result is

(10.24)(c) n(e) = {Ad(g)-r| 7\|‘D = dmp}.

As an example, take G to be SL(2,R), and P the sub-
group of upper triangular matrices. Choose e to be the
trivial character of P. Then T is the spherical princi-
pal series representation of SL(2,R) with continuous para-
meter zero; it is therefore irreducible. The Lie algebra
8o, and so also g::, may be identified with two-by-two
matrices of trace zero. Those restricting to zero on p
are the strictly lower triangular ones (with zeros on the
diagonal). Consequently, p(€) consists of all the conju-
gates of such matrices; and this is the cone of all

nilpotent
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elements in go. That cone is the union of three nilpotent
orbits, of which two are relatively open.

The conclusion is that representations should corre-
spond not to single nilpotent coadjoint orbits, but to cer-
tain closed unions of several orbits. The problem, there-
fore, is to decide how several nilpotent orbits should be
put together to produce something corresponding to a repre-
sentation. It is easy to imagine that what is involved are
the closure relations among the orbits and the singularities
of orbit closures. This is a disturbing state of affairs:
the orbit closures are only real analytic sets, and one
would prefer not to have to say anything clever about their
singularities.

There is a way out of this, however. The real nilpo-
tent coadjoint orbits turn out to be in one-to-one corre-
spondence with certain complex algebraic homogeneous spaces;
so we can study the problem in the comforting presence of

algebraic geometry. This we will do in the next chapter.
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K-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS

Since the orbit method does not yet provide a construc-
tion of representations attached to nilpotent orbits, we
need a less direct way to guess what those representations
ought to be. Our main approach will be through the restric-
tion of the representation to the maximal compact subgroup
K: we will try to read off from the orbit what this restric-
tion ought to be.

Fix a reductive group G (Definition 0.6), and choose K
and 6 as at the beginning of Chapter 2. (We will eventual-
ly need G to be in Harish-Chandra’s class, but this assump-
tion can be omitted at the beginning.) Put
(11.1)(a) K(D = complexification of K;
this is a complex reductive algebraic group (possibly discon-
nected) which acts algebraically on any locally finite repre-

sentation of K. In particular,



(11.1)(b) KtD acts algebraically on any (g.K)-module.
Of course K(D need not be comnected. Fix a complex con-
nected reductive algebraic group GC with Lie algebra g.
This group need not contain G, and the notation is there-
fore misleading; but we will make very little use of it in
any case. Put
(11.1)(c) so = -1 eigenspace of 0 in gg;
dropping the zero will denote complexification as usual. We
often identify s with g/%. For example, this allows us
to regard linear functionals on s as functionals on g
vanishing on ¥, and gives
(11.1)(d) Sfcqg.

Define
(11.2)(a) 'N(D = cone of nilpotent elements in g*
(defined before (10.20)). The group GC acts on .NC; its
orbits there were considered at the end of Chapter 9. Put
(11.2)(b) g = Hg 0 an.
the cone of nilpotent elements in g::. The group G acts
on .N]R; its orbits are the ones in Definition 10.23.
Finally, put
(11.2)(c) .Ne = ‘NtD ns,

%
the cone of nilpotent elements in s . The group K‘D acts

on .Ne; its orbits are going to be the objects of our atten-
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tion now. The advantage of .Ne over '”IR is that the for-
mer is an algebraic variety, and the action of the group KC

is algebraic.

Example 11.3. Define G' to be SL(2,R). The Lie algebra
gs of G' consists of two by two real matrices of trace
zero; its complexification consists of complex matrices of

trace zero. We can choose

(g =% (g€ 6)

(6M)X = -%x (X € q)
K' = S0(2)
(x* )¢ = SO0(2.€)
1 —
GtD = SL(2,C)
s' = symmetric matrices in g

A two by two matrix of trace zero is nilpotent if and

only if it has determinant zero. Consequently

a b 9
Né: Ia +bc =0
C -a

Here a, b, and c are complex. The group G(D has exactly

two orbits on Né: the point zero, and everything else. As

a representative of the non-zero orbit, we can choose
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0 1]
X& =
0 o
The real nilpotent cone looks just like Né, except
that the entries a, b, and ¢ must now be real numbers.
The equation a® + bc = O has no non-zero solutions with b
equal to c; so if we set
[Nﬁ]+ = real matrices as above with b > c,
and define [Nﬁ]_ similarly, then
+ -—
Mg = [N U {0} U [¥:] .
Because G' 1is connected, it must respect this decomposi-
tion; and it is easy to check that these are precisely the

three orbits of G. As representatives of the two large

orbits, we can choose

0 1
X& =

o o
1 !0 Oﬂ
Y. =
Rl o

. - 1 .
The nilpotent cone in s~ consists of trace zero com—

plex symmetric matrices of determinant zero. Set
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Define
19+t _ o X 1
[.Ne] =C XB’
and define [Né]-'- similarly. Then it is easy to check that
these two sets and zero are the orbits of Kui: on Né.
This example is fundamental, particularly in light of the

Jacobson-Morozov theorem and its descendants.

THEOREM 11.4 (Jacobson-Morozov; see [Kostant, 1959]). Sup-
pose G(B is a complex reductive group with Lie algebra g.
Then the finite set of nilpotent orbits of GtD on g 1is in
one-to-one correspondence with the set of G‘D-conjugacy
classes of Lie algebra homomorphisms

Yo gt - a;
here g' is sI(2,C), as in Example 11.3. The correspon-
dence sends the homomorphism \I’ﬂ: to the nilpotent element

“’u:(xni:) (defined in Example 11.3).

This result is true over R as well. We prefer to phrase
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that fact in a slightly roundabout way, to emphasize the

analogy with Theorem 11.6 below.

THEOREM 11.5 (Jacobson-Morozov; see [Kostant, 1959].) Sup-
pose G 1is a real reductive group with Lie algebra gq.
Use the notation of Example 11.3. Then the finite set of
nilpotent orbits of G on go 1is in one-to-one correspon—
dence with the set of G-conjugacy classes of Lie algebra
homomorphisms

Yoi 8" > 8
that respect the complex conjugations o' and o on g’
and g@:

1 —

Yp(e*A) = o(¥p(A)).

The correspondence sends ‘l‘IR to ‘I’IR(XI;{)'

If X 1is a nilpotent element of g, then the real
dimension of G+*X 1is equal to the complex dimension of
GC’X.

The corresponding result for nilpotents in s is due

to Kostant and Rallis.

THEOREM 11.6 ([Kostant-Rallis, 1971]). Suppose G is a
real reductive Lie group; use the notation of (11.1),

(11.2), and Example 11.3. Then the finite set of nilpotent
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orbits of K'D on s 1is in one-to-one correspondence with
the set of Kc—conjuga.cy classes of Lie algebra homomor-
phisms
Yg: 8" > 8
intertwining the actions of 0' and 6:
¥9(68°A) = 8(¥g(4)).
The correspondence sends \I:e to \pe(Xé).

Fix a nilpotent element X in s. Then the complex
dimension of the Kﬂ: orbit KC°X is half the dimension of
the G(D orbit GC~X.

The next result provides the formal relationship we
want between 'NIR and 'NB’
THEOREM 11.7 (Sekiguchi). Suppose G is a reductive alge-
braic group; use the notation of (11.1), (11.2), and Example
(11.3).

Suppose first that \le is a homomorphism of g‘ into
a, respecting the complex conjugations. Then there is a G
conjugate \leB of ‘#IR that also intertwines the actions of
6' and 6. This conjugate is unique up to conjugation by
K (the 6-fixed elements of G).

On the other hand, suppose that \le is a homomorphism

of a' into g intertwining 6' and 6. Then there is a
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KC conjugate “'GIR of \pe that also respects the complex
conjugations. This conjugate is unique up to conjugation by

K (the elements of KID fixed by complex conjugation).

COROLLARY 11.8. Suppose G 1is a real reductive group; use
the notation of (11.1) and (11.2). Then there is a natural
bi jection between the orbits of G on 'NIR and the orbits
of K(D on .Ne. If AIR corresponds to Ae in this bi jec—-

tion, then

GCAR = GCAG'

It is not a trivial matter to write down the map of Corol-
lary 11.8 in either direction; one really has to pass
through the special sI1(2) homomorphisms. It seems very
likely that the bijection preserves the closure relation on
the orbits, but I do not know how to prove such an asser-

tion.

Definition 11.9 (cf. [Vogan, 1978]). In the setting (11.1),
suppose X 1is a finitely generated Harish—-Chandra module.
Recall from (11.1)(b) that KtE acts on X. A good filtra-
tion of X is a (possibly infinite) increasing filtration
(a) Xo CX; C...CX

of X, satisfying the conditions below. Write Un for the
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nth level of the standard filtration of U(g). By the
Poincaré-Birkhoff-Witt theorem, the associated graded ring
gr(U(g)) is naturally isomorphic to S(g). The conditions
are as follows:
(i) Xm is finite-dimensional and Kc—invaria.nt.
(ii) The union of all the Xm is all of X.
(iii) The filtrations of X and U(g) are compatible:
Unxm Cc Xn m

(iv) The associated graded S(g)-module gr(X) (which
makes sense by (iii)) is finitely generated.

Good filtrations certainly exist. To see this, choose
any finite-dimensional generating subspace S of X. By
Definition 1.26(b), S 1is contained in a finite-dimensional

Kc—invariant subspace X.. Set

0
(b) X =UX,.

This is easily seen to be a good filtration.

For any good filtration, the associated graded module
gr(X) is a finitely generated S(g)-module, equipped with a
compatible algebraic action of KC’ (Compatibility is de-
fined in analogy with Definition 1.26(c).) We will express
this by calling gr(X) an (S(g),Kc)-module. The module

gr(X) depends on the choice of good filtration, but only a

little; for example, its class in the Grothendieck group of



K-MULTIPLICITIES 267

finitely generated (S(g),KC) modules is well-defined.

Accordingly the support of gr(X)

Supp(gr(X)) C Spec S(g) = g~

depends only on X, and not on the filtration. (Recall that
the support of a module M over a commutative ring consists
of those prime ideals at which the localization of M is
not zero. For finitely generated modules over Noetherian
rings, this is the same as the associated variety of the
annihilator of M.) We write

(<) Ass(X) = Supp(gr(X)).

and call this the associated variety of X.

PROPOSITION 11.10 (see [Vogan, 1978]). Suppose X is a
finitely generated Harish-Chandra module. Then Ass(X)
(Definition 11.9) is a Kc-invariant closed cone in s*
(cf. (11.1)). If X has finite composition series, then
Ass(X) 1is contained in the nilpotent cone Ne (cf.

(11.2)).

A deep theorem of Gabber says that if X 1is irreducible,
then Ass(X) is equidimensional. (It need not be irredu-

cible.) We will make no use of this result.
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We have now attached to any Harish-Chandra module X
of finite length a closed union Ass(X) of nilpotent K(D
orbits on s. Because of the bijection of Corollary 11.8,
we also get a union of real nilpotent orbits. Here is how
this correspondence should be related to the method of coad-

joint orbits.

(False) "Conjecture” 11.11 (see [Barbasch-Vogan, 1980]).
Suppose AIR is a finite union of orbits in ga;. The
associated cone ASS(AIR) is the set of all limits of con-—
vergent sequences
(s) (s; €R", A €g5. 5, > 0).
It is a G-invariant cone contained in 'NIR’ and therefore a
finite union of nilpotent G orbits. If AIR is closed and
nilpotent, then
Ass(A'R) = Ap-

Write Ass(A!R)9 for the corresponding union of KtD

orbits on .Ne (Corollary 11.8). Suppose X is a unitary

(g.K)-module associated to Ap by the orbit method. Then

Ass(X) = Ass(AIR)e.

The reason this is false is that the holomorphic part of the

orbit method (in our case, the cohomological parabolic induc-
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tion functors) can attach the zero representation to a non-
empty orbit. That problem should not arise for nilpotent or-
bits; so one can drop the "false" part if AIR is contained
in NR’ The reason that for the quotation marks is that
there is no definition in general for the representation
"associated” to an orbit or collection of orbits. From now
on, we will interpret statements like this not as conjec-
tures, but as partial specifications for a future orbit
method.

In addition to Ass(X), we have the (S(g),Kc)—module
gr(X), supported on Ass(X). This is not quite so well de-
fined as its support, since it depends on the choice of good
filtration. The main observation is that this module charac-

terizes the restriction of our original X to K:

Observation 11.12. Suppose X 1is any (g,K)-module of

finite length. Then X 1is isomorphic as a representation

of K (or Kt) to the (S(g),Kt)—module gr(X).

This is a trivial consequence of the complete reducibility
of finite-dimensional representations of compact groups. In
conjunction with Conjecture 11.11, it leads to the following

constraint on the orbit method.
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Requirement 11.13. Suppose AIR is a union of G orbits on
NIR’ Write Ae for the corresponding union of KtD orbits
on .Ne. If X is a (g.K)-module associated to AIR by the
orbit method, then there must be an (S(g),K‘D)-module M,
such that

i) Supp(M) = Ae; and

ii) M 2 X as a representation of K.

So far this is a fairly weak requirement. We intend to shar-
pen it by sharpening the requirements on M.

To see how this ought to be done, recall that we al-
ready know that representations ought to correspond only to
admissible orbits. We will therefore investigate which
orbits on .Ne correspond to admissible orbits on X.,; then
try to find a kind of module that can be supported only on
these orbits.

So let 7\IR be an element of the G orbit A|R’ corre—
sponding to XIR in go (cf. 10.18). After conjugating by
an element of G, we can and do assume that there is a map
(11.14)(a) ¥ si(2) » a,
respecting both the Cartan involutions and the complex con-
jugations, such that
(11.14)(b) ¥Xp) = Xp
(cf. Example 11.3). Define
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(11.14)(c) Xg = ¢(xé)
(11.14)(d) 7\6 = corresponding element of el
Then 7\9 is a representative of the KtD orbit Ae corre—
sponding to AIR

To simplify the notation (at the small expense of con-
fusing the reader), we will write HlR for the isotropy
group called G(7\|R) in (10.4):
(11.15)(2)  Hy = {h € G| Ad™(2)(7p) = Ap)-
Similarly, write
(11.15)(b)  Hy = {h € K| Ad () (Ag) = A}
Each of these groups contains
(11.15)(c) H = {h € K| Ad(k)(¥) = ¥}:
it can be shown that H is a maximal compact subgroup of
each.

The complex group He acts algebraically on the alge-
braic (or, equivalently, holomorphic) cotangent space at 7\9
to the complex variety AB' The determinant of this action

is an algebraic character of HB’ which we call 59. Formal-

ly,

(11.16)(a)  8y(h) = det(Ad"(h) on (£/By)™).

Let

(11.16)(b) H; = two-fold cover of Hy attached to the

square root of 66.
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Definition 10.16 describes the two-fold metaplectic cover
Hy of Hp.
The following result will appear in the M.I.T. doctoral

dissertation of J. Schwartz.

PROPOSITION 11.17. With notation as above, the restrictions
to H of the coverings HE; and H; are naturally
isomorphic. Write H for this common restriction. Then
the following sets are in natural one-to-one correspondence:
i) admissible irreducible representations of HRT"
ii) admissible irreducible representations of H~;
iii) oadmissible irreducible representations of H;

In each case, admissible means trivial on the identity com-—

ponent and non-trivial on the kRernel of the covering map.

It is easy to describe the genuine representations of a
covering attached to the square root of a character. We can

therefore deduce

COROLLARY 11.18. In the setting (11.14)-(11.16), the set of
irreducible admissible representations of HIR is in one-to-

one correspondence with the set of irreducible admissible
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algebraic representations ¢ of He satisfying
d¢ = %d&e.
To understand the significance of this result, we need

an algebraic analogue of Proposition 3.2.

PROPOSITION 11.19. Suppose G is a complex algebraic group
and H is a closed subgroup. Write OG/H for the sheaf of
regular functions on the algebraic variety G/H. Then the
following three sets are in natural one-to-one correspon-
dence.

i) Coherent OG/H modules with an algebraic action
of G compatible with the action on G/H (briefly,

)

G/H,G)—modules) .

ii) Homogeneous algebraic vector bundles on G/H.

iii) Algebraic representations of H.
Suppose G/H 1is an affine variety, and write R(G/H) for
the ring of regular functions on G/H (the global sections
of OG/H)' Then these sets are also in one-to-one corre-
spondence with

iv) finitely generated (R(G/H),G)-modules (defined as

in Definition 1.26(c)).
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The proof is formally identical to that of Proposition 3.2.
The last part is the usual correspondence between modules

and sheaves for affine algebraic varieties.

COROLLARY 11.20. In the setting (11.14)-(11.16), write 9,

for the top exterior power of the cotangent bundle on Ae.
Then AIR is admissible if and only if there is a Kc-equi—
variant vector bundle ¥ on AG’ satisfying one of the
following equivalent conditions:

i) 7 ® v is isomorphic (as an equivariant vector
bundle) to a sum of copies of ﬂ)e, after both bundles have
been lifted to some (Kc-equivariant) finite cover of AB'

ii) There is an equivariant locally constant sheaf of
vector spaces % on Ae such that
1T v ‘.’De ® 3.

Here we interpret a locally constant sheaf as a vector

bundle with a flat connection.

The problems discussed around Definition 10.23 suggest
that we need to extend conditions like those in Corollary
11.20 to the closure of an orbit, or even to a closed union
of several orbits. We know that (coherent sheaves of) mod-
ules are a reasonable generalization of vector bundles to

this setting (cf. Requirement 11.13). It is less clear what
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ought to replace the top exterior power of the cotangent bun-
dle. On the basis of what happens in SL(2), Deligne has
suggested that the right object is the dualizing complex.
Suppose V is a (possibly reducible) algebraic variety.

Put

(11.21)(a) 0v = sheaf of regular functions on V;

when no confusion is possible, we call this 0. Then there
is a coherent sheaf of 0-modules

(11.21)(b) ﬂiv = dualizing sheaf.

Restricted to the top-dimensional part of the smooth locus
of V, va is isomorphic to the (sheaf of germs of sections
of) the top exterior power of the cotangent bundle. Even
more is true: there is a complex ®  of sheaves (or rather
an object in a derived category) of which ‘.’Dv is the top
degree cohomology. The suggestions below will be stated in
terms of 9 for simplicity; they can be reformulated using
w” without difficulty. Since the suggestions are so impre-
cise in any case, this refinement is of little importance.
Define

(11.21)(c) R(V) = ring of global sections of 0v.
If V is affine, we can as usual identify the sheaf 9
with the R(V)-module

(11.21)(d) D(V) = global sections of '.’Dv
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At this point I do not know how to proceed. Here is

one possibility.

Lack of Definition 11.22. Suppose V 1is an algebraic var-
iety; use the notation of 11.23. There should be a notion
of self-dual for a coherent O-module {. I do not know
exactly what it is, but it should probably satisfy the fol-
lowing constraints:

a) If X @0 M is isomorphic to a multiple of the dual-
izing sheaf %, then M 1is self-dual.

b) If M is self-dual, then there is a locally con-

stant sheaf ¥ of vector spaces on V, such that

IR

.A(@o.l( S’@ofb.

Here now is a strengthening of Requirement 11.13.

Requirement 11.23. Suppose AIR is a union of G orbits on
NIR' Write A9 for the corresponding union of KC orbits
on .Ne. If X is a (g.K)-module associated to AIR by the
orbit method, then the following conditions must be satis-—
fied:

a) AG is closed and equidimensional.
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b) There is a finitely generated (S(g),Kq:)-module M
satisfying
M = X as a representation of K
Ann M = ideal of 0e

M is self-dual (in a Kc—equivaria.nt way)

as a module on AB’

Because of the remark before Definition 11.22, this require-
ment should not be taken too seriously.
In the same spirit, here is a tentative outline of what

is wanted from the orbit method for nilpotent orbits.

Conjecture 11.2h. Suppose G is a reductive group in
Harish-Chandra’s class. Use the notation (11.1) and (11.2);
assume that G(D is chosen so that the adjoint representa-

tion of G factors through GtD' Fix

i) the closure A(D of a single G(D orbit on ‘N(D;

ii) an irreducible, normal, affine algebraic variety
V(D equipped with
1) an algebraic action of G(D’ and
2) a finite, G‘D—equivaria.nt morphism 7 from V(D

onto A(D;
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iii) a closed, Kc—invariant equidimensional subvar-
iety
V,Cri(A.Ns"
gCT™ ( cNs ).
of half the dimension of VC; and
iv) a self-dual (Definition 11.22) (R(Ve)’Kq:) mod-—
ule M.
Then there is (conjecturally) a unitary (g.K)-module
X = X(VG’M)'
such that
a) X 2 M as a representation of K.

More precisely, write A for the completely prime
primitive algebra (conjecturally) associated to VCD by
Conjecture 9.17. We should have
b) X is an (A,Kc)-module.

The algebra A should admit a conjugate linear anti-auto-
morphism
h
a=> a

extending the one on U(g) (Definition 9.9). Write

k = (kh)'1
for the complex conjugation on K(D with fixed point set K.
Then X should be endowed with a positive definite sesqui-

linear form < , > satisfying

c) av,w> = <v, ahw>
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for v and w in X, and a in A or Kl[:

One can easily impose additional conditions, saying for exam—
ple that some associated graded module gr(X) should be
isomorphic to M, or to some gr(M). Probably X should be
irreducible (as an (A,Kc)-module) whenever M is (in some
self-dual-module-theoretic sense). Almost certainly R(VC)
has a Poisson bracket structure; at any rate the largest
Gc—orbit in Vc, whose complement has codimension at least
two, is a symplectic manifold. Hypothesis (iii) of the con-
jecture makes V9 a Lagrangian subvariety, and this is

certainly a good thing.

"Definition” 11.25. Suppose G 1is a reductive group in
Harish—-Chandra’s class. A representation of G is called
unipotent if it is a sum of constituents of various represen-—

tations X(VB,M) as in Conjecture 11.24.

Notice that a necessary condition for X to be unipotent is
that the annihilator of X be a self-adjoint unipotent prim—
itive ideal (cf. Conjecture 9.19). Unfortunately, there are
non-unitary representations that satisfy this condition.

The non-spherical principal series for SL(2,R) having con-

tinous parameter ¥p is an example; its annihilator is the
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same as that of the metaplectic representation of SL(2,IR)~.
It is therefore not satisfactory to use Definition 9.20 for

real groups.

Example 11.26. Write © for the usual symplectic form on
|R2n. To describe it, write
B = {(x.y)] x.y € B
w((x,y).(z.w)) = &x,w> - <y,z>,
with < , > the usual inner product on R™. All of this
works over C as well; we have to use the symmetric (as
opposed to Hermitian) form < , >. Put
G = Sp(2n,R)
Gg = Sp(2n,€)
The Cartan involution 6 may be taken to be
6X = -X (X € g)
Then the maximal compact subgroup K of G 1is isomorphic
to the unitary group U(n), and K(D is GL(n,C).
Put
Vo = &,
with the standard action of GC' Define a map 7 from V(D
to @ (which is a space of linear transformations of (Dzn)
by
m(v)w = o(v,w)v.

~

This is equivariant and finite. The corresponding algebra
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A (Conjecture 9.17) is the Weyl algebra of polynomial coef-
ficient differential operators on c®. We can identify the
generators of A with a basis of ®2n by
X = (O,ei)

alc'ix:i > (eJ..O)
Write A(l) for the linear span of these generators, and
write 71 for this identification of A(l) with CZn The
defining relations for A (the canonical commutation rela-

tions) may now be written

[r.s] = o(n(r).n(s)) (r.s € Arqy)-

The group G(D therefore acts by automorphisms on A, by
ger = 1 L (gen(r)).
We want to define a Lie algebra homomorphism ¢ from
a@ into A. First, we give an isomorphism ¢ from Sz(tDzn)
(regarded as symmetric 2-tensors) onto g. This is
Y(ulv + vOu)w = w(u,w)v + o(v,w)u.
Next, we write p for the multiplication map from Sz(A(l))
into A. Finally, we set
o) = n¥ (X))  (Xeg).
It is easy to see that this respects the action of GC; we
leave to the reader the task of verifying that ¢ is a Lie
algebra homomorphism.

It is easy to verify that the set of elements of Vc

£ 3
mapping into s under 7 is
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{(x.+ix)| x € C"}.
The group K(D (which is GL(n,C)) acts on this set by act-
ing on x in the usual way. Set
Ve = {(x,ix)}
xc".

Because this is smooth, the dualizing module D is the
module of polynomial-coefficient top—degree holomorphic
differential forms on VG' If we write

dg = dx1 A see A dxn,
then Kc acts on D by

g-f(x)df = h(x)df,

with

h(x) = det(g)h(g™**x).
It is fairly easy to deduce that there are no self-dual
(R(Ve),KC)—modules. (If we forget the K(D action, the dual-
izing module is isomorphic to the free module M on one
generator; and it follows that M itself is self-dual. The
isomorphism cannot be made equivariant, however.)

Suppose now that G 1is replaced by its two—fold cover

G = Mp(2n,R). This replaces Kq: by the cover attached to
the square root of the determinant character. Now let M
be the free R(Ve)—module on one generator (. We can make
M into an (R(Ve),(Km)~)-module, by making KCT act by

g-f(x){ = h(x)d(,
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with
h(x) = det’(g)h(g ™ +x).

It is easy to see that M OR M is isomorphic to D. We
therefore have the data for Conjecture 11.24, and can look
for a (g,K~)—modu1e X. The Harish—-Chandra module of the
metaplectic representation fulfills the requirements (a)-—
(c); we will omit the verification of this fact. Explicit-
ly, X can be regarded as a space of functions on R™:

X = {p(x)e_<x'x>| p is a polynomial}.
X 1is irreducible as a module for the Weyl algebra A but
splits as a sum of two pieces (the even and odd functions)

as a Harish—Chandra module.



Chapter 12

ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS

Having consulted our various oracles, we propose in
this chapter to review the understanding we have achieved
about what constitutes a unipotent representation. There is
no claim that the definitions set forth here are completely
consistent with each other, or with what has gone before.
Chapters 7 through 11 ought to be regarded as support for
these definitions, however. All of them represent joint
work with Dan Barbasch.

We take G to be a reductive group in Harish-Chandra’s

class.

Definition 12.1. Suppose that X is an irreducible (g.K)-
module.
a) X 1is called special unipotent if its annihilator

in U(g) is a special unipotent primitive ideal.

284
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b) X is called distinguished unipotent if its annihi-
lator in U(g) 1is a distinguished unipotent primitive
ideal.

c) X is called unipotent if its annihilator in U(g)
is a unipotent primitive ideal, and if certain other (as yet
not specified) conditions are satisfied (cf. Definition
11.25).

d) X is called weakly unipotent if its annihilator in

U(g) is a weakly unipotent primitive ideal.

The conditions "special unipotent” and "distinguished unipo-
tent"” should each imply unipotent; and unipotent should
imply weakly unipotent. No other relation among the condi-
tions is true in general. We will define special, distin-
guished, and weakly unipotent primitive ideals; unipotent
primitive ideals are not yet defined (cf. Conjecture 9.19).
(With our definitions, special and distinguished unipotent
both imply weakly unipotent.)

To make the definitions, we need a little notation.
Fix a Cartan subalgebra % of g, and define
(12.2) 17; = R-span of the roots of § in g.
The invariant bilinear form < , > on @ is positive
definite on 17;.

For A in 17*, define
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(12.3) I(A) = largest proper ideal in U(g)
containing ker ’g')\
(Definition 6.5); I(A) is a well-defined maximal ideal in

U(g).

Definition 12.4k. A primitive ideal in U(g) is called
special unipotent if it is of the form I(A) (cf. (12.3)),
with A arising as follows. Let dg be a semisimple Lie
algebra having a Cartan subalgebra d‘f; isomorphic to Iy*.
such that the coroots of db in dg correspond to the
roots of % in g. Then we require that there be a homo-
morphism ¢ from sI(2) to dg, such that
Y(diag(¥%,-%)) belongs to dI;, and corresponds

to the element A of Iy*.

By the Jacobson-Morozov theorem, special unipotent primitive
ideals are precisely parametrized by nilpotent orbits in the
dual semisimple Lie algebra dg. If Q@ 1is such an orbit,
then we write

(12.5) (D)

for the corresponding weight.

Definition 12.6. A primitive ideal in U(g) is called dis-

tinguished unipotent if it is of the form I(A) (cf.
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12.3)), with A arising as follows. Fix a nilpotent orbit
A in g*. Call a weight p in I;* acceptable for A if
there is an ideal I in U(g) such that
1) I contains ker(fu) (Definition 6.5); and
2) the variety of the associated graded ideal gr(I)
is the closure of A.
What we require of A is
i) A 1is acceptable for A;
ii) A belongs to h; (cf. 12.2); and

iii) <A,A> is minimal subject to (i) and (ii).

A case-by-case calculation shows that A exists, is unique,
and satisfies

(12.7)(a) variety of gr(I(A)) = closure of A.

We may write

(12.7)(b) A= )\d(A).

Consequently the distinguished unipotent primitive ideals

2
are parametrized precisely by the nilpotent orbits in g .

Lack of Definition 12.8. A primitive ideal in U(g) is
called unipotent if it is of the form I(A) (cf. (12.3)),
with A arising as follows. Fix a nilpotent orbit A in
g*, and a (connected) covering A~ of A. Then

A=, (00)
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is associated to A in some still unspecified way (but cf.
Lemma 9.21 and Conjecture 9.18). If the covering is triv-

ial, then we require

A (M) = Aq(h).

We will also require that every special unipotent primitive
ideal be unipotent. More precisely, recall from the appen-
dix to [Barbasch-Vogan, 1985] that Spaltenstein has defined
a map

Q- dQ
from nilpotent orbits in dg to (special) nilpotent orbits
in g*. We require that
(12.9) NOERW(GUBE

d

for some covering (d9)~ of Q. (The covering will depend

on (2, and not just on dQ.)

Definition 12.10. A primitive ideal I in U(g) is called
weakly unipotent if the following two conditions are satis—
fied. Choose A in Iy* representing the infinitesimal
character of I (so that I contains the kernel of 'g')\).
The first condition is

i) A belongs to 17; (cf. (12.2)). Fix an irredu-
cible representation X of g with annihilator I. Consi-

der the set of weights p with the following property:
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there is a finite dimensional representation F of g such
that some non-zero vector in X ® F is annihilated by the
kernel of 'g'u (Definition 6.5). The second condition is

ii) for every such pu, <p,p> 2 A,N.

Informally, the condition says that the infinitesimal charac-
ter cannot be shortened by tensoring with a finite dimen-
sional representation. This condition has an obvious
similarity to the definition of distinguished. It also
plays a significant part in the construction of other repre-

sentations from unipotent ones (cf. Theorem 13.6).



Chapter 13

EXHAUSTION

In this chapter, we will offer a few hints about how
one can hope to prove that some list of irredcible unitary
representations is complete. The modern approach to this
problem begins with the Langlands classification. This is a
complete list of all irreducible (g.K)-modules, with expli-
citly described parameters; the representations themselves
are described in a slightly less explicit way. We stated
this theorem completely and carefully in the case of complex
G (Theorem 8.15). We will not do so for the general case,

but here is a part of the result.

THEOREM 13.1 ([Langlands, 1973]; see also [Borel-Wallach,
1980]). Suppose G 1is a reductive Lie group in Harish-
Chandra’s class, and 7 is an irreducible admissible repe-

sentation of G on a Banach space V. Then we can find

290
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i) a parabolic subgroup P = LN of G; and
ii) an irreducible admissible representation ~ of
L, with the following properties:

a) the restriction of <+ to the commutator sub-
group L' of L 1is a sum of discrete series representa-
tions of L' (Definition 5.10).

b) 7 is infinitesimally equivalent (Definition
2.14) to a subrepresentation of the induced representation

IndS(v ® €).

Much more is true, but this conveys the main idea. Theorem

8.15 suggests how much more detailed information is avail-

able.

Sketch of proof. Fix a non—-zero continuous linear map p
from V onto a finite-dimensional representation (5,E) of
K, intertwining the action of K. Let & be the vector
bundle on G/K corresponding to E (Proposition 3.2). We
want to define a map from v (Definition 2.3) to the space
Cw(G/K,é’) of smooth sections of §. Given v in V, de-
fine a function fw from G to E, by

£.(g) = p((g™")v).
(It is easy to show that fv is smooth for any v in V,

but this fact is not needed.) Then
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p(r(k™*)n(g™*)v)
5(k™)p(w(z™*)v)
5(k™*)f (g).

By Corollary 3.4, fv corresponds to a section Fv of &.

£, (gk)

The map
(13.2)(a) P: V° 5 C (G/K.&)
defined in this way clearly intertwines the actions of G.

Suppose z is in the center of U(g). Write Dz for
the corresponding right-invariant differential operator on
G. Corollary 3.4 shows how to lift Dz to a differential
operator (still called Dz) on sections of &. By Lemma 6.6
and Theorem 2.12, z acts by some scalar E)\(z) on V™.
By the intertwining property above, it follows that sections
F in the image of P satisfy the differential equations
(13.2)(b) (D, - E\()IF = 0 (z € Z(g)).

At this point some serious analysis on G is needed.
The idea is roughly that G/K can be compactified, by add-
ing pieces at infinity that look like (among other things)
various G/P’s, with P parabolic. The prototypical exam—
ple is SU(1,1) acting on the closed unit disk. The inter-
ior is G/K, and the boundary circle is G/P. One use the
differential equations (13.2)(b) to define boundary values
of the sections F. Typical boundary values are sections of

certain vector bundles on G/P; that is, they are vectors in
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induced representations. In this way one gets intertwining
operators from sections of & satisfying (13.2)(b), to in-
duced representations.

If these boundary value maps are non-zero, we are done.
If they are zero, the conclusion is that the sections of ¢&
under consideration tend to zero (in a well-controlled way)
at infinity. It follows that they are square-integrable,
and therefore (Definition 5.10) that w is a discrete
series representation. Then the theorem is still true, with

P equal to G. o.

This outline is really more motivation than sketch;
there is no explicit compactification of G/K in
[Langlands, 1973], for example.

Recall from Definition 4.6 the notion of Hermitian dual
of a representation w. If 7 is an irreducible admissible
representation with specified parameters in the Langlands
classification, then one can compute the parameters of ‘lrh
by a simple formal operation. In particular, one can deter-
mine easily from the Langlands parameters whether =7 admits
an invariant Hermitian form. Since we have not described
the Langlands parameters in detail, we cannot give the re-—
sult (see [Knapp-Zuckerman, 19777]; but here is a special

case.
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PROPOSITION 13.3 (see [Duflo, 1979]). Suppose G is a com-
plex connected reductive algebraic group, H 1is a Cartan
subgroup of G, and W is the Weyl group of H in G. Let
T be an irreducible admissible representation of G, corre-
sponding to the character x of H (Theorem 8.15). Then
'rrh corresponds to xh, the inverse of the complex conjugate
of x. In particular, w7 admits an invariant Hermitian

form if and only if there isa w in W such that

h
wX =X .

When w is 1 in this theorem, X is a unitary character,
and 7 1is a unitarily induced representation. When w is
-1, x 1is real-valued.

A great deal is known about when induced representa-
tions like those in Theorem 13.1 can be reducible (see [Speh-
Vogan, 1980], for example). This information, in conjunc-
tion with Theorem 13.1 and the formal analysis described

above, leads to the following result.

Definition 13.4. Suppose g 1is a complex reductive Lie
algebra with Cartan subalgebra %. We say that §7\ (Defi-
nition 6.5) is a real infinitesimal character if A belongs

to by (cf. (12.2)).
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THEOREM 13.5 (see [Knapp, 1986]. Theorem 16.10). Suppose G
is a reductive Lie group in Harish-Chandra’s class and w
is an irreducible admissible repesentation of G on a
Hilbert space #. Assume that w admits an invariant
Hermitian form < , >G' Then we can find

i) a parabolic subgroup P =IN of G; and

ii) an irreducible admissible representation ~ of L,
with the following properties:

a) the restriction of ~ to the commutator sub-
group L' of L has real infinitesimal character (Defini-
tion 13.4);

b) ~ admits a non-degenerate invariant Hermitian

form < , > ; and

L’
c) w is infinitesimally equivalent (Definition
2.14) to the induced representation
Ind(v ® C),
with the induced Hermitian form (defined in analogy with

(3.9)).

In particular, T 1is unitary if and only if ~ is.

This result allows us to restrict attention to repre-
sentations having real infinitesimal character. Roughly

speaking, such representations ought to come from the
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derived functor construction of Theorem 6.8. One of the
problems with that construction was that it did not always
take unitary representations to unitary representations. We

can now repair that problem to some extent.

THEOREM 13.6 (Theorem 7.1 and Proposition 8.17 in [Vogan,
1984]). In the setting of Theorem 6.8, assume that G is
in Harish-Chandra’s class. Write | as the direct sum of
its center and its commutator subalgebra:
Il=c+ 1",
Assume that
i) the restriction of Z to I' 1is weakly unipotent
(Definitions 12.1 and 12.10); and
ii) the weight )\c in ¢ by which ¢ acts on Z
satisfies
Re (7\c,a> 20
for any root a of ¢ in u. Then
a) Qij(Z) is zero for not equal to S;

b) any non-degenerate Hermitian form < , >, on

L

Z induces one <, >, on QRS(Z); and

G

c) if <, >L is positive, then so is < , >G'

The most pleasant feature of this result is that (if Z and

L are fixed, L 1is a Levi factor for some 6-stable para-



EXHAUSTION 297

bolic q', and Z is unitary on the center of L) hypothe-
sis (ii) is always satisfied for at least one choice of
6-stable parabolic q with Levi factor I. We therefore
have a rather complete way of passing from weakly unipotent
unitary representations of Levi factors, to unitary repre-
sentations of G. The picture would be satisfactory indeed

if the following result were true.

FALSE THEOREM 13.7. Suppose G is a reductive Lie group in
Harish-Chandra’s class and X is an irreducible (g.K)-
module having real infinitesimal character (Definition
13.4). Assume that X admits a positive definite invariant
Hermitian form < , >G' Then we can find
i) a Levi subgroup L of G, attached to a 0-stable
parabolic subalgebra q = I + u; and
ii) an irreducible (X,(L N K) )-module Z, with a
positive definite invariant Hermitian form < , >L’ with the
following properties. Use the notation of Theorem 10.6.
Then
a) the restriction of Z to I' is weakly uni-
potent;
b) Z admits a positive definite invariant

Hermitian form < , >L;
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c) the weight )\c in ¢ by which ¢ acts on
Z satisfies
N ,a> 20
for any root a of ¢ in wu; and
d) X 1is isomorphic to 9§S(Z), with the induced

Hermitian form.

The main reason this is false is that not all comple-
mentary series representations are weakly unipotent. (For
example, if G is SL(2,R), the complementary series C(o)
(Theorem 4.23) is weakly unipotent only for o less than or
equal to %.) Here is a weaker result, which follows from

[Vogan, 1984].

THEOREM 13.8 Suppose G is a semisimple group in Harish-
Chandra’s class. Then there is a computable constant o
with the following property. Suppose X 1is an irreducible
unitary (g.K)-module, with real infinitesimal character ‘g'>\
(Definition 13.4). Assume that

AN 2 g
Then we can find q, L, and Z as in Theorem 6.8, satisfy—
ing

a) q is not equal to g;
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b) Z is unitary and irreducible;

c) the positivity hypothesis of Theorem 6.8(d) holds;
d) X 1is isomorphic to Sks(Z).

Sketch of proof. Using Theorem 13.1, write X as a subre-
presentation of some induced representation. Use the nota-
tion established for Theorem 4.11; in our case, § 1is a
discrete series representation of M. Then

(13.9)(a) XcC IP(f ® »).

Since X has real infinitesimal character, v is real-
valued.

The analysis described before Proposition 13.3 shows
that the Hermitian form on X arises as follows: there is
an element w of W(G,MA), of order 2, such that
(13.9)(b) wef =E., wev=-v.

The Hermitian form on X 1is given by

(13.9)(c) vy v = v AW P

Here vy and vy are elements of the space # of the in-
duced representation that belong to the subspace X, and
<, >h is the inner product on # given by integration
over K/(KNP).

The proof proceeds by analyzing the form

t h
(13.10) <v1,v2> = <v1,A(w:tv)v2>
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on #, as a function of the real variable t. Theorem 4.11
guarantees that it is meromorphic in t, with poles and
zeros only when IP(§ ® tv) is reducible. When t is zero,
the induced representation is unitary, and its reducibility
is precisely known; the signature of < , >O can be calcu-
lated exactly. The way that the signature varies with t
is controlled by the reducibility of the induced represen-
tation.

On the other hand, [Speh-Vogan, 1980] allows one to
describe the reducibility of IP(f ® tv) in terms of an
analogous problem on some Levi factor L of a 0-stable
parabolic, as long as tv is not too large compared to the
infinitesimal character )\M of E. (This is the most diffi-
cult step in the argument; I will not discuss the ideas in-
volved. They are one of the main topics of [Vogan, 1981].)
The description is implemented by the cohomological induc-
tion functor QRS. The conclusion of the theorem now drops
out, as long as » is not too large compared to )\M

On the other other hand, the proof of Theorem 13.1
produces v from X in terms of the behavior of matrix
coefficients of X at infinity. If X is unitary, its
matrix coefficients must be bounded; so the corresponding v
cannot be too big. The infinitesimal character of X is

that of the induced representation, which is (7\M,v). Since
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X 1is assumed to have large infinitesimal character, this
forces )‘M to be large. Now v 1is not too large compared
to )\M’ as desired. u]

This argument is replete with information even when X
has small infinitesimal character; many of the recent re-

sults on classifying unitary representations are based in

part on it.
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