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INTRODUCTION 

Perhaps the most fundamental goal of abstract harmonic 

analysis is to understand the actions of groups on spaces of 

functions. Sometimes this goal appears in a slightly dis­

guised form, as when one studies systems of differential 

equations invariant under a group; or it may be made quite 

explicit, as in the representation-theoretic theory of auto­

morphic forms. Interesting particular examples of problems 

of this kind abound. Generously interpreted, they may in 

fact be made to include a significant fraction of all of 

mathematics. A rather smaller number are related to the 

subject matter of this book. Here are some of them. 

Let X be a pseudo-Riemannian manifold, and G a 

group of isometries of X. Then X carries a natural mea­

sure, and G acts on L2 (X) by unitary operators. Often 

(for example, if the metric is positive definite and com­

plete) the Laplace-Beltrami operator A on X is self­

adjoint. In that case, G will preserve its spectral 

3 



4 INTRODUCTION 

decomposition. Conversely, if the action of G is transi­

tive, then any G-invariant subspace of L2 (X) will be 

preserved by A. The problem of finding G-invariant sub-

spaces therefore refines the spectral problem for A. 

The prototypical example of this nature is the sphere 

Sn-l. wi· th G h h l 0( ) If · t e ort ogona group n . n is at 

least 2, the minimal invariant subspaces for O(n) acting 

On L2(sn-l) · l h · f h h . l are precise y t e eigenspaces o t e sp erica 

l.aplacian. (This is the abstract pa.rt of the theory of 

spherical harmonics.) If n is 2, we are talking about 

Fourier series. The fundamental importance of these is 

clear; but they may of course be analyzed without explicit 

discussion of groups. For n = 3, the theory of spherical 

harmonics leads to the solution of the Schrodinger equation 

for the hydrogen atom. Here the clarifying role of the 

group is less easy to overlook, and it was in this connec-

tion that the "Gruppenpest" entered quantum physics in an 

explicit way. 

A second example, still in the framework of pseudo-

Riemannian manifolds, is the wave operator. Viewed on a 

four-dimensional space-time manifold, this is just the 

l.aplace-Beltrami operator for a metric of signature (3,1). 

If the manifold has a large isometry group (for instance, if 
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it is Minkowski space), then the space of solutions can 

often be described terms of this group action. 

An example with a rather different flavor is the space 

X of lattices (that is, discrete subgroups isomorphic to 

:i1) in nf. An automorphic form for G = GL(n,m) is a 

smooth function on X, subject to some technical growth and 

finiteness conditions. (Actually it is convenient to consi-

der at the same time various covering spaces of X, such as 

(for fixed p) the space of lattices L endowed with a 

basis of L/pL.) It is easy to imagine that functions on X 

have something to do with number theory, and this is the 

case. One goal of the representation-theoretic theory of 

automorphic forms is to understand the action of G on the 

space of automorphic forms. Because the G-invariant mea-

sure on X has finite total mass (although X is not com­

pact), this problem is closely connected to the correspond­

ing L2 problem. An introduction to this problem may be 

found in [Arthur, 1979]. 

Finally, suppose X is a compact locally symmetric 

space. (Local symmetry means that -Id on each tangent 

space exponentiates to a local isometry of X. An example 

is a compact Riemann surface.) We seek to understand the 

deRham cohomology groups of X. Here there is no group 
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action in evidence, and no space of functions. However, 

Hodge theory relates the cohomology to harmonic forms on X. 

so the latter defect is not serious. For the former, we 

consider the bundle Y over X whose fiber at p is the 

(compact) group K of local isometries of X fixing p. 
p 

Harmonic forms on X pull back to Y as certain vector-

valued functions. On the other hand, Y has a large 

transitive group G acting on it. (G may be taken to be 

the isometry group of the universal cover of X; Y is then 

the quotient of G by the fundamental group of X.) The 

cohomology of X can now be studied in terms of the action 

of G on functions on Y. Perhaps surprisingly, this has 

turned out to be a useful approach (see [Borel-Wallach, 

1980]). 

With these examples in mind, we recall very briefly the 

program for stuciying such problems which had emerged by 1950 

or so. The first idea was to formalize the notion of group 

actions on function spaces. In accordance with the general 

philosophy of functional analysis, the point is to forget 

where the function space came from. 

Definition 0.1. Suppose G is a topological group. A repre-

sentation of G is a pair (v,V) consisting of a complex 

topological vector space V, and a homomorphism v from G 
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to the group of automorphisms of V. We assume that the map 

from GxV to V, given by 

(g,v) -+ T(g)v 

is continuous. An invariant subspace of the representation 

is a subspace W of V which is preserved by all the oper­

ators T(g) (for g in G). lbe representation is called 

reducible if there is a closed invariant subspace W other 

than V itself and {O}. We say that 'Ir is irreducible if 

V is not zero, and 'Ir is not reducible. 

lbe problem of understanding group actions on spaces of 

functions can now be formalized in two parts: we want first 

to understand how general representations are built from 

irreducible representations, and then to understand irredu­

cible representations. lbis book is concerned almost exclu­

sively with the second part. Nevertheless, we may hope to 

gain a little insight into the first part along the way, 

much as one may study architecture by studying bricks. 

If we take G to be Z, then a representation is deter­

mined by a single bounded invertible operator, T(l). lbe 

only interesting irreducible representations of G are the 

one-dimensional ones (sending 1 to a non-zero complex num­

ber). lbe decomposition problem in this case amounts to 

trying to diagonalize the operator 11"(1). lbere are some 
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things to say about a single operator; but on infinite-

dimensional spaces, one needs more hypotheses to begin to 

develop a reasonable theory. The easiest assumption to use 

is that the space is a Hilbert space and tha·t the operator 

conunutes with its adjoint. (Such operators are called nor-

mal.) In that case, the space can be decomposed in some 

sense into an "integral" of eigenspaces of the operator. 

Once we decide to focus on group actions on Hilbert 

spaces, it is easy to see how these could arise naturally in 

our original problem. If G acts in a measure-preserving 

way on a measure space X, then it acts by unitary operators 

2 on L (X). The continuity condition in the definition of 

representation comes down to this: if S is a subset of X 

of finite measure, and g is a small element of G, then 

g.S differs from S only in a set of small measure. This 

is clear for smooth Lie group actions on manifolds with 

smooth densities. The following definition therefore admits 

many examples. 

Definition 0.2. The representation (v.~) is called uni-

tary if ~ is a Hilbert space and the operators v(g) are 

unitary (that is, they preserve the inner product in~). 
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All of the L2 spaces mentioned in the examples provide 

examples of unitary representations. 

If ~ is a closed invariant subspace of the unitary 

representation (v.~). then the orthogonal complement ~ 

of ~ is also invariant, and 

9 

We would like to iterate this process, and finally write ~ 

as a direct sum of irreducible unitary representations. To 

see why this is not possible, take G to be m. acting by 

translation on L2(m). Any invariant subspace ~ of ~ 

corresponds to a measurable subset S of m. by 

~ = {f € L2 (m)I f vanishes almost everywhere outside S}. 

(Here f denotes the Fourier transform of f.) Since the 

measure space m has no atoms, it follows that any non-zero 

invariant subspace of L2 (m) has a proper invariant sub-

space. 

On the other hand, the Fourier transform in this exam­

ple does exhibit L2 (m) as a sort of continuous (or measur­

able) direct sum of translation invariant "subspaces," con­

sisting of functions with Fourier transform supported at a 

single point f. These spaces are one-dimensional (consist-
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ing of multiples of the function exp(ixf)) and therefore 

irreducible. 

A fundamental theorem, going back to [Mautner, 1951], 

guarantees the existence of such a decomposition in great 

generality. lbe proof is based on von Neumann's theory of 

rings of operators. 

THEOREM 0.3 (cf. [Dixmier, 1981]). Let G be a type I 

separable locally compact group, and let (T ,:tf) be a 

unitary representation of G. Then ..,,. may be written 

uniquely as a direct integral of irreducible unitary repre­

sentations of G. 

For the definitions of direct integral and type I, we refer 

to [Dixmier, 1981]. All Lie groups (even over local fields) 

with countably many connected components are separable and 

locally compact. Type I Lie groups include nilpotent, reduc­

tive, and algebraic ones. Examples of groups not of type I 

are free groups on more than one generator, and certain solv­

able Lie groups. 

lbere is no analogous general theorem for decomposing 

non-unitary representations; yet these may be of the most 

direct interest in applications. (We are rarely content to 

know only that a solution of a differential equation exists 
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in L2 ). Fortunately, L2 harmonic analysis often provides 

a guide and a tool for studying other function spaces, like 

or 
00 c. We will not pursue this topic further; one 

place to begin to look is in [Helgason, 1984]. 

Because of the theorem of Mautner, it is of particular 

interest to understand the irreducible unitary representa-

tions of a group G. 

Definition 0.4. Suppose G is a topological group. The 

set of equivalence classes of irreducible unitary represen-

tations of G is written G . 
u 

We will later use the notation G for a certain larger 

class of irreducible representations of a reductive Lie 

group G. 

The irreducible unitary representations of m are the 

characters of m. the continuous homomorphsms of m into 

the circle. These are just the functions of the form 

x-+ eixy 

with y real. With proper hindsight, the characters of fi-

nite abelian groups can be found in classical number theory. 

By the late nineteenth century, Frobenius and Schur were 

beginning to study the irreducible representations of non-

abelian finite groups. In the 1920's, Weyl extended their 
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ideas to compact Lie groups ([Weyl, 1925], [Peter-Wey!, 

1927]). (In fact, because of the simple structure of com-

pact groups, Weyl's results in that case were substantially 

more complete than those available for finite groups. Even 

today, the irreducible representations of compact connected 

Lie groups are far better understood than those of finite 

simple groups.) Weyl's work is in many respects the begin-

ning of the representation theory of reductive groups; parts 

of it are summarized in Chapter 1. 

In the 1930's, the representation theory of noncompact 

groups began to be studied seriously. lbe books [Pontriagin, 

1939] and [Weil. 1940] each contain (among other things) a 

rather complete treatment of the unitary representations of 

locally compact abelian groups. At the same time, quantum 

mechanics suggested the problem of studying the Heisenberg 

group H . lbis is the 2n+l-dimensional Lie group of n+l 
n 

by n+l matrices having l's on the diagonal, and O's every-

where else except in the first row and the last colunm. H 
n 

is nearly abelian: its conunutator subgroup coincides with 

its one-dimensional center. Its unitary representations 

were determined completely by the Stone-von Neumann theorem 

(cf. [von Neumann, 1931]). 

In [Wigner, 1939], the physicist Eugene Wigner (still 

motivated by quantum mechanics) made a study of the irredu-
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cible representations of the Poincare group. lbis is the 

group of orientation-preserving isometries of (the pseudo­

Riemannian manifold) m4 with the Lorentz metric. He found 

all of those which were of interest to him, but did not sue-

ceed in obtaining a complete explicit description of G. 
u 

lbe missing representations he constructed in terms of the 

irreducible unitary representations of two subgroups of the 

Poincare group: the Lorentz group 80(3,1) (the isotropy 

group of the origin in m4), and its subgroup 80(2,1). 

Wigner's analysis was based on studying the restriction 

of a unitary representation to normal subgroups. lbe reason 

that it could not succeed for 80(2,1) and 80(3,1) is 

that these groups (or rather their identity components) are 

simple. Within a few years, their irreducible unitary repre-

sentations had been determined, in [Bargmann, 1947] and 

[Gelfand-Naima.rk, 1947]. We will return to this branch of 

the development in a moment. 

Around 1950, Mackey extended Wigner's methods enormous-

ly, into a powerful tool ("the Mackey ma.chine") for studying 

unitary representations of G in terms of those of a normal 

subgroup N of G, and of the quotient GIN. Some of his 

work may be found in [Mackey, 1976]. His results were ap-

plied to successively larger classes of groups over the next 

thirty years; two high points are [Kirillov, 1962] and 
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[Auslander-Kostant, 1971]. For algebraic Lie groups, this 

study was brought to a fairly satisfactory culmination by 

the following theorem of Duflo. (Notice that it is a direct 

generalization of the result of Wigner for the Poincare 

group.) 

THEOREM 0.5 ([Duflo, 1982]). Let G be an algebraic group 

over a local field of characteristic 0. Then the irreduci-

ble unitary representations of G may be explicitly para-

metrized in terms of those of certain reductive subgroups 

of G. 

This is a slight oversimplification, but the precise state-

ment is as useful as (and more explicit than) this one. 

There is a similar statement for all type I Lie groups, 

involving semisimple Lie groups instead of reductive ones. 

Some problems remain - for example, the explicit construe-

tion of the representations is not as satisfactory as their 

parametrization - but to some extent the study of G 
u 

is 

reduced to the case of reductive groups. Here the subject 

matter of the book itself really begins. We will conclude 

the introduction with a quick outline of the material to be 

discussed. 

We begin with a definition. 
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Definition 0.6. A Lie group G is called simple if 

a) dim G is greater than one; 

b) G has only finitely many connected components; 

c) any proper normal subgroup of the identity 

component of G is finite. 

15 

We say that G is reductive if it has finitely many con­

nected components, and some finite cover of the identity 

component G0 is a product of simple and abelian Lie 

groups. It is semisimple if there are no abelian factors in 

this decomposition. Finally, G is said to be of Harish­

Chand.ra's class if the automorphisms of the complexified Lie 

algebra defined coming from Ad(G) are all inner. 

This definition of reductive is chosen to please no one. It 

does not include all the semisimple groups needed in Duflo's 

theorem for non-algebraic groups; but it is significantly 

weaker (in terms of the kind of disconnectedness allowed) 

than most of the definitions generally used. 

The lowest dimensional noncompact simple group is 

SL(2,ffi), the group of two by two real matrices of determi­

nant one. It is a two-fold cover of the identity component 

of 80(2,1) and its irreducible unitary representations 

were determined in the paper [Bargmann, 1947] mentioned 
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earlier. We will not give a detailed account of his work; 

this may be found in many places, including [Knapp, 1986] 

and [Taylor, 1986]. The answer, however, contains hints of 

much of what is now known in general. We will therefore 

give a qualitative outline of it, as a framework for describ­

ing the contents of the book. 

First, there are two series of representations with an 

unbounded continuous parameter (the principal series). The 

representations are constructed by real analysis methods. 

An appropriate generalization, due to Gelfand and Naimark, 

is in Chapter 3. These representations tend to contribute 

to both the discrete and the continuous parts of direct 

integral decompositions of function space representations. 

Second, there is a series of representations with a 

discrete parameter (the discrete series). These were origi­

nally constructed by complex analysis. They can contribute 

only as direct summands in direct integral decompositions. 

Harish-Chandra found an analogue of this series for any 

reductive group in [Harish-Chandra, 1966]; this paper is one 

of the great achievements of mathematics in this century. A 

brief discussion of its results appears in Chapter 5. The 

most powerful and general construction of such representa­

tions now available is an algebraic analogue of complex 



INI'RODUCTION 

analysis on certain homogeneous spaces, due to Zuckerman. 

It is presented in Chapter 6. 

17 

1hird, there is a series with a bounded continuous para­

meter (the complementary series). 1hey are constructed from 

the principal series by an analytic continuation argument. 

One hopes not to need them for most harmonic analysis prob­

lems; for automorphic forms on SL(2,m). this hope is called 

the Ramanujan-Petersson conjecture. 1he construction of com­

plementary series for general groups will be discussed in 

Chapter 4; but we will make no attempt to be as general as 

possible. Complementary series constructions have been 

intensively investigated for many years (see for example 

[Ba.ldoni-Silva-Knapp, 1984] and the references therein), but 

the precise limits of their applicability are still not at 

all clear. 

Finally, there is the trivial representation. For a 

general reductive group, the trivial representation belongs 

to a finite family of "unipotent representations." In addi­

tion to a name, we have given to these objects a local habi­

tation in Chapters 7 through 12. All that they lack is a 

complete definition, a reasonable construction, a nice gen­

eral proof of unitarity, and a good character theory. (More 

information can be found in [S, 1594].) 
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'Ihe latter part of the book is largely devoted to a 

search for a definition of "unipotent." A vague discussion 

of what is wanted appears in the Interlude preceding Chapter 

7. Chapters 7 through 11 discuss various subjects closely 

related to the representation theory of reductive groups, to 

see what they suggest about the definition. Chapter 12 is a 

short summary of some of the main results of the search; it 

contains a partial definition of unipotent. 

Implicit in this discussion is the hope that the ideas 

described here suffice to produce all the irreducible uni­

tary representations of any reductive group G. Because the 

constructions of complementary series and unipotent represen­

tations are still undergoing improvement, this hope is as 

yet not precisely defined, much less realized. Neverthe­

less, a wide variety of partial results (for special groups 

or representations) is available. Some of these are dis­

cussed in Chapter 13. I hope that the reader will be not 

disappointed by this incompleteness, but enticed by the work 

still to be done. 



Chapter 1 

COMPACT GROUPS AND THE BOREL-WEIL THEOREM 

Our goal in this chapter is to recall the Cartan-Wey! 

description of the irreducible unitary representations of 

compact Lie groups, together with the Borel-Weil realization 

of these representations. A good general reference for the 

material is [Wallach, 1973]. 1be absence of more specific 

references for omitted proofs in this chapter is not in-

tended to indicate that the results are obvious. 

We begin with a little general notation. If G is a 

Lie group, we will write 

(1.1) 

G0 = identity component of G 

Qo = Lie(G) (the Lie algebra) 

Q = Qo ®m ~ (the complexification of Qo) 

U(Q) = universal enveloping algebra of Q 

* (Qo) = real-valued linear functionals on Qo 

* Q = complex-valued linear functionals on Qo. 

19 
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1be circle group T of complex numbers of absolute 

value 1 has Lie algebra im. With this identification, the 

exponential map for T is just the usual exponential func-

tion. We often identify T with the unitary operators on a 

one-dimensional Hilbert space. Similarly, the multiplica-

• ,...x tive group .... of non-zero complex numbers has Lie algebra 

CC; we identify it with the group of invertible linear trans-

formations of a one-dimensional complex vector space. 

LEMMA 1.2. Suppose H i.s a. connected a.bell.an Li.e 

group. Wri.te L for the kernel of the exponenti.a.l m.a.p i.n 

~O• and 

Aa; = {A€ ~*I A(L) c 211'iZ} 

A = Ace n i(~o)*. 

a.) Every i.rreduci.ble uni.ta.ry representa.ti.on of H i.s 

of di.mensi.on one, and m.a.y therefore be rega.rded a.s a. con-

ti.nous homomorphi.srn from H i.nto T. Such a. homomorphi.srn 

i.s necessa.ri.ly smooth. 

b) Pa.ssa.ge to di.fferenti.a.ls (that i.s, to the Li.e a.lge-

bra. homomorphi.srn a.tta.ched to a. group homomorphi.srn) defi.nes 

an i.denti.fi.ca.ti.on of 

)(A, then 

A wi.th H . 
u 

If A corresponds to 

)(A(exp X) = exp(A(X)). 
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c) Write H for the set of irreducible one-dtmen-

stona.l representations of H. Then passage to differentials 

defines an identification of Aq; with H. In this UJa.Y H u 

ts exhibited as a real manifold with H as a cornplexiftca-

Hon. 

Part (a) of this lenuna. is a consequence of spectral theory 

in Hilbert spaces (cf. [Weil, 1940]). The rest follows 

inunediately from (for example) the identification of H with 

~0/L given by the exponential map. 

We turn now to the specific structure theory for com-

pact Lie groups that we will need. 

Definition 1.3. Suppose K is a compact Lie group. A max-

tma.l torus in K is a maximal connected abelian subgroup T0 

of K. 

A maximal torus T0 is necessarily closed and therefore 

compact. Any two are conjugate under the group K. If K 

is the unitary group U(n) (of unitary operators on the 

Hilbert space llf), then T0 may be chosen to be the group 

of diagonal unitary matrices. It is a product of n copies 

of U(l), which in turn is isomorphic to the circle group 

Y. Next, take K to be either the orthogonal group O(n) 
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(consisting of real matrices in U(n)), or its identity 

component SO(n) (consisting of elements of O(n) of 

determinant 1). lben T0 is a product of [n/2] copies of 

S0(2). lbe group S0(2) consists of rotations of the plane 

ffi2 , and may therefore also be identified with T. 

By a torus, we will mean in general a compact connected 

abelian Lie group. For such a group, the kernel L of the 

exponential map is a lattice in £0 ; so A and AC coin­

cide. Any finite-dimensional representation of a torus T 

is a direct sum of irreducible representations. By Lemma 

1.2, these may be identified with elements of A. If (v,V) 

is the representation, then we write the decomposition as 

(1.4) v = l vJ\ . 
J\€A 

lbe subspaces VJ\ are called weight spaces, and (1.4) is 

called the weight space decomposition of V. More expli-

citly, 

(1.5) 

(notation as in Lemma 1.2(b)). We write 

(1.6) A(V) = {J\ €Al VJ\¢ O} , 

the set of weights of V. It is often convenient to regard 

A as a multiset, with the multiplicity of ]\ equal to 
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Example 1.7. Suppose T is the group of diagonal matrices 

in U(n). Using the identification of T with a product of 

n circles, we can identify the Lie algebra £0 of T with 

infl. (This may also be regarded as the n by n skew-

hermitian diagonal ma.trices.) The kernel L of the exponen­

tial map is vi711. Identify t* with of using the obvious 

pa.iring; then the lattice A of Lemma 1.2 is 711. Conse-

quently, 

The identification works as follows. If m = (m1 .... ,mn) 

belongs to 711. then 

[ ] 
n m. 

'<in diag(z1 •... ,zn) ="fl" (z.) 1 

i=l 1 

It is often easy to find the weight space decomposition 

of familiar representations of T. Suppose for example that 

V is the kth exterior power A'kof. Then 

Each weight has multiplicity one. The weight spaces are 

spanned by the standard basis vectors of the exterior alge-

bra. 

As a second example, consider the action of T by con-

jugation on n by n matrices. (This is the complexified 

adjoint representation (defined below) of U(n), restricted 
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to T.) If we write {ei} for the usual basis of 'll1. then 

the weights of T are zero (with multiplicity n), and the 

various ei-ej, for i not equal to j (with multiplicity 

one). We leave to the reader the identification of the 

weight spaces. 

Any Lie group G acts on itself by conjugation. This 

action has the identity as a fixed point, and so defines a 

real representation (the adjoint representation) Ad of G 

on the tangent space g0 of G at e. The complexifica-

tion of this is a representation of G on g, still denoted 

Ad. In the case of a compact Lie group K, the restriction 

of Ad to a maximal torus T0 is a representation, to 

which we can apply the discussion around (1.4). The non-

zero weights of T0 are called roots; the set of all of 

them is written 

(1.8) A * A(f,t) CT C i(t 0 ) . 

(Notice the slight inconsistency with the notation (1.6), 

which would suggest including zero in A(f,t).) Because of 

the maximality of T0 , the zero weight space is precisely t. 

We therefore have a root space decomposition of f: 

(1.9) f a 

Regarding the roots as linear functionals on t, we have 

( 1.10) f = {X €ti for all H € t, [H,X] = a(H)X}. a 
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(lbis is a differentiated version of (1.5).) lbe root 

spaces are all one-dimensional. It is clear from (1.10) 

that complex conjugation on l takes l to l . (lbis a -a 

uses the fact, discussed in the next paragraph, that the 

roots take purely imaginary values on f 0 .) lbe set of 

roots is therefore closed under multiplication by -1. 

Choose an element H+ of if 0 with the property that 

a(H+) is not zero for any a in A(l,t). (lbis is possible 

since the set of roots is finite, and the kernel of each is 

a proper subspace.) By the discussion preceding (1.4), all 

weights take imaginary values on f 0 • In particular, the 

roots take real values on H+. Define 

(1.11) 

a set of positive roots for t in !. Evidently 

(1.12) 

a disjoint union. 

PROPOSITION 1.13. Suppose K is a. compact Lie group and 

T0 is a. maximal torus in K. Any two choices of a. set of 

positive roots for t in l a.re conjugate by the normali-

zer of T0 in K0 . 

Definition 1.14. Suppose K is a compact Lie group, T0 

is a maximal torus in K, and A+ is a set of positive 
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roots for t in f. 1be corresponding Borel suba.lgebra of 

f is by definition 

(a) {) = t e l 
a.€.A+ 

f a 

1be second sunnnand on the right is the nil radical (that is, 

the largest nilpotent ideal) of {); it is denoted n. By 

the remarks after (1.10), the complex conjugate of n, which 

we denote n-, is 

n- = l (b) f -a 
a€A+ 

Since t is the complexification of a real subalgebra, it 

is equal to its complex conjugate. 1be complex conjugate of 

{) is therefore 

(c) {)-=ten-

By (1.12). 

(d) {) n {)- = t. 

We define the Cartan subgroup T associated to T0 and A+ 

to be the normalizer in K of {): 

(e) T = {t €Kl Ad(t){) c {)}. 

Later (Definition 1.28) we will generalize this definition, 

allowing certain subgroups between T and T0 • 1be special 

case defined by (e) will then be called a large Ca.rtan sub-

group. 
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It is easy to show that the Lie algebra ~ is its own 

normalizer in f. Conseqently the Lie algebra of T is 

~ n fa. which equals to by (d) in Definition 1.14. The 

identity component of T is therefore T0 • A more subtle 

point is that 

(1.15) T n K0 =To. 

For connected compact Lie groups, a Cartan subgroup is 

therefore just a maximal torus. 

Fix now a negative definite inner product < , > on 

f 0 , invariant under Ad(K); this is possible since K is 

compact. The complexification of this inner product is a 

non-degenerate symmetric bilinear form on f, still denoted 

< , >. Its restriction to it 0 is positive definite, so by 

duality * i(t 0 ) acquires a positive definite inner product 

(which we also call ( , >). 

Definition 1.16. In the setting of Definition 1.14, a 

weight A in T0 is called dominant if 

<a.A> ~ O. 

for every root a in A+. A representation (v,V) of T 

is called dominant if every weight occurring in its restric-

tion to T0 is dominant. 
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TIIEOREM 1.17 (C.artan-Weyl). Suppose K i.s a compact Li.e 

group. and T i.s a Cartan subgroup (Defi.ni.ti.on 1.llJ). 

There i.s a bi.jecti.on between the set K of irreducible 
u 

unitary representations of K and the set of i.rreduci.ble 

dominant unitary representations of T (Defi.ni.ti.on 1.16), 

defined as follows. If ('ir, V) i.s an i.rreduci.ble unitary 

representation of K, define y+ to be the subspace anni.-

hi.lated by n (Defi.ni.ti.on 1.llJ). Then y+ i.s i.nva.ri.ant 

wuler T. and the corresponding representation T+ on y+ 

i.s i.rreduci.ble and dominant. 

Let us consider the extent to which this "computes" K 
u 

If 

K is connected, then Theorem 1.17 says that the irreducible 

representations of K are parametrized by the dominant 

weights. This is a completely computable and satisfactory 

parametrization (cf. Example 1.18 below), although of course 

one can ask much more about how the representation is re-

lated to the weight. If K is finite, then T is equal to 

K, and the theorem is a tautology; it provides no informa-

tion about K . In general, if K is not connected then T 
u 

is not connected either, and its representation theory can 

be difficult to describe explicitly. Essentially the prob-

lem is one about finite groups, and we should not be unhappy 

to treat it separately. 
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Example 1.18. Suppose K is U(n), T = T0 is the group 

of diagonal ma.trices, and 

A+= {ei-ejl i < j} 

(cf. Example 1.8). If we identify t* with af. we may 

take < , > to be the standard quadratic form. The set of 

dominant weights is then 

the set of non-increasing sequences of n integers. 

We turn now to the problem of realizing the representa-

tions described in Theorem 1.17. To do so requires con-

structing a certain complex manifold on which K acts 

transitively. Here is a general recipe for doing that. 

PROPOSITION 1.19. Suppose G is a Lie group and H is a 

closed subgroup. The set of G-inva.riant complex structures 

on G/H is in natural bijection with the set of suba.lgebras 

~ of g (the complexified Lie algebra of g), having the 

following properties: 

a) ~ contains ~. and Ad(H) preserves ~; 

b) the intersection of ~ with its complex conjugate 

~- is precisely ~; and 

Chengyu Du
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c) the dimension of {>/'.f> is half the dimension of 

!Vl>. In the usual identification of !Vl> with the com.-

plexif ied tangent space of G/H at eH, the subspaces {>/'.f> 

and {>- /:f> correspond to the holom.orph.ic and antiholom.orph.ic 

tangent spaces, respectively. 

Proposition 1.21 will explain how to describe the holomor-

phic functions on G/H in terms of {>. 

PROPOSITION 1.20. Suppose G is a Lie grou-p and H is a 

CCI 
closed subgroup. The set of C homogeneous vector bundles 

on G/H is in na.tural bijection with the set of finite-

dimensional representations of H. by sending a vector 

bundle W to its fiber W over eH. Using this bijection, 

CCI 
we may identify the space C (G/H,W) of smooth sections of 

W with the space of W-valued smooth functions f on G, 

satisfying 

a) f(gh) = T(h- 1 )f(g). 

Here of course T denotes the isotropy action of H on W. 

A proof of this result will be sketched in Chapter 3 (Propo-

sition 3.2 and Corollary 3.4). 
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PROPOSITION 1. 21 . Suppose G/H carries an invariant 

complex stnu:ture given by ~ (Proposition 1.19) and a 

homogeneous vector bundle W given by W (Proposition 

1.20). Then to make W a holomorphic vector bundle amounts 

to giving a Lie algebra representation (also called T) of 

~- on W. satisfying 

a) the differential of the group representation of H 

agrees with the Lie algebra representation restricted to ~; 

and 

b) for h in H, X in ~ - , and w in W, 

T(h)[T(X)w] = T(Ad(h)X)[T(h)v] 

The space I'(G/H,W) of holomorphic sections of W may be 

identified with the space of W-ua.lued smooth functions f 

on G, satisfying Proposition 1.20(a) and the following con­

dition. For every X in ~-.we require that 

(Xf)(g) = -T(X)(f(g)). 

Here the action on the left comes from regarding the Lie 

algebra as left-invariant vector fields on G. 

To set up the Borel-Weil theorem, we need just one more 

observation. 

LEMMA 1.22. In the setting of Theorem 1.17, the orthogonal 

complement of y+ in V is 
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v° = T(n-)V. 

Consequently, y+ may be identified (as a representation of 

T) with the quotient V/V0 • 

Proof. Write u for the complex conjugation automorphism 

of f: 

(1.23) u(X + iY) = X - iY (X,Y in f). 

The inner product < , > on V satisfies 

(T(Z)v1 ,v2 > = -<v1 ,1f'(uZ)v2 > 

(Here as usual we write 1f' for the differentiated represen­

tation of the Lie algebra.) Since u(n-) is n, an easy 

formal argument now shows that the orthogonal complement of 

T(n-)V is V+. The assertion of the lemma follows. D 

THEOREM 1.24 (Borel-Weil). Suppose K is a compact Lie 

group, T is a Cartan subgroup, and ~ is a Borel sub­

algebra normalized by T (Definition 1.1~). Fix an 

irreducible representation (T,W) of T, and extend the 

differentiated representation of t to ~- by making n 

act trivially. Write W for the resulting holomorph.ic 

vector bundle on KIT (Propositions 1.19, 1.20, and 1.21). 

Let 

V = I'(KIT ,W), 

Chengyu Du
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K act on V by left translation of sections; the resulting 

representation is denoted v. Then (v,V) is non-zero if 

and only if (T,W) is a dominant representation of T. In 

that case, (v,V) is the irreducible representation of K 

attached to (T,W) by Theorem 1.17. That is, (T,W) is 

naturally isomorphic to the representation (v+.v+) of T 

on the subspace of V annihilated by n. 

Example 1.25. Suppose K is U(2), and T is the group of 

diagonal matrices. K acts transitively on the projective 

space CIF1 of complex lines in ~2 • The stabilizer of the 

line through the second coordinate is T; so K/f may be 

identified with GF1 • This defines the complex structure. 

A typical homogeneous line bundle is the tautological 

bundle, which puts over every point of CIF 1 the line which 

it "is." In t~e identification of homogeneous bundles with 

characters of T, which are in turn identified with Z2 , the 

tautological bundle corresponds to (0,1). That weight is 

not dominant (cf. 1.18); so the Borel-Weil theorem says that 

the bundle should have no sections. This well-known fact 

simply means that the only holomorphic way to pick a point 

in each line in ~ is to pick zero everywhere. 
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1be dual line bundle to the tautological bundle asso­

ciates to each line the space of linear functionals on it; 

this corresponds to the weight (0.-1), which is dominant. 

We can find global sections of the bundle by fixing a linear 

functional on ~2 and restricting it to each of the lines. 

All the holomorphic sections arise in this way; so the space 

of sections forms a two-dimensional representation of K. 

We are going to prove the Borel-Weil theorem; more pre­

cisely, we will show how to deduce it from 1beorem 1.17. It 

is helpful to introduce a definition. 

Definition 1.26. Suppose H is a Lie group, and l> is a 

complex Lie algebra. Assume that we are given 

i) an inclusion of the complexified Lie algebra ~ of 

H into l>; and 

ii) an action, denoted Ad, of H on l> by automor­

phisms, extending the adjoint action on ~-

A (l>,H)-module is a complex vector space V (possibly 

infinite-dimensional), carrying a group representation of H 

and a Lie algebra representation of l>, subject to the fol­

lowing three conditions. (For the moment we will write T 

for these representations, but later it will usually be 
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conenient to drop this in favor of module notation: h•v 

instead of v(h)v.) 

a) lbe group representation is locally finite and 

smooth. lbat is, if v € V. the vector space span of v(H)v 

is finite-dimensional, and H acts smoothly (or, equivalent­

ly, continuously) on this space. 

b) lbe differential of the group representation (which 

exists by (a)) is the restriction to ~ of the Lie algebra 

representation. 

c) lbe group representation and Lie algebra represen­

tation are compatible in the sense that 

v(h)v(X) = v(Ad(h)X)v(h) 

For elements h in H0 , condition (c) follows from (b). 

If V and W are (~.H)-modules, we can form 

Ho~.H(V,W). lbis is the space of linear transformations 

from V to W that are compatible with both representa­

tions. 

lbe next result is a version of Frobenius reciprocity 

appropriate for the Borel-Weil theorem. 

PROPOSITION 1.27. Suppose G is a Lie group, H is a 

closed subgroup, ~ defines a holom.orphic structure on G/H 

(Proposition 1.19), and W is a (~-.H)-module corresponding 
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to a holomorphic vector bundle W on G/H (Proposition 

1.21). Let V be a finite-dimensional representation of 

G; by differentiation and restriction, we may regard V as 

a (~-.H)-m.odule. Th.en there is a natural isomorphism 

HomG(V,f(G/H),W) ~ Ho~-.H(V,W) . 

Proof. Write ~ for a typical element on the left, and + 

for a typical element on the right. If these correspond 

under the isomorphism, then 

+(v) = [~(v)](e) 

[~(v)](g) = +(v(g- 1 )v). 

(We are using the description of f(G/H,W) contained in 

Proposition 1.21.) The verification that these formulas 

define the isomorphism we want is left to the reader. a 

Proof of Theorem 1.24. Let (f,X) be any finite­

dimensional representation of K. By Proposition 1.27, 

Hollb(X,V) ~ Ho~-.T(X,W). 

Now n acts trivially on W; so the right side is 

Hom.y.(X/f(n-)X],W) 

By Lemma 1.22, we therefore have 

HomG(X,V) ~ Hom.y.cx+,W). 
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By lbeorem 1.17, the right side is always zero unless W is 

dominant; and in that case it is one-dimensional for a 

unique irreducible representation X. a. 

We will conclude this chapter with two reformulations 

of lbeorem 1.17, each of which will be convenient or instruc­

tive later on. 

Definition 1.28. Suppose K is a compact Lie group. Use 

the notation of Definition 1.14 (a)-(d). Write T+ for the 

large Cartan subgroup of Definition 1.14 (e). lbe small 

Cartan subgroup associated to T0 is 

(a) T- = {t E Kl Ad(t) is trivial on t}. 

A general Cartan subgroup associated to T0 and A+ is a 

subgroup T between T- and T+. 

Suppose T is a small Cartan subgroup of K. Write 

NK(T) for the normalizer of T in K. lbe Weyl group of 

T in K is the quotient 

(b) W(K,T) = NK(T)/f. 

If Ad(K) consists of inner automorphisms (that is, if K 

is of Harish-cbandra's class in the sense of Definition 
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0.6), then the notions of small and large Cartan subgroup 

coincide. 

For the next definition, we need to make sense of the 

length of a weight. This is defined using the inner product 

< , > on i(t0)* (defined before (1.16). 

Definition 1.29. Suppose T is a Cartan subgroup of K, 

and (v,V) is a finite-dimensional representation of K. 

An irreducible representation T of T is called extremal 

in v if 

a) T occurs in the restriction of v to T; and 

b) the length of any weight ~ of T (cf. (1.4) is 

greater than or equal to the length of any weight of v. 

Here is the first reformulation of Theorem 1.17. 

THEOREM 1.30 (Ca.rtan-Weyl). Suppose K is a compact Lie 

group. Write ~(K) for the set of K-conjugacy classes of 

pairs (T, T) , with T a small Cartan subgroup of K and T 

in T. 

a) Fix a particular small Cartan subgroup T, with 

Weyl group W. Then ~(K) may be identified with T/W, the 

set of W orbits on T. 
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b) There is a finite-to-one correspondence from. K 

onto ~(K), defined by associating to v the set of extremal 

representations of small Ca.rtan subgroups occurring in v. 

c) If K is of Harish-Chand.ra's class (Definition 

0.6), then the correspondence in (b) is a bijection. 

We will not prove this result in detail. Note, however, 

that (a) is a formal consequence of the conjugacy of all 

maximal tori in K. The other fact needed in the proof (or 

rather the reduction to Theorem 1.17) is that every represen­

tation of T is conjugate under W to a dominant one. 

This in turn follows from Proposition 1.13. 

The second reformulation of Theorem 1.17 is motivated 

by the theory of characters (Definition 1.38 below). It 

turns out that characters of compact groups are most natu­

rally expressed as quotients of two multi-valued functions 

(Theorem 1.40). These functions will be single-valued on 

certain coverings of Cartan subgroups. In order to define 

these coverings, we recall a standard general construction. 

Definition 1.31. Suppose If" is a topological group, F 

is a closed normal subgroup, and H is the quotient group 

If" /F. Let G be another topological group, and T a 
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homomorphism from G to H. Define a new group <:", the 

pullba.ck from. H to G of Ii", by 

<:" = {(x,g) € (Ii"xG)I v(x) = T(g)}. 

Here v denotes the quotient map from Ii" to H. Then <:" 

contains a copy of F (as Fx{e}). Projection on the 

second factor defines a surjection from <:" to G, with 

kernel F. Finally, projection on the first factor gives a 

map T" from <:" to Ii". We therefore have a conunutative 

diagram 

G------+H 
T 

An important case is the extraction of nth roots of char-

acters. In that case, we take H to be the multiplicative 

group CCx of non-zero complex numbers. Ii" is again CCx, 

and the map v is 

n 
v(z) = z . 

The group F is the group of nth roots of unity in CCx, 

which is isomorphic to Z/nll.. We take G arbitrary, and T 

any character of G. Then T" is an nth root of T (in 

the sense that nT" descends from <:" to G and coincides 

with T there). 
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Here is a useful condition for the equivalence of two 

pullback covers. 

LEMMA 1.32. Suppose G i.s a. topologi.ca.l group, and T 1 

and T 2 a.re characters of G. Assume that there i.s a. third 

character + of G, with the property that (wi.th multi.pli.ca.-

ti.on of characters written additively) 

a) 

Then there i.s an i.som.orphi.sm (depending on +) between the 

coverings of G induced by nth roots of T 1 and T 2 • 

Conversely, any i.somorphi.sm of the coverings compa.ti.ble 

with the projections to G and the inclusions of 71/nll. 

a.rises from a. unique character + sa.ti.sfyi.ng (a.). 

We leave this as an exercise for the reader. 

Here are the coverings we need. 

Defi.ni.ti.on 1.33. Fix notation as in Definition 1.28; in 

particular, T is a Cartan subgroup of K. Write 2p for 

the determinant character of T on n: 

2p(t) = det(Ad(t)I ). n 

The differential of 2p is denoted by the same symbol; it 

is the sum of the positive roots of t. The two-fold cover 
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T" of T, defined by the square root p of 2p, is called 

the metaplectic cover of T (for reasons which will become 

clearer in Chapter 10 - see Proposition 10.17). The Weyl 

denominator is the function 

on T"; here of course t denotes the image of t~ in T. 

Write C for the non-trivial element of the kernel of 

the covering. Then p(C) = -1; so 

(1.34)(a) A(Cx) = -A(x). 

Suppose X € t 0 ; write exp~(X) for the exponential of X 

in T". Then an easy calculation shows that 

(1.34)(b) A(exp~(X)) = T"l" (ea(X)/2 - e-a(X)/2). 
a€.A+ 

It may happen that T has a character with differen-

tial p. In that case G is called acceptable. When G 

is acceptable, Lemma 1.32 implies that the covering T" is 

isomorphic to Tx(Z/2Z), and the results below can be formu-

lated on T itself. For noncompact G, Harish-cbandra uses 

an analogous assumption in much of his work· on the discrete 

series. If G is connected, it turns out that either G 

or some double cover of G is acceptable; so there is 

little loss of generality in ma.king the assumption. Unfortu-

nately, the more general coverings of Definition 5.7 cannot 

be trivialized by passing to a covering of G. We will 
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therefore keep track of coverings here as well, as practice 

for the general case. 

PROPOSITION 1.35 (the Weyl denominator formula). In the 

setting of Definitions 1.28 and 1.33, suppose t~ belongs 

to the preimage err of the small Cartan subgroup in r. 

Then 

A(t~) = l e(w)wp(t~). 
w€Wo 

Here W0 denotes the Weyl group of T- in K0 , and e(w) 

is the determinant of the action of w on t 0 . 

This proposition is a special case of the Weyl character for-

mula, to which we will turn in a moment. First, however, we 

should explain what is meant by the character wp of (T-)~ 

that appears in the proposition. Write [(T-)~]' for the 

covering defined by the square root of w(2p). This has a 

well-defined character wp. To define wp on (T-)~. we need 

to define an isomorphism between the two coverings. It can 

be shown that w(2p)-2p is of the form 2+. with + a sum 

of roots. Any two sums of roots with the same differential 

define the same character of T-; so + is uniquely de-

fined. Lemma 1.32 now provides the isomorphism we need. 
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Definition 1.36. Suppose T is a (large) Cartan subgroup 

of the compact group K, associated to the Borel suba.lgebra 

~. Let T" be the metaplectic cover of T (Definition 

1.33), and r the nontrivial element of the kernel of the 

covering map. A dominant regular metaplectic representation 

of T is a representation T of T", with the following 

properties: 

a) T"(() = -Id; and 

b) if X is any weight of (T0)~ occurring in T", 

then X is dominant and regular. That is, 

<a,X> > 0, 

for every positive root a of t in f. 

Here is the second reformulation of Theorem 1.17. 

THEOREM 1.37 (Cartan-Weyl). Suppose K is a compact Lie 

group, and T is a {large) Cartan subgroup. Then there is 

a bijection between the set K of irreducible unitary 
u 

representations of K, and the set of irreducible dominant 

regular metaplectic representations of T" (Definition 1.36). 

Proof. Notice first that representations of T are the 

same as representations of T" ta.king C to 1. With this 
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identification, it is an easy exercise to check that tensor-

ing with the character p defines a bijection from the para-

meter set in lbeorem 1.17 to that in lbeorem 1.37. a 

It is possible to make a variety of other reformula-

tions of lbeorem 1.17 by combining the ideas in lbeorems 

1.30 and 1.37, or by including a Mackey-type analysis of the 

representations of large Cartan subgroups. We leave this to 

the imagination of the reader. 

lbis proof of lbeorem 1.37 offers no hint of why one 

ought to introduce T". Its usefulness first appears in the 

theory of characters. 

Definition 1.38. Suppose (T,V) is a finite-dimensional 

representation of the group G. lbe character of T is the 

(continuous) function 

8 (g) = tr p(g) 
T 

on G. Notice that 8 is a class function: that is, it is 

constant on conjugacy classes in G. 

The character plays an important part in harmonic analysis, 

particularly in connection with the Plancherel formula for 

G. One piece of information that it obviously contains is 

the dimension of T, which is 8 (1). 
T 

Rather than discuss-
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ing anything more sophisticated, we will content ourselves 

with justifying characters by the following easy result. 

PROPOSITION 1.39. T1110 finite-dimensional irreducible repre­

sentations of a group G have the same character if and 

only if they are equivalent. More generally, the characters 

of any family of inequivalent irreducible representations 

are linearly independent (as functions on G). 

To prove this, one introduces the convolution algebra of 

functions on G with finite support. In this way one is 

reduced to the case of representations of algebras. There 

the proposition follows inunediately from the Wedderburn 

theorem. 

We would like to compute the characters of compact Lie 

groups as explicitly as possible. Because they are class 

functions, it is enough to compute them on some subset of G 

that meets every conjugacy class. A (large) Cartan subgroup 

has this property. 

THEOREM 1.40 (the Weyl character formula: first version). 

Suppose K is a compact Lie group, and T is a Cartan sub­

group attached to the Borel subalgebra ~- Let '11' be an 

irreducible representation of K, and T" the corresponding 
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irreducible dominant regular m.etaplectic representation of 

T"'. Let T- be the small Ca.rtan subgroup inside T (Defin-

ition 1.28). Write (T_)_ for the restriction of T" to 

we have 

A(t-)9T(t) = l c(w) w(T-)-(t-). 

wEWo 

Here A is the Weyl denominator (Definition 1.33); and 

c(w) is the determinant of the action of w on £0 . 

The characters w(T_)_ of (T_)_ are defined just as in 

the remarks after Proposition 1.35. 

Weyl's original proof of this theorem exploited the 

connection of characters with the Plancherel formula. He 

showed that there was a formula of approximately this form 

(which follows from Theorem 1.30) and then used formal facts 

about harmonic analysis on G to deduce the precise form. 

Most of the known proofs have the same general shape, 

although they may exploit different "formal facts." A nice 

algebraic account is in [Humphreys, 1972]. 

The Weyl denominator vanishes only on a lower dimen-

sional set in T"', so knowledge of A9 on T"' determines 
T 

9 almost everywhere. For many analytic purposes, this is 
T 

good enough. If t is not abelian, however, the identity 

element is one of the excluded points; so Theorem 1.40 as it 



48 CHAP'IER 1 

stands does not compute the dimension of v (see the remark 

after Definition 1.38). 'Ibis defect may be remedied by 

applying L'Hopital's rule to evaluate the limit as t ap-

proaches 1. Here is the result. 

COROILARY 1.41 (the Weyl dimension formula). In the setting 

of Theorem 1.40, fix a. weight A. in t* of T". Then 

dim v = (dim T") "fl" <a,A.)/(a,p>. 
aEA+ 

'Ibe most serious problem with 'Ibeorem 1.40 is that the 

formula it gives is valid only on the small Cartan subgroup 

T-. For K in Harish--cbandra's class (Definition 0.6), T-

coincides with T, and there is no problem. 'Ibis is cer-

tainly the most important case; but for completeness, we 

will sketch the extension of Weyl's formula to all of T. 

Notice first that T normalizes t 0 . By Definition 

1.28(a), it follows that T normalizes T-. and therefore 

also its normalizer in K0 . By Definition 1.28(b), this 

means that T acts on the Weyl group W0 of T- in K0 . 

For w in W0 , define 

(1.42) T = {t €Tl t•w = w}. w 

An element w of W0 is determined by the image w~ of ~ 

under w. Since T normalizes ~. on checks easily that 

(1.42). T = {t €Tl t normalizes w~}. w 
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lbe characters 2p and 2wp of T therefore both make w 

49 

sense. In addition, their difference has a natural square 

root: the determinant of the action of T on 
w 

:&/(:& n :&w). 

lbe reasoning after Proposition 1.35 now provides an action 

THEOREM 1.43 (the Weyl character formula: second version). 

In the setting of Theorem. 1.~0. suppose t~ in ~ has 

image t in T. Put 

Then 

W0 (t) = {w € Wo I t € T } . w 

A(t~)aT(t) = 2 e(w) w(T")(t~) 
wEWo(t) 

Here wT" is defined only on (Tw)~. in accordance with the 

remarks preceding the proposition. 

Most of the proofs of lbeorem 1.40 may be adapted to yield 

lbeorem 1.43. lbis is true in particular of Weyl's original 

proof. 



Chapter 2 

HARISH-OWIDRA MODULES 

In this chapter, we will present the ideas developed by 

Harish-Chandra (mostly in [Harish--chandra, 1953]) for reduc­

ing the infinite-dimensional representation theory of reduc­

tive groups to algebra. To begin, we need a little struc­

ture theory. Convenient references are [Knapp, 1986] or 

[Warner, 1972]. 

Let G be a reductive group (Definition 0.6). Fix 

once and for all a maximal compact subgroup K of G. Let 

s 0 be an Ad(K)-invariant complement for ! 0 in g0 . (It 

is much more usual to call this space p0 , but we prefer to 

reserve p0 for parabolic subalgebras.) Then G is diffeo­

morphic to the product of K and s 0 under the obvious map: 

(2.1) G = K•exp(s0 ). 

This suggests that all the essential obstructions to passing 

from the Lie algebra to the Lie group should involve only 

50 
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K. Harish-cbandra's results make this precise for represen-

tation theory. 

Choose an Ad(G)-invariant synunetric bilinear form 

< , > on g0 , positive definite on s 0 and negative defi-

nite on ! 0 , and making these two subspaces orthogonal. We 

will use the same notation for various restrictions and 

complexifications of the form. 

By (2.1), we can define a map 8 from G to G, by 

(2.2) S(k•exp(X)) = k•exp(-X). 

It turns out that 8 is an automorphism of G, the Cartan 

involution. We use the same letter for its differential, an 

involutive automorphism of g0 . 

Definition 2.3. Suppose (v,V) is a representation of a 

Lie group. The space of smooth vectors Vm in V consists 

of those v such that the map 

g -----+ v(g)v 

from G to V is smooth. 

m 
Obviously V is invariant under the action of G. If V 

is a reasonable comp~ete space, such as a Frechet space, 

m 
then V is dense in V. (To prove this, one needs only to 

be able to integrate compactly supported smooth functions 
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with values in V.) Vm can be given a natural topology, so 
m m 

that T defines a representation T of G on V . This 

representation is smooth, and may therefore be dif f erenti-

ated to give a Lie algebra representation of g. 

Definition 2.4. Suppose (v,V) is a representation of a 

topological group G, and K is a compact subgroup of G. 

The space VK of K-finite vectors in V consists of those 

v such that the set v(K)v spans a finite-dimensional sub-

space of V. 

The subspace VK is dense in V for reasonable complete 

spaces V; again the integrability of compactly supported 

smooth V-valued functions suffices. However, VK is not 

in general invariant under G. Harish-Olandra's circumven-

tion of this problem begins with the following easy fact. 

PROPOSITION 2.5. Suppose (v,V) is a representation of a 

Lie group G and K is a compact subgroup of G. Then the 

m 
space X = (V )K of K-finite smooth vectors in V is 

m 
invariant under the representation T of g. In this way 

X acquires the structure of a (g,K)-m.odule (Definition 

1.26). 
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The (g,K)-module X is called the Hartsh-Chandra module of 

T. Notice that X has no topology; everything we want to 

say about such modules will be essentially algebraic in 

nature. 

Example 2.6. Let G be SU(l,l). the group of 2 by 2 

complex matrices of determinant one, preserving the form 

lz 1 l2 - lz2 l2 on ~2 • One checks easily that G consists 

of all matrices 

g(a,fj) = ~ ~] 
such that 

The group G acts on the unit circle T. by linear frac­

tional transformations: 

g(a.fj)- 1 •z = (az + fj)/(~z +a) 

This gives rise to a representation T of G on V = 

L2(T). by 

[v(g)f](z) = f(g- 1 •z). 

The operators v(g) are not unitary, because the action 

does not preserve the measure. They are bounded, however. 

We have 

v"' = c"'(T) 

VK = trigonometric polynomials on T. 
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It is a good exercise to compute explicitly the action of 

the Lie algebra on the trigonometric polynomials, and verify 

Theorem 2.10 below in this case. (This is essentially 

carried out in section 1.1 of [Vogan, 1981], for example.) 

There are exactly three proper closed invariant subspaces of 

V: the constants; the boundary values of functions holomor­

phic in the disc; and the boundary values of the functions 

holomorphic in the Riemann sphere minus the disc. 

Our discussion of K-finite vectors will be clarified 

by some general facts about representations of compact 

groups. 

PROPOSITION 2.7. Suppose K is a compact topological 

group. 

a) Suppose (v,V) is an irreducible representation of 

K. If the space V adm.its at least one non-zero continuous 

linear functional, then V is finite-dimensional. 

b) Suppose (v,V) is a finite-dimensional 

representation of G. Then there is an inner product < , > 

on V making v a unitary representation. If v is irre­

ducible, then < , > is unique up to a scalar multiple. 
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Because of part (a) of this proposition, it is reasonable to 

define K to be the set of equivalence classes of irreduci-

ble finite-dimensional representations of K (cf. Defini-

tion 0.4 and Lenna 1.2). 1ben K is the same set as K , 
u 

but we will use the former notation when the unitary struc-

ture is not given to us. 

As a consequence of Proposition 2.7(b), any K-finite 

representation V may be decomposed as 

(2.8) 

Here v6 is a sum of copies of 6; the number of copies is 

a well-defined cardinal number m(fJ.V). the multiplicity of 

6 in V. By Schur 's lenna, 

2.9) 

here z6 is the space for a copy of 6. We can use (2.10) 

to define the multiplicity of 6 in any representation V 

(not necessarily K-finite); this amounts to considering the 

multiplicity in the space of K-finite vectors. Similarly, 

the subspace v{j is defined in general, and we have 

(2.10) 
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lbe subspace v6 is called the 6-primary or 6-isotypic 

subspace. 

Definition 2.11. A representation (T,V) of a compact 

group K is called admissible if each irreducible repre-

sentation of K has finite multiplicity in V. 

For example, any reasonable space of functions (continuous, 

LP, generalized, etc.) on a homogeneous space for K will 

be admissible by Frobenius reciprocity: the multiplicity of 

6 will be the dimension of the subspace of z6 fixed by an 

isotropy group. lbis is proved in the same way as Proposi-

tion 1.27. 

Here is the first serious result of the chapter. 

THEOREM 2.12 ([Harish--cbandra, 1953]). Suppose G is a Lie 

group, and K is a conrpa.ct subgroup meeting every component 

of G. Let (T,V) be an admissible representation of G 

on a Banach space. 

a) K-finite vectors in V are automatically smooth: 

CD 

VK CV . In particular, the space X of K-finite vectors 

is a (g,K)-m.odule. 
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b) There is a bijection between (g,K)-inva.riant sub­

spaces of X, and closed G-inva.riant subspaces of V. It 

is defined in one direction by passage to K-finite vectors 

and in the other direction by passage to closure. 

Part (a) here is a consequence of the remark after Defini­

tion 2.4. For (b), one has to check that the closure of a 

(g,K)-submodule is G-invariant. To see why there is some-

thing to prove, consider the representation of IR on 

by translation. The smooth vectors are smooth functions 

with all derivatives in L2 , and the action of the Lie alge­

bra is by differentiation. The subspace of smooth functions 

supported on [-1,1] is invariant under differentiation; 

but its closure (which is L2 ([-l,l]) is not translation 

invariant. What is needed is a notion of analytic vector, 

and the existence of many of them. This was proved by 

Harish-cbandra in the setting of the theorem (and in great 

generality in [Nelson, 1959]). The ma.in point is that 

K-finite vectors turn out to be analytic (when T is 

admissible). 

The next point to check is that the definition of 

admissible does not exclude all the interesting representa-
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ions. {For non-reductive groups, it usually does exactly 

that). 

TIIEOREM 2.13 {Harish-Oumdra). Suppose G is a reductive 

Lie group and K is a maximal compact subgroup. 

a) Any irreducible unitary representation of G is 

admissible. 

b) Suppose Ti and T 2 are irreducible unitary 

representations of G, and that the Bari.sh-Chandra modules 

of Ti and T 2 {defined after Proposition 2.5) are isomor-

phi.c as {g-,K)-m.odules. 'Th.en Ti and T 2 are unitarily 

equivalent. 

The idea of the proof of {a) is this. It is not difficult 

to reduce to the case when G is connected. Then Segal had 

shown that the unitarity assumption makes available enough 

spectral theory to force the center Z{g) of U{g) to act 
CC) 

by scalars on V . Roughly speaking, Harish-Oumdra showed 

that certain large pieces of the enveloping algebra are in 

some sense integral over Z{g), and must therefore act in a 

locally finite way. {This is the most difficult step.) 

Admissible {g,K)-submodules of Vm therefore exist. Using 

the theory of analytic vectors, he deduced {a). 
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Definition 2.11,.. Suppose G is a reductive group, and K 

is a maximal compact subgroup. Two admissible representa­

tions of G are said to be infinitesimally equivalent if 

their Ha.rish--cbandra modules are isomorphic as (g,K)­

modules. We write G for the set of infinitesimal equiva­

lence classes of irreducible admissible representations of 

G; this set contains G by Theorem 2.13. 

The reader may wish to compare our definitions of G in the 

compact and abelian cases (Lenna 1.2 and after Proposition 

2.6) and note that Definition 2.14 is consistent with those. 

Theorem 2.13 allows one to recover at least unitary 

representations from their attached (g,K)-modules. It is 

natural to ask whether any (g,K)-module arises from a repre­

sentation. This is not easy to prove, but at least for irre­

ducibles it is true. 

THEOREM 2. 15 ( [Lepowsky, 1973]) . Suppose G is a reductive 

Lie group and K is a maximal compact subgroup. Let X be 

an irreducible (g,K)-m.odule (Definition 1.26). Then 

a) X is admissible (Definition 2.11); and 

b) X is isomorphic to the Harish-Oum.d.ra module of an 
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irreducible representation of G on a Hilbert space. 

In {b), we may assume that K acts by unitary operators. 

lbe proof of (a) is essentially a part of the proof of 

lbeorem 2.13(a). lbe known proofs of (b) all produce the 

more explicit result known as Ha.rish-cbandra's subquotient 

theorem. lbis says that X must actually occur in a cer-

tain standard family of representations known as the princi-

pal series. lbe subquotient theorem is of enormous impor-

tance for establishing general properties of representations 

(the moral equivalent of a priori estimates in the study of 

differential equations), but bas been of surprisingly little 

value in the search for more detailed information (exact 

solutions, to continue the analogy). 

CDROLLARY 2.16. The set G of Definition 2.111- may be 

identified with the set of equivalence classes of irre-

ducible (g,K)-modules. 

To conclude this chapter, we give an algebraic 

characterization of G as a subset of G. 
u 
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Definition 2.17. Suppose V is a (~.H)-module. An invar­

iant Hermitian form on V is a sesquilinear pairing < , > 

from V to C satisfying 

<h•v,w> = <v.(h- 1 )•w> 

<X•v,w> = -<v.X•w), 

for h in H, X in ~ 0 • and v and w in V. The form 

( , ) is called positive definite if (v,v> is a positive 

real number for every vector v in V. 

It is trivial to see that the inner product on any unitary 

representation of G induces a positive definite invariant 

Hermitian form on its Harish-chandra module. The converse 

is less trivial, but still true: 

PROPOSITION 2.18 (Harish-chandra). Suppose G is a reduc­

tive group, and K is a maximal com.pa.ct subgroup. Assume 

tha.t X is an irreducible (g,K)-m.odule admitting a posi­

tive definite invariant Hermitian form (Definition 2.17). 

Then X is the Ha.rish-Chan.dra m.odule of a unique irredu­

cible unitary representation of G. 



Chapter 3 

PARABOLIC INDUCTION 

In this chapter, we will describe the first great sue-

cess of unitary representation theory for reductive groups: 

the idea of parabolic induction. 

Suppose to begin with that G is a locally compact 

group, and H is a closed subgroup. About 1950, Mackey 

showed how to use a unitary representation + of a subgroup 

of H to construct a unitary representation 

(3.1) 

of G. (Mackey's work is sununarized in his book [Mackey, 

1976]. In case the homogeneous space G/H carries a nice 

invariant measure, and + is the trivial one-dimensional 

representation, then ~ is just the representation of G by 

left translation on L2 (G/H). To motivate the general case, 

it is helpful to outline the proof of Proposition 1.20. 

Here is a restatement of it. 
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PROPOSITION 3.2. Suppose C i.s a. Li.e group and H i.s a. 

closed subgroup. Then there i.s a. na.tura.l bi.jecti.on between 

(equi.va.lence classes of) r-di.mensi.ona.l homogeneous vector 

bwuiles on C/H, and r-di.mensi.ona.l representa.ti.ons of the 

group H. 

Proof. Suppose ~ is such a bundle, and T is the projec­

tion to C/H. To say that ~ is homogeneous means that 

there is a continuous action of C on ~. compatible with 

the action on C/H. In addition, we require that the action 

of each element g restrict to a linear transformation from 

the fiber ~x (which is T- 1 (x)) to ~g·x· Write V for 

the fiber ~eH over the identity coset of H. The preced­

ing condition shows that the action of any element of H 

defines an endomorphism of V; it is easy to see that this 

defines a representation of H on V. 

Conversely, suppose that V carries a representation 

of H. Define an equivalence relation ~ on CxV by 

(3.3) (gh,v) ~ (g •• (h)v). 

The quotient space of CxV by this equivalence relation is 

written C xH V: it is easily seen to be a vector bundle on 

C/H. (This uses the fact that C is locally a product of 

H and a complementary submanifold. This is the only point 
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at which we need G to be a Lie group.) The left action of 

G on GxV preserves ~. and so makes G xH V a homogeneous 

vector bundle. This construction inverts the preceding one. 

Q.E.D. 

The argument given here can be used to relate many pos­

sible properties of homogeneous vector bundles to properties 

of representations. Propositions 1.19 and 1.21 are of this 

nature. For another example, invariant Hermitian forms on 

~ (that is, G-invariant families of Hermitian forms on the 

fibers) correspond to H-invariant Hermitian forms on V. 

COROLLARY 3.4. In the setting of the previous proposition, 

suppose C•.V) is a finite-dimensional representation of 

H, and ~ = G xH V is the corresponding vector bundle on 

G/H. Then the space of (smooth, continuous, or measurable) 

sections of ~ may be identified with the space of (smooth, 

continuous, or measurable) functions f from G to V, 

satisfying 

f(gh) = •(h- 1 )f(g) 

for all g in G and h in H. 

Proof. Let F be a section of ~- Define f by 

f(g) = (g- 1 )•F(gH). 
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Since F(g) belongs to the fiber of ~ over gH, the right 

side of this formula belongs to the fiber over eH, which is 

V. lbe function so defined has the properties required by 

the proposition. 

Conversely, suppose f is given. Define a map F0 

from G to GxV by 

Fo(g) = (g,f(g)). 

lben it is inunediate from the definition in (3.3) that 

F0 (gh) ~ F0 (g); so F0 induces a map F from G/H to ~­

It is easy to check that F is a section, and that this 

construction inverts the one above. Q.E.D. 

In order to construct unitary representations, we need 

to be able to integrate sections of vector bundles in a 

translation-invariant way. lbe first difficulty with this 

is that G/H does not in general admit a translation­

invariant measure. To deal with this, we need to recall a 

few facts about densities on manifolds. 

Definition 3.5. Suppose V is a real vector space, of di­

mension m. A (real or complex) density on V is a (real 

or complex) multiple of Lebesgue measure on V. 1be space 

D(V) of densities on V is a one-dimensional vector space. 

Alternatively, one can think of a density as an equivalence 
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class of pairs (w,e), with w € Am{v*) a {real or complex 

valued) volume form on V, and e an orientation of V. 

1be equivalence relation is 

{w,e) ,.., (-w,-e). 

If T is an automorphism of V, we make T act on densi-

ties by the requirement 

J f{x) d{Tµ) = J f{Tx) dµ. 

1bis makes T act on D{V) by the scalar ldet Tl- 1 • 

Suppose M is an m-dimensional manifold. 1be density 

bwl.dle DM is the line bundle whose fiber at p is 

D M = D{T M). 
p p 

A smooth density on M is a section of the density bundle. 

By the change of variable formula, a smooth density may be 

identified with a {signed, or complex valued) measure on M, 

which is a smooth multiple of Lebesgue measure on each coor-

dinate patch. 

If d is a compactly supported section of DM, then 

is well-defined; in the identification of densities with 

measures, it is the total mass of M. 

LEMMA 3.6. In the setting of Proposition 3.2, the (line) 

bwl.dle of densities on G/H is induced. by the character 
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6G/H(h) = ldet(h acting on (g~)*)I 

= ldet(A<\(h))/det(Adg(h))l- 1 • 

Sections of this bundle (at least compactly supported con­

tiruwus ones) therefore have a well-defined integral, unich 

is invariant wuier the action of G on sections. 

This result is a consequence of the standard identification 

of the tangent space of G/H at eH with g~. The func­

tion 6 is called the modular function of G/H. 

PROPOSITION 3. 7. Let G be a Lie group, and H a closed 

subgroup. Suppose (c#l.V) is a finite-dimensional unitary 

representation of H. Recall from Lemma. 3.6 the (positive 

real-valued) modular function 6 = 6GIH. Let ., be the 

vector bundle on G/H induced by the representation 

ell ® (lf2) of H. Then the space of compactly supported 

contiruwus sections of ., admits a G-invariant pre-Hilbert 

space structure. (This structure is natural as soon as we 

fix an identification of the space of lf2 ® 6~ with the 

densities on g~. 

Proof. Suppose F1 and F2 are sections of .,_ Let f 1 

and f 2 be the corresponding V-valued functions on G 
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(Corollary 3.4). Define a complex-valued function w on G 

by 

Because the operators +(h) preserve this inner product, we 

compute 

w(gh) = <f1(gh),f2(gh)> 

= <~(h- 1 )+(h- 1 )f1(g),6~(h- 1 )+(h- 1 )f2(g') 

= 6(h- 1)<f1(g),f2(g)>. 

It follows that w may be regarded as a section 0 of the 

bundle on G/H induced by 6. By Lemma 3.6, this is the 

density bundle. If F1 and F2 are compactly supported and 

continuous, then so is O; so it can be integrated over 

G/H. The integral is defined to be <F1,F2>. Q.E.D. 

It is perhaps clear that the restriction to finite­

dimensional vector bundles has been made only to keep the 

context as familiar as possible; our goal was only to moti-

vate the following definition. 

Definition 3.8 (Mackey). Suppose G is a locally compact 

group, H is a closed subgroup, and (+.V) is an irreduci-

ble unitary representation of H. There is a character 6 = 

6G/H of H, with the following property: functions on G 

satisfying 
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have a translation-invariant integral "over G/H." (More 

precisely, if w is supported on a set of the form UH, 

with U compact, and bounded and measurable on U, then 

this integral is finite.) Speaking loosely, we write 

JG/H w(x)dx 

for this integral. 

We now define a Hilbert space W. consisting of measur-

able functions f from G to V, satisfying the following two 

conditions. First, 

for all g in G and h in H. Second, 

(3.9)(b) JG/H <f(x),f(x)>dx < ~. 

Arguing as in the proof of Proposition 3.7, we see that the 

function 

w(g) = <f(g),f(g)> 

has the right transf orma.tion property under H for the inte-

gral to be defined. Similarly, we see that an inner product 

can be defined on W by 

<f 1 ,f2 > = JG/H (f 1 (x),f2 (x)>dx. 

1be group G acts on W by 
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(3.9)(c) (~(g)f)(x) = f(g- 1x). 

With this structure, W is a Hilbert space, and ~ is a 

unitary representation of G on W, the induced representa-

tion from H to G of +: 

Random induced representations are not often irreduci-

ble. As was hinted in the introduction, Mackey applied this 

definition to produce irreducible unitary representations of 

groups with a large normal subgroup N; the groups H from 

which he needed to induce typically contained N. In light 

of these facts, it is perhaps almost miraculous that large 

families of irreducible representations of reductive groups 

can be obtained by induction. 1bis was discovered between 

the late 1940's and the middle 1950's, primarily by Gelfand 

and Naimark, Bruhat, and Harish-cbandra. Here are some 

necessary structural preliminaries. 

Definition 3.10. Suppose g is a complex reductive Lie 

algebra. Recall that a Borel suba.lgebra of g is by defini-

tion a maximal solvable subalgebra of g; that all of these 

are conjugate under the group of inner automorphisms of g; 

and that one may be constructed from a Cartan subalgebra and 

a set of positive roots (Definition 1.14). A parabolic sub-

algebra p of g is one that contains a Borel subalgebra. 
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Such a subalgebra is necessarily equal to its own normalizer 

in g: 

(3.11) p = {X € g I [X, p] c p}. 

1b.e nil radical n of p is the largest nilpotent ideal in 

p. A Levi factor of p is a reductive subalgebra l of p 

such that p = l+n; such a subalgebra always exists, and is 

unique up to conjugation by exp(n). 

Suppose G is a real reductive group, with Lie algebra 

g-0 • A parabolic subalgebra p0 of g-0 is one whose com­

plexification is parabolic in g. 1b.e corresponding parabol­

ic subgroup P of G is the normalizer of p0 in G: 

(3.12) p = {g €GI Ad(g)(p) c p}. 

(See the conunent below, however.) Because of (3.11), the 

Lie algebra of P is p0 , as the notation suggests. 1b.e 

unipotent radical of P is the (normal) subgroup N = 
exp(n0 ). 1b.ere exist Levi subalgebras of p0 ; for example, 

(3.13)(a) l 0 = Po n 9po 

is one. (Here 9 is the Cartan involution defined in 

(2.2).) If l 0 is such a Levi subalgebra, the correspond­

ing Levi subgroup L is the normalizer of l 0 in P. For 

the choice in (3.13)(a), 

(3.13)(b) L = P n 9P. 
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For disconnected groups, it is convenient to extend the 

definition of parabolic subgroup slightly. Fix p0 , and 

write p+ for the group defined above. Set 

(3.12)' p- = {g e p+I 

Ad(g)I is an inner automorphism of p}. 
p 

Then a parabolic subgroup of G corresponding to P is 

defined to be one between p- and P+. 

Here is a basic source of parabolic subgroups. Suppose 

G(m) is the set of real points of a complex reductive alge­

braic group G(C). Suppose ~ is a projective variety 

defined over m. such that G(C) acts transitively on ~(m), 

and G(m) acts transitively on ~(m). Then the stabilizer in 

G(m) of a point of ~(m) is a parabolic subgroup of G(m). 

Example 3 .14. Suppose G is GL(n), and V is the stan-

dard n-dimensional representation of G. Let ~ denote 

the Grassman variety of k-dimensional subspaces of V. 

This satisfies the hypotheses above. The stabilizer in G 

of the standard k-dimensional subspace is the group 
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with A in GL(k), D in GL(n-k), and B any k by n-k 

matrix. The natural Levi factor L of P is the subgroup 

consisting of ma.trices with B equal to zero; it is isomor-

phic to GL(k) x GL(n-k). 

To get all parabolic subgroups of GL(n), it suffices 

to replace the Grassmanian by any partial flag variety (con-

sisting of increasing sequences of subspaces of V of speci-

fied dimensions). 

For a slightly different example, let G be the group 

O(n,n) of linear transformations of m211 preserving the 

quadratic form 

Let ~ be the variety of totally isotropic n-dimensional 

subspaces; that is, subspaces on which Q vanishes. Again 

the hypotheses are satisfied. We take as our base point the 

subspace 

w = {( v. v J I v € IR11} • 

Restriction of linear transformations to W provides an 

isomorphism of the Levi subgroup L of P with GL(n). We 
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leave to the reader the task of describing P and L more 

explicitly. 

Notice that in both of these examples, the standard 

maximal compact subgroup of G(m} still acts transitively 

on ~(m}. {1bis requires a small argument in the second 

case.} 1bis is a general phenomenon, described in the fol-

lowing lenuna.. 

LEMMA 3.15. Suppose G is a reductive Lie group, K is a 

maximal cOlllpa.ct subgroup, and P is a JlCl.raboHc subgroup of 

G. 

a} G =KP. That is, every element of G may be writ-

ten (not uniquely) in the form. kp, with k in K and p 

in P. 

b} The hOlllogeneous space G/P may be identified with 

K/(K n P}. 

c} The modular function 6 of G/P is trivial on 

K n P; so there is a K-invariant measure on G/P. If c..1 

is a function on G transforming according to 6 (cf. 

Definition 3.8), then 

f G/P c..1(x}dx = J, c..1(x}dx = J, c..1(K}dK. 
Ji K/(KnP} K 

Here is a little more useful structure. 
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Definition 3.16. Suppose P is a parabolic subgroup of the 

reductive Lie group G. Choose a Levi subgroup L of G 

as in (3.13). Recall from (2.1) the Cartan subspace s 0 , 

the -1 eigenspace of 0. Define 

ao = (center of lo) n So 

A = exp(a0 ) 

(3.17)(a) s(m) 0 = orthogonal complement of a 0 in s 0 

mo = (lo n lo) $ s(m)o 

M = (L n K)exp(s(m) 0 ) 

The abelian group A is isomorphic by the exponential map 

to its Lie algebra; we call A a vector group. If we write 

N for the unipotent radical of P, then we have a Langlands 

decomposition 

(3.17)(b) p = MAN, 

a semidirect product with each factor normalizing the suc­

ceeding ones. In particular, L = MA. If G is connected, 

or is the group of real points of a connected algebraic 

group, then M commutes with A. In any case, M is a reduc­

tive group with compact center. 

Because L is the semidirect product of M and A, 

and the identity component of M acts trivially on A, it 
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is very easy to describe the representations of L explicit-

ly in terms of those of M and A. We leave this task to 

the reader, however. 

Definition 3.18. Suppose G is a reductive Lie group, and 

P=LN=MAN 

is a Langlands decomposition of a parabolic subgroup of G. 

Let + be a unitary representation of L. We can regard + 

as a representation of P, by making N act trivially; we may 

occasionally denote this extended representation by + ® 1. 

The representation {pa.rabolically) induced from L to G 

by + is 

The space of ~ will be written ~~- It consists of func­

tions f from G to the space ~. of +. satisfying the 

following conditions: 

a) f{gp) = ~{p- 1 )+{p- 1 )f(g) (all p in P and g 

in G); and 

b) JG/P <f(x),f(x)>dx ( m. 

(Here ~ = ~G/P is as in Lemma 3.6.) Because of Lemma 

3.15, such functions are determined by their restrictions to 

K. The restrictions must satisfy 

a)' f(km) = +(m- 1 )f(k) (all m in Kn P and k in 

K); and 
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b}' f belongs to L2 (K,1+}· 

Conversely, any function K satisfying (a}' and (b}' extends 

uniquely to one on G satisfying (a} and (b}. 

Here are a few of the basic properties of parabolic 

induction. 

TIIEOREM 3.19 [Bruhat, 1956], Harish-cbandra}. Suppose G 

is a reductive Lie group, P = MAN is a parabolic subgroup, 

and + is an irreducible unitary representation of MA. 

Write 

~ = Ind(P t G}(+} 

(Definition 3.18), a unitary representation of G. 

a) ~ depends (up to equivalence) only on the G-con­

jugacy class of the pair (MA,+} (rather than on (P,+}). 

b) ~ is a direct sum of a finite number of irreduci­

ble representations. 

c) For most +. ~ is irreducible. 

When P is a minimal parabolic subgroup, M is compact and 

+ is finite-dimensional. This is the setting in which the 

theorem was proved by Bruhat. His arguments are fairly di­

rect, and are in the spirit of Mackey's analysis of irreduci­

bility in the presence of normal subgroups. In the general 
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case, some powerful machinery is needed - the ideas in 

Mackey's analysis seem to contribute almost nothing. (How-

ever, Gelfand and Naimark established some special cases of 

(c) by showing that ~ was already irreducible under some 

subgroup of G, to which the Mackey theory did apply. 'Ibis 

idea is very powerful for GL(n). useful for the classical 

groups. and (to date) essentially useless for the excep-

tional groups.) 

Parts (a) and (b) of the theorem follow easily from 

Ha.rish--cbandra's theory of global characters (including the 

regularity theorem of [Ha.rish-chandra, 1965]). ('lbe theory 

of intertwining operators of [Knapp-Stein, 1975] provides a 

more direct proof of (a).) Ha.rish-chandra obtained a pre-

cise form of (c) in unpublished work from the early 1970's. 

A very general sufficient condition for irreducibility (that 

is. another precise version of (c)) is implicit in 'lbeorem 

13.5, which comes from [Speh-Vogan. 1980]. 

'lbe main point of 'lbeorem 3.19 is that parabolic induc-

tion provides a way of building irreducible unitary represen-

tations of G from those of Levi subgroups. Of course one 

would like to know exactly how much of G can be con­
u 

structed in this way from proper parabolic subgroups. A pre-

cise result in this direction will be given in 'lbeorem 13.5. 
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Example 3.20. Let P = MAN be a minimal parabolic subgroup 

of G. Then M and A conmute, and M is compact. An 

irreducible unitary representation + of MA is therefore 

of the form f ® v, with f an irreducible (finite-

dimensional) unitary representation of M and v a unitary 

character of A. The induced representation 41 will be 

written I(f ® v), or sometimes Ip(f ® v); it is called a 

(minimal) principal series representation. 

Let us analyze the parameter set for this series of 

representations of G a little more closely. The group M 

is in Harish-cbandra's class, because of (3.12)'. We can 

therefore parametrize its representations using Theorem 

1.30. Fix a Cartan subgroup T of M (Definition 1.14), 

and define H =TA (a direct product). Then 

H = {h €GI Ad(h) is trivial on ~}. 

In analogy with Definition l.28(b), we define W = W(G,H) 

to be the normalizer of H in G, modulo H. This group 

acts on the set 
,. 

H = T x A u u 

of irreducible unitary representations of H. Now Theorem 

1.30 allows us to associate to any character T in H a 
u 

principal series representation I(T). By Theorem 3.19(a). 

I(T) = I(WT). 
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We have not given a detailed discussion of the language 

of direct integrals of representations of G, needed to dis-

cuss abstract harmonic analysis problems. Nevertheless, it 

is worth knowing that we already have enough representations 

to solve an interesting problem. We will therefore state 

the result, dealing with our lack of machinery by being a 

little vague. 

THEOREM 3.21 ([Harish-cbandra, 1958]; cf. [Helgason, 1984]). 

Suppose G ts a reductive Lie group in Harish-Chand.ra's 

class (Definition 0.6) and P = MAN ts a minimal parabolic 

subgroup. Define W as in Example 3.20, and use the nota-

Hon there. Then 

L2 (G/K) ~ JA /W I{l ~ v)dv 
u 

Far more precise results about the action of G on func-

tions on G/K are available. Even Harish-cbandra's orig-

inal proof gave more than this, and the problem has been 

studied intensively. (One can consult for example 

[Helgason, 1984].) Yet all of the deeper results involve, 

in more or less explicit ways, the representations I(l ~ v); 

and all are in some sense based on Theorem 3.21. 



PARABOLIC INDUCTION 81 

If G is complex (say for simplicity in Harish-chandra's 

class), then the representations l(T) of Example 3.20 

suffice to decompose L2 (G) as well. Even in that case, 

however, they are far from all the unitary representations 

of G. In the next chapter, we will explain how to push the 

idea of induction a little further, to get some rather dif­

ferent representations. 



Chapter 4 

SI'EIN COMPLEMENTARY SERIES AND THE 

UNITARY DUAL OF GL(n,IC) 

lbe notion of induced representation in Definition 3.8 

depends on starting with a unitary representation; condition 

3.9(b) in the definition of the space of the induced repre­

sentation makes no sense otherwise. However, the motiva­

tional material on vector bundles does not require a unitary 

representation; so one should expect to be able to do some­

thing more generally. lbere are in general several possi­

bilities, depending on what kind of topological space is 

wanted for the induced representation. In the case of para­

bolic induction, the following definition is convenient. 

Definition 4.1. Suppose G is a reductive Lie group and 

P = l.N is a parabolic subgroup (Definition 3.10). Assume 

that (+.~.) is a representation of G on a Hilbert space 

82 
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such that the restriction of + to K is unitary. Extend 

+ to all of P by making N act trivially. Define the 

representation (pa.rabolically) induced from L to G, 

In4(+) = cf>, 

as follows. The space ~cf> of cf> consists of functions f 

from G to ~.. satisfying 

a) f(gp) = ~(p- 1 )+(p- 1 )f(g) (all p in P and g 

in G); and 

b)' the restriction of f to K lies in L2 (K.~+>· 

Here o = oG/P is as in Lelllllla 3.6. We have called the 

second condition (b)' to emphasize the connection with the 

conditions in Definition 3.18. Just as in that special 

case, we may replace (a) by 

a)' f(km) = +(m- 1 )f(k) (all m in Kn P and k in 

K). 

The space ~cf> is therefore a Hilbert space, and K acts 

unitarily. In fact 

The description (a)' of the representation space is called 

the compact picture. 

We retain the notation of the definition. It will be useful 

to have explicit formulas for the representation in the 
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compact picture. To that end, choose a minimal parabolic 

subgroup 

(4.3)(a) P. =M.A.N. min min min min 

contained in P. (The Lie algebra a 0 of A will be a 

maximal abelian subalgebra of the -1 eigenspace of 0 and 

will be contained in L.) Multiplication then defines a 

diffeomorphism 

(4.3)(b) 

we write this as 

(4.3)(b). G=KA.N., min min 

the Iwa.sawa. decomposition of G (see for example [Helgason, 

1978]). We write K, a and n for the coordinate func-

tions on G for this decomposition: any element g of G 

is 

(4.3)(c) g = K(g)a(g)n(g). 

It is traditional to write H for the logarithm of a: 

(4.3)(d) H(g) € a 0 , exp(H(g)) = a(g). 

Suppose now that f is a function satisfying (a)' and 

(b)' of Definition 4.1. Then the extension of f to G 

satisfying (a) of the definition is 

(4.4) f(g) = ~(a(g)- 1 )+(a(g)- 1 )f(K(g)). 

For x in K, one therefore calculates 
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[cI>(g)f](x) = 
+(a(g- 1x)n(g- 1x)){~(a(g- 1x))f(f(g- 1x))}. 
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To understand (4.5), one should keep in mind the fact (con-

tained in Lenunas 3.6 and 3.15) that, for fixed g, the map 

x -+ K.{g- 1 x) 

induces a diffeomorphism of K/(K n P), with Jacobian 

6(a(g- 1x)). Consequently, the part of (4.5) in braces is 

just the unitary action on L2 induced by this diffeomor-

phism. 

We now have at our disposal a substantially larger set 

of representations. For instance, Example 3.20 can be gen-

eralized to give a family of representations involving all 

characters of A as parameters (not just unitary ones). Un-

fortunately, the new representations obtained in this way 

are not given to us as unitary representations. Our goal is 

to see that some of them are unitary anyway. To see that, 

we now consider in abstract terms the ingredients needed to 

make a representation unitary. 

Definition 4.6. Suppose (T,:11) is a representation of G 

on a Hilbert space. The Herm.i t tan dual Th of is the 

representation of G on the same Hilbert space :1t given by 

Th(g) = T(g-1)*. 

Here the star denotes adjoint of operators on ~. and is de-

fined by 

<Tv.w> * = <v.T w> ( v, w in :11) . 
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What we would like to do is replace the inner product 

that is given to us, that is not preserved by T, by some 

new inner product that is. Let us be cavalier about bound-

edness for a moment. Then any Hermitian form on 1l is of 

the form 

(4. 7)(a) A <v.w> = <v.Aw>. 

for A some self-adjoint operator on 'Jf. The condition 

that the new inner product be G invariant may be written 

(4.7){b) h 
Av(g) = T (g)A. 

This is precisely the condition for A to intertwine 

and Th; that is, to be a G-equivariant map from T h to T 

Conversely, suppose A satisfies (4.7)(b). It is easy to 

check that A* does as well. If T is irreducible, we 

should therefore expect A* to be a multiple of A. Replac-

ing A by an appropriate multiple of itself, we get A to 

be self-adjoint. Now (4.7)(a) defines a G-invariant Hermi-

tian form on 'Jf. This discussion may be summarized as fol-

lows. 

(False) PROPOSITION. Suppose T is an irreducible represen-

tation of G on a Hilbert space. Th.en T admits a non-zero 

G-inva.riant Herm.itian form. if and only if T is equivalent 
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to Th (Definition 4.6}. In that ca.se, there is a self 

adjoint aperator A, unique up to a real factor, that inter-

twines h TandT. The representation T is equivalent to 

a unitary one if and only if the aperator A is (positive 

or negative) definite. 

This proposition is false only because we were careless 

about boundedness. The machinery of Chapter 2 is designed 

to circumvent such problems. Using it, and the same formal 

reasoning, we arrive at 

PROPOSITION 4.8. Suppose T is an irreducible admissible 

representation of G on a Hilbert space and that the inner 

product is K-invariant. Then T is infinitesimally equi-

valent to a unitary.represent~tion if and only if there is a 

positive Hermitian aperator 

A: ::tfK ~ ::tfK' 

that intertwines the (g,K}-module structures defined by T 

h 
T. 

Recall that we are trying to make unitary some non-

unitarily induced repesentations. Evidently the next prob-

lem is to find operators A satisfying the requirements of 
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the proposition. 

in question. 

CllAPI'ER 4 

h First we identify the Hermitian duals v 

PROPOSITION 4.9. In the setting of Definition 4.1, the 

Hermitian dual of 

is 

h G h 
c) = Indp(+ ). 

Tha.t is, if the Hilbert space of Ind(+) is defined by 

( 4 .1) (a) ' and (b) ' , then it coincides with the space of 

h Ind(+ ); and the operators of the representations satisfy 

Ind(+)(g) = [Ind(+h)(g- 1 )]*. 

This is an easy consequence of the explicit formula (4.5) 

for the operators and the remark following it. (Because of 

the definition of the inner product in ~c)' the proposition 

is asserting the equality of two integrals over K/(K n P). 

What is used finally is the change of variables formula for 

integrals). 

The next prdalem is this: when is Ind(+) infinitesi­

mally equivalent to Ind(+h)? For our purposes, enough equi-

alences of this nature will arise from Theorem 3.19(a). So 

suppose P = MAN is a parabolic subgroup of the reductive 
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group G. Assume for simplicity that G is in Harish-

Chandra's class; in particular, M and A conmute. Fix an 

irreducible unitary representation f of M. For v in 

A, set 

(4. lO)(a) 

a series of representations parabolically induced from MA 
to G. In accordance with Definition 4.1, we can regard all 

of these representations as realized on the same Hilbert 

space, with the same restriction to K. By Proposition 4.9, 

(4. lO)(b) 

" * By Lemma 1.2, we may identify A with a . In this identi-

fication, the Hermitian dual of a representation corresponds 

the to negative complex conjugate of a linear functional; so 

(4. lO)(b)' h -Ip(f ® v) = Ip(f ® (-v)). 

At least in the case that Ip(f ® v) is irreducible, Proposi­

tion 4.8 therefore says that we are seeking conditions under 

which Ip(f ® v) is equivalent to Ip(f ® (-v)). 

Fix an element w in K, normalizing MA. Write w 

for the image of w in 

Then w acts on 

(4. lO)(c) 

W(G,MA) = NK(MA)/(M n K). 
" M and (linearly) * on a . Assume that 
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For unitary characters v of A, Theorem 3.19(a) now guar­

antees that 

(4.lO)(d) 

The next theorem meromorphically continues this equivalence 

to non-unitary v. 

THEOREM 4.11 ([Knapp-Stein, 1980]). In the setting just 

described, there is a rational family of intertwining oper-

a tors 

with the following properties. Write -~ for the common 

Hilbert space of all the Ip(f ® v). 

a) For v outside a countable locally finite union Z 

of proper algebraic subva.rieties of 

isorn.orphism from. ~ to itself. 

* 0: ' A(w:v) is a linear 

b) For v not in Z, A(w:v) is an infinitesimal 

equivalence of Ip(f ® v) with Ip(f ® wv). 

c) Any K-finite matrix entry of A(w:v) is a 

rational function of v. 

d) If w2 •v = v, and v is not in Z, then 

* -A(w:v) = A(w:-wv). 

In pa.rticular, if wv = -v, then A(w:v) is Hermitian. 

e) If Ip(f®v) is irreducible, then v is not in Z. 
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Knapp and Stein prove this result by constructing the inter-

twining operators as explicit integral operators for certain 

v, then proving that they can be continued meromorphically. 

'Ibis approach leads to a wealth of detailed information 

about the operators and their connections with harmonic anal-

ysis. We will be content with the properties listed here, 

however. For that, a fairly easy non-constructive proof can 

be given. Here is an outline of it. 

Sketch of proof. We begin by writing explicitly the inter-

twining conditions being imposed. 'Ibey are 

(4.12)(a) A(w:v)Ip(f®v)(k) = Ip(f®wv)(k)A(w:v) (k € K) 

(4.12)(b) A(w:v)Ip(f®v)(Z) = Ip(f®wv)(Z)A(w:v) (Z € g). 

Of course (4.12)(b) may be replaced by 

(4.12)(b)' A(w:v)Ip(f®v)(u) = Ip(f®wv)(u)A(w:v) (u € U(g)). 

For simplicity, assume that there is an irreducible re­

presentation µ of K that occurs with multiplicity one in 

1. Write ~ for the set of v such that Ip(f ® v) is irre-

ducible, and , 0 for the intersection of * ~ with (ia0 ) • 

It is known that , is the complement of a locally finite 

union R of algebraic subvarieties in Q*. (Because of 

(e), R will turn out to contain Z; it will almost always 

be strictly larger.) In particular, , 0 is Zariski dense 
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* in a . For v in , 0 , define A(w:v) to be the unique 

infinitesimal equivalence from Ip(f ® v) to Ip(f ® wv) 

that restricts to the identity on ~ . lbe main point is to 
µ 

prove (c) for v in ' 0 ; this makes sense since 'o is 

Za.riski dense. 'Ibis fact in turn depends on 

LEMMA 4.13. Fix Z in g. In the setting (4.10), the ac-

tion of Z in ~ depends on the parameter v in an affine 

way. More precisely, choose a basis X1 , ... ,Xr of a. 

Then there are operators T0 ,T1, ... ,Tr on ~K (depending 

linearly on Z), such that 

r 

Ip(f ® v)(Z) = T0 + l v(Xi)Ti 

i=l 

lbe leDDJ1a may be proved in a straightforward way by differen-

tiating (4.5); we omit the details. 

CDROll.ARY 4.14. In the setting of Theorem 4.11, fix a basis 

of ~­µ 
Suppose is any other finite set of uec-

tors in 8K· Then we can find. elements {uji} of U(g), 

depending rationally on v, so that 

wj = l ujivi 
i 

for all v for vnich the rational functions are defined. 
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Sketch of proof. Possibly after expanding the set of w. 
J 

somewhat, one can find finitely many elements qk of U(g), 

such that 

(4.15) 

with the coefficients f polynomial in v. Because of the 

irreducibility of Ip(f ® v), we can arrange for the orig-

inal w's to be in the span of the various qkvi (for most 

v). Solving (4.15) by row reduction gives the corollary. D 

1be fact that A(w:v) depends rationally on v is now a 

formal consequence of the intertwining condition (4.12)(b)', 

Corollary 4.14, and Lemma 4.13. 1bis is 1beorem 4.ll(c). 

Because A(w:v) commutes with K, it preserves the 

decomposition of ~K into K-primary subspaces (cf. (2.8)); 

we write 

(4.16) A(w:v) = l A(w:v)0 

accordingly. Each of the summands is now a rational func­

tion from a* to End(~0). Define Z to be the union over 

6 of the poles of A(w:v) 0 , and the zeros of det(A(w:v) 0). 

Obviously Z satisfies the last assertion of 1beorem 

4.ll(a); that the union is locally finite will follow from 

(e) and the remarks after (4.12). 
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By Theorem 4.ll(c) and Lemma 4.13, both sides of the 

equations (4.12) depend rationally on v. Since they are 

true by definition on the Zariski dense set i 0 , they are 

true everywhere. This is Theorem 4.ll(b). 

A formal argument shows that the adjoint A(w:v) * 
intertwines Ip(f ® (-wv)) and Ip(f ® (-v)). Furthermore, 

the adjoint is still the identity on ~ . By definition, it 
µ 

therefore agrees with A(w:(-wv)) for v in i 0 such that 

w(-wv) is equal to -v. This latter condition is equiva­

lent to w2 •v = v, proving Theorem 4.ll(d) on i 0 • The gen-

eral case follows by a density argument. 

The proof of Theorem 4.ll(e) requires a little care. 

Suppose v 0 is not in Z; we want to prove that Ip(f ® v0 ) 

is reducible. If A(w:v0 ) is well defined, then (by the 

definition of Z), it must not be invertible. Its kernel is 

therefore a proper invariant subspace of Ip(f ® v0 ). (The 

kernel cannot be all of ~K' because it does not meet ~ . ) 
µ 

We may therefore assume that A(w:v) has a pole at v0 • It 

is natural to consider the subspace on which A(w:v) is 

finite at v0 , and to.think that it should provide a proper 

invariant subspace of ~K. It is not invariant, however, as 

a careful attempt to write the obvious argument reveals. 

The correct approach is to define 
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(4.17) (~K)o = {v € 11<:1 there is a polynomial function f 

of v such that f(v0 ) = v, and A(w:v)f(v) is 

finite at v0 } 

This is a proper Ip(f ® v0 )-invariant subspace, proving 

(e). a 

The definition in (4.17) can be generalized, giving a 

family of invariant subspaces parametrized by the submodules 

of the local ring at v0 in its quotient field. This fami-

ly is called the Jantzen filtration. It plays an important 

part in representation theory (cf. [Jantzen, 1979] and 

[Vogan, 1984], for example) but is very far from being well 

understood. 

Our efforts in the proof of Theorem 4.11 are now reward-

ed by unitary representations growing on trees (or at any 

rate on crosses). 

THEOREM 4.18. 

is irreducible. 

In the setting (4.10), assume that 

Define a real subspace S of w 

s ={vi wv =-ii}. w 

* Q by 

Write R for the set of v for vnich Ip(f ® v) is reduci­

ble. Finally, let C denote the connected component of w 

the origin in S - R. w Then Ip(f ® v) is infinitesimally 
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equivalent to an irreducible unitary representation of G 

for every v in C . w 

Proof. Fix v in C . By 1beorem 4.11, A(w:v) is a Hermi­w 

tian intertwining operator from Ip(f ® v) to Ip(f ® wv); 

it depends rationally on v. By the "only if" part of Propo-

sition 4.8, A(w:O) must be definite. By continuity, 

A(w:v) must be definite as well. 1be theorem now follows 

from the "if" part of Proposition 4.8. a 

1be representations constructed in 1beorem 4.18 are 

called complementary series. 1be term is also applied in a 

variety of generalizations; for this style of argument can 

be pushed much further. Unitarity occurs either everywhere 

or nowhere on a connected component of S - R. w It often 

happens that such a component will contain a few points 

where unitarity is easier to prove or disprove. One can get 

an immediate improvement by replacing R with the set Z of 

1beorem 4.11. I have used R only because it is sometimes 

easier to compute. Another possibility is to investigate 

the nature of the poles and zeros of A(w:v) along R, and 

to use this information to study the positivity of A. 

(Zeros of even order do not affect positivity, for example.) 
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For some hints about how complicated this study can become, 

the reader may consult [Knapp-Speh, 1983] or [Duflo, 1979]. 

Here is a basic example. Suppose G is the general 

linear group GL(2m,C) of invertible 2mx2m matrices. We 

can take as a Cartan involution the map 

(4.19)(a) 

the inverse conjugate transpose. Then 

(4.19)(b) K = U(2m), 

the group of unitary operators on ic28'. Let P be the para­

bolic subgroup of Example 3.14, with k = m: as discussed 

there, the Levi factor MA is GL(m,C)xGL(m,C). To discuss 

such groups, it is convenient to use the following notation: 

is a p.xp. square matrix, then 
l l 

denotes the block-diagonal matrix with the indicated diag­

onal blocks, and zeros elsewhere. We will also write I 
p 

for the pxp identity matrix. Then the group A is a 

product of two copies of m. by 

(4.19)(c) t t A = d(e 1 1 e 2 1 ) m' m 
(t e m). 

Similarly, M is a product of two copies of what might be 

(but never is) called· UL(m,C): 
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(m. an mxm matrix, ldet(m.)I = 1). 
1 1 

The group M has unitary characters f(k1 ,k2 ) 

defined by 

(k. in Z). 
1 

Similarly, the characters of A are parametrized by ~2 • by 

In these coordinates, the modular function o for G/P is 

trivial on M, and on A is given by 

(4.20)(c) o = (2m,-2m). 

Consider now the element 

..., 
of GL(2m.~). (We use the minus sign only to put w in 

SL(2m.~). For our purposes that is unnecessary, but the 

possibility of doing so shows that the construction works 

for SL as well as for GL.) This element belongs to K 

and normalizes MA; it acts there by permuting the two 

GL(m.~) factors. Write w for the image of w in W(G,MA) 

(cf.(4.10)). Then 

To be in the setting of (4.10), we should therefore restrict 

attention to the case k 1 = k2 • Similarly, one sees that 

the set S of Theorem 4.18 is w 



(4.21)(b) 

SfEIN CDMPLEMENTARY SERIES 

s = {(a+it,-a+it)}. w 

Finally, we need to know the set R of reducibility 

points for the non-unitarily induced representations. We 

will take the result as a gift from non-unitary represen-

tation theory, without discussing a proof. 

99 

LEMMA 4.22. In the setting (4.19)-(4.21), the induced repre-

sentation 

is reducible if and only if v 1 -v2 is a non-zero even inte­

ger. 

Now we can apply Theorem 4.18, to get 

THEOREM 4.23 ([Stein, 1967]). Suppose G = GL(2m,O::). Fix 

notation as in (4.19)-(4.22). For k in Z, t in m, and 

a strictly between -1 and 1, the representation 

C2m(k,t:a) = Ind;(f(k,k) ® (a+it,-a+it) ®l) 

is (infinitesimally equivalent to) an irreducible Wl.itary 

representation of G. 

For a equal to zero, these representations are unitarily 

induced. For a not equal to zero, they are called the 
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Stein complementary series for GL(2m,C). lbe same construe-

tion applies over any local field F. lbe parameter space 

will be the product of an open interval with the set of uni-

x 
tary characters of F . 

A few remarks about the parameters may clarify at least 

the notation slightly. lbe unitary characters of GL(n,C) 

are parametrized by Zxffi, by the rule 

(4.24)(a) 
k "t ~(k,t)(g) = [det(g)/ldet(g)IJ [ldet(g)IJ 1 . 

Inspection of the definitions shows that 

(4.24)(b) 

lbe dependence on k and t is therefore uninteresting. 

In addition, the construction of the inner product required 

an isomorphism 

( 4.24)(c) 

We may therefore confine attention to u in the interval 

(O, l). 

In view of the way lbeorem 4.18 is proved, it may also 

be helpful to understand a little about the behavior of the 

induced representations as the continuous parameter varies. 

For z in C, put 

(4.25) G 
I(z) = Indp(f(O,O) ® (z,-z) ® 1). 

Lemma 4.22 says that I(z) is irreducible unless z is a 

non-zero integer. We therefore concentrate on those repre-
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sentations. By the definition of induction and (4.20)(c), 

I(-m) is the space of functions on G/P. It therefore con­

tains a copy of the trivial representation of G, on the 

constant functions. Dually, I(m) is the space of densi-

ties on G/P. Elements of it may be integrated; those with 

integral zero form an invariant subspace. The quotient of 

I(m) by this subspace is the trivial representation of G. 

For k an integer between 0 and m (inclusive), let 

Pk be the parabolic subgroup of Example 3.14. Set 

(4.26) G 
J(k) = Indp (1). 

m-k 

Then it turns out that J(k) is a subrepresentation of 

I(-k) and a quotient of I(k). This is trivial for k = 0, 

and we have just checked it for k = m. The intermediate 

cases are not so easy. Although all but the last are 

infinite-dimensional, the representations J(k) decrease in 

size as k increases, in a certain precise sense. 

~:~~,-
~~-

For any non-negative integer r, let 

(4.27) G 
K(r) = Indp(f(r,r) ® (0,0) ® 1). 

I(r) and a quotient Then K(r) 

of I(-r). 

is a subrepresentation of 

Again this is trivial for r = 0, but requires 

some proof for r positive. For r = 0, J(O) = K(O). For 

r = l, J(l) and K(l) are the only two composition fac-

tors of I(±l). For r greater than one, there are gener-

ally additional composition factors. 
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1be trivial representation of K occurs in I(z) with 

multiplicity one. Let us normalize the intertwining opera­

tor A(w:z) (which takes I(z) ~o I(-z)) to be the identi­

ty on the trivial representation of k. 1ben A(w:z) has 

poles exactly at the negative integers, and zeros exactly at 

the positive integers. (By a zero, we mean that the opera­

tor has a kernel; it is still non-trivial). For k between 

0 and m, the image of A(w:k) is the subrepresentation J(k) 

of I(-k), described above. For r positive, the quotient 

of I(-r) by the invariant subspace on which A(w:-r) has 

a pole of less than maximal order (cf. (4.17) and the re­

marks following it) is K(r). (Another way to say this is 

that if we kill the pole by renormalizing, the image of 

A(w:-r) is K(r).) 

1bere is much more to be said about I(z), but these 

are some of the highlights. Further results, particularly 

analytic ones, can be found in [Stein, 1967]. 

Miraculously, even this most primitive part of the 

theory of complementary series provides all the unitary 

representations of GL(n,C). 

THEOREM 4.28 ([Vogan, 1986b]). Suppose G is GL(n,C). 

Let v be an irreducible unitary representation of G. 

Th.en we can find a parabolic subgroup P = LN of G, and an 
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irreducible Wl.itary representation + of L, with the fol-

lowing properties. Write L as a product of various 

GL(pi.~) (as is always posstble). 

a) + is a tensor product of irredcible Wl.itary repre-

sentations +i 
G 

b) Indp(+) 

of GL(p .• ~). 
]. 

= "Ir. 
c) Either +i is a (one-dimensional) Wl.itary cha.rac-

ter of GL(p .. ~) 
]. 

(cf. (4.24)(a)); or pi is even, and +i 
is a Stein complementary series representation (Theorem 

4.23). 

Conversely, if P = LN is a parabolic subgroup of G and 

+ is any irreducible Wl.itary representation of L satisfy-

ing (c), then is an irreducible Wl.itary represen-

tation of G. 

Finally, the only eguiva.lences among these induced 

representations are those provided by Theorem 3.19(a). That 

is, 'If determines the conjugacy class of (L.+) under G. 

The last two assertions (about irreducibility and inequiva-

lence) were essentially proved by Gelfand and Naimark more 

than thirty years ago; they are not very difficult. Some 

hints about how to prove the main assertions may be found in 

Chapter 13. 
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We conclude this chapter with a simple corollary of 

Theorem 4.28. 

OOROI.LARY 4.29. Suppose C is CL(n,IC), P = LN i.s a 

parabolic subgroup, and + is an irreducible unitary repre­

sentation of L. Then Ind~(+) is irreducible. 



Chapter 5 

CX>HOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC TIIEORY 

One of Harish-chandra's fundamental insights was that 

representations of real reductive groups should be parame­

trized approximately by characters of Cartan subgroups. As 

we saw in Chapter 1, the Cartan-Wey! theory accomplishes 

this when G is compact. For general G, parabolic induc­

tion provides representations associated to characters of 

one Cartan subgroup (cf. Example 3.20). If G is complex, 

there is only one conjugacy class of Cartan subgroups; so 

Harish-chandra's idea is completely implemented. Most real 

groups have several conjugacy classes of Cartan subgroups, 

however; so parabolic induction is not enough. Harish­

Chandra's successful efforts (culminating in [Harish­

Chandra, 1966]) to overcome this problem lie at the heart of 

his work, and constitute one of the great achievements of 

modern ma.thematics. Using almost nothing but the ordinary 

105 
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abelian Fourier transform, he constructed by hand certain 

spaces of functions on G; the necessary representations 

appeared as the action by translation on these spaces of 

functions. 1be simplest case is a construction of the spher­

ical harmonics on 83 (which may be thought of as the group 

8U(2).) Roughly speaking, he constructs a function first on 

the tangent space at a point, as the Fourier transform of 

the invariant measure on a (two-dimensional) sphere in the 

cotangent space. Under appropriate conditions, this can be 

lifted to 83 by the exponential map. 1bis gives a zonal 

spherical function; others can be obtained by letting 80(4) 

act. Already in this case, the construction is ingenious, 

and not trivial to carry out. For general G, the difficul­

ties are multiplied; I will not try even to outline the 

ideas, or the deep theorems needed to implement them. Twenty 

years of effort have not yet completely integrated this mate­

rial with the rest of mathematics (in the usual sense of 

providing generalizations, proofs by standard techniques, 

and so on). 

Fortunately for mortals (or at any rate for mortal alge­

braists), these twenty years have produced several alterna­

tive approaches to the basic problem of finding some more 

representations. 1bis problem can be regarded as that of 

solving some elliptic linear differential equations. Harish-
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Chandra essentially writes formulas for the solutions; but 

if we are willing to forego these, we can hope to have less 

trouble. In [Atiyah-Schmid, 1977], the index theorem is 

used to guarantee the existence of some solutions. (Because 

the domain is essentially G itself, which is non-compact, 

this is by no means an easy exercise. Roughly speaking, the 

substitute for compactness is in the G-invariance of the 

problem.) A second approach is that of Flensted-Jensen. 

There the idea is to obtain the required functions by a very 

clever analytic continuation from those related to principal 

series representations on G~. Although this is perhaps the 

least obvious of the known methods, it may be technically 

the simplest to carry out. A detailed account of it is in 

[Knapp, 1986]. 

We will adopt a third approach. Before discussing it 

in detail, we need some terminology. 

Definition 5.1. Suppose G is a real reductive Lie group. 

A subalgebra ( 0 of g0 is called a Levi suba.lgebra if its 

complexification ( is a Levi factor of a parabolic subalge­

bra q = ( + u of g (see Definition 3.10). (We do not 

require that q should be defined over m.) Equivalently, 

a Levi subalgebra is one that is the centralizer in g0 of 

some semisimple element of g0 . 
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Fix a Levi subalgebra l 0 and a corresponding para-

bolic ct· Set 

(5.2)(a) L+ = {x €GI Ad(x) preserves l 0 and q}, 

the large Levi subgroup attached to l 0 and ct· Next, 

define the small Levi subgroup attached to l 0 , by 

(5.2)(b) L- = {x €GI Ad(x) is inner on l 0 and ct} 

= {x € L+I Ad(x) is inner on l} 

= largest subgroup of L+ in 

Ha.rish--cbandra's class 

= L+ n G-. 

Here G- is defined by any of the first three equations, 

applied to the case l = q = g. 1be equivalence of these 

four definitions is a fairly easy exercise in structure 

theory for reductive Lie algebras. Finally, a general Levi 

subgroup attached to q and l 0 is one between L- and 

L+. (1bis notation is consistent with that given for com-

pact groups in Definition 1.28 and for Levi factors of real 

parabolics in Definition 3.10.) 

Suppose L is a Levi subgroup. 1be Weyl group of L 

in G is 

W(G,L) = NG(L)/L, 

the quotient of the normalizer of G in L by L. We will 

be interested in this almost exclusively in the case when L 

is small. Similarly, define 
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Here Ge is any complex connected group with Lie algebra g, 

and Le is the connected subgroup corresponding to (. If 

G is in Harish-chandra's class, then W(g,l) contains 

W(G,L); but this fails in general. 

A Cartan subgroup of G is a Levi subgroup H of mini-

ma.I dimension (called the rank of G). For Levi subgroups, 

the minimal dimension assumption is equivalent to requiring 

that ~ be abelian, or that the image of Ad(H) in End(~) 

be finite. In this case, the Weyl group W(g.~) is the Weyl 

group of the root system of ~ in g (cf. [Humphreys, 

1972]). 

In the notation of the definition, G is in Harish-cbandra's 

class if and only if G- = G. In that case the distinction 

between small and large Levi factors disappears. 

The ma.in general construction of Levi subgroups is 

this: if lo is an abelian subalgebra of g0 consisting 

of semisimple elements, then 

(5.3) L = {x €GI Ad{x)I trivial} 
I 

is a Levi subgroup. As an example, suppose G is GL(2n,IR). 

The Lie algebra of G may be identified with the space of 

endomorphisms of IR2n. Identify IR2n with £11, and let X 

be the endomorphism of multiplication by i. The central-
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izer L of X in G consists of real linear transforma­

tions of cc11 that commute with multiplication by i; that 

is, of complex linear transformations. Consequently 

{5.4) L = GL{n.~) c GL{2n.m) 

is a Levi factor. Using similar ideas, the reader may 

easily exhibit U{r)xSO{n-r,n-r) as a Levi factor in 

SO(n,n). To understand the technical problem associated 

with small and large Levi factors, keep in mind that 

S0{2)xS0{2) is a small Cartan subgroup of 0(4), and 

S0{2)x.0{2) is a large one. 

Here is a helpful structural fact. 

LEMMA 5.5. Any Levi subgroup of a. reductive group G is 

conjugate to a. 9-sta.ble one. Two 9-sta.ble Levi subgroups 

a.re conjugate by G if and only if they a.re conjuga.te by K. 

Any 9-stable Levi factor L has a Langlands decomposi-

ti on 

{5.6) L =MA, 

with the properties discussed in Definition 3.16. In parti­

cular, a0 is contained in the -1 eigenspace of 9, and the 

centralizer of m0 in M is compact. If L is small, 

then A is central in L. 
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We will also need an appropriate extension of Defini-

tion 1.33. 

Definition 5.7. Suppose L is a Levi subgroup of G and 

q = l + u is a parabolic subalgebra normalized by L. 

Write 2p(u) for the determinant character of L on u: 

2p(u)(x) = det(Ad(x)I ). 
u 

The differential of 2p(u) is denoted by the same symbol. 

Its restriction to any Cartan subalgebra ~ of l is the 

sum of the roots of ~ in u. lbe metaplectic cover L-

of L is the two-fold cover defined by the square root 

p(u) of 2p(u). We will generally write C for the non-

trivial element of the kernel of the covering map. A meta­

plect ic representation of L- is one that is -1 on r. 

Following the line of reasoning given after Proposition 

1.35, one can check that L- depends only on L, and not on 

the particular q used to define it. 

LEMMA 5.8. Suppose 50 is an abelian subspace of the -1 

eigenspa.ce of a on g0 . Then the centralizer L of 50 

in G is the Levi factor of a real parabolic subgroup of G. 
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Sketch of proof. Let X be a generic element of io· lbe 

eigenvalues of ad(X) on g are all real; so it makes 

sense to define 

p0 = sum of the non-negative eigenspaces of ad(X). 

lbis will be a parabolic subalgebra, with Levi 

subalgebraequal to the centralizer of X in g0 . Since X 

was chosen to be generic, this centralizer is just the Lie 

alge-bra 10 of L. lbe rest of the argument is easy, and 

we omit it. a 

We turn now to a continuation of the discussion at the 

beginning of this chapter, on associating representations to 

characters of Cartan subgroups. So suppose that H = TA is 

a Langlands decomposition of a a-stable Cartan subgroup of 

G. Recall that this means that T is contained in K, and 

A is a vector group. By Lenuna 5.8, the centralizer of A 

in G is the Levi factor of some parabolic subgroup P = 

MAN of G. Necessarily M 

compact Cartan subgroup of 

mute. (lbis is automatic if 

contains T0 , and T n M 

M. Assume that T and A 

G is in Harish-cbandra's 

is a 

com-
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class, but it excludes some interesting behavior in gener-

al.) Then T itself is a compact Cartan in M. 

We are looking for a series of representations of G 

parametrized by representations of H. Harish-cbandra pro­

posed to construct them in analogy with Example 3.20, as 

follows. Any irreducible unitary representation T of H 

is of the form µ ® v. with µ an irreducible unitary repre­

sentation of T, and v a unitary character of A. Suppose 

we have some way to associate to µ a unitary representa-

tion I(M:µ) of M. Then we can define 

(5.9) I(G:T) = Ind;(I(M:µ) ® v ® 1), 

a unitary representation of G. 

In this way, one is led to concentrate on the case of a 

compact Cartan subgroup. To state what Harish-cbandra did 

about this case, we need one more definition. 

Definition 5.10.. Suppose G is a locally compact unimodular 

group. An irreducible unitary representation v of G is 

said to belong to the discrete series if it is equivalent to 

a subrepresentation of the translation representation of G 

on L2 (G). An equivalent condition is that for any v and 

w in the space of v, the matrix coefficient <v(g)v,w> 

should be square integrable as a function on G. 
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If G is compact, every irreducible unitary representa­

tion is in the discrete series. Harish-cbandra's result is 

an extension to non-compact G of lbeorem 1.37. 

TIIEOREM 5.11 ([Harish-cbandra, 1966]). Suppose G is a 

reductive Lie group. The representations of the discrete 

series of G are parametrized by G-conjugacy classes of 

pairs (T,T), where 

a) T is a large compact Cartan subgroup of G, normal­

izing a Borel subalgebra ~ of g; and 

b) T is a dominant regular metaplectic representation 

of T~ (Definition 5.7 and Definition 1.36). 

In particular, the discrete series is non-empty if and only 

if G has a compact Cartan subgroup. 

We write I(T), or I~.T(G:T), for the discrete series with 

parameter T. 

lbe result may also be formulated a little more along 

the lines of lbeorem 1.30, as follows. 

TIIEOREM 5.12 ([Harish-cbandra, 1966]). Suppose G is a 

reductive Lie group and T is a small Cartan subgroup of 

G. Write W for the Weyl group of T in G (Definition 
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5.1). Then there i.s a finite-to-one correspondence from the 

discrete series of G onto the set of all regular metaplec­

ti.c characters of T"', modulo W. Th.ts correspondence ma.y be 

described as follows. To each regular metaplecti.c character 

T, one can associate a unitary representation l(T) = IT(T). 

We have 

a) l(T) i.s a direct sum of a fi.ni.te rwm.ber of discrete 

series representations. 

b) Every discrete series representation of G occurs 

i.n some l(T). 

c) For w i.n W, I(T) i.s equivalent to !(WT). 

d) If T' i.s not i.n WT, then !(T) and l(T') have 

no i.rreduci.ble constituents i.n conunon. 

If G i.s i.n Bari.sh-Chandra's class, then the various !(T) 

are all i.rreduci.ble, and the correspondence above i.s a bijec­

tion. 

A few small points require attention. First, we began 

by hoping to attach representations of G to representations 

of compact Cartan subgroups. The parameter set turns out in 

the end to involve metaplectic representations. In the case 

of compact groups, we cured this problem by replacing the 

metaplectic representation T of T by µ = T ® (-p). We 

cannot do that here, for a simple reason. We would like to 
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recover T from µ, as µ ® p. The difficulty is that if 

µ is not regular, it does not define a set of positive 

roots uniquely; so we do not know which p to use. In the 

compact case this did not matter, for all possible choices 

were conjugate under the stabilizer of µ in W. In the 

non-compact case, W may be strictly smaller than the Weyl 

group of the root system. The result (already in SL(2,m)) 

is that the same µ is attached to several non-conjugate 

T. There are ways around this problem, but none of them 

leads to as simple a parametrization as in Theorem 1.17. On 

the other hand, there are real advantages to using metaplec­

tic parameters (in writing character formulas, for example -

cf. Theorem 1.40). It therefore seems reasonable to use 

them throughout. 

We turn now to the problem of constructing the discrete 

series representations of Theorem 5.11. Harish-chandra's 

approach was based on generalizing Theorem 1.40. We will 

instead seek a version of Theorem 1.24. So fix ~. T, and T 

as in Theorem 5.11. The most obvious imitation of Theorem 

1.24 would put on GIT the complex structure defined by 

(that is, having holomorphic tangent space corresponding to) 

~. and the line bundle w- associated to the representation 

µ = T ® (-p) (Propositions 1.19 to 1.21). The space V of 

K-finite holomorphic sections of w- is an admissible (g,K)-
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module. Unfortunately, it is the wrong one: the proof of 

Theorem 1.24 shows that it contains a copy of any finite-

dimensional representation of G of highest weight µ. 

(Such a representation always exists if G is linear, since T 

is assumed to be dominant and regular.) Finite-dimensional 

representations of non-compact reductive groups are rarely 

unitary and are never in the discrete series. 

There is another obvious complex structure on GIT 

available, however: the one defined by ~-. Let (µ,W) de-

note the representation T ~ p of T. We make it into a 

(~.T)-module by letting n act by zero; then (Proposition 

1.21) it defines a holomorphic vector bundle W on GIT. 

If G is compact and G0 is non-abe l ian, Theorem 1 . 24 guar-

antees that this bundle has no holomorphic sections at all: 

(5.13) f(G/T,W) = 0. 

It is not particularly difficult to prove this for general 

G as well. We need not despair, however. A holomorphic 

vector bundle has not only sections, but also higher coho-

mology groups. 

Definition 5.14. Suppose W is a holomorphic vector bundle 

on a complex manifold X. Write ~W for the sheaf of germs 

of holomorphic sections of X. The cohomology group HP(X.W) 

is by definition the pth sheaf cohomology group of X 
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with coefficients in ~w· By Dolbeault's theorem, this is 

isomorphic to the cohomology defined using the a operator 

on (0,p) forms with coefficients in W. 

The group G acts on the cohomology groups of a homogeneous 

holomorphic vector bundle; so we can look for the representa­

tions we want there. In case G is compact, Serre duality 

and Theorem 1.24 give 

(5.14) ~(K/T,W) ~ representation of 

highest weight T®(-p), 

which of course is exactly what we want for I(T). Here S 

is the dimension of KIT as a complex manifold. For G 

non-compact, the cohomology groups are much more difficult 

to analyze. (For example, they are generally infinite­

dimensional, and it is not clear that they carry Hausdorff 

topologies. To prove that, one must show that a operator 

has closed range.) Nevertheless, it is possible to study 

them. 

THEOREM 5.15 ([Schmid, 1967] and [Schmid, 1975]). Suppose 

G is a. reductive Lie group, T is a. large com.pa.ct Cartan 

subgroup a.ssocia.ted to a. Borel suba.lgebra. ~. and T is a. 
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dominant irreducible metaplectic representation of T~ 

(Definition 5.7). Assume (without loss of generality, by 

Lemma. 5.5) that T is contained in K. Write (µ,W) for 

the representation T ~ p of T. End.ow G/f with the holo-

morphic structure defined by li-; write W for the holomor-

phic vector bundle defined by µ. Let S be the complex 

dimension of KIT. 

a) The Barish-Chandra module of the discrete series 

representation Ili,T(T) is isomorphic to the space of 

K-finite elements in ~(G/f,W). 

b) If i is not equal to S, then Hi(G/T,W) is zero. 

c) KIT is a compact (complex) submanifold of maximal 

dimension in G/f. 

This is a reasonable generalization of the Borel-Weil theo-

rem (Theorem 1.24). 

There is a distinction to be made here among three 

problems: realizing representations that are already known 

to exist, as in Theorems 1.24 and 5.15; proving the e:x:is-

tence of representations, as in Theorems 1.17 and 5.11; and 

constructing representations (that is, doing existence and 

realization at the same time), as in Example 3.20 and 

Theorem 4.23. Clearly the third possibility is the most 
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desirable; the second without the first is in any case in­

adequate. 

It is therefore a serious problem that the original 

proof of 1beorem 5.15 depends on knowing 1beorem 5.11 in 

advance. Al though one can say quite a bit a. priori about 

the space V of K-finite elements in J:P(G/f,W) from an 

algebraic point of view, it is a difficult matter to impose 

even an invariant pre-Hilbert space structure on V. To 

some extent this problem exists already for compact groups. 

Our proof of 1beorem 1.24 invoked 1beorem 1.17; eliminating 

this dependence is possible but requires some moderately 

sophisticated differential geometry. To approach 1beorem 

5.15 without 1beorem 5.11 is far harder, but it is still 

possible. To begin with, the Dolbeault cohomology should be 

replaced by some kind of space of L2 harmonic forms. (Of 

course this is no change if G is compact, but the spaces 

are very different in general.) Kostant and l.anglands first 

suggested that the discrete series could be realized on such 

spaces. 1beir conjecture was proved in [Schmid, 1976], 

still using 1beorem 5.11. To make this into a construction 

- that is, to prove a. priori that the L2 cohomology spaces 

carry discrete series representations - is more or less the 

point of [Atiyah-Schmid, 1977]. 
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Unfortunately, we want even more unitary representa­

tions than are provided by Theorem 5.11. There is some hope 

of finding these by generalizations of Theorem 5.15, and 

this hope has been partially realized in [Rawnsley-Schmid­

Wolf, 1983]. The reader should consult that paper for more 

information. For the present, however, the analytic diffi­

culties are insuperable except in special cases. 

The beginnings of a way out of these difficulties were 

provided by Zuckerman in 1977 (see Chapter 6 of [Vogan, 

1981]). In the setting of Theorem 5.15, one can think of 

the idea in this way. The complex manifold G/f contains 

KIT as a compact complex submanifold. Stein manifolds 

cannot have non-trivial compact submanifolds; so G/f is 

almost never Stein. Schmid showed, however, that G/f is 

in a certain technical sense Stein away from KIT. Stein 

manifolds have many holomorphic functions. One should there­

fore expect the only constraints on II8(G/f,W) to come from 

KIT. More precisely, anything that looks like the jet of a 

class in this cohomology near KIT ought to arise from a 

genuine global cohomology class. Zuckerman's idea was to 

set up a formalism to describe such jets and then to use 

this formalism instead of the Dolbeault cohomology. The pro­

cedure gives only a Lie algebra representation, but Theorem 

2.15 then immediately turns it into a group representation. 
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Most importantly, the procedure can be generalized substan­

tially without much effort: we can build representations of 

G out of representations of a wide class of Levi subgroups. 

The next chapter is devoted to a description of Zuckerman's 

construction. 



Chapter 6 

OOHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC TIIEORY 

We are going to study Zuckerman's construction in de­

tail only under what may appear to be rather restrictive 

hypotheses. We will therefore begin with a lemma intended 

·to motivate them. 

LEMMA 6.1. Suppose L i.s a Levi. factor i.n G, associ.ated 

to a pa.raboli.c suba.lgebra q = (+u i.n the complexi.fi.cati.on 

(Defi.ni.ti.on 5.1). Asswn.e tha.t L i.s stable under the 

Cartan involuti.on 9 (cf. Lemma. 5.5). Then at least one of 

the following possibilities holds. 

a) The centralizer of L in g0 (uihi.ch is contained 

in ( 0 ) meets the -1 eigenspa.ce s 0 of 9. In tha.t case, 

L is contained in the Levi factor of a proper real pa.ra­

bol ic subgroup of G. 

b) The parabolic q is 9-stable. 

123 
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This second condition ts equivalent to 

b)' The parabolic q ts opposite to its complex conju-

gate q . That ts, 

Proof. Recall from Definition 5.7 the one-dimensional repre-

sentation 2p(u) of L. Since 0 acts on L, it acts on 

representations of L. Clearly 

0(2p(u)) = 2p(0u); 

the Lie algebra 0q is another parabolic with Levi factor 

l. Define ~ to be the quotient of these two characters, 

and + its differential in l*. lben + is zero if and 

only if q is 0-stable. Furthermore + is invariant 

under the coadjoint action of L, and a+ is -+. Elements 

of s 0 have real eigenvalues in the adjoint representation. 

Since + is built from the adjoint representation, it fol-

lows that + is real valued. (lbe equivalence of (b) and 

(b)' is similar; we omit details.) Identifying l 0 with 

* (l 0 ) by the form chosen before (2.2), we conclude that + 

corresponds to an L-fixed element of s 0 • lbe proposition 

now follows from Lenna 5.8. a 

We would like to be able to construct unitary represen-

tations of G out of unitary representations of Levi sub-
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groups of G. If we are willing to do this in a step-by-step 

manner, LelJDlla 6.1 says that it suffices to consider two spe-

cial cases: Levi factors of real parabolic subgroups, and 

Levi factors of 9-stable parabolic subalgebras. Since we 

have treated the first case in Chapter 3, we will concen-

trate now on the second. For the rest of this chapter, we 

will therefore work with the following situation. 

q = l+u is a parabolic subalgebra of g 

9 preserves q, l, and u 

(6.2)(a) l = complexification of l 0 

L = a Levi subgroup for q. 

Because 9 preserves everything, the Cartan decomposition 

(2.1) gives 

(6.2)(b) u = u n t + u n s 

L = (L n K) • exp(l 0 n s 0 ). 

We write 

(6.2)(c) R =dim u n S, s =dim u n !. 

1be complex conjugate parabolic subalgebra q- gives rise to 

a triangular decomposition 

(6.2)(d) g = u + l + u . 

From Definition 5.7, we have the metaplectic cover L~ of 

L and its metaplectic character 

~" 
(6.2)(e) p(u) € (L ) . 

u 
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(The character is unitary for the following reason. By the 

proof of Lellllll8. 6.1, its differential vanishes on l n s; so 

it takes purely imaginary values on g0 : 

(6.2)(f) . * p(u) € i(lo n fo) .) 

Because L n K preserves the decompositions (6.2)(b), we 

have two more characters of L n K: 

(6.2)(g) 2p(u n !) = det(Adlunt>• 

s =character of L n Kon A (u n !), 

and (similarly) 2p(u n s). Obviously the sum of these two 

characters is 2p(u). 

In order to describe even the most elementary proper-

ties of Zuckerman's construction, we need a long digression 

on the center of the enveloping algebra. 

Definition 6.3. Suppose g is a complex reductive Lie 

algebra. Write 

(6.3)(a) ~(§) =center of U(g). 

Fix a parabolic subalgebra and a Levi factor of it, q = (+u. 

Write u for the nil radical of the opposite parabolic sub-

algebra, so that 

§ = u + ( + u • 

By the Poincare-Birkhoff-Witt theorem, the enveloping alge-

bra decomposes as a vector space, as 

U(g) = U(u) ® U(l) ® U(u-). 
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In particular, there is a direct sum decomposition 

(6.3)(b) U(g) = U(l) $ [uU(g) + U(g)u-]. 

(The sum within the square brackets is not direct.) Write 

(6.3)(c) (': U(g) -+ U(l) 

for the projection on the first factor. Let Z be any ele-

ment of the center of l such that ad(Z) has positive 

eigenvalues on u. Then the restriction of f~ to the cen-

tralizer of Z is a homomorphism of algebras. 

Recall the one-dimensional representation p(u) of l 

(Definition 5.7). 

(6.3)(d) 

Define a map T from l 
<t 

T<t(X) = X + p(u)(X). 

into U(l) by 

Because p(u) is a Lie algebra homomorphism, so is T . It 
<t 

therefore extends uniquely to a homomorphism of algebras 

T : U(l) -+ U(l). 
<t 

Because it has an obvious inverse, T is actually an auto­
<t 

morphism. The Hari.sh-Chandra map is 

(6.3)(e) 

a map from U(g) to U(l). This map respects the adjoint 

action of the group L: 

(6.3)(f) f[Adg(x)(u)] = Ad1(x)(f(u)) (xEL, uEU{g)). 

Restricted to the centralizer of any element Z as above, 

it is a homomorphism of algebras. In particular, we have 

the Hari.sh-Chandra homomorphism 

(6.3)(g) f: '.f(g) -+'.f( l). 
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Suppose G is a reductive group with complexified Lie 

algebra g. Write 

(6.3)(h) ~G(g) = Ad(G)-invariants in U(g) C ~(g). 

lbe containment is an equality if and only if G belongs to 

Ha.rish--chandra's class. Because of (6.3)(f), we can re-

strict f to 

(6.3)(i) 

THEOREM 6.4 (Ha.rish-chandra; cf. [Humphreys, 1972]). Sup-

pose we are in the setting of Definition 6.3. 

a) The Harish-01.and.ra homomorphism f of {6.3)(g) 

depends only on l, and not on q. Consequently, we can 

write 

(Definition 5.1). 

b) f 1 is injective. 

c) If l = l) is a Cartan suba.lgebra, then 

fl): ~(g) ~ S(l))W(g,l) 

is an isomorphism. In the setting of {6.3)(i), write W~ 

for the group of automorphisms of ~L(l) generated by 

W(G,L) and W(g. l). Then we have 

d) The rna.p 

is injective. 
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e) Suppose tha.t L = H is a Cartan subgroup and tha.t 

W(G,H) ha.s a representative in each connected component of 

G. (This is automatic if H is small and is either fund.a-

mental or maximally split.) Then fL is an isomorphism. 

Definition 6.5. We use the notation of Definition 6.3. Fix 

a Cartan suba.lgebra ~ of g. Ea.ch element A of ~* de-

fines a ring homomorphism 

Xx: S(~) _. 0::, 

by evaluation at A. This gives rise to 

fx = f~.x = "x o f~. 

a homomorphism from ~(g) to 0::. We call such a homomor-

phism an infinitesimal character. Equivalently, there is a 

maximal ideal 

,A = ker f x 
in ~(g). Again Theorem 6.4 makes f~ an integral ring 

extension; so all maximal ideals in ~(g) arise in this 

way. We write 

* Max ~(g) = ~ /W(g.~). 
A similar discussion applies to ~G(g). 

More generally, suppose l is a Levi suba.lgebra of g, 

and ~ is an infinitesimal character for l. Define 

f~ = fl.~ = ~ 0 f (' 
a homomorphism from ~(g) to 0::. 
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We say that a g module V has infinitesimal cha.rac-

ter A (or fA) if V is annihilated by ~A: 

(z € ~(g), v € V). 

Again, a similar definition applies to ~G(g). We will say 

G-infinitesimal character if it is necessary to emphasize 

the distinction. 

LEMMA 6.6 (algebraic Schur's lemma; see [Dixmier, 1974]). 

Any irreducible g module has an infinitesimal character; 

that is, ~(g) acts by scalars on it. Any irreducible 

(g,K)-module has a G-infinitesimal character. 

We could now begin to describe Zuckerman's construe-

tion, but a final remark about the case of real parabolics 

may be instructive. 

PROPOSITION 6.7. In the setting of Definition 4.1, suppose 

that the representation + of L has L-infinitesimal 

character ~ (Definition 6.5). Then the representation 

G 
Indp(+) has G-infinitesimal character fL.~ (Definition 

6.5). 
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This is proved from the definitions by a very simple calcula-

tion; details may be found in [Wallach, 1973] or [Knapp, 

1986], for example. 

THEOREM 6.8 (Zuckerman, Vogan; see [Vogan, 1981] and [Vogan, 

1984]). Suppose L is a Levi subgroup of the reductive 

group G, attached. to the 0-stable parabolic subalgebra 

q- = l+u. Use the notation (6.2}; in }JCLrticular, L~ is the 

metaplectic double cover of L, and S is the dimension of 

u n l. Then there is a family 

~j = (~ }j 
q-,L (j=O, l, ... ,S) 

of functors from the category of metaplectic (l,(L n K}~}-

modules, to the category of (g,K}-modules, with the follow­

ing properties. Let Z be an (l,(L n K}~}-module. 

a) ~* takes short exact sequences of metaplectic 

(l,(L n K}~}-modules to long exact sequences of (g,K}-

modules. 

b} If Z has finite length, then so do all the ~jz. 

Let l) be a Cartan subalgebra of l. Assume from now on 

that Z has 

tion 6.5). 

* L-infinitesimal character A in l) (Defini-

c} ~j(Z} has G-infinitesimal character A. 

d} Assume that for each root a of l) in u , 
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Re(}\.,a) ~ 0. 

Then ~j(Z) is zero for j not equal to S. 

e) Under the hypothesis of (d), any non-degenerate 

Hermitian form on Z induces one on ~8(Z). If the former 

is definite, so is the latter. That is, if Z is infinites­

imally unitary, then so is ~(Z). 

f) Assume tha.t for each root a of ~ in u , 

Re(}\.,a) > 0. 

Then if Z is non-zero, so is ~(Z). 

g) Suppose tha.t L = T is a large compact Ca.rtan sub-

group of G (so tha.t q- = ~ is a Borel suba.lgebra), and 

tha.t T is an irreducible dominant regular metaplectic repre-

sentation of T. Then Harish-Chand.ra's discrete series is 

(The only result not due to Zuckerman here is the statement 

about definiteness in (e).) 

We call the functors ~j cohomological parabolic in.due-

tion. Because of its special importance, we will use a spec­

ial notation for ~8 : 

(6.9) I = (~ )S 
q-,L q-,L 

The reader should be warned that the functor ~S considered 

here differs by tensoring with p(u) from the one defined 

in [Vogan, 1981]. Letters of complaint on this point may be 
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addressed to M. Duf lo, who crystallized for me some previous-

ly half-formed ideas about it. 

Notice that the "dominant regular" condition in (g) is 

the same as the condition in (f). lbe rest of the theorem 

therefore guarantees the existence of the proposed discrete 

series as unitary representations. (lbis is circular unless 

one uses the proof in 

ly easy to show that 

[Wallach, 1984] for (e).) It is fair­

s 
(~.T) (T) is irreducible. To show 

that it belongs to the discrete series requires some of 

Harish-chandra's basic ideas about the Schwartz space of G, 

but far less serious analysis than is needed for Harish-

Chandra's proof of lbeorem 5.11. To show that every dis-

crete series is of this form is still more difficult, but 

can be done using some of the ideas of Langlands and others 

discussed in Chapter 13. 

lbe philosophical content of lbeorem 6.8 is this. 

According to Proposition 1.19, q defines a complex struc-

ture on GIL (cf. LeDD118. 6.l(b)'). Write 

(6.10) W = Z 8 a::p(u)" 

Since Z and p(u) are both metaplectic, W descends to 

an (l,(L n K))-module. Asume that W is the Harish-chandra 

module for a representation (c.>,:lf ) 
6' 

of L. After replacing 

:It by the subspace of smooth vectors, we may assume that l 
6' 
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acts on it. Extend Ci.I to a module for q by making u 

act trivially. 1ben Ci.I defines a (possibly infinite-

dimensional) holomorphic vector bundle W on GIL (Propo-

sition 1.21). Definition 5.14 therefore provides sheaf 

cohomology groups, on which G acts. It is conjectured 

that 

(6.11) (~ L)j(Z) ~ Harish-cbandra module of Hj(G/L,W). 
<t. 

1beorem 5.15 (in conjunction with 1beorem 6.8) is a special 

case of this conjecture. 

Conjecture (6.11) sheds some light on 1beorem 6.8. 

Most obviously, it explains why we should get a family of 

functors instead of just one. As an analogue of parabolic 

induction, the functor ~S has as its main flaw the strong 

requirement in 1beorem 6.8(e) needed to guarantee unitarity. 

1bis is a completely unavoidable problem, however. 1be dis-

cussion after 1beorem 5.12 included the observation that 

even if L is compact, H0 (G/L,W) may contain a (non-

unitary) finite-dimensional representation. A slightly more 

sophisticated argument will produce non-unitary finite­

dimensional representations inside ~(G/L,W) as well. 

Conjecture 6.11 then suggests that s 
~ does not preserve 

unitarity in these cases, and in fact one can prove that 

very easily. A second unsatisfactory point is that ~S 

depends on q, and not just on L (compare 1beorem 3.19). 
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The same examples show that this is definitely the case, 

however: in the setting of Theorem 6.S(g), we can sometimes 

find a T and two different Borel suba.lgebras, such that 

one of the functors produces an irreducible discrete series 

representation, and the other something containing a finite­

dimensional representation. If T is allowed to be singu­

lar, we can sometimes choose the two Borel suba.lgebras both 

to satisfy the condition in (d) of the theorem, and get two 

different unitary representations of G. 

We turn now to the construction of the functors ~j. 

Definition 6.12. Suppose g is a Lie algebra and ~ is a 

suba.lgebra. Let V be any ~ module. The produced module 

from ~ to Q is 

(6.12)(a) pro~(V) = Ho~(U(g),V). 
The Hom is defined using the left action of ~ on Ufa) 

and made into a Q module using the right action. More 

precisely, a linear map + from U(g) to V must satisfy 

+(Zu) = Z • (+(u)) (Z € ~. u € U(g)) 

in order to belong to the produced module. In that case, an 

element X in g acts by 

(X•+)(u) = +(uX). 

The order of vanishing filtration of pro(V) is the decreas­

ing filtration defined by 
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(6.12)(b) [pro(V)] = {+ € pro(V)I +(u) = 0, all u € U (g)} n n 

Here U (g) is the subspace of U(g) spanned by products 
n 

of at most n elements of g. Notice that pro(V) is com-

plete for this filtration. 

Suppose that M is a Lie group and we are given the 

ingredients of Definition 1.26 for the pair (g,M). Assume 

in addition that ~ contains m and that Ad(M) preserves 

~; then (~.M) also satisfies the requirements of Definition 

1.26. Suppose now that V is an (~.M)-module. We can de­

fine an action of M on proi(V) by 

(b•+)(u) = b•(+(Ad(b- 1 )u)). 

This action is usually not locally finite (Definition 1.26 

(a)). but we can certainly consider the largest subspace 

where it is locally finite. In analogy with Definition 2.4, 

we denote this by a subscript M and define 

(6.12)(b) (g,M)( ) ) pro(~.M) V = Ho~(U(g .V)M. 

By way of motivation, we return first to the Cw cate-

gory. 

PROPOSITION 6.13 (invariant Taylor series). Suppose G is 

a Lie group, H is a closed subgroup, ~ is a finite-

dimensional homogeneous vector bundle on G/H, and (1r,V) 

is the corresponding representation of H (Propositions 
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1.20 and 3.2). 
OC> 

Write C (G/H,.,) for the space of smooth 

sections of ., and X for the subspace of sections vanish-

ing to infinite order at eH. Th.en th.ere is a short exact 

sequence of representations of g and of H 

0' X' Coe>(G/H,.,) 'pro~(V) '0. 

The second map preserves the order of vanishing filtrations. 

Proof. Write A for the action of U(g) on smooth func-

tions by infinitesimal left translation. For X in g0 , this 

is given by 

(6.14) (X(X)f)(g) = (d/dt)(f(exp(-tX)g)Jlt=O" 

The action is extended to· U(g) so as to give an algebra 

representation. Suppose then that F is a smooth section 

of .,_ Identify it with a function f from G to V, by 

Corollary 3.4. Define a map +F from U(g) to V by 

(6.15) +F(u) = (X(u)f)(e). 

lbat this map belongs to the produced module, and has the 

required properties, follows from Corollary 3.4 and elemen-

tary arguments. (One needs to know at some point that a 

smooth function can have any prescribed Taylor series, but 

this is a standard fact from analysis.) We omit the de-

tails. D. 
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CX>ROllARY 6.16. In the setting of Proposition 6.13, assume 

that G/H is connected. Then the space d"(G/H,"f) of real-

analytic sections of "t embeds in pro~(V). More precisely 
g 

(even if G/H is not connected), the space of germs at eH 

of real analytic sections embeds in pro(V). 

Next, we introduce a complex structure. 

PROPOSITION 6.17. In the setting of Proposition 6.13, sup-

pose G/H has an invariant complex structure given by {>-

(Proposition 1.19), and that "t has a holomorphic structure 

given by a (t>,H)-nwdule structure on V. Write ~ for the 

sheaf of germs of holomorphic sections of "t. Then there is 

a natural inclusion 

~ eH -+ pro: (V) , 

preserving the actions of U(g) and the order of vanishing 

filtrations. If ~eH is completed with respect to this fil­

tration, the map becomes an isomorphism. 

This is clear from Proposition 1.21 and Corollary 6.16. The 

completion of a space of germs of holomorphic sections with 

respect to the order of vanishing filtration is just the 

space of formal power series sections. 
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From this point on, we will be considering some more 

subtle operations on (g,K)-modules. Some of these cannot 

be carried out, or require much more care, in the general 

context of Definition 1.26. It is therefore convenient to 

introduce a more restrictive version of that definition. 

Definition 6.18. Suppose (~.M) is a pair satisfying the 

hypotheses (i) and (ii) imposed on (~.H) in Definition 

1.26. Assume in addition that 

iii) M is compact. 

Suppose X is an (~.M)-module. Write Xd for the 

M-finite vectors in the dual space of X. In notation like 

that of Definition 6.12, 

a) ~ = Ho111q::(X.~)M. 
Th.is is again an (~.M)-module, and the functor sending X 

to ~ is exact. We call Xd the M-finite dual of X. 

Similarly, let 'Y!1 denote the (~.M)-module whose 

underlying real vector space is Xd, but whose multiplica­

tion by i (the square root of -1) is the negative of that 

for Xd. Th.e actions of ~ and M on 'Y!1 are unchanged 

from the actions on ti. Th.ere is a non-degenerate sesqu­

linear pairing between X and 'Y!1. We call Xh the Hermi­

tian dual of X. An (~.M)-invariant sesquilinear pairing 
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between X and another (l),M) module Y amounts to a map 

from Y to '11. 
The assumption that M be compact simplifies the proof 

that the category of (l),M)-modules has enough injectives 

and allows one to prove that there are enough projectives. 

One can therefore speak of 

b) 

(the derived functors of Hom). In particular, we define 

c) i i 
H (~.M.X) = Ext(~.M)(C,X), 

the relative Lie algebra cohomology groups. 

A detailed discussion of the category of (l),M) mod-

ules and its Ext functors may be found in [Borel-Wallach, 

1980] or [Vogan, 1981]. 

Definition 6.19 (Zuckerman). Suppose K is a Lie group, g 

is a Lie algebra, and we are given the ingredients of Defini-

tion 6.18 for the pair (g,K). Let M be a closed subgroup 

of K; then we have these ingredients for (g.M) as well. 

We define a functor (the K-finite vectors in functor), 

r - rfa.K) 
- (g.M) 

from (g,M) modules to (g,K) modules, as follows. Let X 

be a (g,M) module. Set 
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(f0 )~(X) = {v €XI dim U(f)v ( w}, 

the space of !-finite vectors. By elementary Lie group 

theory, this space carries a representation of the universal 

cover (K0 )~ of the identity component of K. Write Z 

for the kernel of the covering map, and 

f 0 (X) = {v € (f0 )~(X)I z•v = v, all z € Z}. 

Obviously f 0 (X) carries a representation of K0 . Call 

this representation T for a moment (although we will soon 

return to module notation), and write p for the representa-

tion of M on X. Set 

f1(X) = {v € fo(X)I T(m)v = p(m)v, all m €Mn Ko}-

Let K1 be the subgroup of K generated by K0 and M. 

Then there is a unique action of K1 on f 1(X), extending 

both T and p. Finally, set 

K 
f(X) = Inclj{1(f1(X)), 

with induction defined formally as in Definition 3.8. (1be 

hypotheses of that definition are not satisfied here, but 

that only means we cannot get a Hilbert space.) We make g 

act on the induced representation by 

(X•f)(k) = (Ad(k- 1)(X))•(f(k)). 

Although this definition requires care, it should not be re-

garded too seriously; all we want is (to make sense of) the 

"subspace" of X on which the action of f exponentiates 
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to K. If K and M are connected, and K is simply con-

nected, then f(X) is the (easily defined) subspace of 

!-finite vectors in X. One should keep this case in mind. 

Definition 6.20 (Zuckerman; see [Vogan, 1981]). We use the 

notation of (6.2). Suppose Z is a metaplectic (l,(IJ1K)~)-

module. Write 

W = Z ® ICp(u) 

(compare (6.10)). By (6.2)(e), W is an (l,(IJ1K))-module. 

Extend W to a (q,(IJ1K))-module by making u act trivial­

ly. Define (following Definition 6.12) 

We define 

(6.20)(a) 

(g,IJ1K)( ) 
X = pro(g,IJ1K) W . 

(following Definition 6.19) 

(~ ) 0 (Z) = r(g,K) (X). 
q,L (g,IJ1K) 

It is a simple matter to verify that ~o is a left exact 

functor. Because the category of (l,(IJ1K)~)-modules has 

enough injectives, we can define 

(6.20)(b) (~ L)i = ith right derived functor of ~0 . q, 

In fact all the functors involved in the definition of ~ 

are exact and take injectives to injectives, except for f. 

We could therefore define ~i by replacing f by its ith 

right derived functor in (6.20)(a). 



COHOMOLOGICAL PARABOLIC INDUCTION 143 

Here are some comments about the proof of Theorem 6.8. 

Part (a) is elementary homological algebra (except that we 

have not yet explained why ~i is zero for i greater than 

S). Consider next (c). Then obviously W (Definition 

6.20) has infinitesimal character A+ p(u). We now apply 

the following infinitesimal version of Proposition 6.7. 

LEMMA 6.21. In the setting of Definition. 6.3. suppose W 

is a module for l , extended to q by making u act triv­

ially. Suppose z is in ~(g), and f~ is the map of 

(6.3)(c). Then f~(z) is in ~(l) and so defines a q-

module map • from W to W. Write ~ for the g module 

lllCLP induced (by functoriality) on prog(W) (Definition 
q 

6.12). Then the action of z on pro(W) is given by ~-

In particular, if W has infinitesimal character 

X+p(u), then pro(W) has infinitesimal character A (Defi-

nit ion 6.5). 

It is easy to see that the functor I' preserves G-infinite-

simal character. Lenona. 6.21 therefore leads to 

CX>ROLLARY 6.22. In the setting of Definition 6.20, suppose 

z is in ~G(g). Write f(z) for its image in ~L(l) un-
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der the Barish-Chandra map (6.3)(i). Write + for the 

action of f(z) i on Z, and cJI for the map induced (by 

functoriality) on ~i(Z). Then cpi is the action of z on 

~i. 

1bis includes 1beorem 6.S(c). 

To continue the proof of 1beorem 6.8, it is necessary 

to analyze the restriction of ~i to K. 1be only diffi-

culty is in understanding the derived functors of f. For 

that, we begin with an easy lemma. 

LEMMA 6.23. In the setting of Definition 6.19, suppose X 

is a (g.M)-module. Write ~ for the underlying (f,M)-

module. Then 

~r(g.K)(X) = r(f,K)(~). 
(g,M) (f,M) 

{Here we have used ~ on the left to denote the underlying 

(f,K)-module for a (g,K)-module.) The same result holds 

for the derived functors. 

Proof. 1be result for f follows by inspection of Defini-

tion 6.19. For the derived functors, it suffices to show 

that there are enough injective (g,M)-modules that are 

injective as (f,M)-modules. To see this, let Y be any 

locally finite representation of M. 1ben 
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I = Homm(U(g).Y)M 

(Definition 6.12) is an injective (g.M)-module, and there 

are enough injectives of this kind ([Vogan. 1981]. Corollary 

6.1.24). But 

~I= Homm(U(f),Hom(S(g/f),Y))M 

is an injective (f,M)-module. a. 

Another basic fact is that r is an adjoint to another 

kind of forgetful functor. 

LEMMA 6.24 (Zuckerman; see [Vogan, 1981]. LeDDlla 6.2.10). In 

the setting of Definition 6.19, suppose V is a (g,K)­

m.odule. Write j}{ for the wulerlying (g,M)-module. Then 

there is a natural isomorph.ism. 

1bis is fairly clear from the definition of r. An inunedi­

ate consequence (using LeDDlla 6.23) is a corresponding state­

ment about derived functors. 

PROPOSITION 6.25. In the setting of Definition 6.19, sup­

pose V is a (locally finite) representation of K. Then 

there are natural isomorphisms 
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Honxcv.rjx) = Extit.M)cv.x) 

: Extit.M)(~.Ho~(V,X)M) 
: Hj(f,M,Ho~(V,X)M). 

(We ha.ue omitted various forgetful functors.) 

Th.is proposition is the tool that allows one to compute 

the functors ~j as representations of K. We will return 

to that task in a moment. First, however, we study Hermi-

tian forms. 

LEMMA 6.26 (Poincare duality; see [Borel-Wallach, 1980] or 

[Knapp-Vogan, 1986]). In the setting of Definition 6.18, 

suppose X is an (~ ,M)-m.odule. Write t for the dimen-

sion of ~/m. Then 

t 
~t = A (~/m) 

is a one-dimensional representation of M in a natural lllCl.y . .. 
We make ~t into an (~.M)-module by making an element H 

of ~ act by det(ad(H)); tha.t is, by the scalar by Which 

it acts on the top exterior power of ~-

Then there is a natural isomorphism 

i * .... t-i _ _d 
H (~ ,M,X) = H (~ ,M,x- ® ~t). 



OOHOMOLOGICAL PARABOLIC Il'IDUCTION 147 

Sketch of proof. The cohomology is computed by a certain 

complex 

i 
(6.27) Ho11Ji(A (l)/m) ,X) 

(see for example [Borel-Wallach, 1980]). Exterior multipli-

cation defines an isomorphism 

At-i(l)/m) ~ Hom(Ai(l)/m),At(l)/m)). 

Evidently the dual of the complex (6.27) may therefore be 

identified with 

One can check that in this identification, the transpose of 

the differential for x is the differential for xll ® ct. 

It follows that 

i * ~ t-i _ _d H (l),M,X) = H (l).M.x- ®Ct). a. 

TiiEOREM 6.28 ([Enright-Wallach, 1980]). In the setting of 

Definition 6.19, let X be a (g,M)-module. Write t for 

the dimension of Vm. Then 

t 
Ct = A (t/m) 

is a one-dimensional representation of M in a natural 1DC1.y. 

Make Ct into a (g,M)-module by making g act trivially. 

Th.en there is a natural isomorphism of (g,K)-modules 

{fiX)h ~ ft-i(x11 ® C ). 
t 

In particular, suppose that M acts trivially on At(t/m). 
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Then a (non-degenerate) invariant Hermitian form on X 

induces a (non-degenerate) invariant Hermitian form on 

ft/2(X). 

Sketch of proof. Let V be any finite-dimensional repre-

sentation of K. A calculation using Proposition 6.25 and 

Lenuna. 6.26 shows that 

i h t-i __ h 
Ho~(V,f (X) ) ~ Ho~(V,f (x-- ® ~t)) 

in a natural way. It follows that the desired isomorphism 

exists on the level of representations of K. Enright and 

Wallach now use a clever formal argument to deduce that a 

sufficiently nice isomorphism as representations of K must 

automatically respect the action of G as well; we refer to 

their paper for the details. a 

PROPOSITION 6.29 (Shapovalov). In the setting of Definition 

6.20, an invariant Hermiti.~ form on Z induces one on 

X~ . d(g,111K) (Z A ~ ) 
=in (q-,111K) ~ ~p(u) . 

Under the hypothesis of Theorem 6.8(d), the induced form is 

non-degenerate, and x~ is isomorphic to x. 

This is more or less routine; details may be found in 

[Vogan, 1984]. (Shapovalov proved much deeper results about 

the form on the induced module.) 
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We now return to the analysis of the K-types of ~j(Z}. 

Definition 6.30. In the setting of Definition 6.20, suppose 

ZrnK is a metaplectic (q n l,(L n K}~}-module. Set 

WIJ1K = ~ ® Cp(u} 

x, = pro((q n t,L n K} t (t,K}}(Wli1K} 

(~qnt.li1K}a(~} = r~~:~}(Xt}. 
C~qnt,IJ1K}i = ith right derived functor of ~0 . 

These are essentially taken from Definition 6.20, applied to 

K instead of G. The only difference is that we do not re-

quire u n l to act trivially on ~- As in the earlier 

definition, we could simply take derived functors of r. 

PROPOSITION 6.31. In the setting of Definition 6.30, sup-

pose ~ is finite-dimensional. Let WIJ1K be the holo­

morphic vector bundle on K/(L n K} associated to WIJ1K; we 

have endowed the base space with the complex structure given 

by (q n ir. Then there is a natural isomorphism. 

(~qnt,IJ1K} (~} ~ Hi(K/(L n K),WIJ1(} 

(Definition 5.14). 

This is another special case of the conjecture (6.11}; it is 

due to Zuckerman (unpublished}. Its importance was first 
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emphasized in [Enright-Wallach, 1980], where one can find a 

proof. The idea is that both sides of the equality in the 

proposition are adjoint to the same relative Ext functors. 

More precisely, writing Si for either side and V for any 

representation of K, 

(6.32) 

i When S comes from the right side in the proposition, this 

is a generalization of Proposition 1.27. (It goes back to 

[Bott, 1957].) i For S coming from the left side in the 

proposition, it follows from Proposition 6.25 and a version 

of Shapiro's lennna. 

Definition 6.33 (cf. [Vogan, 1981], Theorem 6.3.12). In the 

setting of Definition 6.20, the order of vanishing along f 

filtration is the decreasing filtration of X (by (f,IJlK)-

submodules) 

(6.33)(a) X = {•€XI •Cu) = 0, all u € U (g)U(!)}. n n 

In particular, X0 is the subspace of maps vanishing on 

U(!); so 

(6.33)(b) X/X0 ~ Homqf1f(U(!),W)I.11K 

(f ,IJlK) = pro(qf1f,IJ1K)(W). 

More generally, it is easy to check that 
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(6.33)(c) Xn-l/Xn ~ Homqnf(U(f).~((s/qfls) ) ® W)lflK 

(f ,IJlK) ....n * = pro(qf1f,lflK)(~ (s/qfls) ®W). 

1be idea now is to use the order of vanishing along f 

filtration to compute rix as a representation of K. 

Because of Lemma 6.23, this is permitted in principle. 

Because the filtration is infinite, there is a minor techni-

cal problem about convergence of a spectral sequence. It 

can be handled by a simple trick, however. 1be result is 

111EOREM 6.34 (generalized Blattner formula); (see [Vogan, 

1981], 1beorem 6.3.12). In the setting of Theorem 6.8 and 

Definition 6.19, assume that Z has finite length. Write 

fn for the holomorphic vector bundle on K/lilK correspond­

ing to the (qnf,IIlK)-rnod.ule 

Sn((s/qfls)*) ® W. 

a) ~j(Z) = 0 for j greater than S. 

b) All the ~j(Z) are admissible (Definition 2.11). 

c) As virtual representations of K, 

l (-l)j~j(Z) = l (-l)jHj(K/I.IlK,fn). 

j j,n 
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The right side of the formula in the theorem may be computed 

using Bott's generalization of the Borel-Weil theorem (cf. 

[Bott, 1957)]. 

The corner of the spectral sequence in the proof of 

this theorem arises as follows. The order of vanishing fil-

tration gives a surjective map 

pro(~~lflK)(W) ~ pro~~f,lflK)(W). 
Now apply the derived functors of I' (using Lenna 6.23). 

We get 

COROLLARY 6.35. In the setting of Definitions 6.20 and 

6.30, there is a surjective map of K-m.odules 

~(z) ~ C~qnt,lflK>sCZ). 

We return now to our discussion of the proof of Theorem 

6.8. Part (b) follows from Theorem 6.34(b). For (d) 

through (g), we may as well assume (perhaps after replacing 

z by z $ zh) that z carries a non-degenerate invariant 

Hermitian form. By Proposition 6.29, X = pro(W) does as 

well. Notice that S is half the dimension of K/IIlK. The 

decomposition 

l/( n l ~ (u n l) $ (u- n l), 

and the invariant pairing between the two sunna.nds induced 

by our fixed bilinear form on g, show that L n K acts 
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trivially on the top exterior power of t/l n t. By Theorem 

6.28, ~S(Z) carries a non-degenerate form, as required by 

1heorem 6.S(e). In addition, 

ij(Z)h = ~-j(Z). 

If j is greater than S, the left side is zero by Theorem 

6.34(a). If j is less than S, the right side is zero for 

the same reason. Theorem 6.S(d) follows. The statement 

about definiteness in Theorem 6.S(e) is rather hard. Proofs 

may be found in [Vogan, 1984] or [Wallach, 1984]. 

For the remaining statements, notice that Theorem 

6.S(d) and Theorem 6.34(c) compute 5l8(Z) as a representa­

tion of K (under the hypothesis of Theorem 6.S(d)). The 

non-vanishing statement in Theorem 6.S(f) is proved using 

Corollary 6.35, by exhibiting a representation of L n K 

s that is not killed by C~qnt,lflK) For (g), [Schmid, 

1975] contains a characterization of any discrete series 

representation in terms of its restriction to K. Theorem 

6.34 allows one to check that ~S(T) satisfies the condi-

tions of that characterization. 

To conclude this chapter, we discuss the unitary repre-

sentation theory of GL(n,m). Details may be found in 

[Vogan, 1986b]. To see how the theory differs from the case 

of GL(n,C), we begin with a series of representations 
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studied by B. Speh in [Speh, 1981]. Suppose n = 2m, and 

consider the Levi subgroup 

(6.36)(a) L = GL(m,IC) 

of G (cf. (5.3)). Recall that X denotes the element of 

g-0 corresponding to multiplication by i (when m2'8 is 

identified with CU). 'Ib.e eigenvalues of ad(X) turn out 

to be 0 and ±2i. Put 

(6.36)(b) 

(6.36)(c) 

u = +2i eigenspaces of ad(X) 

q- = ( + u. 

'lb.en q- is a parabolic subalgebra of g-, opposite to its 

complex conjugate. If we take the Cartan involution 0 on 

G to be inverse transpose, then 0X is X; so q- is 0-

stable. 

For each integer k, define a unitary character xk of 

L by 

(6.37) 

(Here we refer to the determinant function on GL(m,IC).) In 

the notation of Definition 5.7, one can calculate that 

(6.38)(a) 2p(u) = X2m 

'lb.is has a square root (namely ~). It follows that the 

metaplectic cover of L~ of L (Definition 5.7) is isomor-

phic to L x 71/271., and that metaplectic representations of 

L~ may be identified with representations of L. (To use 
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this identification in Definition 6.20, for example, one sim-

ply replaces tensoring with ~p(u) by tensoring with \n·) 

We are going to consider the representations 

(6.39) 

of GL(2m,IR). 1beorem 6.34 suggests looking first at K, 

which in this case is the orthogonal group 0(2m). Because 

of Proposition 6.31, the following result is a special case 

of the Bott-Borel-Weil theorem (cf. [Bott, 1957]). 

LEMMA 6.40. In the setting above, put 

v = (~qf1f,IJ1K)(~k-1). 
a) If k < 0, then vk is zero. 

b) If k = o. then vk is the sum of the trivial and 

the determinant characters of 0(2m). 

c) If k = l, then Vk is the representation of 

0(2m) on Am(cc2'8). 

d) If k ~ 1, then Vk is an irreducible representa­

tion of 0(2m). It is the kth Ca.rta.n power of V 1 • In 

appropriate stand.a.rd coordinates, it ha.s highest weight 

(k, ... ,k). 

1be shift by -1 in the definition of vk is made to simpli­

fy the remaining statements. 
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Corollary 6.35 now guarantees that ~ is non-zero as 

long as k is at least -1. On the other hand, the condi­

tion in 1beorem 6.S(d) amounts to 

k ~ m - 1 

in the present case. 1bere is therefore a range of values 

of k for which the general theory does not guarantee nice 

behavior of ~· but for which the restriction to K looks 

reasonable. It is possible to improve substantially on the 

general theory, to make it cover most of this range. We will 

return to this point in Chapter 13 ('lbeorem 13.6). For now, 

we simply state what happens here. 

PROPOSITION 6.41. In the setting of (6.36) and (6.37), the 

Barish-Chandra module 

~ = 1q,L('<:k) 

for GL(2m.~) (notation (6.9)) is irreducible and infinites-

imally unitary for k ~ 0. It contains the representation 

Vk+l of 0(2m) (cf. Lemma. 6.40) as its lowest K-type in 

the sense of [Vogan, 1981]. 

When k is -1, ~ is neither irreducible nor infinit­

esimally unitary. 
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The main point here is that ~ is unitary for non­

negative k. This is due to Speh. (One must bear in mind 

that this result was proved before Theorem 6.8(e) was avail­

able.) What Speh did was show that ~ actually appears as 

a constituent of the (unitary) representation of GL(2m,ffi} 

on a certain space of square-integrable automorphic forms. 

When k is zero, ~ is equivalent to a representa­

tion induced from the real parabolic subgroup of GL(2m,ffi} 

with Levi factor GL(m,ffi} x GL(m,ffi), by a certain one­

dimensional unitary character. For k positive, ~ is 

not equivalent to any representation induced from a proper 

real parabolic subgroup of G. This behavior shows the 

differences in the unitary representation theory of GL(n,ffi) 

and GL(n,C). It is necessary to introduce cohomological 

induction to get all the representations; and when that is 

done, the problem of finding all equivalences among the var­

ious constructions becomes rather delicate. We will not try 

to formulate the answer precisely here, but the following 

theorem contains the main point. 

THEOREM 6.42 ([Vogan, 1986b]}. Any irreducible unitary 

representation of GL(n,ffi} may be obtained by iterating the 

processes of parabolic induction (Definition 4.1) and coho-
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mological parabolic induction (Definition 6.20), starting 

from two kinds of representations: one-dimensional unitary 

characters, and Stein complementa.ry series (cf. Theorem 

4.23). 

We actually need the Stein complementary series over both m 

and C. As was pointed out after Theorem 4.23, the choice 

of ground field hardly affects their construction. 



Interlude 

TIIE IDEA OF UNIPOTENT REPRESENTATIONS 

Theorem 6.42 is a model of what one would like to know 

for any reductive group: that any unitary representation is 

obtained by systematic processes from a small number of 

building blocks. The systematic processes should certainly 

include unitary induction from real parabolic subgroups 

(Definitions 3.8 and 4.1), and cohomological parabolic induc­

tion (Definition 6.20). For our purposes, we will regard 

the formation of complementary series (as in Theorem 4.23) 

as another "systematic process," even though the limits of 

its applicability are not nearly so well understood as in 

the first two cases. We are therefore led to 

Problem I.1. For each reductive group G, describe a nice 

class ~(G) of unitary representations of G, with the fol­

lowing property. Let T be any irreducible unitary repre-

159 
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sentation of G. 1ben there is a Levi subgroup L of G 

(Definition 5.1), and a unitary representation TL in 

~(L), such that T is obtained from TL by a complementary 

series construction, followed by real parabolic induction, 

followed by cohomological parabolic induction. 

(1be letter ~ may be taken to stand for building block.) 

In the sense intended here, the Stein complementary series 

for GL(2m.~) are obtained from the one-dimensional unitary 

character f(k,k)®(it,it) of GL(m)xGL(m) (cf. 1beorem 4.23). 

(Replacing this by the non-unitary character f(k,k) ® 

(a+it,-o+it) (from which one actually induces in the end) 

is regarded as part of the complementary series construc­

tion.) 

Dan Barbasch has pointed out that this problem is 

almost certainly phrased too optimistically in at least one 

important respect. Under special conditions, a non-unitary 

Hermitian representation can give rise to unitary representa­

tions by a complementary series kind of procedure: one 

deforms an indefinite induced inner product through some 

poles until it becomes definite. If this is really the most 

natural construction of these representations, then they 

will not fit into the scheme proposed in Problem I.1. It is 
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not yet clear how to deal with this difficulty. It should 

not interfere with the less ambitious and more precise 

conjectures stated later, however. 

For G a product of copies of GL(n,m) or GL(n,C), 

Theorems 4.28 and 6.42 suggest that one can take ~(G) to 

consist of the set of one-dimensional unitary characters of 

G. At any rate we must include these char-acters in ~(G); 

for they cannot be obtained from any smaller group in the 

manner suggested. 

This immediately suggests the hope that one might take 

~(G) to consist of the unitary characters of G in gener-

al. This hope fails for the first time when G is the 

group Sp(2n,C), of linear transformations of preserv-

ing a non-degenerate symplectic form. G has a beautiful 

unitary representation w on L2 (a::11), called the metaplec-

tic representation. It was originally constructed in 

[Shale, 1962]; a nice account of it may be found in [Howe, 

1980]. (The analogous representation for the real field is 

discussed briefly in Example 11.26.) The representation w 

is a direct sum of two irreducible pieces + -w and w . If 

n is at least two, neither + w nor may be constructed 

by real or cohomological parabolic induction from a proper 

parabolic subgroup; and neither piece is any kind of comple-

mentary series. {If n is 2, + w appears as a subquotient 
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at the end of a complementary series. Such a "construction" 

proves that + 
c.J is unitary but does not compute its charac-

ter; Problem I.1 is not intended to allow it.) We are there­

fore obliged (by the conditions of Problem I.1) to allow c.J± 

in ~(Sp(2n,O::). 

Having admitted to ~(Sp(2n,O::)) for n at least 

2, we would be hard pressed to construct a nice theory ex-

eluding it for n equal to 1. But a symplectic form on 0::2 

is just a volume form; so Sp(2.0::) is just SL(2.0::). 1bis 

suggests that even for SL(n), we ought to allow ~(G) to 

contain more than the unitary characters. To put it another 

way, it seems unreasonable to choose ~(G) to be the small-

est set solving Problem I.1. Rather, we will seek some 

interesting larger set, defined more or less independently 

of Problem I.1, with the hope that it will solve that prob-

lem by magic. A little more precisely, we pose 

Problem I.2. For each semisimple Lie group G, des-

cribe a finite set ~(G) of irreducible unitary representa-

tions, with the following properties. 

i) Suppose T is a representation of G. Write To 

for the restriction of T to the identity component G0 of 

G. 1ben T belongs to ~(G) if and only if each constitu-

ent of T 0 belongs to ~(G0 ). 
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ii) Suppose G is reductive. Define ~(G) to con­

sist of all irreducible unitary representations of G whose 

restriction to the conmutator subgroup G' of G is a sum 

of elements of ~(G'). 'Iben ~(G) should satisfy the 

condition in Problem I.1. 

iii) Suppose G is semisimple. 'Iben any representa­

tion of G which is trivial on the identity component 

belongs to ~(G). 

Suppose G is semisimple, and ~(G) is defined. A unitary 

representation of G will be called unipotent if it is a 

direct sum of elements of ~(G). 

'Ibe requirements posed in Problem I.2 are much too weak 

to determine what representations ought to be considered uni­

potent. In the course of the next five chapters, we will 

consult a series of oracles, with the aim of adding to the 

list of requirements. Finally we would like it to be so 

long - even without condition (I.2)(ii) - as to specify 

~(G) completely. ('Ibis goal will not be attained.) 'Ibe 

question of whether (I.2)(ii) holds is then a separate 

issue, essentially equivalent to the classification of the 

unitary representations of all reductive groups. 
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FINITE GROUPS AND UNIPOTENT REPRF.SENTATIONS 

1be first oracle that we will consult is Lusztig's work 

[Lusztig, 1984] on (complex) .representations of finite 

Chevalley groups. In the first half of this chapter (through 

Corollary 7.16) G will always denote a reductive algebraic 

group defined and split over the finite field F (with q 
q 

elements). We will require G to have connected center. 

1be group 

(7 .1) 

G(F ) 
q 

is a finite Chevalley group. Write 

B(e) = T(e)N(e) 

for a Levi decomposition defined over F of a Borel sub­
q 

group of G. (1be "e" represents the identity element of 

the Weyl group; the notation will be generalized in a 

moment.) Because G is assumed to be split, T(e)(F ) q 

a product of copies of the multiplicative group of F . 
q 

is 

Two examples will illustrate most of the main points: 

the groups 
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(7 .2)(a) G = GL(n), 

of all invertible nxn matrices; and 

(7 .2)(b) G = S0(2n+l), 

consisting of (2n+l)x(2n+l) matrices preserving the (maxi-

mally isotropic) quadratic form 

on (2n+l)-dimensional space. In the first case, we can 

take T(e) to consist of all diagonal matrices and N(e) 

to consist of strictly upper triangular matrices. In the 

second, T(e) may be ta.ken to be diagonal matrices of the 

form 

we are using the notational convention of (4.19). We omit 

the description of N(e). 

Just as for real groups, representations are associated 

roughly to characters of Cartan subgroups. More precisely, 

fix a maximal torus T of G, defined over F , and a char­
q 

acter 0 of T(F ). In [Deligne-Lusztig, 1976], a virtual q 

representation 

(7.3) Ry-(0) 

of G(F ) is defined. This construction is entirely analo­
q 

gous to the various kinds of parabolic induction introduced 

earlier for real groups. For example, if T = T(e), then 

(7.4) 
G(F ) 

Ry-(0) = In<1J(eJ(F )(0). 
q 
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The representations R.rC9) are irreducible for "most" 

choices of 9; and every irreducible representation of G(F ) 
q 

occurs in one of them. To describe all the irreducible 

representations of G(F ), it therefore suffices to decom­
q 

pose all of the R.rC9) into irreducible representations. 

The most difficult case, and the one to which Lusztig even-

tually reduces the general case, is when e is trivial. 

Definition 7.5. A unipotent representation of the finite 

Chevalley group G(F ) q is one occurring in some R.rCI). 

Because the Frobenius automorphism acts trivially on 

the rational characters of the split torus T(e) - that is 

what split means - it must act by a G-inner automorphism on 

the characters of any torus defined over F . That is, it 
q 

must act by some element of the Weyl group W for G. This 

turns out to define a bijection between G(F )-conjugacy 
q 

classes of maximal tori defined over F and conjugacy 
q 

classes in W. Write T(w) for a torus in the class corre-

sponding to an element w of W; this notation is consis-

tent with the earlier choice of T(e). Put 

(7.6) 

By the preceding remarks, 

class of w. 

R depends only on the conjugacy 
w 
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For w equal to the identity element e, (7.4) shows 

that R e 
is equal to the representation of G(F ) q 

on the 

space of functions on G(F )/B( e )(F ) . 
q q 

A fairly straight-

forward analysis of this space leads to the following clas-

sical result. 

PROPOSITION 7.7. The irreducible representations of G(F ) 
q 

occurring in R are in a natural one-to-one correspondence 
e 

with the irreducible representations of the Weyl group of G. 

The Weyl group arises because it parametrizes the double co-

sets of B(e)(F ) in G(F ). Write q q 

(7 .S)(a) X(u) € G(F ) q 

for the irreducible representation corresponding to a repre-

sentation u in W. It is convenient to twist the most 

obvious version of this parametrization by tensoring with 

the sign representation of W. With this convention, 

(7.S)(b) 

(7 .S)(c) 

X(sgn) = trivial representation of G(F ) 
q 

X(l) =Steinberg representation of G(F ). 
q 

We now have a family of virtual characters of G(F ) 
q 

parametrized by conjugacy classes in W, and a family of irre-

ducible representations parametrized by W. It is natural 

to hope that these might be related by the character table 

of W. Explicitly, define for u in W 



168 

(7 .9)(a) 

CliAPTER 7 

tr a{w) R . w 

Notice that R is only a rational {as opposed to integral) a 

combination of irreducible characters. In case G is 

GL{n), R is simply equal to X{a). a 
In general, the sit-

uation is more complicated; X{a) occurs in R , but other a 

representations do as well. 1be R are have far fewer a 

irreducible constituents than the R , but they are not irre­
w 

ducible or disjoint. Nevetheless, we always have 

{7.9)(b) R1 = Steinberg representation of G{F ) q 

R = trivial representation of G{F ). sgn q 

Definition 7.10. Let LR-equiua.lence be the equivalence 

relation on W generated by the requirement that 

a "'LR T if R and R share an irreducible constituent. a T 

An equivalence class is called a double cell. 

A unipotent representation X of G{F ) q 
{Definition 

7.5) is said to be attached to the double cell ~ if X 

occurs in R , for some representation a of W belonging a 

to ~- Set 
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= set of irreducible representations of G(F ) q 

attached to '€ 

:::> {X(u)I u € '€}. 

(This last containment requires proof.) 
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It is shown in [Lusztig, 1984] that this definition of 

double cells is equivalent to the one implicit in [Ka.zhdan-

Lusztig, 1979], which is made in terms of Hecke algebras and 

the Ka.zhdan-Lusztig polynomials. This makes possible some· 

other formulations of Definition 7.10. None is particularly 

simple or geometric, however. 

Two particular double cells are worthy of special men-

tion. First, the trivial representation is a double cell by 

itself, and the only unipotent representation attached to it 

is the Steinberg representation. Similarly, the sign repre-

sentation of W is a double cell, attached only to the 

trivial representation of G. 

Definition 7.10 partitions the unipotent representa-

tions according to double cells in W. The most important 

remaining step is to understand the set of double cells; but 

we intend to postpone that question and consider instead the 

fine structure of the sets 1111('€). 
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Definition 7.11 (cf. [Lusztig, 1984], section 4.3). Suppose 

A is a finite group. Consider the set of all pairs (x.~). 

with x in A and ~ an irreducible representation of the 

centralizer ZA(x) of x in A. The group A acts on the 

set of such pairs, as follows. If g is in A, then compos­

ing ~ with conjugation by g defines a representation .,,-. 

of 

g(ZA(x))g-1 = ZA(gxg-1). 

Define A(A) to be the set of A orbits of pairs (x,v) 

"' as above. Notice that A(A) contains both A (as the set 

of pairs (e,v); the action of A on such pairs is trivial) 

and the set of conjugacy classes in A (as the set of or-

bits of pairs of the form (x,1)). If A is abelian, then 

"' A(A) =A x A. 

THEOREM 7.12 ([Lusztig, 1984], Chapter 4). Let G be a 

connected reductive algebraic group, defined a.nd split over 

the finite field F . Assume tha.t G ha.s connected center. 
q 

Write W for the Weyl group of G. Fix a double cell ~ 

of representations of W (Definition 7 .10). Then one can 

attach to ~ a finite group A(~) with the following pro-

perty: the set ~(~) of unipotent representations of G(F ) 
q 

attached to ~ (Definition 7.10) is in one-to-one correspon-

dence with A(A(~)) (Definition 7.11). 
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This is a very deep result, involving both powerful general 

methods and extensive case-by-case calculations. The group 

A(~) is defined case by case, although Lusztig gives a gen-

eral definition a posteriori in Chapter 13 of [Lusztig, 

1984]. 

In the correspondence given by Theorem 7.12, write 

(7.13)(a) X(x,v) 

for the representation of 

valence class of the pair 

(x €A(~). v € (ZA(~)(x)) 

G(F ) corresponding to the equi­
q 

(x,v). We have already assigned 

to each a in ~ a unique representation X(a) in ~(~) 

(notation (7.8)). This provides an injective map 

(7.13)(b) ~'~(A(~)). 

which we write as 

(7.13)(c) a' m(a). 

It turns out that every conjugacy class in A(~) (regarded 

as an element of ~(A(~)); see Definition 7.11) is of the 

form m(a). If x is in A(~). we can therefore define 
A 

(7.13)(d) a(x) € W. 

Lusztig computes the multiplicity of each irreducible 

representation in each R a(x) 

4.23). A special case is 

([Lusztig, 1984], Theorem 
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THEOREM 7.14. In the setting of Theorem 7.12, fix x € 

A(~). and an irreducible representation T of A(~). Then 

the irreducible representation X(e,T) of G(F ) (Theorem 
q 

7.12) occurs in Ru(x) (cf. (7.13)(d) and (7.9)) with multi-

plicity 

lbe formula here suggests using Fourier inversion on the 

finite group A(~). Specifically, write [x] for the conju-

gacy class of an element x of A(~). and [A(~)] for the 

set of all conjugacy classes. Fix an irreducible representa-

tion o of A(~). and define 

(7.15) l * tr( 6 (X))Ru(x) 

[x]E(A(~)] 

(notation (7.13)(d) and (7.9); c5* denotes the representa-

tion dual to 6). In terms of the z6 • lbeorem 7.14 may be 

reformulated as 

CX>ROllARY 7 .16. In the setting of Theorem 7 .12, fix an 

irreducible representation 6 of A(~). and define a ra-

tional virtual character z6 (of G(Fq)) by (7.15). Then 

for any irreducible representation T of A(~). the repre-

sentation X(e,T) of G(F ) q 
occurs in z6 with multipli-
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city one if T is equivalent to 6, and multiplicity zero 

otherwise. 

Corollary 7.16 does not say that the z6 are irredu­

cible characters; they will in fact contain many unipotent 

representations. (Except for a sign appearing only in E7 

and E8 , the multiplicity of X(x,w) in z6 turns out to be 

the multiplicity of 6 in the representation 

In~~~~(w) 
of A(~).) lbe problem is that there are more unipotent re-

presentations than R 's; so one cannot hope to find formulas w 

for the irreducible representations in terms of the R 's. 
w 

lbese results on finite Chevalley groups suggest that 

any representation of a real reductive group obtained (by a 

combination of real and cohomological parabolic induction) 

from a trivial character of a Cartan subgroup ought to be 

regarded as unipotent. We will certainly require this; but 

the resulting set of representations is much less rich than 

the analogy with finite groups would suggest. 

To explain this in more detail, let us consider the 

case of complex groups. For the rest of this chapter, we 

will therefore fix 

(7.17)(a) G = a complex connected reductive 

algebraic group 
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In addition to the usual structure we have introduced for 

general reductive groups (such as K, 9, and so on), we 

choose 

(7 .17)(b) B =TAN a Langlands decomposition 

of a Borel subgroup. 

It follows automatically that T is a maximal torus in K. 

Write 

(7 .17)(c) H = TA. 

Th.en H is a representative of the unique conjugacy class 

of Cartan subgroups of G. One constructs representations 

of G from characters of H by induction from B 

(Definition 4.1). Finally, set 

(7 .17)( d) W = W(G,H), 

the Weyl group of H in G (cf. Definition 5.1). 

Because of the presence of the modular function o in 

the definition of induction, there are two natural candi-

dates for the "right" generalization to complex groups of 

the representation R (cf. (7.6)) for a finite Chevalley 
e 

group. The first is 

(7 .18)(a) G 
I(O) = IncJB(l). 

This is a unitary representation of G, belonging to the 

minimal principal series (Example 3.20). Some of the anal-

ysis leading to Proposition 7.7 may be applied to I(O). 
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This was begun in [Bruhat, 1956]. One finds a family of 

intertwining operators 

(7.18)(b) A(w): I(O) ~ I(O), 

parametrized by the Weyl group W. (Up to a normalizing 

constant, A(w) is just the operator A(w:O) of Theorem 

4.11.) It can be shown that the map sending w to A(w) 

is a representation of W, and that every intertwining 

operator for I(O) is a linear combination of the various 

A(w). (Bruhat's original results were not this complete, 

but they were of this nature.) It follows easily that the 

irreducible constituents of I(O) are parametrized by cer­

tain representations of W: those that appear in the repre­

sentation (7.18)(b) of W. 

So far the analogy with Proposition 7.6 appears per­

fect. Unfortunately, it turns out that the operators A(w) 

are all the identity ([Kostant, 1969]). (This is by no 

means a trivial fact; the definition of A(w), which was 

omitted, is quite subtle.) Therefore I(O) is irreducible; 

the beautiful theory for finite Chevalley groups that begins 

with Proposition 7.6 has no counterpart here. We can call 

I(O) unipotent; but (since I(O) is not the trivial repre­

sentation of G unless G is abelian) condition (I.2)(iii) 

(in the preliminary requirements for unipotent representa-
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tions formulated in the Interlude) will not allow it to be 

the only unipotent representation. 

The second possible analogue of R e 
is the space of 

functions on GIB. 

(7 .19) 

By Definition 4.1, this is 

G ~ I(-p) = Ind}i(o ). 

The difficulty with this representation is that it is not 

naturally unitary (since GIB admits no G-invariant mea-

sure); and in fact I(-p) generally has some non-unitary 

composition factors. On the other hand, I(-p) does con-

tain the trivial representation (on the subspace of constant 

functions). It is therefore reasonable to try to decompose 

I(-p) into irreducibles, looking for something like Propo-

sition 7.7. To explain the situation, we need a slightly 

more detailed description of the characters of H. 

Recall that H. as a Cartan subgroup of a complex 

group, is itself complex; so its Lie algebra ~0 is also 

complex. On the other hand, we are interested in the under-

lying real Lie algebra, and its complexification ~-

LEMMA 7.20. In the setting (7.17), there is a decomposition 

a) ~ = ~L + ~R; here ~L and ~R are each naturally 

isomorphic to ~0 . In this decomposition, t corresponds 

to the skew diagonal, and n to the diagonal: 
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c) Q = {(X,X)I Xe C~o)*}. 

These definitions provide identifications of t and Q 

with ~o. Fix X and µ in (l?oJ*. Then the weight 

* (X.µ) € () 

177 

exponentiates to H if and only if X-µ exponentiates to 

T. (Here we use the identification above to regard X-µ as 

l f t*.) an e ement o 

Finally, the Weyl group W~ of () in Q (Definition 

5.1) may be identified with a product of two copies of W, 

acting separately on the two factors in (a) above: 

d) w~ = r x wR-. 

The real Weyl group W(G,H) is the diagonal subgroup. 

1his is very easy. A more complete description of the var-

ious decompositions may be found in [Vogan, 1981], section 

7.1. 

Definition 7.21. In the setting (7.17), fix X and µ in 

* (()0 ) • Assume that X-µ exponentiates to T, so that we 

get a character ~(X,µ) of H (cf. Lemma 7.20). Define 

G 
I(X,µ) = In<IJiC~.µ) 

(cf. (4.10)), a principal series representation of G. By 

(4.2). 
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By Theorem 1.30, this restriction to K contains the represen-

tation F, of extremal weight X-µ exactly once. Write 
"-µ 

J(X,µ) 

for the unique irreducible subquotient of I(X,µ) that con-

tains the representation F, of K. 
"-µ 

Write 

(7 .22)(a) 

for the set of roots of ~0 in g 0 (regarded as complex 

Lie algebras). In the identification of Lenuna 7.20(a), the 

roots of ~ in g are 

(7 .22)(b) 

Write 

(7 .22)(c) 

for the set of positive roots defined by n. Finally, write 

(7 .22)(d) Pee: = (p,p) € ~ * 

for half the sum of the positive roots; here 

(7 .22)(e) 

is half the sum of the roots for ~o in g0 . 

Using the notation of Definition 7.21 and (7.22), we 

can write the representation I(-p) of (7.19) as 

(7.23) I(-p) = I(-p,-p). 

Recall that we are seeking a formula analogous to that of 

7.9(a) for the trivial representation. Here it is. 
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PROPOSITION 7.24 (Zuckerman; see [Vogan, 1981], Proposition 

2.2.10). Suppose G is a complex connected reductive alge-

braic group. In the notation of Definition 7.21, there is 

an equality of virtual representations of G 

£ = l sgn(w) I(-p,-wp). 

w€W 

The proof is largely formal; the result is essentially equi-

valent to the Weyl character formula (Theorem 1.40). It is 

necessary only to understand some kind of character theory 

for (g,K)-modules. 

To understand this and subsequent formulas properly, we 

need some further information about the representations 

I(A.,µ). 

LEMMA 7.25 (Zhelobenko; see [Duflo, 1975]). In the setting 

of Definition 7.21, two representations I(A.,µ) and 

I(A.',µ') have the same irreducible composition factors -

tha.t is, the same image in the Grothendieck group of finite 

length (g,K)-modules - if and only if there is a w in W 

such that 

wA. =A.' and wµ = µ'. 
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Modulo these equi.va.lences, the I(X,µ) form. a. ba.si.s of the 

Grothend.i.eck group. 

Example 7.26. Suppose C is SL(2,G::). Then it turns out 

that 

I(-p,p) = J(-p,p) 

is irreducible. By Lemma 7.20, the character from which it 

is induced is 

-p - p = -2p 

on the compact part T of the Cartan subgroup; it is 

-p + p = 0 

on the split part A. In particular, it is unitary; so 

I(-p,p) is a unitary principal series representation. Its 

restriction to K = SU(2) consists of every odd-dimensional 

representation except the trivial one. 

The representation I(-p,-p) (on functions on the 

Riemann sphere GIB - see (7.23)) is induced from a charac­

ter trivial on T, but not trivial on A. Its restriction 

to K consists of all odd-dimensional representations of 

SU(2). Because the constant functions transform by the 

trivial representation of K, Definition 7.21 gives 

J(-p.-p) =a::. 

The quotient representation (on functions modulo constants) 



FINITE GROUPS 181 

turns out to be irreducible and isomorphic to J(-p,p). In 

the Grothendieck group, therefore, 

I(-p,-p) = J(-p,-p) + J(-p,p). 

Consequently 

~ = J(-p.-p) = I(-p,-p) - I(-p,p), 

which is the formula of Proposition 7.24 in this case. 

Proposition 6.7 and Lemma 7.25 may be combined to give 

the following result. 

PROPOSITION 7.27. In the setting of Definition 7.21, fix A 

and µ so that A-µ exponentiates to T. Define 

W(µ) = {w €WI wµ - µ is a sum of roots} 

W = stabilizer of µ in W. 
µ 

Regarded as an element of the Grothendieck group of finite 

length Harish-Chandra modules, I(A,wµ) depends only on the 

double coset 

WAwWµ. 

Let X be any irreducible Harish-Chandra module for 

G, on which Z(G) and ~(g) {Definition 6.3) act as in 

I(A,µ). Then there is a unique expression 

X= a(w)I(A, wµ), 
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with a(w) an integer; this formula is to be interpreted in 

the Grothendieck group. 

lb.is proposition allows us to regard the various 

I(:A,wµ) as roughly analogous to the R of (7.6), and w 

Proposition 7.24 is an encouraging analogue of (7.9)(b). 

lb.e analogy with (7.9)(a) would suggest considering such 

virtual representations as 

2 I(-p,-p). 

lb.is turns out to be.a rather bad idea, however. In Example 

7.26, it gives 

2J(-p,p) + J(-p,-p), 

which is not a simpler object than the individual principal 

series representations. Part of the problem is that (in 

contrast to R ) I(:A,wµ) is not constant on conjugacy w 

classes. It is therefore less natural to average I(:A,wµ) 

over characters of W(µ). 

A better analogue of the Steinberg representation is 

I(O,O) (called I(O) in (7.18)). It has the character 

formula 

(7.28) I(O,O) = 1w1- 1 2 I(O,w•O), 

which is rather like the one in (7.9)(b). lb.is suggests 

that the unipotent representations of G might indeed 
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correspond roughly to representations of W, but with dif-

ferent representations of W requiring different infinites-

imal characters. That turns out to be the case. It is not 

yet convenient to state in detail what is true in this dir-

ection, but here is a weak version. 

THEOREM 7. 29 ([Barbasch-Vogan, 1985]. Suppose G is a. 

complex connected reductive a.lgebra.ic group. To ea.ch of 
A. 

certain double cells ~ in W (Definition 7.10), one can 

a.ssocia.te a. unique a.ntidominant integral weight X = X(~) 

1.·n c~o)* ( 7 17) .., nota.t ion . . Assume that ~ is such a. cell . 

For a in ~. define 

a.) 

Ra= lwxl- 1 l tr(a(w))I(X,wµ). 

wEW 
The virtual representation R is zero unless a a 

is of the form a(x), for some x in A(~) (notation 

7.13). In this case we write R for R . x a 

b) For ea.ch irreducible representation T of A(~). 

there is a.n irreducible (g,K)-module X(T). In the 

Grothendieck group, 

l 
x€A(~) 

tr(T(x))R . x 

c) The formula. in (b) ma.y be inverted to give 

Rx = l tr(T(x))X(T). 

11€A(~) 
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A complete statement (saying when X(~) exists and how to 

construct it) will be given in Proposition 8.34. 1be cell 

of the sign representation will be attached to the weight 

-p, and that of the trivial representation to 0. 'Ibis 

theorem therefore provides a common generalization of the 

irreducibility of X(O) (cf. (7.18)), and Proposition 7.24. 

1beorem 7.29 should be compared with Corollary 7.16. 

It is of the same general form, but substantially sharper. 

What happens is that the set of representations under 

consideration is much smaller in the complex case; so the 

formula analogous to 1beorem 7.14 (which is 1beorem 7.29(c)) 

can be inverted. 

1beorem 7.29 has at least three serious faults. First, 

it gives no hint of how to realize the representation X(v). 

Second, it treats only complex groups. 1bird, it does not 

say whether X(v) is unitary. Barbasch has made enormous 

progress on resolving the last of these problems (see Chap­

ter 8). 1be first two are nearly untouched. 
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LANGLANDS' PRINCIPLE OF FUNCTORIALITY 

AND UNIPOTENT REPRESENTATIONS 

Langlands' principle of functoriality is a philosophy 

about when automorphic forms on two different reductive 

groups ought to have something to do with each other. It is 

more properly the object of a lifetime of devoted study than 

of a few pages of generalities. I cannot hope to do justice 

to its motivation, to what is known to be true about it, or 

even to what is known to be false. (Lack of space is a suf­

ficient excuse on all counts, and my expertise need not be 

considered.) But because we are looking only for guidance 

in finding a good definition of unipotent representations, 

we can afford to be careless about almost everything. 

If F is a finite group, then the number of irreduci­

ble (complex) representations of F is equal to the number 

of conjugacy classes in F. Only under special conditions 

185 
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can one expect to find a natural bijection between these two 

sets, however. If F is finite abelian, then we could de-

fine its dual group to be 

(8. l)(a) ~ = Hom(F,a;X). 

"' 1his is almost by definition the same as the group F of 

characters of F, introduced in Lemma 1.2. We prefer to say 

that there is a bijection 

(8. l)(b) {elements of ~} +-+ {characters of F}. 

Here is another example of the same flavor, a little 

closer to Langlands' basic idea. Let T be a compact con-

nected abelian Lie group. We will summarize these assump-

tions by saying that T is a (compact) torus. Define 

(8.2)(a) ~(T) = 21ri•ker(exp), 

a lattice in the real subspace it 0 of the complexified Lie 

algebra t of T. If we identify the unit circle T with 

21rilR/21riZ, then 

(8.2)(b) ~(T) = Z. 

An easy argument now provides a natural isomorphism 

(8.2)(c) ~(T) ~ Hom(T,T). 

Because of this, we call ~(T) the lattice of integral 

one-parameter subgroups of T. Using the identification 

(8.2)(c), we can recover T from ~(T), by means of the 

natural isomorphism 

(8.2)(d) T ~ ~(T) ~Z T; 
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the map from right to left sends h 8 z to h(z). 

Put 

(8.2)(e) x*(T) = {A€ t*I A(~(T)) c Z} 

: Ho111z(~(T),Z), 

the dual lattice to ~(T). This is the lattice A of 
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Lemma 1.2, which is equal to ~ in this case. By Lemma 

1.2(b) or (c), 

(8.2)(f) * X (T) : Hom(T,T) 
A 

= T. 

The duality between the lattices ~(T) and x*(T) 

suggests that we define the dual torus to T as 

(8.3)(a) 

Then there are natural isomorphisms 

(8.3)(b) 

~(dr) : x*(T) 

x*(dr) : X*(T) 

d(dr) : T. 

A more pedestrian form of the first two isomorphisms is 

(8.3)(c) 

PROPOSITION 8.4. Let T be a compact torus, and dr the 

dual torus. Then there is a natural bijection between the 

characters of T (that is, homomorph.isms from T to the 

unit circle T) and integral one-parameter subgroups of dr 

(that is, homomorph.isms from T to dr). 
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lbis is just a reformulation of (8.3)(b). 

As an inunediate consequence, we get a first hint at 

Langlands' functoriality principle. 

a>ROllARY 8.5. Suppose S and T are compact tori. 

Assume tha.t we are given a mapping 

between the dual tori. Then there is a natural m.ap {called 

transfer) 

"" "" tr(w): S-+ T 

taking characters of S to characters of T. That is, the 

set of characters of a torus is a covariant functor of the 

dual torus. 

For a character of S gives a map of Y into d S, and thus 

(by composition with w) a map of Y into ~- lbis last 

map corresponds to a character of T. 

lbis result should not be taken too seriously as it 

stands. lbe map w actually induces a map 

(8.6) d w: T-+ S; 

so a character of S induces one of T by composition with 

d w. lbis covariant dependence of the group of characters on 
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the dual torus is therefore really just the contravariant 

dependence on T. 

Next, suppose K is a compact connected Lie group. 

Fix a maximal torus T in K. Write R for the set 

A(t,t) of roots of 

(8. 7)(a) 

t in t. By (1.8), 

Rcx*(T). 
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Each root a gives rise to a subgroup of K locally iso-

morphic to SU(2) (the two by two unitary matrices of 

determinant one); that is, to a map 

(8. 7)(b) "1 : SU(2) -+ G. a 

Define a map av from T to T by 

(8. 7)(c) 

here d denotes the diagonal matrix with the indicated en-

tries. By (8.2)(c), we can regard av as an element of 

X*(T). and so as an element of t. If we identify t and 

* t using an invariant bilinear form as usual, then 

(8. 7)(d) av +-+ 2a/(a,a). 

We call av the coroot corresponding to a. Put 

(8. 7)(e) Rv = {avl a€ R} 

c ~(T). 

When more precision is necessary, we will write Av(t,t) 
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The quadruple (X*(T),R,"*(T),Rv) is called a root 

datum. for K. By the conjugacy of maximal tori in K, the 

root datum is unique up to isomorphism. 

Definition 8.8 (Grothendieck-Demazure; see [Springer, 

1979]). An abstract root datum. is a quadruple (L.~.Lv.~v), 

subject to the conditions (i) - (iv) below. First, L and 

Lv are assumed to be finitely generated free abelian 

groups, with 

i) Lv ~ Hom(L,Z). 

The resulting pairing from LxLv into Z is written < , ). 

Next, ~ and ~v are assumed to be finite subsets of L 

and Lv, respectively. They are assumed to be in one-to-one 

correspondence, by 

Assume that 

iii) for all a in ~. <a.av> = 2. 

If a belongs to ~. define an endomorphism s of L by 
a 

s (x) = x - (x,av)a. a 

The endomorphism sav of Lv is defined similarly. Be-

cause of (iii), s and a are involutions. Assume that 

iv) for all a in ~. sa(~) C ~. and Sav(~v) C ~v. 

A root datum is said to be reduced if it bas the addi-

tional property 
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v) if a € ~. then 2a f ~-

This turns out to imply the corresponding property for ~v. 

If w = (L.~.Lv.~v) is a (reduced) root datum, then 

the synnnetry of the axioms implies that ~ = (L .~ ,L.~) 

is as well: it is called the dual root datum to w. 

Here is the Grothendieck-Demazure formulation of the 

standard structure theory for compact connected Lie groups. 

PROPOSITION 8.9. Suppose K is a. cOlllpa.ct connected Lie 

group. Then the root datum w of K (defined in (8.7)) is 

an abstract reduced root datum. Suppose K' is another com­

pact connected Lie group, with root datum w'. Then K is 

isomorphic to K' if and only if w is isomorphic to w'. 
Conversely, if w is an abstract reduced root datum, 

then there is a. cOlllpa.ct connected Lie group K with root 

datum isomorphic to w. 

Suppose K is a compact connected Lie group. A dual 

group for K is by definition a compact connected Lie group 

~ with root datum dual to that of K. To say what this 

means more concretely, fix maximal tori T for K and T' 

for ~- First, there should be given a distinguished class 

of isomorphisms 
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(8. lO)(a) 

from the dual torus of T (cf. (8.3)) to T'. Any two of 

these isomorphisms should differ by an element of the Weyl 

group of T in K. Fix such a f. It will induce isomor-

phisms 

(8. lO)(b) f: x*(T) -+ ~(T') 

f: x*(T')-+ ~(T) 

(because of (8.3)(b)). Then the remaining condition is 

(8.lO)(c) f(A(f,t)) = Av(df,t') 

f(A(df,t')) = AV(f,t). 

The notion of dual group for a non-abelian compact Lie 

group is considerably more subtle than the one for tori. 

The dual group ~ exists only because of an abstract exis-

tence result (Proposition 8.9). and not because of a simple 

construction like (8.3)(a). One consequence of this is that 

duality is no longer a contravariant functor: a map between 

compact groups does not always give rise to a map in the 

other direction on dual groups. 

Here are some examples of pairs (K.~); we leave to 

the reader the task of computing the root datum in each 

case. 
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(U(n),U(n)) 

(SU(n),PSU(n)) 

(S0(2n) .S0(2n)) 

(S0(2n+l),Sp(n)) 
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LEMMA 8.12. Suppose K i.s a compact connected Li.e group, 

and ~ i.s a dual group. Fi.x maximal tori. T and T' for 

K and ~. respectively. Then the Weyl groups W(K,T) and 

W(~.T') (Defi.ni.ti.on 1.28) are i.somorph.i.c, by an i.somorphi.sm. 

Wti.que up to i.nner automorph.i.sm.s. 

Proof. We can regard W(K,T) as acting on "*(T). A basic 

fact about compact groups is that W(K,T) is generated by 

the endomorphisms s a defined in Definition 8.8. Because 

of the duality between X*(T) and x*(T). it makes sense to 

talk about the transpose of s , as an automorphism of 
a 

x*(T). An easy calculation from the definition gives 

t 
s = s . a a 

It follows that W(K,T) is isomorphic to the group of auto-

morphisms of x*(T) generated by the s , by the map 
a 

On the other hand, the isomorphisms (8.lO)(b) and (c) show 
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that this latter group is isomorphic to W(<i<,T'), by an iso-

morphism unique up to inner automorphism. a 

Any torus in '1<: is contained in a maximal torus. Com-

bining Proposition 8.4, Lemma 8.12, and Theorem 1.30, we 

arrive at the following result. 

PROPOSITION 8.13. Let K be a compact connected Lte group 

and '1<: a dual group (cf. (8.10)). Then there is a natural 

bijection between the irreducible representations of K and 

the '1<-conjugacy classes of homomorphisms from T to '1<:. 

COROll.ARY 8.14. Suppose K and H are compact connected 

Lie groups. Assume tha.t we are given a mapping 

6) : '1i -+ <1<: 

be tween the dual groups. Then there is a ma.p f ram irredu­

cible representations of H to irreducible representations 

of K. 

We have not given the induced map in Corollary 8.14 a name, 

because it is not a good transfer. The problem is that it 

is based on Theorem 1.30: it essentially parametrizes repre­

sentations by their highest weights. As we have seen 

already in the Weyl character formula (Theorem 1.37), this 
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is not a good parametrization for the purpose of harmonic 

analysis. We could fix the problem here, but the effort 

would be wasted; there are no interesting transfers of the 

kind we want between compact groups. We therefore proceed 

directly to the next level of (forgive me} complexity. 

Suppose now that G is a collllected complex reductive 

algebraic group, and that K is a maximal compact subgroup. 

We use the notation (7.17}. Recall that H is a Cartan sub­

group of G. 

TIIEOREM 8.15 (Zhelobenko; see [Duflo, 1975]}. Suppose G 

is a connected complex reductive algebraic group, H is a 

Utrtan subgroup, and W is the Weyl group of H in G. 

Then there is a bijection 

H/W- G 

from the set of W-conjugacy classes of characters of H, 

onto the set of irreducible admissible representations of 

G. It may be defined as follows. Choose H as in (7.17). 

Fix a character of H, associated to a pair (A,µ} of ele-

f (""o}* ments o .. 1 

sentation of G 

(Lemma 7.20). Then the corresponding repre­

is J(A,µ} (Definition 7.21). 

This is a rather serious result. We will not discuss the 

proof (but see Theorem 13.1}. 
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We have implicitly fixed already a maximal torus T in 

K. Fix a dual group ~ of K (cf. (8.10)), and a maximal 

torus in ~- We will use a choice of the isomorphism in 

(8.lO)(a) to identify this latter torus with d.r. and write 

(8.16)(a) 

Choose a complexif ication dG of ~; this is just a com­

plex connected reductive group having ~ as a maximal 

d compact subgroup. We call G a dual group for G. Put 

(8.16)(b) '11 = centralizer of d.r in dG, 

a Cartan subgroup of dG. It is a complexification of d.r. 
and so a dual group of H, as the notation indicates. Lemma 

8.12 allows us to fix an identification of the Weyl groups 

d for G and G: 

(8.16)(c) 

Finally, (8.3)(c) gives 

(8.16)(d) 

The examples in (8.11) can be translated iRD11ediately 

d into examples of pairs (G, G). The most important of these 

is the pair (GL(n.~).GL(n.~)). 

LEMMA 8.17 (Langlands). Suppose T i.s a compact torus and 

H i.ts complexi.fi.cati.on. Write d.r for the dual torus (cf. 

(8.3)(a)) and '11 for i.ts complexi.fi.cati.on. Then there i.s 
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a natural bijection from. characters of H to holllOIR.Orph.isms 

of ~x into '11. 

1bis is elementary. (Langlands' contribution was to notice 

that the fact might be interesting, and to generalize it to 

tori over any local field). 

Defi.ni.ti.on 8.18. A continuous homomorphism + of ~x into 

a reductive group is called qua.si.-a.dm.issible if +(~x) con-

sists of semisimple elements. 

Combining Lemma 8.17 with the conjugacy of Cartan sub-

groups gives the following reformulation of 1beorem 8.15. 

THEOREM 8.19. (1be Langlands classification for complex 

groups). Suppose G is a complex connected reductive 

algebraic group, and dG i.s a dual group for G (cf. 

(8.16)). Then there is a natural bijection between the 

irreducible a.dm.issible representations of d G and the G-

conjugacy classes of qua.si-a.dm.issible homomorph.isms of ~x 

into dG (Definition 8.18). 



198 CllAPTER 8 

This theorem gives rise at last to interesting cases of 

"Langlands functoriality." 

OOROLLARY 8.20. Suppose G and G are connected complex 

reductive algebraic groups. Assume that we are given a 

holom.orphic homomorphism 

. dS dG Cal· -+ 

between the dual groups (cf. (8.16)). Th.en there is a 

natural map (called transfer) 

tr(w): S-+ G 

from irreducible adm.issible representations of S to irre-

ducible adm.issible representations of G. 

Langlands' principle of functoriality asserts that the 

essentially formal correspondences of Corollary 8.20 can 

have analytic content. For example, if the representation 

'II' of S appears in a space of square-integrable automor-

phic forms for S, then one might expect tr(w)(v) to 

appear in such a space for G. It is a difficult matter to 

find precise and correct statements of this form, and I do 

not intend to try. The idea that we want to extract from 

Langlands' principle is that if 'II' is a unitary representa-

tion of S, then tr(w)(v) is a good candidate for a uni-
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tary representation of G. (Any representation appearing in 

a space of square-integrable automorphic forms is necessar-

ily unitary.) 

To see that this is a reasonable idea, consider the spe-

cial case when S is equal to the Cartan subgroup H of 

G. 1be construction of dual groups in (8.16) provides an 

inclusion 

(8.21)(a) 

The corresponding transfer is defined as follows. An irredu­

cible admissible representation of H is a character, say 

)(. Extend )( to the Borel subgroup HN, by making it tri­

vial on N. Form the induced representation I(x) (Defini­

tion 7.21). Let J(x) be the irreducible subquotient of 

I(x) containing the representation of K of extremal 

weight xlT (Definition 7.21). Then 

(8.21)(b) tr(w)(x) = J(x). 

as one sees by tracing through the definitions. If )( is a 

unitary character, then so is I(x) (Theorem 3.19); so 

J(x) is unitary as well. 

On the other hand, transfer does not always preserve 

unitarity. For example, let G be GL(3,C). By the remark 

after (8.16), the dual group dG is again GL(3,C). Let S 

be PGL(2,C), so that dS is SL(2,C). The adjoint repre-
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sentation of dg on its (three-dimensional) Lie algebra 

gives a homomorphism 

(8.22)(a) 
. d_ d 

CJ· -s -+ G. 

We want to compute the transfer on Stein complementary 

series for SL(2.~). Write C(u) for the restriction to 

SL(2) of the complementary series C2 (k,t:u) defined in 

'Ibeorem 4.23 for GL(2); this is independent of the para-

meters k and t. 'Ibis is a unitary representation for u 

smaller than 1. Define 

p~ = (p,p) 

as in (7.22)(d); we may use a superscript to specify the 

group. A calculation shows that 

(8.22)(b) 

(8.22)(c) 

s s C(u) = J(up ,up ) 

G G 
tr(CJ)(C(u)) = J(up ,up ). 

It turns out that_ the representations of GL(3.~) appearing 

on the right are unitary only for u less than or equal to 

1/2. Transfer therefore fails to preserve unitarity. 

'Ibe problem here is not with the functoriality princi-

pie, but with our abuse of it. 'Ibe motivation to look for 

preservation of unitarity came from the preservation of auto-

morphic forms. 'Ibe Ramanujan-Petersson conjecture, however, 

asserts that the representations C(u) do not appear on 

nice spaces of square-integrable automorphic forms. Fune-
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toriality therefore should not encourage us to believe that 

they will transfer to interesting representations. 

CONJECTURE 8.23 (cf. [Arthur, 1983]). Suppose G and S 

are complex connected reductive algebraic groups, and 

CJ: % ~ dG 

is a holomorphic homomorphism. Let x be a wi.itary charac­

ter of S. Then the representation tr(CJ)(x) {Corollary 

8.20) is wi.itary. 

Arthur makes a far more detailed analysis of the conjectural 

role of these representations in the theory of automorphic 

forms. We will not formulate here l.anglands' analogue of 

Theorem 8.19 for real algebraic groups. Once that is done, 

there is no difficulty in extending Corollary 8.20, and Con­

jecture 8.23; we refer to [Arthur, 1983] for more informa-

ti on. 

Before discussing how to compute the representations in 

Arthur's conjecture, we present the most persuasive evidence 

of its validity now available. 

THEOREM 8.24 (Barbasch). Conjecture 8.23 is true if G is 

a {complex) classical group. 
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This theorem produces many previously unknown unitary repre-

sentations for almost all the classical groups except GL(n). 

The proof is elegant in structure but very difficult to 

carry out. The idea may well apply to the case of real 

classical groups, but their character theory is not yet 

sufficiently developed to attempt this. 

We turn now to the problem of identifying the repre-

sentations in Conjecture 8.23. 

Definition 8.25 (cf. [Ba.rbasch-Voga.n, 1985]). Suppose G 

is a complex connected reductive algebraic group. A repre-

sentation v of G is called spherical special unipotent 

if it is of the form tr(w)(~). for some w as in Corollary 

8.20. That is, we require v to be the transfer of the 

trivial representation of some other group S. 

Suppose S is PGL(2.~). so that ~ is SL(2.~). 

Fix a holomorphic homomorphism 

(8.26)(a) 

Define 

(8.26)(b) 

d 
~: SL(2.~) ' G. 

H+ = #[: J 
After replacing ~ by a conjugate under d G, we can and do 
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assume that H"1 is a dominant element of \ 0 . Under the 

identification (8.16)(d), H"1 therefore corresponds to an 

element of * (l?o) . Define 

(8.26)(c) J\."1 = ~"1' 
regarded as an element of * (l>o) . An important example is 

the case when G is itself equal to PGI...(2.~). and "1 is 

the identity. lben (in the notation of (7.22) or (8.22)), 

(8.26)(d) J\."1 = pPGI...(2 ). 

PROPOSITION 8.27. Use the notation just described. 

a) The trivial representation ~ of G is J(p,p). 

b) The transfer (via "1) from PGI...(2) to G of the 

trivial representation is J(J\."1,J\."1): 

tr("1)(~) = J(J\."1,J\."1). 

This representation of G contains the trivial representa-

tion of K. 

c) There is a homomorphism "1 from SL(2.~) 
p 

with the property that 

J\."1 = p. 
p 

d to G, 

d) The transfer via "1 of the trivial representation 
p 

of PSL(2) to G is the trivial representation of G. 
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Proof. By (7.19), and (7.23), the trivial representation is 

a subrepresentation of I(-p,-p) (appearing as the space of 

constant functions on GIB). By Lenma. 7.25, the trivial 

representation is therefore a composition factor of I(p,p). 

Since the trivial representation of G contains the trivial 

representation of K, which has highest weight 

0 = p - p, 

part (a) follows from Definition 7.21. Part (b) now follows 

from (a) (applied to the group PGI...(2.~)) and the definition 

of transfer. Part (c) is due to Dynkin; a nice account is 

included in [Kostant, 1959]. In light of (a) (for G this 

time), part (d) is a special case of (b). a. 

CX>ROLLARY 8.28. The spherical special wiipotent representa-

tions of G are those of the form. J(X~·">\,,) (Definition 

7.21), with X~ constructed from a homomorphism of SL(2.~) 

1.·nto de · (8 26) as t.n . . F.ach contains the trivial represen-

tation of K. 

Corollary 8.28 says that the spherical special unipo-

tent representations may be obtained from a far less general 

kind of functoriality than Definition 8.25 would suggest. 

The homomorphisms of SL(2) into a reductive group G were 
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completely determined by Dynkin; there are only finitely 

many possibilities, up to conjugation in G. {If G is a 

classical group, the question amounts to determining the set 

of representations of SL{2) of a given dimension that pre-

serve some kind of bilinear form.) 

Next, we will see how to construct the rest of the 

representations of Conjecture 8.23. 

PROPOSITION 8.29. Suppose G i.s a complex connected reduc-

ti.ve algebraic group and T i.s a representation of G as 

i.n Conjecture 8.23. Then th.ere are 

i.) a parabolic subgroup P = LN of G; 

i.i.) a spherical special uni.potent representation T 

of L; and 

i.i.i.) a unitary character f of L, 

wi.th the property that the representation T i.s contained 

i.n 

The proof is easy, but we will omit it. There is in fact a 

canonical choice for the conjugacy class (L,T,f). 

The induced representations in Proposition 8.29 can be 

reducible. Since our goal is to find unitary representa-

tions, it is not reasonable to neglect the other constitu-

ents of Ind{T ® f) {other than the one arising in Conjec-
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ture 8.23). This suggests that the result of the transfer 

should be, not the single representation provided by the 

formal correspondence of Corollary 8.20, but some finite 

family of representations. Arthur arrived at the same con­

clusion on the basis of much more sophisticated ideas about 

the functoriality principle (the notion of "stability"). 

Here is a version of his idea. 

CONJECTURE 8.30. Suppose we are tn the settf..ng of Conjec­

ture 8.23. Deftne 

t) Z(w) = centraltzer tn dG of w(dg). 

{Tuts ts a reducttve algebratc group, but f..t need not be 

connected.) Wrtte 

ii) C(w) = Z(w)/Z0 (w), 

the group of connected components of Z(w). Then there are 

a certatn quottent A(w) of C(w), and a ftntte fam.tly 

~{w.x) of trreductble un.ttary representattons of G asso­

ctated to w and the ftxed un.ttary character X of S. 

These have the f ollowtng proper Hes. 

a) The representatton tr(w)(x) belongs to ~(w.x). 

b) There ts a surjectton from ~ onto the group of 

characters of A(w); and tr(w)(X) maps to the trtvtal 

character. 
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Arthur also requires that the surjection in (b) relate 

nicely to the theory of endoscopic groups. Just as in the 

case of Conjecture 8.23, there is a directly analogous for­

mulation for real algebraic groups. 'Ibe experts may notice 

that Conjecture 8.30 is stated under much more general hypo­

theses than those of [Arthur, 1983], and that the conclusion 

is weaker. (In his setting, Arthur asked for bijectivity in 

(b) above.) It seems that Arthur's formulation is too 

strong. Nevertheless, it is precisely right in an important 

special case. 

THEOREM 8.31 ([Barbasch-Vogan, 1985]). Suppose G is a 

connected reductive algebraic group, and 

'6J: SI...(2,IC) -+ dG 

is a holomorphic map. Define C("1) as in Conjecture 8.30, 

and let A("1) be Lusztig's canonical quotient of C("1) 

([Lusztig, 1984], 13.1, or [Barba.sch-Vogan, 1985], 4.4). 

Let v be a.ny irreducible representation of the (finite) 

group A('6J). Then there is a.n irreducible (g,K)-module 

X("1.v) 

naturally attached to v. For v equal to the trivial 

representation of A("1), we have 
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We have been a little imprecise in the matter of defining 

A(~) here. In fact, one has to work inside the centralizer 

of ~(-1), and not inside all of dG. 

The requirements of Arthur's conjecture related to endo-

scopy are satisfied by the correspondence described by 

Theorem 8.31. What is missing from [Ba.rbasch-Vogan, 1985] 

is a proof that the representations X(~.v) are unitary. 

Ba.rbasch has since proved this for the classical groups; 

this is essentially Theorem 8.24. 

Definition 8.32 ([Ba.rbasch-Vogan, 1985]). Suppose G is a 

complex connected reductive algebraic group. A representa-

tion of G is called special unipotent if it is of the form 

X(~.v) (cf. Theorem 8.31) for some ~ mapping SL(2.~) to 

dG. 

We will conclude this chapter by explaining the rela-

tionship between Theorems 7.29 and 8.31. Fix a map ~ and 

other notation as in (8.26). Assume that 

(8.33)(a) d 
~(-1) € center of G. 

Here I refers to the identity matrix in SL(2.~). This is 

equivalent to 

(8.33)(b) A~ is an integral weight. 

Put 
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(8.33){c) 

Let p~ be the product of the positive roots orthogonal to 

A~, a polynomial function ~0 • If w belongs to W~, then 

w·p~ = det(w)p~. 
lbe translates of p~ under W span a vector space (V~)'; 

the representation 

(8.33){d) 

(a)' 
~ 

of W on it is irreducible. 

a~ = (a~)' ® sgn; 

here sgn denotes the sign representation of W. Finally, 

write 

(8.33)(e) 
,.. 

for the double cell in W containing a~ (Definition 

7.10). 

Put 

PROPOSITION 8.34. In the setting above, the double cell 'fl~ 

determines the weight A~ up to conjugacy. The group A(~) 

of Theorem. 8.31 is canonically isomorphic to the group A('fl~) 

attached to the double cell (Theorem 7.12). 

a) The Weyl group representation a~ is a(e) (nota­

tion (7 .13)). 

b) Suppose ir is a character of A(~). The (g,K)­

module X(ir) of Theorem 7.'29 coincides with X(~.ir) 

(Theorem. 8. 31) . 
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lbis finally provides an (indirect) description of the 

weight A of lbeorem 7.29 and the set of double cells aris­

ing there; the idea is to look at all possible + (subject 

to (8.33)(a)) and see what turns up. 
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PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS 

In this chapter, we will outline a little of the theory 

of primitive ideals in the enveloping algebra U(g) of a 

reductive Lie algebra. As usual, we wish to go only far 

enough to see how that theory impinges on unitary representa­

tion theory. A more complete (and less utilitarian) outline 

may be found in [Joseph, 1983]. 

Definition 9.1. Suppose R is a (possibly non-commutative) 

ring with 1, and M is a left R-module. The annihilator 

of M is the two-sided ideal 

Ann M = {r €RI rm= 0, all m € M}. 

M is called simple if it is not zero and it has no proper 

submodules. An ideal in R is called (left) primitive if 

it is the annihilator of a simple (left) module. Set 

211 
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Prim R = {primitive ideals in R}, 

the (left) primitive spectrum. of R. 

Primitive ideals are in many respects the best generaliza­

tion to non-commutative rings of maximal ideals in the conunu­

tative case. The following proposition gives some hint of 

this. 

PROPOSITION 9.2. In the setting of Definition 9.1, any max­

imal ideal is primitive. If R is conunutative, any primi­

tive ideal is maximal. 

Proof. Let I be a maximal ideal. By Zorn's lemma, there 

is a maximal proper left ideal m containing I. It is 

easy to check that the module R/m is simple and has anni­

hilator I. 

Conversely, suppose R is commutative, M is simple, 

and m is a non-zero element of M. Let m be the annihi­

lator of the element m. Then 

Ann(R•m) = m 

R•m = M 

M ~ R/m. 

(The first statement uses the commutativity of R; the 

second uses the simplicity of M; and the third follows from 
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the second.} Because of the first two statements, we must 

show m is maximal. By the third, this is equivalent to 

the simplicity of M. a. 

Here is an assortment of useful technicalities. 

Definition 9.3. Suppose R is a ring with 1 and I is an 

ideal in R. We say that I is prime if it is proper and 

the following condition holds: whenever J and J' are 

ideals containing I, and JJ' is contained in I, then 

either J or J' is equal to I. I is called completely 

prime if it is proper and the following condition holds: 

whenever r and s are elements of R, and rs belongs to 

I, then either r or s belongs to I. 

R is called prime (respectively completely prime, prim­

itive} if the zero ideal is prime (respectively completely 

prime, primitive}. R is called simple if the zero ideal is 

maximal and proper. 

PROPOSITION 9.4. A maximal ideal is primitive; a primitive 

ideal is prime; and a completely prime ideal is prime. No 

other implications hold among these properties in general. 

If R is commutative, completely prime is equivalent 

to prime, and primitive is equivalent to maximal. 
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Proof. We know most of this from Proposition 9.2. Suppose 

I is primitive; say I is the annihilator of the simple 

module M. We want to show that I is prime. Suppose J 

and J' contain I but neither is equal to I. Because 

J' is strictly larger than the annihilator of M, J'M is 

a non-zero submodule of M. Since M is simple, it coin­

cides with M. Consequently J(J'M) is also non-zero. 

1berefore JJ' does not annihilate M; so JJ' is not 

contained in I, as we wished to show. 

To see that maximal does not imply completely prime, 

take R to be the ring of nxn matrices and I to be the 

zero ideal. Since R is simple, I is maximal, primitive, 

and prime. But if n is at least two, there are non-zero 

nilpotent elements in R: so I cannot be completely prime. 

1be rest of the proposition will be left to the reader. 

(1be only non-trivial part is the construction of a non-

simple primitive ring.) D. 

1be example of the difference between prime and com­

pletely prime may be pushed to suggest a connection with 

unitary representations. 
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PROPOSITION 9.5. Suppose G is a noncompa.ct connected 

simple Lie group, and F is a finite-dimensional irredu­

cible representation of G. 

a) F is unitary if and only if F has dimension 1. 

b) Ann(F) is a completely prime ideal if and only if 

F has dimension 1. 

Proof. For (a), the commutator subgroup of G is all of 

G; so any one-dimensional representation is trivial, and 

therefore unitary. Conversely, suppose F is unitary. Then 

G maps into the (compact) unitary group of F. Because G 

is simple, it follows that either F is trivial or G is 

compact. We are assuming G is not compact; so (a) fol­

lows. 

For {b), the irreducibility of F gua!antees that 

every endomorphism of F comes from the enveloping algebra 

of g: 

U(g)/Ann F ~ End(F). 

We saw in the proof of Proposition 9.4 that End(F) is com-

pletely prime only when F is one-dimensional. D. 

Inspired by a variety of much deeper examples, Joseph 

suggested that unitary representations should be closely con-
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nected with completely prime ideals, at least for complex 

groups. Here is a result along those lines. 

PROPOSITION 9.6 ([Vogan, 1986a], Proposition 7.12). Suppose 

G is a complex connected reductive algebraic group, and X 

is an irreducible Wl.i.tary (Q, K)-m.odule. Then Ann(X) is a 

completely prime primitive ideal in U(Q). More precisely, 

write 

U(Q) ~ U(QL) ® U(QR), 

in accordance with {7.22). {Thus QL and QR are each iso-

morphic to Qo. ) Then 

Ann(X) = IL ® U(QR) + U(QL) ® IR 

U(Q)/Ann(X) ~ (U(QL)/IL) ® (U(QR)/IR). 

The ideals IL and IR are each completely prime. 

The proof is quite easy but requires a little notation. We 

refer the reader to [Vogan, 1986a] for details. 

Definition 9.7. Suppose G is a complex connected reduc­

tive algebraic group. Define QL and QR (both isomorphic 

to the Lie algebra Qo of G) as in (7.22). If X is any 

Q-module, set 

LAnn(X) = U(QL) n Ann(X) 

C U(QL) ~ U(Q0 ), 
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the left annihilator of X. Similarly, we define the right 

annihilator RAnn(X}. 

Unfortunately, the analogue of Proposition 9.6 is false 

for real groups (for example if G is compact). It is true 

for SL(n,m}, however, as a consequence of the classifica­

tion of all unitary representations in that case. This sug­

gests a weak version that might be true in general. 

CX>NJECfURE 9.8. Suppose G is a qua.sisplit real reductive 

algebraic group and X is a unitary (Q,K}-module of finite 

length. Assume that X is stable in Langlands' sense; that 

is (roughly speaking), that the distribution character of X 

is constant on the intersection with G of strongly regular 

semisimple conjugacy classes for the complexification G(~}. 

Then U(Q}/Ann(X} has no non-zero nilpotents. In particu­

lar, if Ann(X} is prime, then it is completely prime. 

Langlands' functoriality principle suggests that one might 

be able to lift X to a representation of G(~} in some 

sense. If this were possible, the conjecture might follow 

from Proposition 9.6. 

Proposition 9.6 produces completely prime primitive 

ideals from unitary representations. Our main interest is 
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in finding unitary representations, however; so we need to 

know the extent to which Proposition 9.6 admits a converse. 

The obvious converse (that every irreducible representation 

whose annihilator is completely prime must be unitary) is 

false for G equal to af: the ideal must also be self-

adjoint in a certain sense. Here is a definition. 

Definition 9.9. Suppose g0 is a real Lie algebra with 

complexification g. Write 

h 
u -+ u 

for the (conjugate linear) anti-automorphism of U(g) de-

fined by 

(X + iY)h = -X + iY 

for X and Y in g0 . If I is an ideal in U(g), then 

its image Ih is as well. We say that I is self-adjoint 

if I is equal to Ih. 

Once this additional condition is imposed, the converse is 

true for connnutative G; but it fails for SL(2.~). for 

(easy) reasons connected with the complementary series. 

Another of our interests is avoiding the problem of comple-

mentary series; so we would like a way to say that an ideal 

has nothing to do with them. This requires a small digres-
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sion on the analogue of Mackey induction (Definition 3.8) 

for ideals. 

Definition 9.10 (cf. [Dixmier, 1974]). Suppose g is a 

complex Lie algebra and ~ is a subalgebra. Let J be an 

ideal in U(~); say J is the annihilator of a representa-

tion V of ~- Let 6 be the modular character of g~; 

this is the one-dimensional representation of ~ defined by 

6(X) = [tr adg(X)] - [tr ~(X)]. 

Let V' be the tensor product of V with the character 6, 

and J' the annihilator of V'. Put 

W = proi(V') 

(Definition 6.12). The ideal induced by J is 

I = Ann(W); 

we also write it as proi(J). 

This definition differs very slightly from that in [Dixmier, 

1974]. If G is a connected group with Lie algebra g, 

then 

(9.11) pro(J) = {u € U(g)I Ad(g)(u) € J'U(g), all gin G}. 

Dixmier's definition would have instead U(g)J'. Ours is 

more obviously compatible with group-theoretic induction 

(cf. Proposition 6.13). 
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1be next result is well-known; the proof outlined uses 

the ideas in [Conze, 1973]. 

LEMMA 9.12. In the setting of Definition 9.10, suppose J 

is a completely prime ideal in U(~). Th.en the induced 

ideal I is a completely prime ideal in U(g). 

Sketch of proof. Fix a connected group G with Lie algebra 

g. Proposition 6.13 says that W looks like a space of sec-

tions of a vector bundle (on G/H). We want U(g)/I to 

look like a ring of differential operators on the bundle. 

Write A for the ring U(~)/J', and B for U(g)/I. Because 

I is a two-sided ideal, it is invariant under the action ad 

of g, and so also under the action Ad of G. It follows 

that Ad is defined on B. Recall the order of vanishing 

filtration (Definition 6.12) of W. An endomorphism of W 

is said to be of order (at most) k at the id.entity if it 

maps Wk into W0 • Notice that the endomorphism given by 

the action of an element of Uk(g) has order at most k at 

the identity. An element b of B is said to be of order 

(at most) k if Ad(g- 1 }(b) has order at most k at the 

identity, for all g in G. 1be filtration of W may be 

described as 

W = {+ € WI u+ € W0 , all u € U (g)}. m m 
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Using this and the ad-invariance of order, one can check 

that an element of order k maps w 
m 

into W k' for all m-

m. It follows that if u has order k, and v has order 

j, then uv has order k+j. 

1be ring B therefore has an increasing filtration 

{~}. compatible with (but not necessarily equal to) the one 

induced by {Uk(g)}. To prove that B is a completely 

prime ring, it suffices to prove that gr(B) is. For that 

we need a symbol calculus. Notice first that 

Wm-l/Wm ~ Ho~(Sm(g/l>).V') 

~ S°((gJl> >*> ® v. ; 

we will call this space gr(W) . If T is an endomorphism m 

of W of order k at the identity, then T induces an 

element 

uk(T)(e) € Hom(gr(W)k,gr(W)0) 

~ Sk(g/l>) ® Hom(V', V'), 

th called the k -order symbol of T at the identity. An 

element u of U(g) of order k at the identity can be 

written 

u = \ h x + \ j 'y •• L r r L s s 

hr in U(f>), in U(g), and J"' 
s 

in J'. (1bis is a consequence of the Poincare-Birkhoff-

Witt theorem, but it requires a little thought.) 1ben it 

follows from the definition that 



222 CllAPTER 9 

= \ gr(x )a l r r 
k 

€ S (gll)) ® A. 

Here a is the image of h in A. r r 

We now have a symbol map at the identity 

k 
ak(*)(e): grkB ~ S (gll)) ®A. 

If b belongs to Bic· the symbol of b is defined to be 

the function on G with values in S (gll)) ®A, defined by 

One can check that the symbol is a holomorphic function of 

g. (For a fixed b, its values are in a finite-dimensional 

subspace of Sk(gll)) ®A; so "holomorphic" makes sense.) 

The symbol vanishes if and only if b belongs to Bic+l. 

Finally, one can show that if u is in Bic· and T has 

order j at the identity, then Tu has order k+j at the 

identity; and 

ak+j(Tu)(e) = [ak(T)(e)][aj(u)(e)]. 

We have therefore embedded gr(B) in the ring of holomor-

phic functions on G with values in S(gll)) ® A. This ring 

clearly has no zero divisors. a. 

In the setting of Definition 9.7, assume that P =MN 

is a parabolic subgroup of G, and that Xx is a Ha.rish­

Chandra module for M, with left annihilator IM. (We are 
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writing M instead of L for the Levi factor to avoid con-

fusion with the L that means left.) Set 

(9.13)(a) 

a Harish-cbandra module for C, and 

(9.13)(b) 

Then 

(9.13)(c) 

I = LAnn(X). 

I = proP 0 (I ) 
Po M 

(Definition 9.10), as is easy to check. 

THEOREM 9.14 ([Joseph, 1980]). Let Q be a complex semi-

simple Lie algebra. Then there are only finitely many com-

pletely prime primitive ideals in U(g) which are not 

induced from any completely prime primitive ideal on a 

proper parabolic subalgebra (in the sense of Definition 

9.10). 

This is an extremely difficult result. Its proof does not 

easily provide a list of the missing completely prime prim-

itive ideals; in fact much of Joseph's subsequent work is 

aimed at doing that. 

Theorem 9.14 suggests (in conjunction with Proposition 

9.6 and (9.13)(c)) the following conjecture. 
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(False) CDNJECfURE 9.15. Suppose G is a connected complex 

semisimple Lie group, and X is an irreducible Harish­

Chandra module for G. Assume that Ann(X) is a self­

adjoint completely prime primitive ideal, not induced from a 

proper parabolic su.ba.lgebra. Then X is unitary. 

Before considering what is wrong with this conjecture, 

let us consider what is right with it. lbe only obvious 

completely prime ideal that fails to be induced is the aug­

mentation ideal g0 U(g0 ). lbe only irreducible Harish­

Chandra module of which it is the annihilator is the trivial 

representation, which is unitary. For SL(n.~). Moeglin has 

proved that the augmentation ideal is the only non-induced 

completely prime ideal; so Conjecture 9.15 is true in that 

case. 

lbe next simplest non-induced completely prime ideal is 

in the enveloping algebra of sp(4.~) (type B2 or C2 ). It 

is the left annihilator I of the metaplectic representa­

tion (mentioned in the Interlude). In primitive ideal 

theory, I is called the Joseph ideal, because of its con­

struction in [Joseph, 1976]. In fact, it can easily be 

shown that any irreducible Harish--chandra module with left 
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and right annihilators equal to I is a component of the 

metaplectic representation, and therefore unitary. 

The theory of special unipotent representations, de-

scribed in section 8, also fits well with Conjecture 9.15. 

PROPOSITION 9.16 ([Ba.rbasch-Vogan, 1985]). In the setting 

of Theorem 8.31, we have (for fixed ~) 

{X(~.v)} = {Ha.rish-cbandra modules XI Ann(X) =Ann X(~.1)}. 

This is really the definition of special unipotent used in 

[Ba.rbasch-Vogan, 1985]. One should keep in mind that 

X(~.1) = tr(~)(trivial) 
(with the transfer tr defined by Corollary 8.20). Now 

Theorem 8.24 becomes evidence for Conjecture 9.15 as well; 

for most of the ideals involved here are not induced. 

I do not know any counterexamples to Conjecture 9.15 

for the classical groups. In type G2 , however, there is a 

problem. Joseph has shown that there are exactly two com-

pletely prime primitive ideals I 1 and I 2 in the envelop-

ing algebra, such that each quotient U(g)/I. has Gelfand­
i 

Kirillov dimension 8 (see [Joseph, 1981] and [Vogan, 1986a.], 

section 5). These ideals are not induced. There are unique 

irreducible Ha.rish-cbandra modules X1 and X2 such that 
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LAnn(X.) = RAnn(X.) = I.. 
1 1 1 

However, Duflo's results in [Duflo, 1979] show that only one 

of these two representations (say X1 ) is unitary. Accord-

ing to the Dixmier conjecture as formulated in [Vogan, 

1986a], 12 corresponds to a certain non-normal algebraic 

variety, and 11 to its normalization. This is a small and 

subtle distinction, and it is hard to see how it can direct-

ly affect representation theory. (One might hope that the 

ring R2 = U(g)/12 is itself "non-normal" in some sense, 

and that this causes the problem. Joseph's work suggests 

that a reasonable definition of normal for a primitive 

quotient R of U(g} is that R should be the largest 

Harish-cbandra module in Fract(R). This condition is 

satisfied for R2 , however.} 

Without understanding the G2 example, we can still 

use it to guide a reformulation of Conjecture 9.15. We 

begin by recalling from [Vogan, 1986a] a part of the Dixmier 

conjecture alluded to above. 

CONJECTURE 9.17. Suppose G is a connected reductive alge­

braic group, with Lie algebra g0 • Fix an orbit Y0 of G 

on g:. and write Y for its closure. Fix an irreducible 

affine algebraic variety V, endowed with 

1) an algebraic action of G, and 
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2) a finite, G-equivariant morphism T from V onto 

Y. 

Then there is canonically associated to V a completely 

prime primitive algebra A= A(V), endowed with 

i) an algebraic action (called Ad) of G by automor­

phisms, and 

ii) a G-equivariant (for the adjoint action on U(g)) 

algebra homomorphism + from U(g) to A, making A a 

finitely generated U(g)-module. 

We require in addition that the differential ad of Ad be 

ad(X)a = Xa - aX 

for all a in A(V), and that A(V) be isomorphic as a 

G-module (but not as an algebra) to the ring of algebraic 

functions on V. 

The Dixrnier conjecture says that this association should 

provide a bijection from varieties satisfying (1) and (2), 

onto completely prime primitive algebras satisfying (i) and 

(ii). 

The conditions in Conjecture 9.17 are not sufficient to 

specify A(V) uniquely in general; but for the non-induced 

cases, they probably suffice. The problem of finding a can­

didate for A(V) can be reduced to those cases. Many inter~ 
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esting examples are known, but there are few good general 

results. 

To set the stage for an improvement on Conjecture 9.15, 

we need some (conjectural) supplementary information about 

the Dixmier correspondence. Algebraic geometry would sug­

gest that the simple algebras should correspond to closed 

orbits. This is very far from true; it is not at all clear 

how to guess when A(V) is simple. Here is a possible suf­

ficient condition, however. 

CONJECilJRE 9.18. In the setting of Conjecture 9.17, assume 

that Y0 is a nilpotent orbit and that the variety V is 

normal. Then the algebra A(V) is simple; so the kernel 

I(V) of the homomorphism + (Conjecture 9.17(ii)) is a 

completely prime maximal ideal in U(Q). 

"Nilpotent" will be defined carefully after (10.19) below. 

We call the primitive ideals I(V) un.ipotent primitive 

ideals. 

Here at last is a possible partial converse for Propo­

sition 9.6. 
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CX>NJECTURE 9.19. Suppose G is a connected reductive alge-

braic group, * is a nilpotent orbit in (g0 ) , and Y is 

the closure of Y0 . Fix an irreducible, normal, affine alge-

braic variety V, endowed with a G action and a finite 

equivariant morphism onto Y. Let I(V) be the (completely 

prime) maximal ideal of Conjecture 9.18. Let X be any 

irreducible Harish-chandra module having left and right anni-

hilator equal to I(V). Then X is unitary. 

"Definition" 9.20. Suppose G is a complex connected reduc-

tive algebraic group. An irreducible representation of G 

is called uni.potent if its left and right annihilators are 

both equal to one of the ideals I(V) in Conjecture 9.19. 

The quotation marks are there because I(V) has not 

really been defined; so unipotent is not defined either. 

For classical G, there is an explicit candidate for I(V) 

(defined on a case-by-case basis); so the definition is com-

plete. Since Barba.sch has determined the unitary representa-

tions of classical complex groups, one could in principal 

check Conjecture 9.19 in that case. This has not been done. 

Definition 9.20 is not sufficiently precise to decide 
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whether special unipotent representations (Definition 8.32) 

must be unipotent. Certainly this ought to be true. 

We would like to understand the varieties V that 

appear. In the setting of Conjecture 9.17, the fact that 

coadjoint orbits are even-dimensional means that Y-Y0 has 

(complex) codimension two in Y. It follows that Y0 and 

Y have the same fundamental group ir1 (Y). This group is 

finite. By Zariski's Ma.in Theorem, the normal varieties 

mapping finitely onto Y are in one-to-one correspondence 

with the coverings of Y0 , and hence with subgroups of 

ir1 (Y). All of this can be done equivariantly; and we get 

LEMMA 9.21. Suppose G is a connected reductive algebraic 

group, is an orbit in * fao) , and Y is the closure of 

Y0 • Fix a point y in Y0 , and put 

H = stabilizer of y 
y 

Ho= identity cOlllponent of H 
y 

ir1 (G,Y) = H /Ho. y 

Write U(Y) for the set of equivalence classes of irred.u.ci-

ble, normal, affine algebraic varieties V endowed with the 

structures (1) and (2) of Conjecture 9.17. Then U(Y) is 

in bijection with the set of conjugacy classes of subgroups 

of ir1 (G,Y), as follows. Fix such a covering V, and a pre-
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image v of y in V. Write H for the stabilizer of v 
v 

in G. Then 

so 

H0 CH CH; 
v y 

Il1 (G,V) = Hv/H0 

may be regarded as a subgroup of 11'1 (G,Y). The bijection 

sends the equivalence class of V to the conjugacy class of 

Example 9.22. Suppose G is Spin(9,IC) (the double cover 

of G' = S0(9,IC)). We may regard * (g0 ) as the space of 

9x9 complex skew-symmetric matrices. Let Y0 be the 

coadjoint orbit consisting of nilpotent matrices with Jordan 

blocks of size 5, 3, and 1. Then one can check that 

T 1 (G',Y) ~ (Z/2Z) x (Z/2Z) 

T 1 (G,Y) ~ (Z/4Z) x (Z/2Z) (the dihedral group). 

Write D for the dihedral group. Here is a description of 

the ideals I(V) corresponding to various coverings of Y 

(and hence to subgroups S of D). Fa.ch I(V) is a maxi-

ma.I ideal, and therefore (by an observation of Dixmier) is 

determined by its intersection with the center of U(g0 ). 

By Harish-cbandra's theorem (Theorem 6.4), this intersection 

is determined by an element A (or A(S)) in the dual 

* (~0 ) of a Cartan.,subalgebra. There is a standard way to 
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identify (~0 )* with C4 (see [Humphreys, 1972]): so 

finally I(V) is determined by an element of C4 , still 

written "A. 

To Y itself (that is, to the subgroup D), we attach 

(~.~.~.O). This is one of the parameters A~ of (8.26): so 

the (unique) corresponding unipotent representation is spe­

cial unipotent. It is unitarily induced from the trivial 

representation on (the parabolic subgroup with Levi factor 

locally isomorphic to) GL(l)xGL(2)xS0(3). 

To one of the two (7l/27l) 2 subgroups of D, we attach 

(~.~.~.~). This is again special unipotent: the two repre-

sentations attached are the two constituents of the repre-

sentation induced from the trivial representation on 

GL(2)xGl..{2). 

To the second (7l/27l) 2 subgroup, we attach (1.~.0.0). 

This is not special unipotent. Since S0(5,C) is isomor­

phic to Sp(4,C) modulo its center Z, the component of the 

metaplectic representation trivial on Z gives a unitary 

representation of S0(5). The unipotent representations 

here are the two components of the representation induced 

from the metaplectic representation on GL(l)xGL(l)xS0(5). 

To one of the classes of non-normal 7l/27l subgroups, 

we attach ~(3,3,1,1). This is not special. The unipotent 

representations are unitarily induced from two unipotent 
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representations of GI...(4), attached to the double cover of 

the nilpotent orbit with Jordan blocks of sizes 2 and 2. 

To the other class of non-normal Z/271. subgroups, we 

attach (1.~.~.~). The two unipotent representations are 

unitarily induced from GL(2)xS0(5). 

To the trivial subgroup of D - that is, to the uni­

versal cover of Y - we attach (1.~.~.0). There are five 

unipotent representations with annihilator I(V): four 

complementary series induced from various characters of 

GL(l)xGL(2)xS0(3), and one induced from a character of 

GL(2)xGL(2). This latter representation is twice as large 

as the first four. In light of Theorem 8.31, this suggests 

that the five representations should be parametrized by the 

irreducible representations of D. 

It is not completely clear what the weights attached to 

the two other subgroups of D ought to be. Possibly one 

simply uses again the weight attached to all of D. This 

would satisfy many of the formal requirements of Conjecture 

9.17. 

Several things emerge from this example. First, the 

algebras A(V) of Conjecture 9.17 do not vary nicely with 

V, for fixed Y. Second, the more obvious conjectures about 

how to parametrize the unipotent representations attached to 
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V seem to fail: the representations are related in some way 

to the character theory of the fundamental groups of Y and 

V, but not by a result as clean as Theorem 8.31. Finally, 

the weight X attached to V seems to increase slightly in 

size with V. This suggests that the weight attached to the 

normalization of Y (the smallest covering under consider­

ation) should be the smallest infinitesimal character admit­

ting a primitive ideal attached to the orbit Y0 • This 

weight is explicitly computable; an incomplete result in 

that direction may be found in Proposition 5.10 of 

[Barba.sch-Vogan, 1985]. 
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THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS 

To understand the origins of the method of coadjoint 

orbits, we must return for a moment to the general setting 

of the introduction. Suppose G is a nilpotent Lie group. 

Then G has a rich supply of normal subgroups. As ex­

plained before Theorem 0.5, this makes it possible to 

describe the representation theory of G in terms of that 

of smaller groups; eventually one comes down to the case of 

abelian groups and ordinary characters (Lemma 1.2). All of 

this was well understood in the 1950's, thanks to the work 

of Mackey and others. Unfortunately, the answers provided 

by this method were a little difficult to understand syste­

matically and interpret. The simplest non-abelian nilpotent 

group is the three-dimensional Heisenberg group (mentioned 

and defined in the introduction). It has a family of char­

acters parametrized by m2 , and a family of infinite-

235 
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dimensional representations parametrized by m~{O}. This is 

certainly explicit, but it is only an answer; there is noth-

ing compelling, enlightening, or beautiful about it. 

In the 1960's, Kirillov and Kostant found a way of 

thinking about representations which overcomes these prob-

lems. Here is its first great success. 

THEOREM 10.1 ([Kirillov, 1962]). Suppose G ts a connect-

ed, simply connected nilpotent Lie group. Write g0 for 

the real Lie algebra of for its d.ua.l. Then the 

irreducible unitary representations of G are in a na.t-ural 

one-to-one correspondence with the set of orbits of G on 

* go. 

This correspondence has excellent properties with respect to 

restriction of representations and harmonic analysis. 

The proof of Theorem 10.1 (in contrast to its state-

ment) introduced no fundamentally new ideas; it is a calcu-

lation with the Mackey machine. Our interest lies in the 

fact that the result is formulated in a way that makes sense 

when the Mackey ma.chine does not. 

To say more, we need some notation. For the time 

being, G can be an arbitrary Lie group. Of course the 

action of G h oad Ad*·. is t e c joint action if 
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A is a linear functional on g0 , then the linear functional 

Ad*(g)(A) is defined by 

(10.2) Ad*(g)(A)(X) = A(Ad(g- 1 )(X)). 

(If Ad(g) is computed as a matrix in terms of some basis 

of g0 , then the matrix for Ad*(g) in terms of the dual 

basis of * Qo is the inverse transpose.) 

Example 10.3. Suppose G is the three-dimensional Heisenberg 

group, regarded as real upper triangular three by three ma-

trices with ones on the diagonal. Put 

g(x,y,z) = [~ ~ ~] 

In terms of the basis (e12,e23 ,e13) of g0 , the adjoint 

action has matrix 

-- r ~01 _o: o~l Ad(g(x,y,z)) ~ 

The orbits of the adjoint action are therefore the lines 

ae12 + be23 + me13 

(for a and b fixed, not both zero); and the points 
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We get therefore a two-parameter family of lines, and a one-

parameter family of points. 1be coadjoint action bas matrix 

* __ [~1 o~ -y:l Ad (g(x,y,z)} 

Its orbits are the planes 

for c a fixed non-zero constant, and the points that take 

the value 0 on e 13. We therefore get planes parametrized 

by ffi'{O}, and points parametrized by ffi2 . 

1be example bas two purposes: to show the geometric life 

that Kirillov's theorem gives to the parametrization of G· 
u' 

and to emphasize that the adjoint and coadjoint actions look 

quite different in orbit structure. 

Suppose again that G is an arbitrary Lie group, and 

* that A belongs to g0 • Write G(X) and g(X) 0 for the 

isotropy group of the coadjoint action at A, and its Lie 

algebra. 1ben 

(10.4)(a) G(X) = {g €GI Ad*(g)(X) = A 

(10.4)(b) g(X) 0 = {X € Qol X([X,Y]) = 0, all Y € g0 }. 

An immediate consequence of (10.4)(b) is that A defines a 

Lie algebra homomorphism from g(X) 0 into ffi. Recall from 
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Chapter 1 that we identify the Lie algebra of the circle 

group with ilR. 

Deftnttton 10.5. In the setting just described, we say that 

X is integral if the homomorphism 

iX: g(X} 0 ~ Lie(T} 

is the differential of a group homomorphism 

that is, of a unitary character of G(X} 0 . 

As LeDDJ1a 1.2 might suggest, the point of the integral-

ity assumption is to eliminate the hypothesis that G be 

simply connected in 1beorem 10.1. If G is nilpotent, the 

kernel of the exponential map is a discrete subgroup of the 

center of the Lie algebra. We get 

COROLLARY 10.6 (to 1beorem 10.1). Suppose G ts a connect-

ed nilpotent Lte group. 'Ihen the trreductble representa-

ttons of G are tn natural one-to-one correspondence wtth 

the integral orbtts of * G on g 0 • 

A fairly complete analogue of this result is available 

for connected type I solvable Lie groups (see [Auslander-

Kostant, 1971]. Further generalizations necessarily involve 



240 CHAPTER 10 

a serious weakening of the conclusions: the complementary 

series for SL(2,ffi) (Theorem 4.23) do not correspond to any 

coadjoint orbits. (There are also problems for compact 

groups. The most sophisticated version of the correspon-

dence attaches the trivial representation to each of several 

orbits if G is compact but not abelian.) One of the best 

results available is that of Duflo (Theorem 0.5); the para-

metrization he gives uses coadjoint orbits and reduces 

exactly to that of Kirillov if G is nilpotent. (If G is 

reductive, Theorem 0.5 says only that G 
u 

is in a natural 
A 

one-to-one correspondence with G .) 
u 

If we cannot hope to generalize Theorem 10.1 to reduc-

tive groups, we might at least hope for some inspiration. 

For example, there ought to be a simple way to attach a 

representation to an orbit. Kostant, Duflo, and others have 

made great progress on this problem; but it is still nowhere 

near a satisfactory resolution. Here is a very brief sketch 

of some of their ideas. 

Suppose again that G is a Lie group and A is an 

orbit of G * on g-0 • Write for a typical point of 

and use the notation of (10.4). We want to endow the 

A, 

manifold A with a symplectic structure. Th.is means that 

we need a non-degenerate symplectic form "'>.. on the tangent 

space at each point "'>..· The forms must vary smoothly with 
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X. They will then define a 2-form ~ on A, and the final 

requirement for a symplectic structure is that 

(10.7)(b) 00 = 0. 

The tangent space to a homogeneous space is naturally isomor­

phic to a quotient of the Lie algebra: 

(10. 7)(c) 

Define a bilinear form on g0 by 

(10.7)(d) "'}.(X,Y) = X([X,Y]). 

This is obviously skew-symmetric. By (10.4)(b), its radical 

is precisely g(X) 0 . Conseqently, "'}. may be regarded as a 

non-degenerate symplectic form on TA(A). That (10.7)(b) is 

satisfied follows from a short calculation. It is clear 

from the naturality of the definition that the symplectic 

structure ~ is G-invariant. 

One of the things that a coadjoint orbit is, therefore, 

is a G-space with an invariant symplectic structure. To 

attach a representation to such things, we should consider 

how they might arise in connection with a familiar construc­

tion. One answer is that the cotangent bundles of a homo­

geneous space has an invariant symplectic structure . Here 

is a slight generalization. Suppose that M is a manifold 

and that ~ is a complex line bundle on M. Recall that a 

connection on ~ is a map v that assigns to each vector 

field X on M a first-order differential operator vX on 
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sections of ~- In addition to various linearity proper-

ties, v is required to satisfy 

(10.S)(a) 

for f a smooth function and s a smooth section of ~-

I,t follows that the difference of two connections is a map 

from vector fields on M to zero-th order differential aper-

ators on ~; that is, 

(10.S)(b) VX - vX = multiplication by ~; 
co 

here the dependence of g on X is C -linear. This means 

that g is a section of the complexified cotangent bundle 

If ~ is Hermitian, there is a sesquilinear pairing 

< , > taking a pair of sections of ~ to a function on M. 

We can define the adjoint * v of a connection by the re-

quirement 

(10.S)(c) 

for a real vector field X. We say that v is real if it 

is equal to its adjoint. The difference of two real connec-

tions is a section of the real cotangent bundle. 

Arguments like this lead to the following result. 

PROPOSITION 10. 9 (Urwin; see [Kos tan t, 1983]) . Suppose ~ 

is a Hermitian line bundle on an m-dimensional manifold M. 
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Th.en there is an m-dimensional affine bundle <fl = <fl(~) 

over M with the following properties. 

a) The vector bundle corresponding to <fl is the cotan-

gent bundle. 

b) The space of sections of <fl is the space of real 

connections on ~-

c) The total space of <fl carries a natural symplectic 

structure. 

Asswne now that a group G acts on M and ~- Th.en G 

acts on <fl, and there is a natural G-equivo.riant ma.p 

* µ: <fl-+ g'o· 

Asswne that there is an open orbit V of G on <fl. Th.en 

the restriction of µ to V is a covering map onto a 

single coo.djoint orbit A, respecting the syrnplectic struc-

tures. 

(Recall that an affine space A for a vector space V is 

just a copy of V with the origin forgotten. More formal-

ly, A is required to be a principal homogeneous space for 

V - that is, a homogeneous space for which all isotropy 

groups are trivial. Affine bundles for vector bundles can 

now be defined in an obvious way.) 
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Definition 10.10. Suppose G is a Lie group and A is a 

coadjoint orbit. A real polariza.tion of A is a pair 

(M.~) consisting of a homogeneous space and a homogeneous 

Hermitian line bundle for G, such that some open orbit of 

G on the connection bundle ~ is a covering of A. lbe 

polarization is said to satisfy the Pukanszky condition if 

G acts transitively on ~. 

If a real polarization exists, we say that A is real 

polariza.ble. 

Polarizations can be described intrinsically. 

PROPOSITION 10.11. In the setting of Definition 10.10, fix 

"A. in A. Then real polariza.tions correspond in a one-to­

one way to pairs (P,Tp), subject to the following 

conditions: 

a) P is a closed subgroup of G containing G("A.) 0 

(cf. 10.4); 

b) Tp is a one-dimensional unitary character of P 

with differential i"A.lp; and 

c) The dimension of G/P is half the dimension of A. 

Notice that only integral orbits can have real polariza­

tions. When a real polarization exists, one can attach to 
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A the representation induced (from P to G) by Tp· 

Kirillov showed that all coadjoint orbits admit real polari­

zations in the (simply connected) nilpotent case. This is 

not so if G is solvable. Auslander and Kostant showed 

that one could get by with some complex analysis and the 

following definition. 

Definition 10.12. Suppose A is a coadjoint orbit for the 

real Lie group G. Write g for the complexified Lie alge­

bra of G. We say that A is algebraically polariza.ble if 

there is a complex subalgebra p of g such that 

a) p contains g(A); 

b) A([p,p]) = O; that is, the restriction of A to p 

is a one-dimensional character; 

c) the dimension of g/p is half the dimension of 

g/g(A); and 

d) the sum of p and its complex conjugate is a sub­

algebra q of g. 

We call p an algebraic polarization of A at A. It is 

called purely complex if q is all of g. 

Fix a polarization p. Set 

Q0 = subgroup with Lie algebra q0 

H0 = subgroup with Lie algebra p n g~; 

the complexified Lie algebra of H is the intersection of 
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p and its complex conjugate. Write Q and H for any 

subgroups with identity components Q0 and H0 , such that 

e) H normalizes p; and 

f) Q contains H. 

Here is an outline of how a polarization leads to a 

representation. By Proposition 1.19, p defines a complex 

structure on M = Q/H. If in addition iX is the differ­

ential of a character TH of H, then this character de­

fines a homogeneous holomorphic line bundle ~ on M. 1be 

way to get a representation in this case is as follows. 

First, form a representation TQ of Q on a space of L2 

holomorphic sections of ~- Next, induce from Q to G. 

1be main difficulty (which can be avoided if G is solv­

able) is that ~ may have no holomorphic sections. 1bis is 

essentially the problem discussed in Chapters 5 and 6 when 

G is reductive. It is by no means completely resolved even 

in that special case. 

A little technical guidance is available from the con­

structions discussed so far. In the case of a real polariza­

tion, we were to induce from the subgroup P. 1be defini­

tion of induction (Definition 3.8) involves twisting the 

inducing representation by a square root of the modular func­

tion for G/P. 1be examples of Chapters 1, 5, and 6 show 
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that it is reasonable to do that in the case of holomorphic 

induction as well. In the setting of Definition 10.12, we 

define the modular character of H by 

(10.13)(a) 6 (h) = det(Ad(h))I /. p Q p 

This is a complex-valued character of H; it is real-valued 

if the polarization is real, and it has absolute value one 

if the polarization is purely complex. As in Definition 

1.31, gives rise to a double cover of 

has a canonical square root: 

(10.13}(b) 
Y.i ..., x 

(6 ) : H -+ IC • 
p 

Finally, we arrive at 

H on which 6 
p 

Definition 10.14. Suppose G is a Lie group, A is a coad-

joint orbit, and A is in A. A polarization of A at A 

is a quadruple (p,Q,H,T ) with the following properties: 

a) p, Q, and H are as in Definition 10.12; and 

b) TH is an irreducible unitary representation of H"' 

(cf. 10.13). such that dTH is a multiple of the restric-

tion of iA to l>o. 

c) TH takes the value -1 on the non-trivial element r 
of the covering map in (10.13)(b) (cf. Definition 5.7). 

We say that A is polariza.ble if a polarization at A 

exists. 
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To such a set of data, the orbit method can at least 

attempt to associate a representation (along the lines 

described after Definition 10.12). 

When G is a reductive group, this point of view can 

lend coherence to the rather oddly assorted constructions of 

unitary representations presented in Chapters 3 and 6. It 

can often suggest important technical improvements; the 

introduction of metaplectic coverings happened in that way. 

The ideas around Definition 10.14 provide no more new repre-

sentations, however. 

PROPOSITION 10.15 ([Ozeki-Wakimoto, 1972]). Suppose g0 is 

a real reductive Lie algebra and p is a polarization at A 

* in g0 • Then p is a pa.ra.bol ic suba.lgebra of g, and p 

has a Levi factor defined over IR. 

Because of this proposition, we should concentrate our 

attention on non-polarizable orbits. There is no very good 

systematic theory for attaching representations to non-

polarizable coadjoint orbits (but see [Torasso, 1983] or 

[Guillemin-Sternberg, 1978] for some ad hoc successes). 

What we seek is only guidance about what unipotent repre-

sentations ought to be, however; so the lack of an actual 

construction does not make this approach useless. 
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To begin, we need to know which orbits to look at. 'Ib.e 

existence of a polarization at A in the sense of Defini-

tion 10.14 does not guarantee that the orbit is integral; it 

says rather that iA exponentiates to a "metaplectic" char-

acter of the two-fold cover of G(A)o defined by the square 

root of 6 (cf. Definition 5.7). We ought therefore to 
f> 

replace the condition of integrality (Definition 10.5) by 

this one. Unfortunately, the new condition is phrased in 

terms of a polarization. 'Ib.e next definition cures that 

problem. 

Definition 10.16 (see [Duflo, 1980] or [Duflo, 1982]). 

Suppose G is a Lie group, and A is a coadjoint orbit. 

Fix a point A in A. Write VA for TA(A) and ~ for 

the symplectic form on VA (cf. (10.7)). Write Sp(~) for 

the group of linear transformations of VA preserving ~ 

(the symplectic group). 'Ib.e isotropy action then provides a 

homomorphism 

'Ib.e symplectic group has a distinguished two-fold covering 

Mp(~) (the metaplectic group). If VA is zero, it is 

'll./2Jl.; otherwise, it may be characterized as the unique con-

nected two-fold cover. Define G(A)~ to be the pullback of 
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the covering Mp(~) via TA (Definition 1.31), the meta­

plectic cover of G(X): 

1 '71/'Zll.' G(X)~' G(X) ' 1. 

Write ( for the non-trivial element of the kernel of the 

covering map. 

A representation v of G(X)~ is called metaplectic 

if v(C) = -I. It is called admissible if it is metaplectic 

and 

dv(X) = (iX(X)) • I 

for all X in g(X) 0 • The orbit A is called admissible 

if there exists at least one admissible representation of 

PROPOSITION 10.17. Suppose G is a Lie group, and A is a 

polariza.ble coa.cijoint orbit (Definition 10.14). Then A is 

admissible. More precisely, the covering (10.13)(b) re­

stricts to the metaplectic covering of G(X) n H; so a polar­

ization at A gives rise to an admissible representation of 

G(X) n H'. 

The proposition shows that the notion of admissible captures 

the coverings we want. 
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We turn now to the study of the structure of coadjoint 

orbits in the reductive case. For the balance of this sec-

tion, we return to our usual hypothesis that G is a reduc-

tive Lie group. Fix an Ad(G)-invariant form < , > on g0 

as described after (2.1). 1bis induces an isomorphism 

(10. lS)(a) * K.: Qo -+ Qo • 

defined by the property that 

(10. lS)(b) <K(A.),Y> = A.(Y) 

for all Y in g0 • We may write 

1be map K. is a linear isomorphism, intertwining the coad-

joint and adjoint actions: 

(10. lS)(c) * K(Ad (g)(A.)) = Ad(g)(K(A.)). 

Recall (from [Humphreys, 1972], for example) that every 

element X of g0 has a Jordan decomposition 

(10.19) x = x + x . s n 

characterized by the properties that 

(as an automorphism of g0 ); ad(X ) 
n 

belongs to [g,g]: and [X ,X ] = 0. s n 

ad(X ) s 
is semisimple 

is nilpotent: x 
n 

It follows that X 
n 

acts nilpotently in every finite-dimensional representation 

and that X acts semisimply in every completely reducible 
s 

finite-dimensional representation. We say that X is semi-
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simple (respectively nilpotent) if X is equal to X 
s 

(respectively X ). 
n 

We say that an element of * g0 is semisimple 

(respectively nilpotent) if K(X) is. By (10.18), every 

element of 

(10.20) 

* Qo has a Jordan decomposition 

X=X +X. s n 

Here are some of its properties. 

PROPOSITION 10.21. Suppose G is a reductive group, and X 

* belongs to g0 . Write 

X = X + X s n 

for the Jordan decomposition of X . 

. a) The isotropy group G(X ) is reductive; in fact it 
s 

is a Levi subgroup of G (Definition 5.1). 

b) The restriction of X to g(X ) 0 is nilpotent. n s 

Its isotropy group for the coadjoint action is 

G(X )n(X ) = G(X). s n 

c) The restriction of X to g(X) 0 is zero. 
n 

d) The G orbit of X is algebraically polariza.ble 

(Definition 10.12) if and only if the G(Xs) 

is algebraically polariza.ble. 

orbit of X 
n 
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The first three parts of this proposition are routine. and 

the last is a fairly easy consequence of them. Perhaps the 

most serious fact one needs to know about the Jordan decom-

position in g0 is that if Y commutes with X. then Y 

commutes with X s 

CDROlLARY 10.22. Suppose G is reductive and A. is a. ni.l-

. * potent element {cf. {10.20) ~n g0 • Then the orbit A of 

A. is integra.l {Definition 10.5). It is admissible 

{Definition 10.16) if and only if the meta.plectic double 

cover of G(A. )o s is disconnected. 

Proof. By Proposition 10.21(c), A. is trivial on g(A.) 0 • 

The trivial character of G(A.) 0 therefore satisfies the 

requirement in Definition 10.5. For admissibility, we need 

a representation T of G(A.)~ with certain properties. It 

is equivalent to find one To on G(A.)~ with these pro-

perties. (If we have T 0 , then 

works for T; and if we have T, then its restriction has 

the right properties for T 0 .) 

Because A. is trivial on g(A.) 0 , To must be trivial 

on the identity component of G(A.)~. This is compatible 
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with the requirement that To(() be -1 exactly when the 

group is disconnected. a. 

This corollary provides additional evidence that admis­

sibility is a more appropriate condition than integrality. 

It is fairly well known that certain nilpotent coadjoint 

orbits ought not to be associated to any unitary represen­

.tation. An example is the minimal orbit for the symplectic 

group Sp(2n,m) (with n at least 2). It is associated to 

the metaplectic representation of the metaplectic double 

cover Mp(2n.m) but not to any representation of the sym­

plectic group itself. The reason offered by the orbit 

method is that the orbit is not admissible (except for the 

covering group). 

On the other hand, admissibility alone is still not a 

sufficient condition to guarantee the existence of a repre­

sentation attached to the orbit. To see this, take G to be 

PSL(2,m), and A to be a non-zero nilpotent orbit (cf. 

Example 11.3 below). One can check that A is admissible, 

and even polarizable. (The polarization fails to satisfy 

the Pukanszky condition, however). There is no representa­

tion of PSL(2,m) attached to A - the best candidate is a 

limit of discrete series representation for SL(2,m), and 

this fails to pass to the quotient PSL(2,m). 
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lbe nature of the relationship we want between the 

orbit method and unipotent representations is this. 

255 

"Definition" 10.23. Suppose G is a reductive Lie group. 

An irreducible representation of G is called unipotent if 

it is a constituent of a representation attached to an admis­

sible nilpotent coadjoint orbit. 

lbis should be compared to Definition 9.19. lbe quotation 

marks are needed because we do not know how to define the 

representation attached to an orbit. 

A natural guess is that the set of representations 

attached to the orbit of A should be parametrized by the 

irreducible admissible representations of G(A)~ (Defini­

tion 10.16). lbeorem 1.37 can be interpreted as evidence of 

this, along with its generalization lbeorem 5.12. lbere are 

two kinds of problems with the existence of such a parame­

trization. First, there are the considerations of Chapter 9 

for complex groups; these should certainly be compatible 

with the orbit method. Example 9.22 seeks to attach at 

least ten different representations to a single orbit; there 

are only five irreducible admissible representations of 

G(A)~. 
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There is a much more serious problem, however. Suppose 

M = G/P is a homogenous space and ~ is a Hermitian 1 ine 

bundle on M corresponding to a unitary character of 

P. Assume that the representation 

(10.24)(a) 

is irreducible. Define the bundle ~ of real connections 

on ~ and the map µ as in Proposition 10.9. Then the 

orbit correspondence ought to associate TG to the image of 

µ: 

{10.24)(b) 

This image is easily computed from the proof of Proposition 

10.9 {which we omitted). The result is 

(10.24)(c) 

As an example, take G to be SL(2,ffi), and P the sub-

group of upper triangular matrices. Choose to be the 

trivial character of P. Then vG is the spherical princi­

pal series representation of SL(2,ffi) with continuous para-

meter zero; it is therefore irreducible. The Lie algebra 

g-0 , and so also * g-0 , may be identified with two-by-two 

matrices of trace zero. Those restricting to zero on p 

are the strictly lower triangular ones {with zeros on the 

diagonal). Consequently, µ(~) consists of all the conju-

gates of such matrices; and this is the cone of all 

nilpotent 
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elements in g0 . 'lbat cone is the union of three nilpotent 

orbits, of which two are relatively open. 

The conclusion is that representations should corre­

spond not to single nilpotent coadjoint orbits, but to cer­

tain closed unions of several orbits. The problem, there­

fore, is to decide how several nilpotent orbits should be 

put together to produce something corresponding to a repre­

sentation. It is easy to imagine that what is involved are 

the closure relations among the orbits and the singularities 

of orbit closures. This is a disturbing state of affairs: 

the orbit closures are only real analytic sets, and one 

would prefer not to have to say anything clever about their 

singularities. 

There is a way out of this, however. The real nilpo­

tent coadjoint orbits turn out to be in one-to-one corre­

spondence with certain complex algebraic homogeneous spaces; 

so we can study the problem in the comforting presence of 

algebraic geometry. This we will do in the next chapter. 
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K-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS 

Since the orbit method does not yet provide a construc­

tion of representations attached to nilpotent orbits, we 

need a less direct way to guess what those represen~ations 

ought to be. Our main approach will be through the restric­

tion of the representation to the maximal compact subgroup 

K: we will try to read off from the orbit what this restric­

tion ought to be. 

Fix a reductive group G (Definition 0.6), and choose K 

and 0 as at the beginning of Chapter 2. (We will eventual­

ly need G to be in Ha.rish-chandra's class, but this assump­

tion can be omitted at the beginning.) Put 

(11.l)(a) ~ = complexification of K; 

this is a complex reductive algebraic group (possibly discon­

nected) which acts algebraically on any locally finite repre­

sentation of K. In particular, 
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(11. l)(b) Kee acts algebraically on any (g,K)-module. 

Of course Kee need not be connected. Fix a complex con­

nected reductive algebraic group Ge with Lie algebra g. 

This group need not contain G, and the notation is there-

fore misleading; but we will make very little use of it in 

any case. Put 

(11.l)(c) s 0 = -1 eigenspa.ce of 9 in g0 ; 

dropping the zero will denote complexification as usual. We 

often identify s with g/!. For example, this allows us 

to regard linear functionals on s as functionals on g 

vanishing on !, and gives 

(11. l)(d) 

Define 

(11.2)(a) 

* * $ cg. 

* He = cone of nilpotent elements in g 

(defined before (10.20)). The group Ge acts on He; its 

orbits there were considered at the end of Chapter 9. Put 

(11.2)(b) 

the cone of nilpotent elements in g:. The group G acts 

on Hm; its orbits are the ones in Definition 10.23. 

Finally, put 

(11.2)(c) 

the cone of nilpotent elements in s*. The group Kee acts 

on H9 ; its orbits are going to be the objects of our atten-
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tion now. The advantage of .N0 over .NIR is that the for­

mer is an algebraic variety, and the action of the group ~ 

is algebraic. 

Example 11.3. Define G1 to be SL(2,IR). The Lie algebra 

gA of G1 consists of two by two real matrices of trace 

zero; its complexification consists of complex matrices of 

trace zero. We can choose 

(et)g = tg-1 (g € G) 

(01 )X = _tX (X € g) 

K1 = 80(2) 

(K1 la:: = 80(2,0::) 

G~ = SL(2,0::) 

s 1 = symmetric matrices in g 

A two by two matrix of trace zero is nilpotent if and 

only if it has determinant zero. Consequently 

Here a, b, and c are complex. The group GO:: has exactly 

two orbits on .N~: the point zero. and everything else. As 

a representative of the non-zero orbit, we can choose 
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The real nilpotent cone looks just like H~. except 

that the entries a, b, and c must now be real numbers. 

The equation a 2 +be = 0 has no non-zero solutions with b 

equal to c; so if we set 

[H~]+ = real matrices as above with b > c, 

and define [H~]- similarly, then 

1 1 + 1 -Km = [HmJ u {O} u [HmJ . 

Because G1 is connected, it must respect this decomposi-

tion; and it is easy to check that these are precisely the 

three orbits of G. As representatives of the two large 

orbits, we can choose 

rol ool y~ = l 

The nilpotent cone in s 1 consists of trace zero com-

plex symmetric matrices of determinant zero. Set 

x1 = 11 il 
9 i -1 
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yi = [ 1 -ii 
0 -i -1 

Define 

[.N~t = ICX·X~. 

and define [.N~]+ similarly. Then it is easy to check that 

these two sets and zero are the orbits of ~ on .N~. 

This example is fundamental, particularly in light of the 

Jacobson-Morozov theorem and its descendants. 

THEOREM 11.4 (Jacobson-Morozov; see [Kostant, 1959]). Sup-

pose GIC ts a complex reductive group with Lie algebra g. 

Then the finite set of nilpotent orbits of GIC on g ts tn 

one-to-one correspondence wtth the set of CIC-conjugacy 

classes of Lie algebra homomorph.isms 

"'ic: gi -+ g; 

here g 1 ts sl(2,IC), as tn Example 11.3. The correspon-

d.ence sends the homomorph.ism "1a; to the nilpotent element 

"1a;(~) {defined tn Example 11.3). 

This result is true over m as well. We prefer to phrase 
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that fact in a slightly roundabout way, to emphasize the 

analogy with Theorem 11.6 below. 

11IEOREM 11.5 (Jacobson-Morozov; see [Kostant, 1959].) Sup-

pose G is a real reductive group with Lie algebra g0 . 

Use the notation of Example 11.3. Then the finite set of 

nilpotent orbits of G on g0 is in one-to-one correspon-

dence with the set of G-conjugacy classes of Lie algebra 

homomorphisms 

"'a::: g1 ~ g 

tha.t respect the complex conjugations o 1 and o on g 1 

and g: 

"1m(o1 A) = o("1m(A)). 

The correspondence sends "1m to "1m(~). 

If X is a nilpotent element of g0 , then the real 

dimension of G•X is equal to the complex dimension of 

The corresponding result for nilpotents in s is due 

to Kostant and Rallis. 

11IEOREM 11.6 ([Kostant-Rallis, 1971]). Suppose G is a 

real reductive Lie group; use the notation of (11.1), 

(11.2), and Example 11.3. Then the finite set of nilpotent 
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orbits of ~ on s is in one-to-one correspondence with 

the set of ~-conjugacy classes of Lie algebra homomor­

ph.isms 

"'a= g1 -+ g 

intertwining the actions of a1 and a: 

"1a(a1A) = a("1a(A)). 

The correspondence sends "1a to "1a(X~). 

Fix a nilpotent element X in s. Then the complex 

dimension of the ~ orbit ~·X is half the dimension of 

the G~ orbit G~·X. 

1be next result provides the formal relationship we 

THEOREM 11.7 (Sekiguchi). Suppose G is a reductive alge­

braic group; use the notation of (11.1), (11.2), and Example 

(11.3). 

Suppose first that "1m is a homomorphism of g 1 into 

g, respecting the complex conjugations. Then there is a G 

conjugate "'ma of "'m that also intertwines the actions of 

a1 and a. This conjugate is unique up to conjugation by 

K (the a-fixed elements of G). 

On the other hand, suppose that "1m is a homomorphism 

of g 1 into g intertwining a1 and a. Then there is a 
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Ka; conjugate ~em of ~9 tha.t also respects the complex 

conjugations. This conjugate is unique up to conjugation by 

K (the elements of Ka; fixed by complex conjugation). 

CX>ROLLARY 11.8. Suppose G is a real reductive group; use 

the notation of (11.1) and (11.2). Then there is a natural 

bijection between the orbits of G on Hm and the orbits 

of Ka; on H9 • If Am corresponds to A9 in this bijec-

tion, then 

GaAR = Gafa· 

It is not a trivial matter to write down the map of Corol-

lary 11.8 in either direction; one really has to pass 

through the special sl(2) homomorphisms. It seems very 

likely that the bijection preserves the closure relation on 

the orbits, but I do not know how to prove such an asser-

ti on. 

Definition 11.9 (cf. [Vogan. 1978]). In the setting (11.1), 

suppose X is a finitely generated Harish-cha.ndra module. 

Recall from (11.l)(b) that Ka; acts on X. A good filtra­

tion of X is a (possibly infinite) increasing filtration 

(a) X0 C X1 C ••• C X 

of X, satisfying the conditions below. Write U for the 
n 
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nth level of the standard filtration of U(g). By the 

Poincare-Birkhoff-Witt theorem, the associated graded ring 

gr(U(g)) is naturally isomorphic to S(g). 1be conditions 

are as follows: 

(i) xm is finite-dimensional and ~-invariant. 

(ii) 1be union of all the X is all of X. 
m 

(iii) 1be filtrations of X and U(g) are compatible: 

ux ex+. nm nm 

(iv) 1be associated graded S(g)-module gr(X) (which 

makes sense by (iii)) is finitely generated. 

Good filtrations certainly exist. To see this, choose 

any finite-dimensional generating subspace S of X. By 

Definition 1.26(b), S is contained in a finite-dimensional 

~-invariant subspace x0 . Set 

(b) X = U x0 . m m 

1bis is easily seen to be a good filtration. 

For any good filtration, the associated graded module 

gr(X) is a finitely generated S(g)-module, equipped with a 

compatible algebraic action of ~- (Compatibility is de­

fined in analogy with Definition 1.26(c).) We will express 

this by calling gr(X) an (S(g) .~)-module. 1be module 

gr(X) depends on the choice of good filtration, but only a 

little; for example, its class in the Grothendieck group of 
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finitely generated (S(g).~) modules is well-defined. 

Accordingly the support of gr(X) 

* Supp(gr(X)) C Spec S(g) = g 
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depends only on X, and not on the filtration. (Recall that 

the support of a module M over a commutative ring consists 

of those prime ideals at which the localization of M is 

not zero. For finitely generated modules over Noetherian 

rings, this is the same as the associated variety of the 

annihilator of M.) We write 

(c) Ass(X) = Supp(gr(X)), 

and call this the associated variety of X. 

PROPOSITION 11.10 (see [Vogan, 1978]). Suppose X is a 

finitely generated Harish-Chandra module. Then Ass(X) 

* (Definition 11.9) is a ~-invariant closed cone in s 

(cf. {11.1)). If X has finite com.position series, then 

Ass(X) is contained in the nilpotent cone H9 (cf. 

(11.2)). 

A deep theorem of Gabber says that if X is irreducible, 

then Ass(X) is equidimensional. (It need not be irredu-

cible.) We will make no use of this result. 
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We have now attached to any Harish-cb.andra module X 

of finite length a closed union Ass(X) of nilpotent ~ 

orbits on s. Because of the bijection of Corollary 11.8, 

we also get a union of real nilpotent orbits. Here is how 

this correspondence should be related to the method of coad-

joint orbits. 

(False) "Conjecture" 11.11 (see [Barbasch-Vogan, 1980]). 

Suppose is a finite union of orbits in * Qo· The 

associated cone Ass(~) is the set of all limits of con-

vergent sequences 

It is a G-invariant cone contained in Hm, and therefore a 

finite union of nilpotent G orbits. If ~ is closed and 

nilpotent, then 

Ass(~) = ~-
Write Ass(~)0 for the corresponding union of ~ 

orbits on H0 (Corollary 11.8). Suppose X is a unitary 

(g,K)-module associated to ~ by the orbit method. Then 

Ass(X) = Ass(~)0 . 

The reason this is false is that the holomorphic part of the 

orbit method (in our case, the cohomological parabolic induc-
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tion functors) can attach the zero representation to a non­

empty orbit. 'lbat problem should not arise for nilpotent or­

bits; so one can drop the "false" part if AiR is contained 

in Nm. The reason that for the quotation marks is that 

there is no definition in general for the representation 

"associated" to an orbit or collection of orbits. From now 

on, we will interpret statements like this not as conjec­

tures, but as partial specifications for a future orbit 

method. 

In addition to Ass(X), we have the (S(g).~)-module 

gr(X), supported on Ass(X). This is not quite so well de­

fined as its support, since it depends on the choice of good 

filtration. The main observation is that this module charac­

terizes the restriction of our original X to K: 

Observation 11.12. Suppose X is any (g,K)-module of 

finite length. Then X is isomorphic as a representation 

of K (or ~) to the (S(g).~)-module gr(X). 

This is a trivial consequence of the complete reducibility 

of finite-dimensional representations of compact groups. In 

conjunction with Conjecture 11.11, it leads to the following 

constraint on the orbit method. 
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Requirement 11.13. Suppose Aut is a union of G orbits on 

Nm. Write Aa for the corresponding union of ~ orbits 

on Na. If X is a (g,K)-module associated to Aut by the 

orbit method, then there must be an (S(g).~)-module M, 

such that 

i) Supp(M) = Aa; and 

ii) M = X as a representation of K. 

So far this is a fairly weak requirement. We intend to shar­

pen it by sharpening the requirements on M. 

To see how this ought to be done, recall that we al­

ready know that representations ought to correspond only to 

admissible orbits. We will therefore investigate which 

orbits on Na correspond to admissible orbits on Nm; then 

try to find a kind of module that can be supported only on 

these orbits. 

So let ~ be an element of the G orbit Aut· corre­

sponding to "JR in g0 (cf. 10.18). After conjugating by 

an element of G, we can and do assume that there is a map 

(11.14)(a) >IJ: sl(2) -+ g, 

respecting both the Cartan involutions and the complex con­

jugations, such that 

{ll.14)(b) 1'1(~) ="IR 
(cf. Example 11.3). Define 
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x0 = ~(X~) 
x0 = corresponding element of s*. 

271 

1ben x0 is a representative of the ~ orbit A0 corre-

sponding to Am· 
To simplify the notation (at the small expense of con-

fusing the reader), we will write "iR for the isotropy 

group called G(~) in (10.4): 

(11.15)(a) "iR = {h €GI Ad*(g)(~) = ~}-
Similarly, write 

(11.15)(b) 

Each of these groups contains 

(11.15)(c) H = {h €Kl Ad(k)(~) = ~}: 
it can be shown that H is a maximal compact subgroup of 

each. 

1be complex group H0 acts algebraically on the alge­

braic (or, equivalently, holomorphic) cotangent space at x0 

to the complex variety A0 • 1be determinant of this action 

is an algebraic character of H0 , which we call 60 . Formal-

ly. 

(11.16)(a) 

Let 

(11.16)(b) 

* * 60(h) = det(Ad (h) on (t.ll)0) ). 

H; = two-fold cover of H0 attached to the 

square root of 60 . 
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Definition 10.16 describes the two-fold metaplectic cover 

ii; of Hm· 
The following result will appear in the M.I.T. doctoral 

dissertation of J. Schwartz. 

PROPOSITION 11.17. With notation as above, the restrictions 

to H of the coverings ii; and H; are naturally 

isomorphic. Write H~ for this common restriction. Then 

the following sets are in natural one-to-one correspondence: 

i) admissible irreducible representations of ii;: 
ii) admissible irreducible representations of H~ ; 

iii) admissible irreducible representations of H;. 
In each ca.se, admissible means trivial on the identity com-

ponent and non-trivial on the kernel of the covering map. 

It is easy to describe the genuine representations of a 

covering attached to the square root of a character. We can 

therefore deduce 

CDROLLARY 11.18. In the setting (11.14)-(11.16), the set of 

irreducible admissible representations of Hm is in one-to­

one correspondence with the set of irreducible admissible 
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algebraic representations + of H9 satisfying 

d+ = ~69. 

To understand the significance of this result, we need 

an algebraic analogue of Proposition 3.2. 

PROPOSITION 11. 19. Suppose G is a com.pl ex algebraic group 

and H is a closed subgroup. Write OG/H for the sheaf of 

regular functions on the algebraic variety G/H. Th.en the 

following three sets are in natural one-to-one correspon­

dence. 

i) Coherent OG/H m.odules with an algebraic action 

of G com.pa.tible with the action on G/H (briefly, 

(OG/H,G)-m.odules). 

ii) Hom.ogeneous algebraic vector bundles on G/H. 

iii) Algebraic representations of H. 

Suppose G/H is an affine variety, and write R(G/H) for 

the ring of regt,ilar functions on G/H (the global sections 

of OG/H). Th.en these sets are also in one-to-one corre­

spondence with 

iv) finitely generated (R(G/H),G)-m.odules (defined as 

in Definition 1.26(c)). 
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The proof is formally identical to that of Proposition 3.2. 

The last part is the usual correspondence between modules 

and sheaves for affine algebraic varieties. 

CDROLLARY 11.20. In the setting (11.14)-(11.16), write w9 

for the top exterior power of the cotangent bundle on A9 . 

Then ~ is admissible if and only if there is a ~-equi­

variant vector bundle ., on A9 , satisfying one of the 

following equivalent conditions: 

i) ., ® ., is isomorphic (as an equiuariant vector 

bundle) to a sum. of copies of ~9 • after both bundles have 

been lifted to some (~-equiuariant) finite cover of A9 . 

ii) There is an equiuariant locally constant sheaf of 

vector spaces ,: on A9 such that 

., ® ., ~ ~e ® ,:. 

Here we interpret a locally constant sheaf as a vector 

bundle with a flat connection. 

The problems discussed around Definition 10.23 suggest 

that we need to extend conditions like those in Corollary 

11.20 to the closure of an orbit, or even to a closed union 

of several orbits. We know that (coherent sheaves of) mod­

ules are a reasonable generalization of vector bundles to 

this setting (cf. Requirement 11.13). It is less clear what 
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ought to replace the top exterior power of the cotangent bun­

dle. On the basis of what happens in SL(2), Deligne bas 

suggested that the right object is the dua.lizing complex. 

Suppose V is a (possibly reducible) algebraic variety. 

Put 

(11.21)(a) OV = sheaf of regular functions on V; 

when no confusion is possible, we call this 0. Then there 

is a coherent sheaf of 0-modules 

(11.21)(b) ~ = dualizing sheaf. 

Restricted to the top-dimensional part of the smooth locus 

of V, ~ is isomorphic to the (sheaf of germs of sections 

of) the top exterior power of the cotangent bundle. Even 

more is true: there is a complex w of sheaves (or rather 

an object in a derived category) of which ~ is the top 

degree cohomology. The suggestions below will be stated in 

terms of ~ for simplicity; they can be reformulated using 

w without difficulty. Since the suggestions are so impre­

cise in any case, this refinement is of little importance. 

Define 

(11.21)(c) R(V) = ring of global sections of OV. 

If V is affine, we can as usual identify the sheaf ~ 

with the R(V)-module 

(11.21)(d) D(V) = global sections of ~-



276 CHAPTER 11 

At this point I do not know how to proceed. Here is 

one possibility. 

Lack of Definition 11.22. Suppose V is an algebraic var­

iety; use the notation of 11.23. Th.ere should be a notion 

of self-dual for a coherent 0-module A. I do not know 

exactly what it is, but it should probably satisfy the fol­

lowing constraints: 

a) If A ®o A is isomorphic to a multiple of the dual­

izing sheaf ~. then M is self-dual. 

b) If A is self-dual, then there is a locally con­

·stant sheaf ~ of vector spaces on V, such that 

A ®o A == ~ ®o ~-

Here now is a strengthening of Requirement 11.13. 

Requirement 11.23. Suppose ~ is a union of G orbits on 

Nm. Write A0 for the corresponding union of ~ orbits 

on N9 • If X is a (g,K)-module associated to ~ by the 

orbit method, then the following conditions must be satis­

fied: 

a) A9 is closed and equidimensional. 
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b) 1bere is a finitely generated (S(g).~)-module M 

satisfying 

M ~ X as a representation of K 

Ann M = ideal of o9 

M is self-dual (in a ~-equivariant way) 

as a module on A9 . 

Because of the remark before Definition 11.22. this require­

ment should not be ta.ken too seriously. 

In the same spirit, here is a tentative outline of what 

is wanted from the orbit method for nilpotent orbits. 

Conjecture 11.24. Suppose G is a reductive group in 

Ha.rish-cbandra's class. Use the notation (11.1) and (11.2); 

assume that GC is chosen so that the adjoint representa­

tion of G factors through Ge. Fix 

i) the closure AC of a single Ge orbit on ~C; 

ii) an irreducible, normal, affine algebraic variety 

Ve equipped with 

1) an algebraic action of Ge, and 

2) a finite, GC-equivariant morphism v from Ve 
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iii) a closed, ~-invariant equidimensional subvar-

iety 

Ya c T- 1 (Ae n s*). 

of half the dimension of Ye; and 

iv) a self-dual (Definition 11.22) (R(V9).~) mod-

ule M. 

Then there is (conjecturally) a unitary (g,K)-module 

such that 

a) X ~ M as a representation of K. 

More precisely, write A for the completely prime 

primitive algebra (conjecturally) associated to Ve by 

Conjecture 9.17. We should have 

b) X is an (A.~)-module. 

The algebra A should admit a conjugate linear anti-auto-

morphism 

h a -+ a 

extending the one on U(g) (Definition 9.9). Write 

k ' Ckhr1 

for the complex conjugation on ~ with fixed point set K. 

Then X should be endowed with a positive definite sesqui-

linear form < , > 

c) 

satisfying 

h <av,w> = <v,a w> 
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for v and w in X, and a in A or ~-

One can easily impose additional conditions, saying for exam­

ple that some associated graded module gr(X) should be 

isomorphic to M, or to some gr(M). Probably X should be 

irreducible (as an (A,Ke)-module) whenever M is (in some 

self-dual-module-theoretic sense). Almost certainly R(Ve) 

has a Poisson bracket structure; at any rate the largest 

Ge-orbit in Ve, whose complement has codimension at least 

two, is a symplectic manifold. Hypothesis (iii) of the con­

jecture makes v9 a Lagrangian subvariety, and this is 

certainly a good thing. 

"Definition" 11.25. Suppose G is a reductive group in 

Harish-cbandra's class. A representation of G is called 

Wlipotent if it is a sum of constituents of various represen­

tations X(V9 ,M) as in Conjecture 11.24. 

Notice that a necessary condition for X to be unipotent is 

that the annihilator of X be a self-adjoint unipotent prim­

itive ideal {cf. Conjecture 9.19). Unfortunately, there are 

non-unitary representations that satisfy this condition. 

The non-spherical principal series for SL(2,ffi) having con­

tinous parameter ~p is an example; its annihilator is the 
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same as that of the metaplectic representation of SL(2,m)~. 

It is therefore not satisfactory to use Definition 9.20 for 

real groups. 

Example 11.26. Write w for the usual symplectic form on 

m2n. To describe it, write 

~ = {(x,y)I x,y € nf} 

w((x,y),(z,w)) = <x.w> - (y,z), 

with < , > the usual inner product on of. All of this 

works over ~ as well; we have to use the symmetric (as 

opposed to Hermitian) form < , >. Put 

G = Sp(2n,m) 

G~ = Sp(2n.~) 
The Cartan involution 9 may be taken to be 

(X € g) 

Then the maximal compact subgroup K of G is isomorphic 

to the unitary group U(n), and ~ is GL(n.~). 

Put 

V~=~. 
with the standard action of G~. Define a map v from V~ 

to g (which is a space of linear transformations of ~) 

by 

v(v)w = w(v,w)v. 
-, 

This is equivariant and finite. The corresponding algebra 
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A (Conjecture 9.17) is the Weyl algebra of polynomial coef­

ficient differential operators on of. We can identify the 

generators of A with a basis of ~ by 

x -+ (O.ei) 

a/&c. -+ (e. ,0) 
J J 

Write for the linear span of these generators, and 

write ~ for this identification of A(l) with ~- The 

defining relations for A (the canonical conunutation rela-

tions) may now be written 

[r,s] = w(~(r).~(s)) 

The group G~ therefore acts by automorphisms on A, by 

g•r = ~-l(g·~(r)). 

We want to define a Lie algebra homomorphism ~ from 

into A. First, we give an isomorphism ~ from s2(~) 

(regarded as symmetric 2-tensors) onto g. This is 

~(u©v + ~)w = w(u,w)v + w(v.w)u. 

Next, we write µ for the multiplication map from 

into A. Finally, we set 

(X € g). 

It is easy to see that this respects the action of G~; we 

leave to the reader the task of verifying that ~ is a Lie 

algebra homomorphism. 

It is easy to verify that the set of elements of V~ 

* mapping into s under v is 
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{(x,±ix)I x €of}. 

1be group Kq; (which is GL(n,C)) acts on this set by act­

ing on x in the usual way. Set 

V 9 = {(x, ix)} 

~of. 

Because this is smooth, the dualizing module D is the 

module of polynomial-coefficient top-degree holomorphic 

differential forms on v9 . If we write 

df = dx1 A ••• A dxn' 

then Kq; acts on D by 

g•f(x)df = h(x)df, 

with 

h(x) = det(g)h(g- 1 •x). 

It is fairly easy to deduce that there are no self-dual 

(R(V9).Kq;)-modules. (If we forget the Kq; action, the dual­

izing module is isomorphic to the free module M on one 

generator; and it follows that M itself is self-dual. 1be 

isomorphism cannot be made equivariant, however.) 

Suppose now that G is replaced by its two-fold cover 

G~ = Mp(2n,m). 1bis replaces Kq; by the cover attached to 

the square root of the determinant character. Now let M 

be the free R(V9)-module on one generator r. We can make 

M into an (R(V9), (~)~)-module, by making ~ act by 

g•f(x)r = h(x)dC, 
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with 

~ -1 h(x) = det (g)h(g •x). 

It is easy to see that M ®R M is isomorphic to D. We 

therefore have the data for Conjecture 11.24, and can look 

for a (g,K~)-module X. The Harish-chandra module of the 

metaplectic representation fulfills the requirements (a)-

(c); we will omit the verification of this fact. Explicit­

ly, X can be regarded as a space of functions on mn: 

X = {p(x)e-<x.x>I p is a polynomial}. 

X is irreducible as a module for the Weyl algebra A but 

splits as a sum of two pieces (the even and odd functions) 

as a Harish-chandra module. 
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ON IBE DEFINITION OF UNIPOTENT REPRESENTATIONS 

Having consulted our various oracles, we propose in 

this chapter to review the understanding we have achieved 

about what constitutes a unipotent representation. There is 

no claim that the definitions set forth here are completely 

consistent with each other, or with what has gone before. 

Chapters 7 through 11 ought to be regarded as support for 

these definitions, however. All of them represent joint 

work with Dan Ba.rbasch. 

We take G to be a reductive group in Harish-cbandra's 

class. 

Definition 12.1. Suppose that X is an irreducible (g,K)­

module. 

a) X is called special unipotent if its annihilator 

in U(g) is a special unipotent primitive ideal. 

284 
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b) X is called distinguished unipotent if its annihi-

lator in U(g) is a distinguished unipotent primitive 

ideal. 

c) X is called unipotent if its annihilator in U(g) 

is a unipotent primitive ideal, and if certain other (as yet 

not specified) conditions are satisfied (cf. Definition 

11.25). 

d) X is called weakly unipotent if its annihilator in 

U(g) is a weakly unipotent primitive ideal. 

The conditions "special unipotent" and "distinguished unipo-

tent" should each imply unipotent; and unipotent should 

imply weakly unipotent. No other relation among the condi-

tions is true in general. We will define special, distin-

guished, and weakly unipotent primitive ideals; unipotent 

primitive ideals are not yet defined (cf. Conjecture 9.19). 

(With our definitions, special and distinguished unipotent 

both imply weakly unipotent.) 

To make the definitions, we need a little notation. 

Fix a Cartan suba.lgebra ~ of g, and define 

(12.2) * ~m = m-span of the roots of ~ in g. 

The invariant bilinear form < , > on g is positive 

definite on 

For X in ~*. define 
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(12.3) !(A) = largest proper ideal in U(Q) 

containing ker fA 

(Definition 6.5): I(A) is a well-defined maximal ideal in 

Ufa). 

Definition 12.~. A primitive ideal in U(Q) is called 

special unipotent if it is of the form I(A) (cf. (12.3)), 

with A arising as follows. Let dQ be a semisimple Lie 

algebra having a Cartan subalgebra \ * isomorphic to ~ , 

such that the coroots of \ d in Q correspond to the 

roots of ~ in Q· Then we require that there be a homo-

morphism ~ from sl(2) d to Q. such that 

~{diag(~.~)) belongs to \. and corresponds 

* to the element A of ~ . 

By the Jacobson-Morozov theorem, special unipotent primitive 

ideals are precisely parametrized by nilpotent orbits in the 

dual semisimple Lie algebra If 0 is such an orbit, 

then we write 

(12.5) A (0) 
s 

for the corresponding weight. 

Definition 12.6. A primitive ideal in U(Q) is called dis-

tinguished unipotent if it is of the form I(A) (cf. 
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12.3)), with A arising as follows. Fix a nilpotent orbit 

* Call a weight µ in ~ acceptable for A if 

there is an ideal I in U(g) such that 

1) I contains ker(f ) 
µ 

(Definition 6.5); and 

2) the variety of the associated graded ideal gr(I) 

is the closure of A. 

What we require of A is 

i) A is acceptable for A; 

* ii) A belongs to bjR (cf. 12.2); and 

iii) (A,A) is minimal subject to (i) and (ii). 

A case-by-case calculation shows that A exists, is unique, 

and satisfies 

(12. 7)(a) variety of gr(I(A)) = closure of A. 

We may write 

(12. 7)(b) 

Consequently the distinguished unipotent primitive ideals 

* are parametrized precisely by the nilpotent orbits in g . 

Lack of Definition 12.8. A primitive ideal in U(g) is 

called unipotent if it is of the form I(A) (cf. (12.3)), 

with A arising as follows. Fix a nilpotent orbit A in 

* ~ g , and a (connected) covering A of A. Then 
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is associated to A~ in some still unspecified way (but cf. 

Le11D118. 9.21 and Conjecture 9.18). If the covering is triv-

ial, then we require 

We will also require that every special unipotent primitive 

ideal be unipotent. More precisely, recall from the appen-

dix to [Ba.rbasch-Vogan, 1985] that Spaltenstein has defined 

a map 

{2 -+ rlu 
d from nilpotent orbits in g to (special) nilpotent orbits 

in g*. We require that 

(12.9) X(O) = X ((dO)~). 
u 

for some covering (dO)~ of rlu. ('lbe covering will depend 

on n. and not just on dn.) 

Definition 12.10. A primitive ideal I in U(g) is called 

weakly unipotent if the following two conditions are satis­

fied. Choose X in ~* representing the infinitesimal 

character of I (so that I contains the kernel of Ex>· 
'lbe first condition is 

i) X belongs to ~; (cf. (12.2)). Fix an irredu-

cible representation X of g with annihilator I. Consi-

der the set of weights µ with the following property: 
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there is a finite dimensional representation F of g such 

that some non-zero vector in X ® F is annihilated by the 

kernel of fµ (Definition 6.5). The second condition is 

ii) for every such µ, (µ,µ) ~ <X.X>. 

Informally, the condition says that the infinitesimal charac­

ter cannot be shortened by tensoring with a finite dimen­

sional representation. This condition has an obvious 

similarity to the definition of distinguished. It also 

plays a significant part in the construction of other repre­

sentations from unipotent ones (cf. Theorem 13.6). 
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EXHAUSTION 

In this chapter, we will offer a few hints about how 

one can hope to prove that some list of irredcible unitary 

representations is complete. lbe modern approach to this 

problem begins with the Langlands classification. lbis is a 

complete list of all irreducible (g,K)-modules, with expli­

citly described parameters; the representations themselves 

are described in a slightly less explicit way. We stated 

this theorem completely and carefully in the case of complex 

G (lbeorem 8.15). We will not do so for the general case, 

but here is a part of the result. 

'11IEOREM 13.1 ([Langlands, 1973]; see also [Borel-Wallach, 

1980]). Suppose G is a reductive Lie group in Ha.rish­

Chandra's class, and v is an irreducible admissible repe­

sentation of G on a Banach space V. lben we can find 

290 
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i) a parabolic subgroup P = LN of G; and 

ii) an irreducible admissible representation ~ of 

L, with the following properties: 

a) the restriction of ~ to the commutator sub-

group L' of L is a sum of discrete series representa-

tions of L' (Definition 5.10). 

b) T is infinitesimally equivalent (Definition 

2.14) to a subrepresentation of the induced representation 

G 
lndp(~ ~CC). 

Much more is true, but this conveys the main idea. lbeorem 

8.15 suggests how much more detailed information is avail-

able. 

Sketch of proof. Fix a non-zero continuous linear map p 

from V onto a finite-dimensional representation (o,E) of 

K, intertwining the action of K. Let B be the vector 

bundle on G/K corresponding to E (Proposition 3.2). We 

CD 
want to define a map from V (Definition 2.3) to the space 

Cm(G/K,B) of smooth sections of B. Given v in V, de-

fine a function f from G to E, by w 

f (g) = p(T(g- 1 )v). v 

(It is easy to show that f is smooth for any v in V, 
v 

but this fact is not needed.) lben 
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By Corollary 3.4, 

The map 

(13.2)(a) 

CliAPTER 13 

= o(k- 1 )p(v(g- 1 )v) 

= o(k- 1 )f (g). 
v 

f corresponds to a section F of B. 
v v 

co co 
P: V 'C (G/K,B) 

defined in this way clearly intertwines the actions of G. 

Suppose z is in the center of U(g). Write D for z 

the corresponding right-invariant differential operator on 

G. Corollary 3.4 shows how to lift D to a differential z 

operator (still called D ) on sections of B. By Lenona. 6.6 z 

and Theorem 2.12, z acts by some scalar fx(z) 
co 

on V. 

By the intertwining property above, it follows that sections 

F in the image of P satisfy the differential equations 

(13.2)(b) (Dz - fx(z))F = O (z € ~(g)). 

At this point some serious analysis on G is needed. 

The idea is roughly that G/K can be compactified, by add-

ing pieces at infinity that look like (among other things) 

various G/P's, with P parabolic. The prototypical exam-

ple is SU(l,1) acting on the closed unit disk. The inter-

ior is G/K, and the boundary circle is G/P. One use the 

differential equations (13.2)(b) to define boundary values 

of the sections F. Typical boundary values are sections of 

certain vector bundles on G/P; that is, they are vectors in 
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induced representations. In this way one gets intertwining 

operators from sections of B satisfying (13.2)(b), to in-

duced representations. 

If these boundary value maps are non-zero, we are done. 

If they are zero, the conclusion is that the sections of B 

under consideration tend to zero (in a well-controlled way) 

at infinity. It follows that they are square-integrable, 

and therefore (Definition 5.10) that v is a discrete 

series representation. 1ben the theorem is still true, with 

P equal to G. a. 

1bis outline is really more motivation than sketch; 

there is no explicit compa.ctification of G/K in 

[Langlands, 1973], for example. 

Recall from Definition 4.6 the notion of Hermitian dual 

of a representation v. If v is an irreducible admissible 

representation with specified parameters in the Langlands 

classification, then one can compute the parameters of h 
T 

by a simple formal operation. In particular, one can deter-

mine easily from the Langlands parameters whether v admits 

an invariant Hermitian form. Since we have not described 

the Langlands parameters in detail, we cannot give the re-

sult (see [Knapp-Zuckerman, 1977]; but here is a special 

case. 
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PROPOSITION 13.3 (see [Duflo, 1979]). Suppose G is a com-

plex connected reductive algebraic group, H is a Cartan 

subgroup of G, and W is the Weyl group of H in G. Let 

v be an irreducible admissible representation of G, corre-

span.ding to the character )( of H (Theorem 8.15). Then 

h h 
v corresponds to )( , the inverse of the complex conjugate 

of )(. In particular, v admits an invariant Hermitian 

form if and only if there is a w in W such that 

h 
W)(=)(. 

When w is 1 in this theorem, )( is a unitary character, 

an:d v is a unitarily induced representation. When w is 

-1, )( is real-valued. 

A great deal is lmown about when induced representa-

tions like those in Theorem 13.1 can be reducible (see [Speh-

Vogan, 1980], for example). This information, in conjunc-

tion with Theorem 13.1 and the formal analysis described 

above, leads to the following result. 

Definition 13.4. Suppose g is a complex reductive Lie 

algebra with Cartan subalgebra ~- We say that fx (Defi­

nition 6.5) is a real infinitesimal character if X belongs 

to ~* IR 
(cf. (12.2)). 



EXHAUSTION 295 

TIIEOREM 13.5 (see [Knapp, 1986]. Theorem 16.10). Suppose G 

is a reductive Lie group in Ha.rish-Chand.ra's class and T 

is an irreducible admissible repesentation of G on a 

Hilbert space 11. Assum.e that T admits an invariant 

Herm.tHan form. < , >c· Then we can find 

i) a parabolic subgroup P = LN of G; and 

ii) an irreducible admissible representation 7 of L, 

with the following properties: 

a) the restriction of 7 to the comnw.tator sub-

group L' of L has real infinitesimal character (Defini-

Hon 13.4); 

b) 7 admits a non-degenerate invariant Herm.itian 

form. < . >L; and 

c) T ts infinitesimally equivalent (Definition 

2.14) to the induced representation 

G Indp(7 ~CC}, 

with the induced Herm.itian form. (defined in analogy with 

(3.9)). 

In particular, T ts unitary if and only if 7 is. 

This result allows us to restrict attention to repre-

sentations having real infinitesimal character. Roughly 

speaking, such representations ought to come from the 
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derived functor construction of 1beorem 6.8. One of the 

problems with that construction was that it did not always 

take unitary representations to unitary representations. We 

can now repair that problem to some extent. 

11IEOREM 13.6 (1beorem 7.1 and Proposition 8.17 in [Vogan, 

1984]). In the setting of Theorem 6.8, assume tha.t G is 

in Harish-Chandra's class. Write l as the direct sum. of 

its center and its commutator subalgebra: 

l=c+l'. 

Assume tha.t 

i) the restriction of Z to l' is weakly unipotent 

(Definitions 12.1 and 12.10); and 

ii) the weight }\ 
c 

. * t.n c by uhich c 

satisfies 

Re O.c .a> ~ 0 

for any root a of c in u. Then 

acts on Z 

a) ~j(Z) is zero for not equal to S; 

b) any non-degenerate Hermitian form < , >L on 

Z induces one < , >c on ~(Z); and 

c) if < , >L is positive, then so is < , >c. 

1be most pleasant feature of this result is that (if Z and 

L are fixed, L is a Levi factor for some 9-stable para-
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bolic q , and Z is unitary on the center of L) hypothe­

sis (ii} is always satisfied for at least one choice of 

0-stable parabolic q with Levi factor l. We therefore 

have a rather complete way of passing from weakly unipotent 

unitary representations of Levi factors, to unitary repre­

sentations of G. The picture would be satisfactory indeed 

if the following result were true. 

FALSE THEOREM 13.7. Suppose G is a reductive Lie group in 

Harish-Chandra's class and X is an irreducible (g,K)­

module having real infinitesimal character (Definition 

13.4). Assume that X admits a positive definite invariant 

Hermitian form < . >G. Then we can find 

i) a Levi subgroup L of G, attached to a 0-stable 

parabolic subalgebra q = l + u; and 

~ 

ii) an irreducible (l, (L n K) }-module Z, with a 

positive definite invariant Hermitian form < , >L' with the 

following properties. Use the notation of Theorem 10.6. 

Then 

a) the restriction of Z to l' is weakly uni-

potent; 

b} Z admits a positive definite invariant 

Hermitian form < , >L; 
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c) the weight * i.n c by mi.ch c acts on 

Z sati.sfi.es 

for any root a of c i.n u; and 

d) X i.s i.somorphi.c to ~8(Z), wi.th the induced 

Hermi.ti.an form. 

The main reason this is false is that not all comple-

mentary series representations are weakly unipotent. (For 

example, if G is SL(2,m), the complementary series C(u) 

(Theorem 4.23) is weakly unipotent only for u less than or 

equal to ~-) Here is a weaker result, which follows from 

[Vogan, 1984]. 

TIIEOREM 13.8 Suppose G i.s a semi.simple group i.n Bari.sh-

Chandra's class. Then there i.s a c01RpJ.ta.ble constant cG, 

wi.th the following property. Suppose X is an i.rreduci.ble 

unitary (g,K)-rnodule, wi.th real i.nfi.ni.tesi.ma.l character fx 

(Defi.ni.ti.on 13.4). Assume that 

<X.X> ~ CG. 

Then we can fi.nd q-, L, and Z as i.n Theorem 6.8, satisfy-

i.ng 

a) q- i.s not equal to g; 
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b) Z is unitary and irreducible; 

c) the positivity hypothesis of Theorem 6.8{d) holds; 

and 

d) X is isomorphic to ~(Z). 

Sketch of proof. Using 'lbeorem 13.1, write X as a subre-

presentation of some induced representation. Use the nota-

tion established for 'lbeorem 4.11; in our case, f is a 

discrete series representation of M. 'lben 

(13.9)(a) 

Since X has real infinitesimal character, v is real-

valued. 

'lbe analysis described before Proposition 13.3 shows 

that the Hermitian form on X arises as follows: there is 

an element w of W(G,MA), of order 2, such that 

(13.9)(b) w•f = f, w•v = -v. 

'lbe Hermitian form on X is given by 

(13.9)(c) <v1 ,v2>X = <v1 ,A{w:v)v2>h. 

Here v1 and v2 are elements of the space ~ of the in­

duced representation that belong to the subspace X, and 

< , >h is the inner product on ~ given by integration 

over K/(KtlP). 

'lbe proof proceeds by analyzing the form 

(13.10) <v1 ,v2>t = <v1 ,A(w:tv)v2>h 



300 CllAPI'ER 13 

on ~. as a function of the real variable t. 1beorem 4.11 

guarantees that it is meromorphic in t, with poles and 

zeros only when Ip(f 8 tv) is reducible. When t is zero, 

the induced representation is unitary, and its reducibility 

is precisely known; the signature of < , >O can be calcu­

lated exactly. 1be way that the signature varies with t 

is controlled by the reducibility of the induced represen-

tat ion. 

On the other hand, [Speh-Vogan, 1980] allows one to 

describe the reducibility of Ip(f 8 tv) in terms of an 

analogous problem on some Levi factor L of a 9-stable 

parabolic, as long as tv is not too large compared to the 

infinitesimal character ~ of f. (1bis is the most diffi­

cult step in the argument; I will not discuss the ideas in­

volved. 1bey are one of the ma.in topics of [Vogan, 1981].) 

1be description is implemented by the cohomological induc­

tion functor ~8 . 1be conclusion of the theorem now drops 

out, as long as v is not too large compared to ~-

On the other other hand, the proof of 1beorem 13.1 

produces v from X in terms of the behavior of matrix 

coefficients of X at infinity. If X is unitary, its 

matrix coefficients must be bounded; so the corresponding v 

cannot be too big. 1be infinitesimal character of X is 

that of the induced representation, which is (~.v). Since 
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X is assumed to have large infinitesimal character, this 

forces ~ to be large. Now v is not too large compared 

to ~· as desired. a 

1bis argument is replete with information even when X 

has small infinitesimal character; many of the recent re­

sults on classifying unitary representations are based in 

part on it. 
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