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1. Introduction. Let G be a real linear reductive Lie group. (It is important to
allow G to be disconnected; precise hypotheses on G are formulated in section
2.) To each irreducible admissible representation of G, Langlands in [17] has
associated a natural induced representation, of a kind we will call standard.
Roughly speaking, the standard representations are non-unitarily induced from
discrete series representations. This association sets up a bijection between the
irreducible representations and the standard ones. Write 7 for the irreducible
representation corresponding to the standard representation «. The standard
representations are fairly well understood—much better, at least, than the
irreducible representations. One way to describe irreducible representations is to
write them as (finite) integer combinations of standard representations, in an
appropriate Grothendieck group. That is, we look for an expression

= 3 M@p7p (M(p,7)€EZ). (1.1

p standard
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The expression on the right is called the formal character of 7. As was first
observed by Zuckerman, the formal character of any irreducible admissible
representation exists and is unique—see [25], Proposition 6.6.7. (The difficult
problem of computing the integers M (p,7) explicitly will not directly concern us
here. For the moment it suffices to know that there is a conjecture on how to
compute them ([23]), which has been proved by Lusztig, Beilinson, and Bernstein
in some cases—see [24], and section 12 below.)

The inverse problem is more elementary, and is just as important in
representation theory. It is the problem of decomposing a standard representa-
tion into its irreducible constituents. That is, we seek an expression

7= > m@mnp (m@,m)EN={0,1,2,...}) (1.2)

p irreducible

Here m(p, 7) is the multiplicity of p as a composition factor of «. Since 7 is not a
direct sum of irreducible representations, (1.2) must also be understood in a
Grothendieck group. Combining (1.1) and (1.2) gives

T = gm(ﬁ,w)f)

= S m(E, )M (1)
Pl

=S| SM(wpmE, ™) |
Ll
By the uniqueness of formal characters,
SM(pmE.m) =3, (13)
P

(the Kronecker 8); that is, the matrices m and M are inverses of each other. So
the two problems just described—computing formal characters and computing
multiplicities—are equivalent. In an appropriate ordering of the standard
representations, M and m are upper triangular with one’s on the diagonal ([25],
Proposition 6.6.7). This equivalence is therefore even quite accessible computa-
tionally. Our goal in this paper is to show that sometimes the problems are not
only similar, but actually “the same”. To understand what this should mean, let
us consider first the simpler case of Verma modules for a complex semisimple Lie
algebra g. Fix a Borel subalgebra b = %) + n of g, with § a Cartan subalgebra and
the nil radical. Write p for half the sum of the roots of § in n, and W for the
Weyl group. If w € W, define

Z(w) = U(g) @ Cwn~p

to be the Verma module of highest weight wp — p, and L(w) to be its unique
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irreducible quotient. Then there are expressions

L(w)= ngM »WZ(y)  (M(yw) EZ) (1.4)
Z(w)= y;wm()’,W)L(y) (m(y,w) EN). (1.5)

Let w, be the longest element of W. Then Z(w,) is irreducible; that is,
L(wg) = Z(wp). The module L(1) is the trivial representation, and the Weyl
character formula (see [10]) may be interpreted to mean

L(y= X (-1)Z(y), (1.6)
YEW
or
M(y,1)= (=1 (16"

here / is the length function on W. For g = 81(2), these facts tell us everything.
W is the two element group {1,w,}, and we compute

L(wo) = Z(wo) Z(wo) = L(wo) a7
L(ly=2Z(l)= Z(wy)  Z(1)= L(1)+ L(wy). '

In terms of the matrices M and m this is

v=(9) =00 A7)

These formulas suggest the guess that, for general g,
M(psw) = (=1 Om(y,w).
Applied to (1.6"), this would give
m(y,1)=1, all y;

that is, it would suggest that Z(1) should contain each L(y) exactly once.
Unfortunately, this is known to be false—for example, in 8l(4) (see [4]). The
easiest result saying that something occurs with multiplicity one is Verma’s
theorem that Z(w,) (which is equal to L(w,)) occurs exactly once in every Z( p);
that is,

m(wgy, y) =1, all y. (1.8)
In conjunction with (1.6") and (1.7’), this suggests

M(y,w) = (= 1O m(wow, wy y). (1.9)
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Formula (1.9) was conjectured by Jantzen on the basis of extensive calculations.
Kazhdan and Lusztig deduced it from their conjectured formulas for M(y,w) in
[15]. As these formulas have now been proved ([3],[6]), (1.9) is true. It makes
precise the idea that the problems of computing m and M are exactly the same.

Theorem 1.15 below extends (1.9) to real groups. To see what is involved in
that, we begin with G = SL(2, R). There are exactly three irreducible representa-
tions of G on which the center Z(G) of G and the center 3(g) of U(g) both act as
in the trivial representation. They are the trivial representation #,, and two
discrete series representations 7, and #,. Write «; for the corresponding standard
representations; m, is a spherical principal series representation, and 7, = 7|,
@, = 7,. The decomposition of = into irreducibles is well known; we find

T =m T =T

Tg= To— T — Ty My=Toy+ 7+ 7.

Here again there is an obvious conjecture like the one formulated after (1.7); but
here again that conjecture is false for other groups (for example SU(2, 1)). To get
an analogue of (1.9), we must find three irreducible representations p,, p;, P,
satisfying

M(7;,m) = em(pip) (&= *1) (111

This says that the multiplicity with which p; occurs in p; should equal the
coefficient of =; in the formal character of 7;, up to sign. By inspection of (1.10),
this gives

PL=pPi—Pp PL=P1+Do
P2= P2~ Po P2 = P2+ Po (1'12)
Po = Po Po = Py
Now SL(2,R) has only one standard representation having exactly two
composition factors (the reducible unitary principal series); so these formulas
cannot hold for any three representations of SL(2, R). What one has to do is look
at a different group. The group needed here is sometimes called SL* (2, R):

SL*(2,R)= { g EGL(2,R)|det g = =1}
= SL(2,R) U ((1) _?)SL(2, R). (1.13)

(The group PGL(2,R) could also be used, but SL* (2, R) is closer to the one we
will actually construct in the proof of Theorem 1.15.) The Weyl group of a
compact Cartan subgroup of SL*(2,R) has two elements; so by Harish-
Chandra’s general theory (or trivial calculation), there is exactly one discrete
series representation p, in which 3(g) acts as in a one dimensional representation.
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On the other hand, the group has two components, so there are two one
dimensional representations p,, p,. Writing p;, for the corresponding standard
representations, one easily verifies (1.12) (see [25], Chapter 1).

There is another subtlety here, however. The group SU(2,1) has six
representations 7, . . ., T having the same infinitesimal and central characters
as the trivial representation. It is an entertaining exercise to match them with six
representations p, ... ps of SL(3,R) so that (1.11) holds. (The reader more
interested in enlightenment than in entertainment may consult (16.3a) below.)
However, SL(3,R) has a seventh irreducible representation p, having the same
infinitesimal and central character as the other p;; p, is an irreducible principal
series representation. So the matching does not seem to work perfectly. The point
is that p, must be matched with the trivial representation of SU(3): the second
group involved depends not only on the first, but also on which representations
of the first are considered. To keep track of this in general, one needs the notion
of blocks.

Definition 1.14.  Block equivalence of irreducible (or standard) representations
of G is the equivalence relation B generated by

7 Br, if m(7,m,)#~0.
The equivalence classes are called blocks.

There is a more natural definition in terms of Ext groups, but this is equivalent
(see [25], Chapter 9).

THEOREM 1.15. (Theorem 13.13 below) Let G be a complex connected
reductive Lie group, and G a real form of G (in the weak sense of section 2). Fix a
block (@, ...,m} of irreducible representations of G, having the same
infinitesimal character as some finite dimensional representation of G. Write G for
the complex simply connected semisimple group whose root system is dual to that of
GC. Then there is a real form G of G©, and a block {p,, . . .,p,} of irreducible
representations of G, such that

M(m;, ) = &m(pi-p;)
M (p;»p:) = &m (7 m)

Jor all i, j; here €; = * 1. In the correspondence p;<>T;, discrete series corresponds
to Langlands quotients of principal series for split groups; and finite dimensional
representations correspond to representations whose annihilator is a minimal
primitive ideal.

In this correspondence, G will be specified essentially by the block {7}, and
the block {p,} will be specified by the real form G. The signs ¢; will be specified
precisely. The proof is entirely constructive, in the sense that G and {p;} are
easily computable in examples. Despite the symmetry of the conclusion in G and
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G, the proof does not necessarily produce G and {7} when applied to G and
{p;}. The hypothesis that 7; have the same infinitesimal character as some finite
dimensional representation is needed only because a proof of the conjecture of
[23] has been published only in that case. J. Bernstein has informed me that the
proof can be carried out in general, however, (see [24]). We will state a
generalization (Theorem 13.13) depending on the conjecture. In it, G has the
root system dual to the integral root systems defined by #;; otherwise the
formulation is unchanged.

The idea of the proof is to associate to the pair (G,#,) (for each i) a collection
of additional structures on the root system R of G (Proposition 4.11; among
other things, an involutive automorphism # of R). These structures pass in a
natural way to the same kind of structures on the dual root system R—for
example, 6 is replaced by —6 on R. From the structures, one can reconstruct a
group G and a representation p; (Theorem 11.1). All of the difficulties stem from
the fact that G and p p; are not uniquely defined. For example, if G = SL* (2,R)
and 7, is the trivial representation, then the construction says that G should be
SL(2, R) and p, should be a discrete series; but it does not say which discrete
series. Even if we fix the infinitesimal character, the two candidates differ by an
automorphism of SL(2,R), so they cannot possibly be distinguished in any
intrinsic way. Most of our effort, therefore, is devoted to showing that all choices
can be made in a compatible way as 7, varies. We will choose two special (but
not quite canonical) elements 7, and 7, of the block, and use them to construct
G, p,, and p,. All the other 7, will be obtained from #, and 7, by various
canonical operations (mostly related to Cayley transforms—see section 7). These
can be duplicated in G to give the corresponding p; in terms of p, and p,
(Theorem 10.1). All of the indeterminacy in the construction is therefore
concentrated in the choice of 7|, 7,, p,, and p,. Once the p, are specified, one
only needs to verify some very simple formal properties of the correspondence;
then Theorem 1.15 follows from [24] just as (1.9) follows from the Kazhdan-
Lusztig conjectures (Proposition 13.12).

Section 16 is devoted to a fairly detailed description of several examples of
various aspects of the definitions and results of the main body of the paper. The
paper might almost be read by beginning with these and referring back to the
general results only as they are needed to understand the examples. (It was
certainly written in very much that way, with proofs being modified until their
conclusions agreed with the examples.) Experienced readers may prefer to
consider their own favorite examples, but in any case one should avoid trying to
make sense of the results in some abstract sense.

The form of Theorem 1.15 suggests that we should try to invoke the theory of
dual groups in some form; in particular, that we should use £(G°)° instead of G°
(see [5]). This is possible, at least if we require G to be precisely the set of real
points of GC. A reformulation of Theorem 1.15 along these lines is sketched in
section 15. Lusztig has suggested that the reformulation ought to be much easier
to prove, but I have not been able to see that. There are many technical
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simplifications, however. (In this context it is also interesting that Langlands’
L-packets play an important part in the paper (Definition 8.1).)

It is a pleasure to thank George Lusztig for many very helpful discussions, and
particularly for explaining how to deduce Theorem 1.15 from a formal duality
theory.

2. Notation and assumptions on G. Unexplained notation will in general
follow [25]; we recall here some of the main points. Fix once and for all a
connected reductive algebraic group G, and a connected real form G, C G°.
Write g, = Lie(G,), and g = Lie(G°) for the complexification of g,. Choose a
Cartan involution 8 of G, and write

go =%+ by

for the Cartan decomposition. Fix a non-degenerate symmetric invariant bilinear
form ¢ , ) on g,, preserved by 8, which is negative on f, and positive on p,. Fix
once and for all a real Lie group G, with identity component G, satisfying

G/ G, is finite (2.1a)
Ad(G)C Ad(GC) as automorphism groups of g (2.1b)
the Cartan subgroups of G are abelian. (2.1¢)

(By a Cartan subgroup, we mean the centralizer in G of a Cartan subalgebra of
do-) We summarize these conditions by saying that G is a real form of GC; note
however that G need not be isomorphic to a subgroup of G°. The unique
maximal compact subgroup of G containing K, is called K. Put

Z(G) = centerof G
U(g) = universal enveloping algebra of g
B(8) = center of U(g).
Fix a Cartan subgroup H of G. Put
A(g,h) = {roots of hin g};

we may regard these roots either as elements of §*, or as elements of the
character group H. Put

W(g,b) = W(A(g, b)) = complex Weyl group
W(G,H) = Weyl group of H in G (the real Weyl group)

= (normalizer of Hin G)/H
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W(g,h) acts on } or b*; W(G, H) may be regarded as a subgroup of W(g,}), but
it also acts on H and H. If a € A(g, b)), the coroot & is

a=2a/la,a).
Define s, € W(g, b) to be the reflection through «: if A € h*, then
5,(A)=A—<{a,Aa.

The roots are classified as real, complex, or imaginary, according to their values
on bh,. If « is imaginary, then the root vectors X, , generate a subalgebra of g
whose intersection with g, is isomorphic to 8[(2,R) or to 3u(2); we call «
noncompact (singular in Harish-Chandra’s terminology) or compact accordingly.
We will say that H is split if all roots are real.

Suppose H is a Cartan subgroup, and a € A(g, b) is either real or noncompact

imaginary. Then the root vectors for a generate a subalgebra whose intersection
with g, is isomorphic to 3((2, R); so we get a map

b 32, R) > go. 22)

If « is real, we choose ¢, so that

qba((l) _?)ebo, ¢“(8 (l))e{a root space};

and if « is imaginary, so that

a2 t)en

If H is #-stable, we can and do also arrange
¢a(—'X) =0,(X).

These conditions do not specify ¢, uniquely, but this is not a problem. Since G is
linear, ¢, exponentiates to

®, :SL(2,R) > G. 23)

These maps are fundamental to the theory of Cayley transforms; they make it
possible to reduce many questions to SL(2, R). Put

w=o(_§ o)
(2.4)

= 2=<I>(_1 O)EH.
m [} o 0 —1

If H is f-stable, o, and m, both belong to K. Clearly they have order 4 and 2 (or
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2 and 1, if ®, has a kernel) respectively. The element m, does not depend on the
choice of ¢,, but changing ¢, may replace o, by o,m,. If a is real and H is
#-stable, then o, normalizes H, and represents s, € W(G, H).

If h C g is any Cartan subalgebra, we have a Harish-Chandra isomorphism

8(e) > S(5)" .
If A € b*, write
x»:8(g)>C

for the composition of this isomorphism with evaluation at A. This identifies the
maximal ideals in 3(g) with Weyl group orbits in h*. We call A and x,
nonsingular if {a,A) # 0 for all a € A(g,b). If a positive root system A" (g, }) is
specified, we call A dominant if

—<{a,A) &N (a € A* (g, b)).
If {&,A) € Z, then A is said to be integral with respect to a. Put

R\ = {a €EA(g,h)|<aA> EZ},
(2.5a)
W)= W(R®)

the system of integral roots and the integral Weyl group for A. If A is nonsingular,
put
R*(A)={a € RQ\)|{a,A) >0}

II(A) = {simple roots of R * (A)} (2.5b)

SO = {s.la € BRY) € W),
the positive integral roots, the simple integral roots, and the simple integral
reflections.

It is convenient to be able to identify roots and Weyl groups on different

Cartan subalgebras. There are natural ways to do this, but for our purposes it is

enough to fix, once and for all, a Cartan subalgebra )° C g, and a positive root
system

(&%) C A(s,5%) = A

We call these the abstract Cartan subalgebra and the abstract positive root system.
Fix once and for all a (A* )*-dominant nonsingular weight

A% € (5%)*, (2.6a)



952 DAVID A. VOGAN

and define

X=X :3(8)>C

R?=RA\") caA” (the abstract integral roots)

(R " =R*A)c@)” (the abstract positive integral roots)
IT* = TI(A“) (the abstract simple integral roots) (260)
W= WQA*) C W(sbh") (the abstract integral Weyl group)
S*=SA)ycw* (the abstract integral simple reflections)

(notation as in (2.5)). Suppose now that ) C g is any Cartan subalgebra, A € h*,
and that x, is equal to the fixed x defined above. Then there is a unique
isomorphism

i 1 ((H")*AY) > (H*,X) (2.7a)
which is inner for GC. This isomorphism satisfies
iy : R*>R(A)
(2.7b)
i\t Wi> W),
and so forth. If « € A(g, §*) and w € W (g, h*), write
ay = iy(a) € A(g, b)
(2.7¢)

wy = i\(w) € W(g,h)

these are called the root corresponding to the abstract root a, etc. It is often
important to understand how i, changes when A is modified by W(g,b). This is
trivial, but the result is worth recording; if w € W (g, b), then

(%) = w[ix(0] (x €(6°)%)

Q) = way (a €4(a,5%)
2.8)
(o) = Wi (0 € W(&.1)
o, =wow ! (o € W(g,5%)).

We are going to consider only representations having the infinitesimal
character x defined in (2.6). Thus we are excluding representations with singular
infinitesimal character. In the context of results like Theorem 1.15, this is a
natural thing to do. A representation of G with singular infinitesimal character



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS IV 953

should (formally) correspond to one of G whose infinitesimal character is “at
infinity” in some sense. Such objects may very well exist, but there is at present
no theory of them.

Let H = TA be a #-stable Cartan subgroup of G; such notation will always be
interpreted to mean

T=HNK

(2.9)
Then T is compact abelian (but may be disconnected), and 4 is a vector group.
Recall from [21] or [25], Definition 6.6.1, the notion of a regular character vy of H;
this is an ordered pair

y=(.,3), Te€H, yep* (2.10)

satisfying the following conditions. Write G® = MA for the Langlands decompo-
sition of the centralizer of 4 in G; thus T C M is a compact Cartan subgroup.
The first assumption is

Y|, € it§ is nonsingular for A(m,t). (2.10a)
Write
A* (m,t) = {a€ A(m,t)[{a,¥) >0},

and p,, (respectively p,,~;) for half the sum of the roots in A* (m, 1) (respectively
A* (m N £,1)). The second assumption is

dT =7+ p, — 2000t - (2.10b)

If H is split, these conditions mean that I' may be arbitrary, and ¥ is required to
be its differential. If H is compact, then I" must be a highest weight of the lowest
K-type of a discrete series representation; and y is required to be the
Harish-Chandra parameter of that discrete series.

Attached to v there is a standard representation «(y) (see [21] or [25]); it may
be defined by parabolic induction from a discrete series representation on a
certain cuspidal parabolic subgroup of the form P = MAN, with MA4 as above.
The group N is chosen so that the Langlands subquotients appear as
subrepresentions of 7(y); and we set

7 () = maximal completely reducible subrepresentation of 7(y), (2.11)

the Langlands subrepresentation of m(y). When ¥ is nonsingular (the only case we
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will consider), @ () is irreducible, Define

H’ = set of regular characters of H

A

Hy=(y=T7€EH |x=x)

(2.12)
= {v=@9)((¥")*A*) is G®-conjugate to (4*,7)}

={y€e )ik | 7 () has infinitesimal character x }
(notation (2.6)). Occasionally we may write (1-? )¢ and 7;(y) to emphasize the
dependence on the group G.

TueoreM 2.13. (Langlands—see [25]). Suppose w € G has mﬁmteszmal
character x. Then there is a 6-stable Cartan subgroup H' C G, and y' € (H' )is
such that

=7 (y)-

If (H%y?) is another pair of the same kind, then #(y") = #(y?) if and only if
(H',y") is conjugate to (H?,v?) under K.

This theorem says that performing formal operations on representations is the
same as performing formal operations on conjugacy classes of regular characters;
and in fact this paper is full of Cartan subgroups and roots, and empty of Hilbert
spaces and operators. All the work of relating the formalism to the behavior of
representations is already done, and summarized in [24].

Suppose y € H ’. Write

cl(H,y)y={(H',y")|(H',v") is conjugate to (H,y) by K},  (2.14)

the equivalence class of (H,v). Often we will write simply c/(y). If y' € (H )
i = 1,2, then we may identify (h')* and (h%)* by the isomorphism

l - ((b )* —-l)_)((bZ)* -2)
(2.15)
g =i o iz
In this way we can speak of (say) the root for h? “corresponding” to some root
for h!. We also define
m(y',y?) = m(v’r(y'),ﬂ'(yz)), (2.16)
and similarly for M (see (1.1), (1.2)). Similarly, write

y'7y2®ﬁ(y') 7?’7(72). (2.17)
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(Definition 1.14) This is called block equivalence of regular characters.

3. Root systems with involutions. One of the ingredients of the proof of
Theorem 1.15 is a detailed knowledge of the Weyl group of an arbitrary Cartan
subgroup of G. Much of what we need is known, the most sophisticated results
being those of [16]. Published proofs of these results are rarely in quite the form
we need, however, and can often be simplified substantially. Therefore, we will
prove what we need more or less from scratch, assuming mainly some familiarity
with the case of compact or complex groups. In this section we deal with formal
preliminaries; the result we are aiming at is Proposition 4.14.

Definition 3.1. A (reduced) root system is a triple (V,{ , >, R), satisfying the
following conditions.

(a) V is a finite dimensional real or complex vector space, {( , > is a
nondegenerate symmetric bilinear form on ¥, and R C V — {0} is a finite subset.

(b) {, > is positive definite on the real subspace spanned by R.

(¢) If a, B € R, then 2{a, B)/<a,a) € Z.

(d) fa€ R, writes,: V>V,

Sa(X) =X- (2<a’ X>/<a7a>)a

for the simple reflection through a. Then s, preserves R.
(e) If a« € R, then 2a & R.

A possibly non-reduced root system is a triple (V,{ , », R) satisfying (a)-(d).
The unqualified term “root system” will always mean a reduced root system. We
allow V¥ to be complex (which is not the usual convention) so that (b*,
>, A(g, b)) will be a root system if §) C g is a Cartan subalgebra; of course this
does not change anything serious. When ¥ and { , > are understood or not
particularly important, we will call R itself a root system.

Definition 3.2.  Suppose (V,{ , »,R) is a root system. The dual root system is
(V,{, > R), with

we call & the coroot corresponding to a. Put
W(R) = group generated by {s,|a € R}
= W(R),
the Weyl group of R (or R).
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That R is a root system and W(R) = W(R) follows from the easily verified
formulas

2&, By/<& &) =2a, BY/{B, B

& = Sa

Sa(Bv)=[sa(B)]"

with a, 8 € R. The root system of type B, and C, are dual to each other; all
other simple roots systems are equivalent to their dual systems (but not
necessarily by the map a = &). The map R— R is at the heart of Theorem 1.15;
as we add more structure to R, we will always have to transfer it to R in some
way.

Definition 3.3. Suppose R is a root system. Put
L = L(R) = Z-module generated by R C V,
the root lattice in V;
P=PR)= (A€ V|{(&A)EZ alla ER},
the integral weights in V,
P,=P(R)=PNAQL,

the small weight lattice in V. Clearly L C P, C P. Write i, P, etc. for the same
objects defined using R, and define

Zy=ZyR)={AE V[(a,Ay=0,alla € R}
Z=Z(R)=P/L

Z,=Z(R)=P,/L.

It is easy to see that
P=P + Z,, (3.4a)
and therefore that
Z=2Z,+7Z,. (3.4b)

Suppose for definiteness that ¥ is complex. Let G(R) be a complex simply
connected reductive group (not algebraic) with a Cartan subalgebra H(R) in its
Lie algebra g(R), so that

(V. R)=(b(R)* A(s(R ), H(R)))- (3-52)
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Then
Z(G(R))=Z(R); (3.5b)

this group has identity component Zy(R), and component group Z,(R). We will
not use these facts, but they motivate the notation. The group Z,(R) is finite. It is
the product of the corresponding groups for the simple factors of R; and these in
turn are well known (see for example [10], p. 68).

Definition 3.6. Suppose R is a root system. We will call a positive root system
R ™ C R an ordering of R, or say that R is ordered if R™ is specified. In this case
R is also ordered, by

R*={(&la€ER™)

Define

A positive root « is simple for R * if it is not the sum of two positive roots; or,
equivalently if & is simple for R *. Set

II=II(R*) = set of simple roots of R *.

LEMMA 3.7. In the setting of Definition 3.6, p & P\(R), and p€E f"](R)
= P(R). We have for a € R

a€ R (d,p)>0{a,py>0

a simple={&,p) = 1l {a,py = 1.

The statements about p are well known, and those for p are the same ones
applied to R. It is not true in general that {a, p) = (&, p), for example in B,.
One final general fact about root systems will be used often.

PrOPOSITION 3.8 (Chevalley). Suppose R is a root system in V, and X C V.
Define

R¥=(a €R|{&A\)=0,allAE X}

WX ={(we W(R)|wA=\all\E X )
R(X)=(a €R|(&LAEZ alINE X )
W(X)={w& W(R)|wA—AE L(R),allANE X }.
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(Definition 3.3) Then R and R(X) are root systems, and
wX = W(R¥)
W(X)=W(R(X)).

For a proof, see [7]. When X = {A}, we write R* = R?, etc.

COROLLARY 3.9. In the setting of Definition 3.6, suppose w € W(R). Then
wp =p if and only if w = 1.

For R* is empty by Lemma 3.7.

Definition 3.10. A root system with involution is a pair (R, ), with R a root
system on ¥V, and #: V= V an orthogonal linear transformation of order two,
such that

R = R.
The dual root system with involution is the pair (R, —0). Write W(R)’ for the
subgroup of W(R) commuting with 8; then W(R)’ = W(R)~%. Define
RR=RR#)={aER|ba=—a)
wh=wrR@6)=w(R"),
the real roots and real Weyl group for (R,8); and
RR=RR@B)={a€R|ba=a)
WiR= wR@)= W(R™),

the imaginary roots and imaginary Weyl group for (R,8). The roots which are
neither real nor imaginary are called complex. We call (R, 8) quasisplit if R"F = @,
fundamental if R® = @, and complex if it is both fundamental and quasisplit. The
compact part of V is
V,=V.(0)={xEV|bx=x};
the split part is
Vi,=V,0)={xEV|ox=—x}.

The example of a graded root system of interest to us is the action of the
Cartan involution on the roots of a #-stable Cartan subalgebra. This accounts for
some of the terminology. Suppose (R,#) is a root system with involution. We
want to describe W(R)’. We begin with a special case.

LeMMA 3.1. Let (R,0) be a root system with involution; and suppose it is
complex (Definition 3.10). Then we can write

R=R,UR,,
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a disjoint orthogonal union, in such a way that
9:R—>R,_, (i=12)
is an isomorphism. By this isomorphism,
W(R) = W(R,) X W(R;)
W(R)" = ((w.0w)|w € W(R)))
= W(R)).
In particular, W(R)’ is generated by the elements s,sy, with a € R.

Proof. Since there are no real roots, we can find x € V, such that {a,x> is a
non-zero real number for all « € R. Define

R* ={a €R|{a,x)>0).
Since x = x, R * = R*. Write
R=R'U---UR/

an orthogonal union of simple subsystems. Of course § permutes these. The
lemma will follow if we show that no R’ is fixed by #. Suppose to the contrary
that R’ = R'. Let B € (R)* be the highest root of R’ with respect to the
ordering R * ([10, p. 54). By the uniqueness of the highest root, §8 = 8. This
contradicts the hypothesis that there are no imaginary roots, and proves the
claim. Q.E.D.

PROPOSITION 3.12.  Suppose (R,0) is a root with involution; use the notation of
Definition 3.10. Fix positive systems (R®)*, (R"™* for the real and imaginary
roots. Set

R =p((RF)")
p"= p((R"F')+)
as in Definition 3.6; and define
R7={a € R|<a,p™) =0}
R/ ={a € R|{a,p™) =0}
R®=RINR/
Wi=W(R9), W' =w(R/), WwW°=Ww(R"

(@) (R9,0), (R/,0), and (RC,0) are root systems with involution; they are
quasisplit, fundamental, and complex, respectively.
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(b) WR and W™ are normal subgroups of W(R)’.
© W(R) = (WO < (WR x W)
=(wi)’x Wi
= (WH'x wh
All of these are semidirect products, with the second factor normal.

(We use imaginary roots and real coroots in the definition of R? and R/ only
to preserve symmetry in the duality (R,8)— (R, — #). This result remains true of
pR is replaced by pf.)

Proof. We have
0piR___piR, OﬁR= _bR:

so @ preserves R, R/, and RC. By Lemma 3.7, every imaginary root a satisfies
{a,p™)#0; so R? does not meet R'F, and RY is quasisplit. Similarly (or by
considering (R, —0)) R/ is fundamental, and (a) follows. For (b), suppose
a € R® and w € W(R)’. Then fa = — a, and

f(wa) = w(fa)=w(—a)= —wa,

o> it follows that W® is normal in W(R)’. The
claim for W™ is identical. For the first formula of (c), suppose w € W(R)?. Then
wI(RR)* and wI(RP)* are positive systems for the real and imaginary roots
respectively; so we can find 6 € WR, r € W™ such that

so wa € R®. Since ws,w ™! =5

W ((RF LR ) = (07 (RD) LT (RT) ),
or
((RTL(R™)T) = wo™'r (R " (R™) "),
I7 =1 satisfies
wi(B%p™) = (8% 0™)-

In the notation of Proposition 3.8,

In particular, w, = wo ~

RC = R("™) ;

so that proposition implies that w, € W(R®) = W°. Since, w, 0, and 7 commute
with 8, w, does as well; so

w=waor € (WO WRW™,



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS IV 961

The first formula will follow when we show that
(W' n wRwWR = (1),

But every element of (W °)? fixes (3%, p™F); so this follows from Corollary 3.9.
Applying the first formula to R? gives

(W9)'= (W)’ x WR,
so the second follows; and the third is identical. Q.E.D.

The next structures to be introduced are Z/2Z gradings. The prototype here is
the separation of imaginary roots into compact and noncompact ones (discussed
in section 2).

Definition 3.13. Let R be a root system on a vector space V. A Z/2Z grading
of R is a map

€:R>Z/2Z = (0,1}

such that
€(a+ B)=¢€(a)+€(B)
€(a) = €(—a)

whenever «, 8, and a + B are in R. Put

Ry = Ry(€) = €7(0),
the even roots, and

R, =Ry(e)=¢€"'(1),

the odd roots. The pair (R, €)—or, equivalently, the triple (R, Ry, R,)—is called a
Z/2Z-graded root system. Define

Wo= Wo(€) = W(Ry)
W,=Wye)={we W(R)|wR, = Ry}
E(R) =setall Z/2Z gradings of R.

Since we will discuss only Z/2Z gradings, we may call them simply gradings
without danger of confusion.

LemMA 3.14.  Suppose R is a root system; use the notation of Definitions 3.3 and
3.13.
(a) There are natural bijections

E(R) = Hom,(L(R),2/22)
= P(R )/Zﬁl(R )
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defined as follows. If e € E(R), extend € by Z-linearity to a map from L(R) to
Z/2Z. If A € P|(R), define (\) € E(R) by

e(a) ={a,A) (mod2Z).

This depends only on A\mod 2P, and defines the last isomorphism.
(b) Suppose R™ is a positive system for R, with simple roots I1. Then the first
bijection of (a) defines by restriction to II a bijection

E(R)=(Z/22)",
the functions from 11 to Z /2Z.

This is very easy, and we leave it to the reader. Most of the subtleties we must
face center on the difference between W, and W, in Definition 3.13. Fortunately,
this is very well understood, mostly by the work of Knapp.

Definition 3.15. Suppose (R,¢) is a Z/2Z graded root system. The universal
R-group for € is

U(e) = Wy(e)/ Wo(e)
(notation as in Definition 3.13). An R-group for € is a subgroup
% C Wye)/ Wile);
or, equivalently, a subgroup W, satisfying
Wo(e) C W, C Wy(e).
The phrasing of this definition assumes that W(e) is normal in W,(e). This is

very easy to check directly; but it is also a consequence of the following result.

PROPOSITION 3.16. Suppose (R,¢) is a Z/2Z-graded root system. Then there is
a natural homomorphism

§(€) : Wae) > Zy(R),
(Definitions 3.3 and 3.13) with kernel exactly W(e).
Proof. By Lemma 3.14, there isa A € PI(R) such that
€(a) ={a,A) (mod 2Z).
Suppose w € W(R), and a € R. Then
ew la)=<wlq,Ay  (mod2)
= (a,wA) (mod?2).
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So w preserves R, if and only if
{a,wA—=A>=0 (mod 2)
for all & € R; that is, if and only if
L(WA —A) € P\(R).
So we get a map
b1 W) > Py(R)
&(w) =3 (WA = A)
Suppose now that p € ﬁl(R). By Proposition 3.8 applied to R,
wp—p € L(R)=L(R) (3.17)
for all w € W. In particular, for w € W,(e)
Eiv2u(W) = F(WA = A) + (W — p)
=£(w)  (mod L(R)).
Since € defines A mod 2P,, we get a well defined map
§e) = Wy) > P(R)/L(R) = Z\(R)
fe(w)=£(w)  (mod L(R)).
To see that () is a group homomorphism, suppose o,7 € W,(e). Then
1(TA—=\) € B\(R);
so by (3.17),
o[3(A=N]=4(rA=})  (mod L(R)).
We now compute
£(e)(or) = 1(oA — ) (mod L(R))
=o(4(*A—N))+4(6A—A)  (mod L(R))
=1(TA=A)+4(aA = ]) (mod L(R))

= &(e)(7) + &(e)(0)-
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So £(e) is a group homomorphism. Its kernel is
{wE W(R)|3(wA—)) € L(R)).

By Proposition 3.8 (applied to R), this is exactly the Weyl group of the root
system

R(4AN) = (& € R| {{a, Ay €Z)

{
= {a € R[<a,A\) =0 (mod 2)}
{

Its Weyl group is by definition W(e). Q.E.D.

COROLLARY 3.17. In the setting of Definition 3.15, W(e) is a normal subgroup
of Wy(€). The quotient U (¢) is canonically isomorphic to a subgroup of Z,(R), and
is therefore abelian.

This is in some ways the nicest result about QU(€), and it will be important
technically. However, we sometimes need the more concrete information
provided by Knapp’s cross section for W,/ W,; it will allow us to reduce some
problems to SL(2, R) and closely related groups.

Definition 3.18. A set {ay, -+, o} of roots in a root system R is called
strongly orthogonal if o; * a; is never a root or zero for i#j. It is called
superorthogonal if the only roots in the linear span of {a;} are { + &}, and these
are all distinct.

Suppose a, B € R, a # *+ B, and {a, B) # 0. Then either a« — B is a root, or
a + B is a root (or both). It follows that a strongly orthogonal set of roots is
orthogonal. A superorthogonal set is obviously strongly orthogonal. As one sees
in B,, however, neither of the converse implications is true in general.

LemMa 3.19. Suppose R is a root system. A set {aj,---,0} CR is
superorthogonal if and only if there is a positive system R™ in which the a; are
non-adjacent simple roots. Suppose {«a;} is superorthogonal. If RyC R is a
subsystem not meeting {a;}, then

W({xa}) N W(Ry) = (1},

Proof. Suppose that {a;} is superorthogonal. Write V' for the underlying
vector space of R, and V' * for the orthogonal complement of {e,}. Choose
v € V+ so that if B € R, then (v, B> =0 if and only if B is the span of {q;}.
Thus

R={(BER|(o, B5+0} U (*a}.
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Put
T={BER|{v, B)>0} U {a]}.

(If V' is complex, we need to choose v € QR, say, for this to make sense.)
Obviously s, preserves R * — {a;} for each j, since s, 0= 0. So each a; is simple
inR* Conversely, a set of nonadjacent simple roots is clearly superorthogonal,
as the simple roots are a basis of the root lattice.

If we W({ =q;}), then w fixes the element v defined above. By Proposition
3.8 (applied to v and Ry), if w € W(R,), then w is a product of reflections in
Ry N { £ a;}. As this set is empty, w =1. Q.E.D.

ProposITION 3.20 (Knapp). Suppose (R,€) is a Z/2Z-graded root system. In
the notation of Definition 3.13 and 3.15, there is a superorthogonal set
{a, + -+, oy} C R\(€) such that, if we set

Q=Wye )N W({{xap, -, q}),
then
Wy(€) = Q X Wy(e),
a semidirect product with the second factor normal.

Proof. Fix a positive system R, (€) for the even roots, and write p, for half
the sum of the roots in it. Set

Q= {w€E W,|wRs" =R, }.
The proof of Proposition 3.12(a) shows that
W, = Q o W(e);
it remains only to describe Q. Obviously
= {w € Wy | wpo = po}-
Choose a positive system R * making p, dominant, and put
R” = {a € R|{a,p,y = 0}.

By Lemma 3.7 (applied to R,), R C R,. Since p, is dominant, R is spanned by
the R *-simple roots {a,, - - -, @} contained in it. Suppose «; is adjacent to a;.
Then a; + a; € R C R,. But o; and o; also belong to R, so a; + &; € Ry, a
contradiction. So the o; are all non-adjacent. By Lemma 3.19, they are
superorthogonal; so

Rfo={*a}.
By Proposition 3.8,
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So
Q= W,n W(R™). QED.

Definition 3.21. Suppose R is a root system. A cograding of R is a map
§:R>Z/22
such that the map
8:R>Z/2Z, 8(a)=8(a) (aER)

is a grading of R. Define

R=R(8)=(R(8) (i=01)

w(@)=w(s)  (i=02).
(Definition 3.13), and
UE ) = Wa8)/ Wo(3)-
(Definition 3.15). An R -group for Sisa subgroup
! Cc s ),

or, equivalently, a group W, satisfying

Wo(8) S W, S Wyd).

All the definitions and results about gradings will be applied to cogradings

(with appropriate minor modifications) without comment.

Definition 3.22. Suppose R is a root system on V. A weak bigrading of R is a

triple g = (6, €,8) such that
(a) @ is an involution of R (Definition 3.10; use that notation).
(b) € € E(R™), § € E(R®) (Definitions 3.13 and 3.21).

We write § = 6(g), etc. The set of all bigradings of R is written §(R). The
notation of Definitions 3.10, 3.13, 3.15, and 3.21 will be extended to bigradings in
fairly obvious ways; for example, Wi'(g) denotes the subgroup Wy(e) of
W(R™). A strong bigrading of R is a five-tuple g = (0,¢, wiR 5, W), such that if

we write g = (0,¢, 5), then g €8(R); and
W3i(g) S Wit C Wil(g)

Ws(g) C W' C Wi(g).

The set of strong bigradings of R is written §(R). Again we may write WR(g),

0(p), etc.



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 1V 967

To every representation of G with infinitesimal character x (cf. (2.6)), we are
going to attach a strong bigrading of the abstract ordered integral root system
(R% (R")™") (Definition 4.12). The duality of Theorem 1.15 will correspond to
the next definition.

Definition 3.23. Suppose R is a root system, and
g=(0. W8, W) e§(R).
The dual strong bigrading is
g=(-0.8,WRewR) e§(R).
Here
5(&) = 8(«)
for « € RR(0) = [RP(—0)]"; and similarly for ¢&.

The main point is still that of Definition 3.10—replacing # on R by —8 on R.
The other structure (which will not appear at all in complex groups, for example)
can to some extent be regarded as a technicality.

As was mentioned in the introduction, we are going to make use of several
ways of producing new representations from old. The first of these involves only
the Weyl group, and we can describe the formal part of it now.

Definition 3.24. Suppose R is a root system. The cross action of the Weyl
group W(R) on strong bigradings is defined as follows. Suppose

g= (0.« W8, Wl €§(R),
and w € W(R). Put
wXg= (w0w",w e, wWiRw =l w. g,wW,Rw").
More explicitly, w - € is defined as a function on the ww ~'-imaginary roots by
(W e)(a) = €e(w 'a).

For this to make sense, we need to know that « is wdw ~-imaginary if and only if
w ™ la is f-imaginary; that is,

(ww Y (@) = ae=f(w o) =wla.

This is clear, and the rest of the verification that w X g € §(R) is similar.
Obviously the cross action is defined on §(R) as well. We can regard E(R) and
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E(R) as subsets of §(R), by

€~ (id, €, ¢)
5 . (3.25)
8-> (—id,$,0),

where € € E(R), § € E (R), and ¢ is the unique function from the emtpy set to
Z/2Z. In this identification, E(R) and E(R) are stable under the cross action; so
we have cross actions on E(R) and E(R).

We will give a representation—theoretic interpretation of the cross action in
the next section. The cross action in E(R) may be slightly more familiar.
Suppose R is isomorphic to the root system of a compact Cartan subalgebra t; of
our real Lie algebra g,. Then A(g,t) is graded, with the even roots the compact

@
ones (defined before (2.2)). So the isomorphism R—>A(g,t) defines a grading
€ € E(R). But ¢ is not canonical; and if we modify it by an element w € W(R)
(replacing ¢ by ¢ o w™ ), then € is replaced by w X e. It is not very hard to check
that this construction sets up a bijection

{real forms of g with a compact Cartan} &>

) ) (3:26)
{orbits of the cross action of W (g, h*) on E(A%)};

here A% = A(g, h*) is the (abstract) root system defined before (2.6). This is related
to Kac’s proof of the Cartan classification of all real forms (see [9], Chapter 10).
(There is an important technicality to bear in mind in interpreting (3.26); see the
remarks after Table 16.4(h).)

4. The cross action on regular characters.

Definition 4.1 ([25], Definition 8.3.1). Suppose y=(I,y) € H . (notation
(2.12)), and w € W(¥) (notation 2.5(a)). Write

wi=y— > na

aEA(g,H)

for some n, € Z; this is possible by Proposition 3.8. Define p, p); as in (2.10),
using wy instead of y. Write

P = 20mt =P = e — D M,
a €A(m,bh)

for some m, € Z. Define w X y, w cross vy, by
wa=(w><I‘,w~7)eI§)’<
wXT =T~ (n, +m)a€ H;

here the roots a are interpreted as characters of H.
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The most serious checking required in this defintion is of the fact that any sum
of roots A € h* is the differential of a unique sum of roots in H. This is not
obvious, since the particular expression A = 3 n a is certainly not unique. A
detailed discussion of the definition may be found in [25]. It arises naturally in
the study of tensor products of finite dimensional and standard representations;
but for us, only formal properties matter.

Definition 4.2. Suppose y € I;V;(, and w € W (the abstract integral Weyl
group; see (2.6)). Recall the element w, € W (y) of (2.7)(c); and define w X y, w
cross y by

wa=w7—1><y,

the action on the right being that of Definition 4.1. (This is an action by (2.8),
which also explains the inverse appearing in the definition.)

Because we used such a naive definition of the “abstract” Cartan %)°, there is
technically a danger of ambiguity in this notation. It could happen that b*
coincides with h, and so w might itself belong to W(¥). In this case the
definitions of w X y given by (4.1) and (4.2) differ. We could avoid this by calling
the second “X“”, for example; but since it will always be clear from context
which action is meant, this is unnecessary.

ProposiTION 4.3 ([25], Theorem 9.2.11). If y € ﬁ)’( and w € W*, then 7 (y)
and 7 (w X v) belong to the same block (Definition 1.14).

Of course it suffices to prove this when w is a simple reflection, and that is the
case treated in [25].

We turn now to the construction of a bigrading of the integral roots attached
to the regular character y = (I,y) € H .- The most delicate part is defining a
cograding of the real integral roots. Recall from (2.4) the element m, € H
attached to the real root a. Since m, has order two,

F(m,)= =1 (4.4a)
If a, B, and y are real roots, and & + ,é = ¥, then
m,mg = m, (4.4b)

([25], Corollary 4.3.20). Thus (— 1)*® =T(m,) is a cograding of the real roots.
However, the Jantzen—Zuckerman translation principle (see [25]) suggests that
any construction which has representation—theoretic meaning ought to be
invariant when y is changed by a weight A € H of a finite dimensional
representation of G. Now for such A,

A(my) = (= 1)@, (4.4¢)
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by calculation in SL(2, R). This indicates that we should consider the cograding
(= )" =T(m,)(~ )7,

now defined only on the integral real roots. The objection to this is more subtle:
it is not well behaved under Langlands functoriality—that is, when G is changed
in certain natural ways. (This problem manifests itself in more obvious ways—for
example, in the formulation of the result in [21] on reducibility of the standard
representation «(y). There what enters is not the sign of T'(m,)(— 1)¢*?’, but the
more complicated invariant of Definition 4.5. However, the explanation of this
fact, as can be seen by inspecting the proof, is what happens when G is changed.)

Definition 4.5 ([25], Definition 83.11). Suppose H = T4 is a §-stable Cartan
subgroup of G, and y = (T',¥) € H' is a regular character. For each real root a,
define ¢ =¢ = *1 by [25], Definition 8.3.11. If a is integral for ¥, define
8(y)(@) = 8(a) €Z/2Z by

(- l)g(a)= €0‘1"(”,0‘)( _ 1)(&9)
this is the cograding of the real integral roots defined by 7.

It is not obvious from the definition that §(y) is a cograding. As is shown in
[25], we can find a subgroup L C G (the centralizer of T;), containing H, and a
regular character for L

Yo = (Tq,7,) € (H)"

so that
(a) If a is real, <&,y —¥,) €2Z
(b) °T(m,) = € T(m,) 4.6)
(c) e&=1.

(The first two conditions hold for some larger class of subgroups L D H, and are
related to the functoriality discussed earlier. The third depends on the
assumption L = GT0.) By (4.6)(a)-(b), the maps §(y) (defined for G) and 5(yq)
(gefined for L) coincide. By (4.6)(c), and (4.4)(a)-(b), 5(yq) is a cograding; so
8(y) is as well.

Definition 4.7. Suppose y € H'. Define
R§(v) = 8(1)7'(0)
the real integral roots not satisfying the parity condition for vy, and
Rf(v)=8(n)~'(1),
the real integral roots satisfying the parity condition for y.

Thus the “parity condition” on a real root relates the parity of (&, ¥) and the
sign of I'(m,).
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LemMa 4.8 ([25], Lemma 8.3.17). Suppose y € H’, and o is a real integral root
not satisfying the parity condition. Then
S, XY =8,Y-
Here the action on the left is the cross action of Definition 4.1; and that on the right
is the obvious action of the real Weyl group W (G, H) by conjugation.

LeMMA 4.9 ([25], Lemma 8.3.3). Suppose H=TA is a §-stable Cartan
subgroup of G, and y € H'. Write G* for the centralizer of A in G. If
w € W(G*, H), then

wXy=w-7y.
LemMA 4.10. Suppose y € H',and w e W(y) (notation 2.5(a)). Then

RR()=RRwx7y) (i=01)

(Definition 4.7); that is, the cross action does not change the set of roots satisfying
the parity condition.

Proof. This is immediate from Definitions 4.1 and 4.5, and (4.4c). (We have
only to notice that if 8 is real and « is imaginary, then {a, 8> = 0. Therefore the
term 3, cacmyg) M@ in the definition of w X T does not affect (w X I')(myg).)

Q.ED

PROPOSITION 4.11.  Suppose H = TA is a §-stable Cartan subgroup of G, and
Y E H ! (notatton (2.12)). Then vy defines in H)* an ordered root system

(R(.R*(y)) with strong  bigrading g(y) = (0(v), (), W{"(y),8(x), W)
(Definition 3.22) as follows.

R(y) = {a €A(g, D) |<&,v) EZ)
R*(v)={a € R(y)|{a,¥) >0}

0(y) = 6 = Cartan involution on h*
R (v) = compact imaginary roots
R{®(y) = noncompact imaginary roots

€(Y) = € € E(R™) corresponding grading (Definition 3.13)

R§(Y), RY(7),8 (v) = & as in Definition 4.7
W)= WR™) N W(G, H)
= W(G*,H)

Wi(v)={we W(RF)|wxy=w-v}.
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Proof. That € is a grading of the imaginary roots is an elementary fact,
discussed before (3.26). Since the compact simple reflections lie in W(G, H) and
generate (by definition) WiR(y), we have WiR(y) D WiR(y). Since W(G,H)
preserves the set of compact roots, WiF(y) C WiR(y). That Sisa cograding was
established after Definition 4.5. The containments W (y) C WFH(y) € W(y)
follow from Lemmas 4.8 and 4.10, respectively. Q.E.D.

Definition 4.12. Suppose y € I?;( Use the isomorphism i; of (2.7) to define
g°(1) = (0° (), €* (0, WiN(0)",8° (1), Wi(n)") € 8(R™),

the strong bigrading of the abstract root system defined by vy. Clearly this depends
only on the conjugacy class of y; so if # is an irreducible admissible
representation of G with infinitesimal character x, then we can define g“(w) as
well.

When we construct the dual objects (G, ) of Theorem 1.15, we will have
R(G)=[R*(&)]"
gMm=[8"(n]
(the duality of Definition 3.23). Part of the definition of y will be the requirement
(wXy)'=wXy.

In order for this to be well-defined on conjugacy classes, we need to know that
w X y is conjugate to v if and only if w X ¥ is conjugate to y. This suggests the
following definition.

Definition 4.13. Suppose y € ﬁ; The cross stabilizer of y is the group
Wi(y)={weEW(GH)NW(y)|lwXy=w-v}
Using iy, we can define the corresponding group
Wi(v)c we.
PROPOSITION 4.14.  In the setting of Definition 4.13 and Proposition 4.11, define

RCC R as in Proposition 3.12 (using R* "R, R* NRP® for the positive
imaginary and real roots). Then

9 )
Wi(v) = W(R®) X (Wi (y) X WI(¥)),
a semidirect product with the second factor normal.

Proof. By Proposition 3.12

W(y)’= W(R®) % (WR(y) x WR(y)).
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Now every element of W(G, H) has a representative in K, and so commutes with
6. So by the definition of WiR(y),

W(y) N W(G,H)= W(y)’n W(G,H)
C W(R® X (W) () X WR(y)).

We will show that W,(y)2 W(RC). Assuming this, the conclusion of the
proposition is immediate from Lemma 4.9, and the definitions of WP(y) and
W](y). To prove the claim, recall the elements % and p® of h* which appear in
the definition of R¢ (Lemma 3.4). Choose elements #® € a,, r'® € it, dual to
these; and set

G © = centralizer of #® and rF in G.

(This need not be a complex group, because of the presence of nonintegral real
roots.) We have

A% 0) = {@ € A®g,b) [<a, ™) = e, p™y = 0},
Therefore
A%, b) N R(y) = RC.
We define a G C-regular character y© of H by
¥® = (I%7°)
I’=r+ (sum of positive compact imaginary roots)
ye=7+p"

Since there are no imaginary roots of H in GC, condition 2.10(b) shows that y© is
really a G C-regular character. Also

R(¥%) = {a €A(8°,1) <& v®) € Z}
= A@8%5) N R(y) = R®
since p'® = ¥© — ¥ kills the roots of §C. Finally, if w € W(RC), then
wx Y%= (wxy)°
wey®=(wy)°

by inspection of Definition 4.1. So we are reduced to proving the claim for G;
that is, we may assume that H is maximally split in the quasisplit group G, and
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that there are no real integral roots. Fix a root a € RC, and put
b* = {x €h|a(x) = fa(x) =0}
G*“ = centralizer of h* in G.

The element w, = 5,55, of W(RC) has a representative in G*; and since these
elements generate W(RC)’ (Lemma 3.11), it is enough to show that w, -y
=w, X y. So we may assume G = G° In that case, A(g,§) is spanned by
orthogonal roots & and fa of the same length. Since G is quasisplit, no rational
multiple of & + fa is a root; so A(g, b) is not of type B,. So it is of type A, X 4,
and G is complex. It follows that

H=2Z(G)- Hy;

for every Ad(g)—inner automorphism of a complex reductive Lie algebra g,
comes from Ad(G,). (Of course we only need this for SL(2, C).) Obviously w, - y
and w, X y agree on H, and on Z(G), so they coincide. Q.E.D.

LemMa 4.15.  Suppose y € I?;(, w & W and y € W(y). Then
B (WX v)=wXgy)
By xv)=2(v)
(notation (3.24), (4.1), (4.11), and (4.12)).

Proof. The second assertion follows from Lemma 4.10 and easy checking.
The first is a consequence of (2.8) and the second. Q.E.D.

Although we will make no use of it, we may as well record here how Knapp’s
result on W(G, H) follows from Proposition 4.14.

PROPOSITION 4.16 (Knapp [16]). Let H = TA be a §-stable Cartan subgroup of
G. Write R = A(g, ), and use the notation of Definition 3.10 and Proposition 3.12.
Then

(2) W(G,H)=(W° & (WRx W(G*,H))

=(W*)’x (W(G*,H))
Here G* denotes the centralizer of A in H. The set

(b) R7={a|,Ja€R7) Ca*

is a (possibly non-reduced) root system in a*, and

(©) W(G,H)|,= (W), = W(RY).
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Furthermore, in the notation of Definition 3.13,
() Wi(e) S W(G*, H) C WiT(e).
Here ¢ is the grading by compact and noncompact roots of the imaginary roots.

The group W(G*, H) depends on G/ G, and so cannot be specified in terms
of Lie algebra data alone. In Proposition 10.20(a), we will describe exactly which
possibilities can occur. A method for computing W(G*, H) is also given in [20].

Part (¢) is Knapp s result that W(G, A) is the Weyl group of a root system. The
root system R is in general smaller than Knapp’s “useful roots” ([16]), but the
two can easily be shown to have the same Weyl group.

Proof of Proposition 4.16. Choose a regular character y € H’ with regular
integral infinitesimal character. Then R(y)= R, so Proposition 4.14 implies
that (W C W(G, H). (It would be more reasonable to say, “By the proof
of Proposition 4.14, (W°)’ C W(G,H).”) By the remarks after (2.4), WRC
W(G,H). Now (a) follows from Proposition 3.12. For (b), suppose a, B € R"
write &, B € R for their restrictions to a. We must show that <a B> €2, and
5.8 € RY.1f a is real, then @ = «, and these follow from the fact that R is a root
system. So suppose a 5 fa. Since R? contains no imaginary roots, a + fa is not
a root. If a — fa = v is a root, then it is real; and

I«

a=1y =2y

(1

Therefore
@, By =2, ByEZ
s;B=5f e R

So we may as well suppose a + fa are not roots. Then they generate an SL(2, C).
Put

Wo = SuSpe € W(RT)".
By computation in SL(2,C),

ala = Sz

(a,ay = i{a,a).
By the first of these,

s;B=w,B € RY.
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By the second,

@, By =203, B)/<aa

=4&a, B /a,a)

=Xa, B)/La,a) = 2{0a, B/ {Bax, 0c)

=<{a, B> —<ba, B> EZ.
For (c), the argument just given also showed that

(W), 2 W(R®) 2 W(R%)'|,, W(R™),.

By Proposition 3.12(c), (W9)? is generated by W(RC)? and W(RR); so (c)
follows. Part (d) is obvious (proof of Proposition 4.11). Q.E.D.

5. Cayley transforms: formal theory. In this section we begin the study of
operations on graded (and, eventually, bigraded) root systems, which correspond
to changing Cartan subgroups in G. On the level of root systems with involution,
we will simply be modifying the involution # by an involution in W which
commutes with #. The effect of this on bigradings is complicated, and will
occupy the next two sections.

LemMa 5.1 (D. Garfinkle). Let R be a root system, and a € R. Put
R*={B ER|{a, B)=0)
Define €: R*—>Z/2Z by
E(B)=0 if a = B are not roots
€(p)=1 if a = B are roots.

Then € € E(R*) (Definition 3.13).

Proof. Suppose B, y and B + vy are all roots orthogonal to a. First, assume
that €( B) = €(y) = 0; we must show that (8 + y) = 0. Suppose not; that is, that
a+ B+ vy is a root. Since {8+ v, B + y) is positive, either (B, 8+ y> >0 or
{y, B + 7> > 0. Suppose for definiteness that the first holds. Since 8 € R*,

(Bra+B+v)={B B+7v)>0;
$0
aty=(a+B+7y)-BER,

contradicting €(y) = 0.

Next, suppose that €(8) =0, é(y) =1. We want to show that €(8+ y)= 1.
Suppose not; that is, that €(8 + y) = 0. Applying the first case with (B,v, B8+ v)
replaced by (— 8, B + v,7), we deduce that €(y) = 0; a contradiction.
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Finally, suppose that €(8) = €(y) =1, but that €(8+ y)=1. Then a * 83,
a * vy, and a = (B + ) are all roots. It follows that B, vy, and 8 + v all have the
same length as «, and that a + 8 has twice that length. So 8 and y generate an
A,, and { B,y> = — 1. Since y € R, we compute

((a+B) vy =2€a+B,v)/{a+ Ba+ )
=2(B:7>/2(B: B>
=1 Bv=-1.
This contradicts the axioms for a root system. Q.E.D.

Definition 5.2 (Schmid [20]). Suppose (R,e€) is a graded root system, a € R,
and e(a)=1. Set R*={ B € R|<a, B> =0)}. The Cayley transform of (R,e€)
through o is the pair c*(R, €) = (R“,c“(¢)), with

(€)= (elge) " &
here € is the grading of Lemma 5.1. More explicitly,
Ry = { B € Ry| a = B are not roots)
U {B E R|<a, B)=0,and a *+ B are roots)
R{={ B € R||a £ B are not roots}

U {B € Ry|<a, B> =0, and a = B are roots}.

An “explanation” of this definition may be found in the proof of Lemma 10.9.

Definition 5.3. Suppose (R,e) is a graded root system. An ordered set

S={ay,...,q} CR is called admissible if the iterated Cayley transform
cS=c%... ¢
is defined. That is, we assume that e(a;) =1, and that {a,, ..., q} is an

admissible sequence in R,

In particular, an admissible sequence must be orthogonal. A strongly
orthogonal sequence (Definition 3.18) contained in R, = €~ '(1) is automatically
admissible; this is clear from Definition 5.2. These are the most important
examples, as we will show that any iterated Cayley transform is equivalent to one
given by such a sequence (Corollary 5.7).

LemMA 5.4. Suppose a, B and y are orthogonal roots in R, and that o *+ 8 and
o * vy are roots. Then B + vy are roots as well. .

Proof. Since a, B, and y are orthogonal,

{a+ B,axy)>={a,a)>0.
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So
(a+B)—(aFy)=B%y
is a root. Q.E.D.

LemMMA 5.5. Suppose S = {«a, ..., o} is an orthogonal sequence of roots in a
graded root system (R, ¢€). Set

RS = (B ER|{B,a)=0,all i}
n=|{j <i|a; * a; are roots}|
(i=1...,0); and
ng = |{j|a; £ B are roots}| (B €R).

Then S is admissible (Definition 5.3) if and only if e(a;) = n; + 1 (mod 2) for
i=1,...,1 In that case,

cS(e)(B)=€(B)+n;  (mod2).

This is clear from Definition 5.2.

LeEMMA 5.6. Suppose (R,¢€) is a graded root system, and S = {a, ... o} is an
admissible sequence which is not strongly orthogonal. Choose i < j as small as

ossible so that o/ = o, + a; and o) = a;, — a; are both roots. Then
P i i i J i g

S’={a,,...,a,.’,...,ajf,...,a,}

is an admissible sequence; and
(R%,c5(€)) = (R%,c%(¢)).
Proof. Since S and S’ have the same span, RS = RS. Write n,, ng as in
Lemma 5.5, and n;, ng for S’. What must be shown is that
m + e(oy) = + €(ay) (mod2) (k=1,...,1)
ng+e(B)=ny+e€(B) (mod2), all B€ERS

We consider only the first of these; the second is formally identical. If k < i, the
assertion is obvious. Since «/ and a/ are long, they are strongly orthogonal to the
other a;; so n/ = n/ = 0. By the minimality of (i, j) and Lemma 5.5,

n,=0, €(a)=1

n = 1, e(aj)=0.
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So e(a)) =€(a))=1, and the claim follows for k=i, j. If i<k<j, the
minimality of (i, j) guarantees n, = n, = 0. Suppose k > j. If o + a; and o * @,
are not roots, then n, = n;, and the claim holds. Otherwise, Lemma 5.4
guarantees that «, is strongly othogonal to neither «; nor a;. Therefore
n, = n. — 2, and the claim still holds. Q.E.D.

COROLLARY 5.7. Suppose (R,e€) is a graded root system, and S C R is an
admissible sequence. Then there is a strongly orthogonal subset S’ of R, = € (1),
having the same span as S, such that ¢5(e) = ¢ '(e).

Proof. Suppose S is not strongly orthogonal. Lemma 5.6 provides a new
admissible sequence with the same span and same Cayley transform. The new
sequence consists of longer roots than the first. If it is not strongly orthogonal we
repeat the process. Since the roots keep getting longer, this ends in a finite
number (at most [//2]) of steps. Q.E.D.

We want to show that RS depends only on the span of the admissible sequence
S. The following proposition is the key to that fact, and we will have many other
uses for it as well.

ProrosiTION 5.8. Let (R,e) be a graded root system, and suppose
{ay ..., a,} and (B),...,B,} are maximal admissible sequences (Definition
5.3) in R. Then m = n, and there is an element w € W(R,) such that

w<a1’""am>=<Bl"--’Bn>~

(We write {(X) for the span of a set X.) If both {&;} and { B} are strongly
orthogonal, then we can arrange

w{iza)={x8},
an equality of unordered sets.

Proof. Write S,S’ for the two sequences. To say that they are maximal
amounts to saying that RS and R’ have the trivial grading; that, ¢5(¢) and
¢5'(e) are identically zero. By Corollary 5.7, we can replace {;} and {Bj} by
strongly orthogonal sequences having the same span and the same Cayley
transform. By the description of maximality just given, the new sequences will
also be maximal. So we may as well assume that {a;} and { B} are strongly
orthogonal, and try to prove the last claim; for everything else will follow from it.
Clearly we may assume that R is simple and spans V. Write R, = €™ '(i),
W,= W(R,) as usual. We proceed by induction on the dimension of V. If
dim ¥V =2 and R, # 0, then it is easily checked that (R, R,) is one of the pairs
(4,,4)), (By,A,) (with 4, consisting of short roots), (B,,4; X A4)) (with 4, X 4,
the long roots), or (G,,4, X 4,). For G, the proposition is easily checked; so we
assume R is not of type G, for simplicity. The difficulties are caused mostly by
roots a having the following special properties (corresponding to rank two
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subsystems of the second type mentioned above):

€(a) =1, ais short, and a = (B, + B,), with §;
orthogonal long roots satisfying ¢( 8;) = 1. *

Step 1. Suppose a, B € R, e(a) =1, and {a, B) # 0. Then either B € {Wya)>
(the span of Wya), or o satisfies (*). If also {a,a) =B, B> and e(B) =1, then
* B € Wya. Obviously this can be reduced to the case dim V' = 2, and checked
case by case.

Step 1. If e(a) = 1, then either (Wya) =V, or a satisfies (*). Suppose (*)
fails. Set

®=(Wya>N R
oL = (B €R|(B,Woa)=0).

By Step I, R = ® U ®*, an orthogonal union of root systems. Since R is simple,
@+ is empty.

Step III.  If e(a) = e(B) =1, and {a,a) = { B, B, then = € Wya. Suppose
first that (*) fails. By Step II, there is a w € W, such that { 8,wa) # 0. Now
apply Step 1.

Next, suppose (*) holds; choose B; accordingly. By Step II applied to B,
instead of a, we can find a w € W so that (wB,, B> # 0. Replacing a by *wa,
we may assume that { 8;, 8> > 0. As the §; are long and B (which has the same
length as «) is short, this gives

(B B>=1
(B,, B>=1,0,0r —1.
If (B,, B is 1 or 0, then
Ca, B =3By, BY+ B, BY)#0;
s0 B € Wa by Step 1. So suppose { 8,, 8> = — 1. Then
(BB = B> =< Bi BO(4<B By = $(B, B)
=3{Bu B
=GB By (B = By
=<{a, a).

By the Cauchy-Schwarz inequality, B=1(8,— B,); so a= B+ B,. Since
€(a) = €(B) = €(B,) = 1, this is impossible.
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Step IV. If there are two root lengths in R, then one of the a; is long. Suppose
not. Fix a long root a € R,. By Step II, we may assume (after replacing a by
+wa, for some w € W) that {a,a,) > 0. Since {a,a) > {a, o)), a —a; is a
short root. Since e(a) = €(a;) = 1, e(a — a;) = 0. Suppose «a is also adjacent to
some other a;; say (possibly after replacing o; by — ;) (e, ;> > 0. Then a — ¢ is
a root. Since «, is orthogonal to «;,

{a—aja—o0)y={aay>0;

SO
(a—a)—(a—)=0a;,—a; ER.
This contradicts the assumption that {ay, ..., a;} is strongly orthogonal. So
{aj,...,q,a—a,} is orthogonal, and a — a; € R,. We claim that this

sequence is admissible. This will contradict the maximality of S, and prove the
claim. Since «, * (a — a,) are roots, it suffices (by Lemma 5.5) to show that
a — a, is strongly orthogonal to all the other ;. Since {ay, ..., )} is strongly
orthogonal, and {a;,a — «,} is not, this follows from Lemma 5.4. (The alert
reader will have noticed that this last argument is essentially the standard one on
equine pigmentation.)

We now complete the proof of the proposition. By Steps III and IV, we may
assume (after renumbering and acting by W, on §) that a; = = 8,. Define €
using «; as in Lemma 5.1, and set

¥ =¢&'(0)C R™.

Then

c®i(€)ly = €|y -
The sequences {a,, ..., a,}, { By ..., B,} therefore satisfy the hypotheses of
the proposition for (¥, ¢€|y). By induction, there is a w € W(¥) C W, such that

w{Za, ..., xa,)={%p)..., *8,)}

up to order. Since w € W(¥), wa, = a; = = 8,. Q.E.D.

COROLLARY 5.9. Suppose S,S’ are admissible sequences in the graded root
system (R, €), and that S and S’ have the same span. Then c®(€) = ¢5(e).

Proof. By Corollary 5.7, we may assume that S={a,...,q} and
S’={By, ..., B} are both strongly orthogonal. Write 3 C V' for their mutual
span, and ® = R N 8, a graded root system on 8. By Proposition 5.8 applied to @,
there is a w € W(®;) C W(R,) such that w{*+a;} = {t,Bj}. Suppose 8 € RS
= {y € R|<y,8) = 0}. Then wB = B, since w is a product of reflections fixing f3.
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In the notation of Lemma 5.5, therefore,
ng = |{i| B £ a; are roots}|
= |{i|w(B = &) are roots}|
= |{i| B = wa; are roots}|

=|{j| B £ B; are roots}|

’

np.
By Lemma 5.5, cS(¢) = ¢5'(¢). Q.E.D.

Definition 5.10. Suppose (R,€) is a graded roots system on V. A subspace
8C V is called e-admissible if it is the span of some admissible sequence
S={ay,...,a)} (Definition 5.3); or, equivalently, if it is the span of a strongly
orthogonal subset { B8, ..., B,} of R (¢). (Lemma 5.6). The Cayley transform of
(R, €) through 8 is the graded root system c*(R,€) = (R® c*(¢)) defined by

¢(R)=R*=[yER|(,8)=0),

c*(€) = c5(e).

(Definition 5.3) with § C 8 any admissible sequence. (This is well defined by
Corollary 5.9.) Cayley transforms of cogradings are defined similarly, and writ-
ten c,.

We turn now to some technical results about the case when the span of all the
roots is an admissible subspace.

ProPOSITION 5.11.  Suppose (R,¢€) is a graded root system such that the span 3
of all roots is an admissible subspace (Definition 5.10). Fix an admissible sequence
S={a,...,qa) whose span is 8. Call a positive root system R~ S-compatible if
for each i, one of the roots * a; is dominant for R* N(span of ay, . . ., a;).

(a) There exists an S-compatible positive root system R™; any other S-
compatible positive system is of the form wR ™, with w a product of reflections in S.

(b) There exists a positive root system, all of whose simple roots B satisfy
«(B)=1.

() If R* is as in (b), then there is a w € W(€) such that wR ™" is S-compatible.

The proof uses the following lemma. A much quicker proof of the lemma can
be given with the machinery of group representations, by comparing Gelfand-
Kirillov dimensions in the Hecht-Schmid character identity. The proof given
here is elementary, but not very illuminating.

LEMMA 5.12.  Suppose (R, ¢) is a graded root system, R™* is a positive system, a
is R *-simple, and e(a) = 1. Set

(R*)"=R* NR",
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and assume that every simple root B of (R*)* satisfies ¢*(€)(B) = 1. Then either
R™* or s,R™* has this same property for e.

Proof. Every simple root 8 of R* which is orthogonal to « is simple in
(R%)*, and so satisfies c®(e)(B) = 1. Since B — a is not a root (as a and B are
R *-simple), e(B8) = 1. So we need only consider simple roots of R * adjacent to
a. Passing to an appropriate subsystem of R, we may assume that every simple
root of R* is adjacent to «. This gives rise to about ten cases, which are all
treated in much the same way; so we will discuss only two of the more
complicated ones. Suppose first that R is of type D,, and that vy, y,, and y; are
the other R *-simple roots. The (R%)*-simple roots are a+y,+y;, with
{i, j} € {1,2,3}. By hypothesis,

e(aty,+y)=1 al (ij)c(1,23).
Since e(a) = 1, it follows that
€(7;) = €(v) all (4,7} € {1,2,3}.

So all e(y,) are 1, or all are 0. In the first case we are done. In the second, replace
R* by s,R*. Then vy, is replaced by s,v;, = v, + a; and

€(s,7;) = €(v;) + €(a)
=0+1=1,

as desired.

Next, suppose R is of type C;, with « the middle root, y, the short end, and v,
the long end. Then a + v, is simple in (R*)*, and not strongly orthogonal to a;
so €(a + v,) = 0. It follows that e(y,) = 1. If €(y,) = 1, we are done. Otherwise,
replace R* by s,(R*). This does not affect the first part of the argument, so
€(s,v,) = 1. But vy, is replaced by s5,(y,) = v, + a; so

€(sa(71) = €(11) + €(a)
=0+1=1,
as desired. Q.E.D.

LemMA 5.13. Let R be a root system, and {a,, . .., oy} = S an orthogonal set
of roots spanning R. Set

Ri={a€R[{ma)=0i=j+1,...,1)
=<al,...,aj>ﬁR
J'R={aER|<a,ai>=0,i=l,...,j}

= (@ @) N R
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(a) Let R* be an S-compatible positive root system (defined as in Proposition
5.11). Define a sequence ¢ = {¢y, ..., ¢;} of s by ¢, € R *. Then
(1) ¢;a; is dominant for (R))*
(2) R* = (& € R|there is a j with {a,a;) =0 for i > j, and {a,¢;0;> > 0}
() ¢,q; is simple in V"R *
(b) Suppose ¢ = {¢,, ..., ¢} is a sequence of +1’s. Define R* by (a2) above.
Then R* is S-compatible.

Proof. Part (al) is the definition of an S-compatible positive root system. For
(a2), suppose a € R. Clearly there is a unique j so that « € R/ — R/~'. This
means that

{a,a;) =0, i>j
{a, 0> # 0.

By (al), a€ R™* if and only if {a,¢;;> is positive. For (a3), suppose
¢;¢; = B+ v, with 8 and y both in J=IR * Write

B= Z m;($; ;) Y= 2 n($a;),
i>j i>j
with m;, n; € Q. Since ¢, = B + v, m; = —n, for i > j. Since B and y are both in
R, (a2) now guarantees that m, = n, = 0 for i > j; that is, that 8 and y are both
multiples of ¢;a;. Since R is a reduced root system, this is a contradiction.
Assertion (b) is obvious. Q.E.D.

Proof of Proposition 5.11. Part (a) is immediate from Lemma 5.13(a2), (b). To
prove (b), we are going to find a sequence ¢ = {¢,, ..., ¢;} of *1’s, with the
following property. Define R *, /R as in Lemma 5.13, and give R the grading

The property we want is:
Every simple root of ¢/~ YR * belongs to /'R, (/" ¢). (*)

We will choose ¢; and verify (*) by downward induction on j. Put ¢, = 1; then
(*) holds for j=1/ since {a;,...,q} is an e-admissible sequence. For the
inductive step, suppose (*) holds for some j + 1. We have

Je=co( 7o) (+*)

By Lemma 5.13(a3), o is simple in /'R *, with either choice of ¢;- By Lemma
5.12, (*+), and the inductive hypothesis, we can make this choice so as to satisfy
(*). This completes the induction; and for j = 1, (*) is Proposition 5.11(b).

For (c), we proceed by induction on /. Choose an S-compatible positive system
R* as in (b). Define w, € W(R) by

w,R*=R"™.
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Since all simple roots in R * and R* are in R,(¢e), w, must preserve €; that is,
w, € Wy(e) (Definition 3.13). Define

Bi=wile, (i=1,...,])
S'={B).

Since w, € W,, S’ is an admissible sequence. What we will actually do is
produce an element w € W(R,) such that wB; = xa; for all i; clearly this
suffices. Since S’ is admissible, 8, € R;; and «; € W(R)p,. By Step III in the
proof of Proposition 5.8, we can find a wy € W(R,) so that

ap=Ew B,

After replacing R * by wyR * (which replaces w, by w,wy ', and B; by w, 8) we
may therefore assume that @, = + B,. Therefore R*' = R#\. Since w, 8, = * a;,
and w, € W,, w, preserves R*' and its grading. This is also true for s, w,. One of
these elements fixes «;, and so lies in W(R®Y); calling it wj, we have
wj € Wy(R™), and a; = wj B; for i > 2. By inductive hypothesis, we can find
wy € W(Ry") such that wy B, = * ¢, for i > 2. We claim that wy (acting on R*) is
the restriction to R*' of an element w of W(R,) satisfying wa, = + a,. This
element w will then satisfy the requirements of the lemma.

The claim will be proved for any element of W(R§"); so it is enough to
consider a reflection s,, with y € Rg". If y and «a, are strongly orthogonal, then
Y € Ry, and s, € W(R,), as desired. Otherwise y € R,, and y * a; are roots; as
a,ER,y=x al € Ry. Set w, = € W(Ry). Clearly

y+a y a
W,Yal = —Oll
Wylrp = slet"

as we wished to show. Q.E.D.

CoROLLARY 5.14. Suppose (R,€) is a graded root system, and S =
{ay, ..., a,) is a maximal admissible sequence in R (Definition 5.3). Then every
element of Wy(€)/ W(e) (Definition 3.13) has a representative which is a product of
reflections in S.

Proof. Choose a superorthogonal set { 8, ..., 8;} C R (e) as in Proposition
3.20, and extend it to a maximal admissible sequence {f,,...,8,}. By
Proposition 5.8, the spans of {«;} and { B} are conjugate by W(e); so we may as
well suppose that they coincide. By Proposition 3.20, every element of
W,(€)/ W(e) has a representative which is a product of certain Sg- Therefore we
may as well replace R by the common span of {«;} and {8;}. By Proposition
5.11, we can choose an S-admissible positive system R * so that all simple roots
belong to R,. Fix w € W(e), and set

R" + wo 1 R +.
then R* has the same property, by the definition of W,(R). Proposition 5.12
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now guarantees that w is of the form wgw,, with wy € W(R,), and wg a product
of reflections in S, as required. Q.E.D.

Next, we want to be able to recover a graded root system from a Cayley
transform of it. This is not quite possible, but we can determine precisely the
extent to which it is.

Definition 5.15. Suppose R is a root system on V, and 8 C V. Set
c(R)=R*= {a € R|{a,8) =0)}.
Fix a grading €® € E(R®), and define
dy(€®) = {e € E(R)|% is e-admissible, and €* = c*(¢)}
= ()7 () S E(R),

the inverse Cayley transform of €.

PROPOSITION 5.16. In the setting of Definition 5.15, set

®=038)=RNS3
W(3) = W ().

Then d(€®) either is empty, or consists of exactly -one orbit of W(3) in its cross
action on E(R) (Definition 3.24). More explicitly, suppose € = (R, Ry, R,) and

€= (R, Ry, R)) are two gradings of R such that 8 is admissible for both gradings,
and

c’(€) = c*(e) = €.
Then there is an element w € W (3) such that

WRO = Ii’o, WRI = Rl'

The last assertion really is a more explicit version of the first; for if such a w
exists then 3 is e-admissible if and only if it is €&-admissible, and in that case the
Cayley transforms coincide. This is obvious.

Proof. We proceed by induction on dims. Since the span of the roots is
admissible in either grading of @, Proposition 5.11 shows that we can find
positive systems ®*,®* for which every simple root belongs to ®, or to ®,
respectively. Choose w, € W(8) taking ®* to ®*; then clearly

wy X (€lg) = €lo -
So, replacing € by w, X €, we may assume that

€lo =€y
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Now choose a root a € ®, C R, N R,, and let 8* be the orthogonal complement
of a in 8. Then

c*le*(e] = " (@] = ¢

by Definition 5.10. By inductive hypothesis, we can find w® € W(38*) C W(8)
such that

w* X c%(€) = c*(€).
Since w* fixes a, it is clear that
wE X c%(€) =c*(w" X€);
so, replacing € by w® X ¢, we may assume that
c(€) = c*(€). (5.17)

Now choose a positive root system R * making a dominant. We will show that
for some choice of w € {1,s,}, we have

(wXe)(B)=¢€(B) (5.13)

for every simple root 8 for R *. This will complete the proof. If B is orthogonal
to a, then (5.18) follows from (5.17), with either choice of w. Therefore we only
need to consider the simple roots 8 adjacent to a; so we may as well assume R is
simple. If R is of type 4,, then a = B, and e(a) = €(a) = 1 by the choice of a.
Otherwise there are exactly one or two simple roots adjacent to (but distinct
from) a; we consider these cases separately.

First suppose there are two such roots, 8, and 8,. Then R is of type 4, (n > 2),
and

a=Bl+Bz+ZY;,
with the vy, simple roots orthogonal to a. We know that
e(a)y=€(a)=1,
and we have already seen that
€(v) = €(v)-

It follows that

€(B1) +e(By)=E(B1) +E(Bo)
If €(B,) = €(B,), this implies that e(B,) = €(8,), and (5.18) holds with w = 1.



988 DAVID A. VOGAN

Otherwise, choose w = s,. Then

(82 X €)(B;) = €(s:.:)

=€¢(B—a)
=e(B)—1
=€(IB’.);

so (5.18) holds.
Next, suppose « is adjacent to a unique simple root 8. If e(8) = €(B), we are
done; so suppose e(B) =1 — €(B). If (&, B> is odd, then

5B =B —<& B)a
€(s,B)=¢€(B)=1;

and (5.18) holds with w=s, as in the first case. So we may assume that
{&, B) =2. Write

a=mB+ay;,
with the sum over simple roots Y orthogonal to a. We know that e(y) = €(y); so

e(a) —€(a)=m(e(B)—&(B))  (mod2)
=m

since we are assuming e(8) = 1 — €(8). But we also have e(a) = €(a) = 1; so m
is necessarily even. On the other hand,

2={G& a)=ml& B>+ X ala,yy =m& B>=2m,
since « is orthogonal to all the y;, and (&, B) =2. So m =1, a contradiction.

Q.ED.

Definition 5.19. Suppose R is a root system, and g = (0, ¢, §) € 9(R) is a weak
bigrading of R (Definition 3.22). We use the notation of Definitions 3.10, 3.13,
3.15, and 3.21. Suppose 8 C V,(0) is §-admissible (Definition 5.10). Since 8 is
spanned by an orthogonal set of roots, the orthogonal involution w, with —1
eigenspace $ belongs to WP, Define

cs(0)=0,=00w,.

Since 3 C V,(#), 6 and w, commute; so 6, is an involutive automorphism of R.
Furthermore,

V(8= V.(6)®3
V,(8,) = {x € V,(8)|{x,8) = 0}.
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Define
cs(R(9)) = RR(8,)
={a € RR(8)[<a,8)=0)

cy(8) = 8, € E(RR(8y)).

(Definition 5.10). Recall from Definition 5.15 the inverse Cayley transform
dy(€) C ET(R™(0,)).

Define the Cayley transform of the bigrading g through 3,

cy(8) S8(R),
to be the set of weak bigradings of R defined by

ca(8) = (0 de(€), 8c)
= (g, = (85,0.8) |0 € dy(e))
= {(:,0,8,)| c*(0) = €}

Similarly, if u C V, is e-admissible, we can define c¢*( g).

PROPOSITIOVN 5.20. Suppose R is a root system, g= (6, e,g) € 8(R), and
8 C V.(0) is 6-admissible. Write

®=RNs
W(s) = W(®).

(a) The Cayley transform c(g) C §(R) (Definition 5.19) either is empty, or
consists of a single orbit under the cross action of W(8) (Definition 3.24).
(b) If w € W(R) is arbitrary, then

w X cy(g) = c (W X g).
(c) Suppose § is the dual weak bigrading of R (Defintion 3.23). Then
[cs(8)] = c%(&)
[wXg]"=wXg (wE€ W(R)).
Part (a) is immediate from Proposition 5.16. The other assertions are clear, and
are included mainly to set the mood for increasingly complicated versions of
them which will appear later. From a formal point of view, the main shortcoming

of this formulation is that there is no discussion of ® groups. They present
enough difficulties to warrant a section of their own.
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6. Formal Cayley transforms of . groups.

LemMMA 6.1. Suppose (R,e€) is a graded root system, and 8C V is an
e-admissible subspace (Definition 5.10). Set

8t = (x € V|(x,8)=0)
Wy(e,8) = (w € Wy(e) | ws = 8
Wo(e,8) = Wy(e,8) N W,
(Wy(e)) = {w € W(R)|wls = 1,w|s: € Wy(e,9)|s: }
H(Wo(e)) = {w € W(R)|wls = 1,w|s: € Wi(e,8)|s: ).
Then
W)(c(€)) 2 c*(Ws(e)) 2 c*(Wo(€)) 2 Wo(c*(¢))

Proof. Suppose w € Wy(¢,8). Choose a strongly orthogonal sequence S
= {ay, ..., q) spanning 8. Then wS is another admissible sequence spanning &;
so by Corollary 5.9,

(€)= c5(€)
=c"(¢)
=cS(w ! X¢)
=c¥(w™ ' Xe)
= w1 X c¥(e).

It follows that the automorphism of R* defined by w preserves c*(e). Therefore
Wy(c'(€)) 2 ¢ (Wa(©)).

The second inclusion is obvious. For the last, we simply elaborate on the end of
the proof of Proposition 5.11. Suppose a € R§; it is enough to show that
5, € A(Wy(e). If a € R,, then s, € W(e), and s, =1 on 3; so the claim is
obvious. If « € R|, then Lemma 5.5 shows that there is a root 8 € 8 N R, such
that « is orthogonal to B, and a = B are roots. Since a and B are in R,
a * B € R,. The element w, = s, s,_p is the orthogonal involution with —1
eigenspace spanned by a and B; so w, € Wy(e,8), and w,|s. = s,|s.. It follows
that s, € c®(W(e)), as required. Q.E.D.

Definition 6.2. Suppose (R,e, W)) is a graded root system with & group
(Definition 3.15), and 8 is an e-admissible subspace (Definition 5.10). Define
W,(¢,8) and c*(W)) in analogy with the notation for W, and W, in Lemma 6.1.
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The Cayley transform of (R,€, W) through 8 is (R°,c*(¢),c*W))). Similarly we
define Cayley transformations of cogradings with ® groups. By Lemma 6.1,
(R%,c*(€),c®(W))) is a graded root system with ¢ group.

The main subtlety we must face in extending this to bigradings is in the
definition of some sort of inverse Cayley transform. We have a natural Cayley
transform defined on ® groups, but it is not injective: if W, and W] are distinct
AR groups for (R,¢), then it can happen that c*(W,) = ¢*(W/). Of course we had
the same situation for gradings; but the various gradings in the inverse image of
one could all correspond to the same group G. Changing ® groups corresponds
roughly to changing the component group G/G,; so a multi-valued inverse
image is not natural. We begin with the machinery needed to remedy this.

Definition 6.3. A graded root system (R,¢) is called principal if there is a
positive root system R * such that for every simple root a, e(a) = 1. It is called
admissible if the span of the roots is an admissible subspace (Definition 5.11).

Obviously principal gradings of any root system exist, and constitute a single
orbit of W(R) in the cross action of Definition 3.24. By Definition 5.11, a root
system can have an admissible grading only if it is spanned by an orthogonal set
of roots; and not every root system has this property. (An example is the system
of type 4,.) With these comments in mind, we can state the basic result about
principal gradings.

PROPOSITION 6.4. Let R be a root system. Suppose 3,8’ C V are subspaces
spanned by orthogonal sets of roots, and 8 is maximal with respect to this property.

(a) &' is conjugate by W(R) to a subspace of 3.

(b) 38 is equal to the span of R if and only if Z (R) (Definition 3.3) is a product
of copies of Z/2Z.

(c) A grading of R is admissible if and only if it is principal, and 3 is the span
of R.

(d) If € is a principal grading, then the image of the injection Wy(€)/ W(e)
—> Z(R) (Corollary 3.17) is exactly the subgroup of elements of order 2. In
particular, if € is admissible, the map is an isomorphism.

(e) A grading € of R is principal if and only if every sequence of orthogonal roots
is W(R)-conjugate to an e-admissible sequence.

Before proving this, we will show how to use it to define Cayley transforms of
bigradings with &/ groups.

LEMMA 6.5. Let R be a root system. In the notation of Definition 3.3,
Z\(R)=[Z(R)]".

Here [Z 1(13)]‘ denotes the character group of the finite abelian group Z I(R ).
This is an elementary fact about lattices, which is well known.
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COROLLARY 6.6.  Suppose (¢, R) is an admissible graded root system, and § is an
admissible cograding of R. There are natural isomorphisms

W)/ Wo(e) = Zy(R) =[ Z,(R) " =[ W8 )/ Wy(8)]"-

Therefore, to every subgroup R C W,(€)/ W(€), there is naturally associated a
subgroup

Ann@ C Wy(8)/Wy($)
defined by
Ann® = {x € Wy(8)/Wy(8 ) |x(r) = 1 for all r € Wy(€)/ Wo(e)};
here x(r)€C is defined by the isomorphisms above. The correspondence

R —> Ann R is bijective and order-reversing on the set of subgroups of the groups in
question; and

Ann(Ann R) = K.

This is immediate from Proposition 6.4(d) and Lemma 6.5.

We can now define Cayley transforms of bigradings with ® groups. Probably
this could be done in some generality; but we will confine ourselves to a simple
case adequate for our purposes (the assumption that € is trivial below).

Definition 6.7. Suppose g = (0,e, WiR,§, WF) is a strong bigrading of the
roots sytem R (Definition 3.22), 8 C V,(f) is 6 admissible, and the grading € is
trivial. Define the Cayley transform of the bigrading g through 3,

cs(8) C8(R)
to be the set of strong bigradings
8= (0§» o, W{R( gé)’gﬁ’cé( WIR))

such that, if g = (,¢,8) € §(R), then

(a) g, =(8,,0,8,) € c(g) (Definition 5.19)

(b) c(WP) is given by Definition 6.2.

(c) Put =R N3, and W(3) = W(P); thus (CI),<§|¢) is an admissible
cograding, and (9, 6|,) is an admissible grading. Put

K, 8) = (W] W)/ (Ws N W(8))
- Wz(‘ﬂ@)/ Wo(‘ﬂ@)
and define

Ann @R C Wy(alg)/ Wo(ols)
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by Corollary 6.6. Define W,(0|y) to be the preimage of Ann® in W,(o|s). Then
our last condition on g; is that

WiR(g) N W(8) = Wy(olo).

If u C V() is e-admissible and & is trivial then ¢*( ) is defined analogously.
LEMMA 6.8. In the setting of Definition 6.7, fix g, = (8,,0,8,) € c,(g). Then
(2) W N W(8) = Wy(8)N W(s)= Wy(5ls)
Wy(o) N W(8) = Wy(als)
(b) There is a natural inclusion
Wy(e)/ Wo(0) > Wi(ols)/ Wi(ols)-

(c) The condition (c) of Definition 6.7 is satisfied by at most one R group
WiR(g,) for o.

(d) The conclusions of Proposition 5.20 hold also for Cayley transforms of strong
bigradings.

Proof. For (a), write
8t = (x € V|{x,8)=0).
Because of Proposition 3.8, we have
WA N3 ={we W) w =1}
for any root system A C R. Thus
W(AN3)=W(A)N W(3).

Taking A= R}(8) and A= R[(o), (a) follows. For (b), there is a natural
inclusion

Wy(0) N W(8)/ Wy(a) N W(8)—> Wy(0)/ Wy(a). *

By definition, ¢®(6) = € is trivial; so 8 is maximal admissible for 6. By Corollary
5.14, () is an isomorphism. By (a), there is a natural inclusion

Wy(o) N W(8)/ Wy(a) N W(8)~> Wy(ols)/ Wo(0le)-

Now (*) gives (b). Part (c) follows. Part (d) is a consequence of (c) and
Proposition 5.20. Q.E.D.

Since the inclusion of Lemma 6.8(b) is not onto, it can easily happen that c,(g)
is empty even when c,(g) is not.
We turn now to the proof of Proposition 6.4.
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LEMMA 6.9. Suppose (R,¢€) is a principal graded root system (Definition 6.3),
and R™ is a positive system for which each simple root  satisfies e(a) = 1. Let 8
be the highest root of a simple factor of R, not of type A,, .

(@ e(B)=1

(b) cB(e) is principal. More precisely, every simple root a of (RHY*=RANR™
(notation 5.1) is simple (in R ™), and strongly orthogonal to B; so

cAe)(a)=1.
Proof. Part (a) says that if we write
B= 2 nma,
a simple

then 3 n, is odd. This is easily checked (see [10], p. 66); > n, + 1 is the Coxeter
number, which is well known to be even except in type 4,,, ;. (In the setting of
McKay’s beautiful ideas in [19], this can be deduced from the fact the only finite
subgroups of SU(2) of odd order are cyclic.) In (b) the second formulation is
obvious, and gives the first statement. Q.E.D.

We need an analogous fact for 4,, , ;.

LEMMA 6.10. Suppose (R,¢) is a principal graded root system, and R* is a
positive system for which each simple root a satisfies e(a) = 1. Let B be an extremal
simple root in a simple factor of R of type A,,.

(@) e«(B)=1.

() cB(e) is principal. More precisely, every simple root a of (R?)* is simple in
R, and strongly orthogonal to B; so

cBe)(a)=1.

Proof. Part (a) is trivial, and is included only to preserve the analogy with
Lemma 6.9. For (b), we may assume R is simple. Then one knows (or can check)
that R” is of type A4, _,. Since there are clearly n — 2 roots a as described (those
not adjacent to 8), they must be all the simple roots of (R®)*. Q.E.D.

LeMMA 6.11.  Suppose (R,¢€) is a graded root system, a € R, and e(a) = 1. If
¢*(€) is principal, then so is €.

Proof. Choose (R*)* making c¢*(e)(B) =1 for each (R*)*-simple root f.
Regard (R*)* as defined by an ordering of

Ve={x € V|{a,x)=0}.

Every root but + a has a non-zero restriction to ¥%; so this ordering defines a
unique positive root system R* containing a. Clearly a is simple for R*. By
Lemma 5.12, € is principal. Q.E.D.
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PROPOSITION 6.12.  Suppose (R, €) is a principal graded root system, o € R, and
€(a) = 1. Then c®(¢) is principal.

Proof. We may assume R is simple. By Step III in the proof of Proposition
5.8, we can replace a by any root 8 of the same length, satisfying e(8) = 1. If a
is long, Lemmas 6.9 and 6.10 provide a 8 which works; so assume there are two
root lengths, and « is short. Let B, be any long root satisfying e(8,) = 1; this
exists by the definition of principal, since there must be a long simple root in
each positive system. Necessarily B, is adjacent to some short root «, (that is,
{ag, Byy > 0); so if we put a; = B — a,, B; = oy — a;, then &, and «, are short,
and B, = ay + «,. So (perhaps after interchanging a, and a,)

€(ap) =0, €(a)) =1
€(Bo) = €(B1)=1.
The sequences (a,, ;) and ( 8,, B,) are admissible, with the same span; so
c®c®i(e) = cPechi(e).

The right side is principal by the first part of the proof; so the left side is as well.
By Lemma 6.11, ¢*'(¢) is principal, as we wished to show. Q.E.D.

Proof of Proposition 6.4. Part (a) is well known, and can be proved by a
simplified version of the proof of Proposition 5.8. We leave this to the reader. For
(b), suppose first that 8 = {a;, . . ., a;) (with the ; orthogonal) spans R. Then, in
the notation of Definition 3.3,

/
P(R)= {}\= Zlq,.d,-|q,~EQ,<>\,,B}EZforall,B ER}

c {}\ =Yga|\a)€EZal i}
{)\ =3¢:&|2¢; €2, all i}

L(R).

N
N|—

So
Z\(R)=P\(R)/L(R) C4L(R)/L(R),

which is the “only if” part of (b). The “if” part (which we will not need in any
case) can be checked case by case: the simple root systems not spanned by
orthogonal sets of roots are:

R=4, (n>1); Z(Ry=Z/(n+1)Z

R=D,,,, (n>1); Z(R)=2/4Z

R = Eg ;  Z(R)=2/3Z
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We prove (e) next, by induction on |R|. Suppose ¢ is principal, and («, . . . , @)
is an orthogonal sequence of roots. Since every root is W(R)-conjugate to a
simple one, we may assume e(«,) = 1. By Proposition 6.12, c¢*'(€) is principal. By
induction, we can replace (a,,...,q) by a W(R®) conjugate which is
¢ *(e)-admissible. By definition, this means that (ay, . . . , @) is e-admissible. For
the converse, suppose (R, €) has the property in question. If R is non-empty, then
€ cannot be trivial; so fix a with e(a) = 1. We claim that (R c®(¢)) has the
desired property. Let (a,,..., ) be an orthogonal sequence in R®. By
hypothesis, there is a we& W(R) with (wa,wa,, ..., wea,) admissible. In
particular, e(wa) = 1. By Step III in the proof of Proposition 5.8, we can find
w, € Wy(e) so that

wiwa = *a.

Acting by w, does not change the property of being admissible, so (*a,
wyway, . .., wywa;) is admissible. Now w,we; is orthogonal to a, so s, fixes
wwa;. Taking y = w,w or s,w,w as needed, we get

ya=a
y(a,ay, ..., )= (a,wwa, ... wwa).

The first property shows that y € W(R*®), and the second that (a, ya,, . . ., ya,)
is e-admissible. By the definition of admissible, it follows that (ya,, . .., ya,) is
c*(e)-admissible. Thus c®(e) has the desired property, and is principal by
induction, proving (e).

The only part of (c) which is not immediate from (e) is that an admissible
grading is principal. We proceed by induction on |R|. Choose an e-admissible
sequence (a,, ..., ) spanning R. Then c¢*(e) is obviously admissi-
ble—(a,, . . ., ;) is ¢*(e)-admissible and spans R*—so c*'(¢) is principal by
induction. By Lemma 6.11, e is principal.

Consider now (d). Choose a positive system R * for which every simple root a
satisfies e(a) = 1. Fix z € Z,(R) of order 2, and a representative { € PI(R).
Thus 2¢ € L(R); so

$= > q.& 2q€Z (6.13a)

« simple

Choose A € ﬁ,(R) as in the proof of Proposition 3.16. By our assumptions on €
and R,

Aad=1 (mod 2) (a simple) (6.13b)
We seek an element w € W(R) such that
IwA=N)=¢  (modL(R)); (6.14)

by Proposition 3.16, such an element will automatically lie in W,(€), and will
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satisfy
§(e)(w) =z,
as desired. Define
F = {a simple| g, € Z}.

We claim that F is orthogonal. To see this, order the simple roots as (a;, - . ., @)
in such way that each q; is adjacent to at most one of its successors, and the
lengths are increasing. Suppose F is not orthogonal. Choose a;,a; € F, with i <
so that {a;,a;> # 0, and i is minimal with these properties. Then, writing ¢,, = ¢,

S = 2 G By 5 0

= 3 3GEay  (mod2)
a,, adjacent to a;
o, €F

“lug avs Log
= 2<ai’ai>+ 3 <aj’ai>

+

2 % <&m ’ ai>'
a,, adjacent to o;
o, €EF
m==i, j

The first term here is 1, and the second 1/2 (since (e, ;) > {e;, a;)). Suppose m
is in the third summation. If m < i, then the pair (a,,,q;) contradicts the
minimality assumption on (i, j). Since j > i, a; can have no other adjacent
successors; so m # i. So the last sum is empty, and

Gap=i  (mod2),

contradicting the assumption that { € ﬁl(R). So F is orthogonal. Put

w= ] s.;

a€EF

then (6.14) is immediate from (6.13) and the choice of F. Q.E.D.

7. Cayley transforms of regular characters. In [21] or [25], Cayley transforms
are defined which take regular characters on one Cartan subgroup H' to those
on a second Cartan H?2, such that H' N H? has codimension one in both H°.
Here we want something more general (and therefore easier to define). Although
we will make little explicit use of the special case, a familiarity with it (see
Section 8.3 of [25]) would be helpful.

Definition 7.1. Let H'=T'A' be a §-stable Cartan subgroup of G, and
8 C a' a subspace spanned by an orthogonal set of (real) roots. (To make sense of
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this, we identify § and b* using ( , ).) Define a’ to be the orthogonal
complement of 8 in a'. Write

M2A2 = GA2

for the Langlands decomposition of the centralizer of 4% in G; then T'S is a
Cartan subgroup of M2. Because of the assumption on 8, M? also contains a
#-stable compact Cartan subgroup 7> which is unique up to conjugacy by
M?N K; we can and do choose T2 so that

T?DT,.
Thus
H>=TA>=c(H")
is a Cartan subgroup of G, the Cayley transform of H' through 8. Put
L = L(8) = centralizer of T{ in M>.

Then L contains T''S as a split Cartan subgroup, and 72 as a compact Cartan
subgroup; and H? is defined up to conjugation by L N K.

We want a map c, from (ﬁ Y to (1-7 2y, Its characteristic property should be
(very roughly speaking) that 7(c,(y)) is a composition factor of 7(y) whenever
ye(H ly. Always one should think of the case when H' is split and H? is
compact. Then 7 (y) is a principal series representation, and «(c,(y)) is a dlscrete
series. Now most principal series contain no discrete series at all; and those that
do generally contain several. So ¢, can only be defined on a subset of (H Y, and
there it will be multivalued. To describe the domain, we need to recall the
notation of Definition 4.7.

LeMMA 7.2. In the setting of Definition 7.1, suppose H? is compact, and H' is
split (that is, that G = L). Fix y € (H 'Y, Then there is a ¢ € (H %), belonging to
the same block as vy (Definition 1.14) zf and only if the real mtegral roots R"(y)
span (ah)*, and the cograding 8(y) is admissible (Definition 6.3); that is, there is a
subset {a;, ..., a,} C R(y) such that {&} is strongly orthogonal and spans (ah)*.

If such a ¢ exists, then ¢' € (H 2)' belongs to the same block as v if and only if

(a) ¢l ze) = ¥l 265
or, equivalently, if and only if
(b) ¢ € W(g,h’) X ¢.

(Definition 4.1).

Proof. The conditions for the existence of ¢ follow from the theory of the
compactness of a block ([25], Proposition 9.2.12). So suppose ¢ exists. Fix
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¢ €H %), By Proposition 4.3,
(b)=¢' and y in same block = (a).

So assume (a); it is enough to prove (b). Since ¢ and ¢’ define the same
infinitesimal character, we can find w € W(g,h?) with ¢’ = wo; here_we write

¢ = (P, ¢) for the regular character as usual. Define ¢ =w X ¢. Then q; =¢/, 50

& yz = é| HE
By hypothesis,

9l 26y = 9l z(6) = ¥ 26y -
Since H2 = H? - Z(G) (because H? is compact), these give ¢ = ¢'. Q.E.D.

To extend this result to the general case, we need a rather messy definition
from [23] or [25]. We will not give all of the definition here, but a summary
follows.

Definition 71.3. Let q =1+ u be a #-stable Levi decomposition of a §-stable
parabolic subalgebra of g, and assume that [ = I; here bar denotes the complex
structure defined by the real form g,. (From now on we may say “let g=1+u
be a #-stable parabolic subalgebra of g,” with the remaining assumptions
understood.) Let L be the normalizer of g in G (a reductive group with
complexified Lie algebra I). Suppose H = TA C L is a §-stable Cartan subgroup.
Write

2p(u) = sum of the roots of b in u,

an element of h*. Define m as in (2.10), and fix a positive system A* (m,t). Then
there is a naturally defined character

r=r(q, A% (m,t),b) € T}

this is the character of T on the vector space V* defined by Lemma 8.1.1 of [25].
(Here 7 stands for “twist”. The definition of V'*, which is complicated, is what we
are omitting.) Now suppose y = ([,y) € (A" is a regular character, and
A* (m,t) is the positive system defined by ¥|, (see (2.10)). Put

Yo=Y~ p(4)
rqlA =r|A
rqlr = F|T® T

Yo = (Tq»¥a)-
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LeMMA 7.4. In the setting of Definition 1.3, v, € (ﬁ )% that is, the map y=> v,
defines a correspondence between regular characters of H with respect to G, and
those with respect to the smaller group L. Suppose now that v, € (H' )S.

(@) 8(7) 8(yq) (Definition 4.5); that is vy and v, define the same cogradmg of
the real integral roots (all of which lie in A(L,})).

(b) If v, and ¢, lie in the same block for L, then y and ¢ lie in the same block
for G.

Proof. That vy, is a regular character for L is Lemma 8.1.2 of [25]. Part (a) is
Lemma 8.3.12 of [25]. Part (b) is not explicitly stated in [25], but is established in
the proof of Proposition 9.3.1 there. Q.E.D.

The converse of (b) is false: y, and ¢, need not even have the same
infinitesimal character when y and ¢ do, since W(l,}) is smaller than W(g,b).
The correspondence y—> y,, on the level of group representations, is a simple
(but only partly understood) case of Langlands’ functoriality ideas. Since the
parabolic g is not defined over R, the correspondence is not realized by ordinary
induction. See [25] and [21] for some details about it.

Definition 7.5. In the setting of Definition 7.1, choose a 0-stable parabolic
q=1+u of m% here we want [ to be the centralizer of t' in m?, as in Definition
7.1. Suppose y € (H ‘)' We say that y € D(c,) (the domain of c¢,) if 8 is
admissible (definition 5 11) with respect to the cograding 8(y) of Definition 4.5.
(To make sense of this, we identify 8 with a subspace of h* using { , ».) Suppose
Y € D(c,). The Cayley transform of vy through 8, c,(y), is the set of all ¢ in (ﬁ 2);(,
satisfying the following conditions. Write (notation after (2.12))

o' = olm e[ (2]

v =g €[(TisY]"

Then we want

(@) ¢f2=17|,
(b) ¢, and v, lie in the same block for L.

LEMMA 7.6. In the setting of Definition 1.5, suppose vy = (I,¥) € D(c,), and
=(®,9) € (H2)x Then ¢ € c(y) if and only if

(a) ¢ and ¥ are conjugate by Ad(l); and

(b) @y, differs from T| .,y by a sum of roots of Z(L) in g.

Proof. The necessity of (a) and (b) is straightforward, and we leave it to the
reader. So assume (a) and (b). The twists 7 of Definition 7.3 are sums of roots of
T in g It follows that conditions (a) and (b) hold with y and ¢ replaced by
yq, <{>‘1 By Lemma 7.2, it follows that there is a regular character y = (¥,v)
€ [(H 2y14, lying in the same block for L as yq, and satisfying

dl=19. (*)
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Since regular characters in the same block agree on the center of the group, I‘;
and V¥ agree on Z(L). By (b),

<I>;|Z(L)= Y+ > maa}
a€A(g,h%)

(**)
Z(L)
By (*), the differential of (3 m,a)| 5., is zero. Choose a positive system A™ (g, %)
compatible with q. Then we can write

>Sma= > ngP.
B simple
The simple roots in [ are zero on the Lie algebra of Z(L), and the rest of the
simple roots are linearly independent there. We therefore conclude from the
differentiated version of (*#) that > m,« is a sum of roots in [. Since these are
trivial on Z(L), (**) gives

‘I’(];|Z(L) = ‘I'|Z(L) .

Since T2 is a compact Cartan in L, this condition and (*) give ¢>; = . By the
choice of i, hypothesis (b) of Definition 7.5 follows. Hypothesis 7.5(a) is
immediate from condition (a) of the lemma, since Ad(l) centralizes a®>. Q.E.D.

CoRrROLLARY 7.7. In the setting of Definition 1.5, suppose y € D(c;) and
w &€ We Then

c(Ww X 7)) =w X cy(y)
(notation 4.2)).
This follows from Lemma 7.6 and the defintion of w X .

ProPoSITION 7.8. In the setting of Definition 1.5, suppose v € D(c,). Then
cs(v) C (H?), consists of exactly one orbit of W(L + a*1?) under the cross action.
Every element of cy(y) belongs to the same block as v.

Proof. The first claim follows from Lemma 7.2(b) and the definitions. For the
second, suppose ¢ € c(y); define ¢',y' as in Definition 7.5. By that definition,
¢, and y, belong to the same block forL. By Lemma 7.4(b), ¢' and y' belong to
the same block for M2 Since also ¢| . = y| ,2, the proposition is a consequence
of the following simple result.

LEMMA 7.9. Suppose P = MAN is a parabolic subgroup of G. Let H' = T'A’
(i =1,2) be 8-stable Cartan subgroups of G, satisfying A* 2 A (so that H' C MA).
Fix y € (H'Y, 8 € (H?Y. Write

Y =Yluam 8'=8]mam-

Assume that _
(a) ¥ and & are nonsingular.
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®) v|, =8|, and
(c) y' and 8" lie in the same block for M.
Then vy and 8 lie in the same block for G.

Proof. By Lemma 9.2.7 of [25], we may as well assume that 7, (8 His a
subquotient of 7,,(y') (notation (2.11)). By induction by stages, Ind$[7,,(y") ®
v|4 ® 1] has the same composition series as #(8); and 7(8) is a subquotient of
Ind$[7,,(8") ® 8|, ® 1]. So #(8)is a subquotient of 7(y). By Definition 1.14, y
and é are in the same block. Q.E.D.

Next, we want to give another perspective on the definition of c,(y). Before
doing this, we should recall exactly how canonical c,(y) is. The only choice
involved is in the construction of H?; and this is unique up to conjugation
byL N K. In some sense, the Cayley transform ought to be defined on conjugacy
classes of regular characters. The next definition accomplishes this.

Definition 7.10. Suppose y € (ﬁ ');(, and 8° C§h® (the abstract Cartan
subalgebra—see (2.6)). Write 8 = i.(3") (notation (2.7)). We say that y € D(cy) if
8% is §“(y)-admissible (Definition 4.12); or, equivalently, if y € D(c,). In this case
we define

s () = c5(7),
the Cayley transform of v through 3°. In the notation of (2.14), it is clear that
cl(ca(¥)) = {cl(9) |9 € cs(v))
depends only on c/(y); we may therefore call it c..(c/(y)).
LemMa 7.11.  Suppose y € H', 3° C ), and w € W* (notation 2.6). Then
WXy ED(Cyee) Y E D(Cya);
and if these hold, then
Cpgs(W X ¥) =W X Cg(7)-
This is immediate from Corollary 7.7.
There are two other basic properties of Cayley transforms which we need.
Although they appear more or less unrelated, it is most convenient to prove them

simultaneously. The first relates our present definitions to the formal ones given
earlier, and the second concerns iterated Cayley transforms.

LeMMma 7.12. In the setting of Definition 7.10, suppose y € D(c,.), and
¢ € cg(y). Then, in the notation of Definition 4.12

0°(9) = cs(0°(7)) (Definition 5.19)
(R ()= { B € R ()I<B5> =0} = (R)(v)*
8(¢)=ce(8(v))  (Definition 5.10)
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LeMMa 7.13. Suppose &° =u® @ v* Cb* (orthogonal direct sum), y € (H Y
and y € D(cz) N D(ce). Then

(@) cua(y) S D(eye)

(b) cpalcya(y)) S cgo(y)-

We will need an auxiliary formal result.

LemMA 7.14.  Suppose (R,€) is a graded root system on V, and 3=u®ovC V
(orthogonal direct sum). Assume that 8 and u are e-admissible. Then v is
c"(e)-admissible, and

c*(e) = c°(c¥(¢)).

Proof. Choose an e-admissible sequence U = (a,, ..., a,) spanning u. By
Proposition 5.8 applied to R N 8, U can be extended to an e-admissible sequence
S=(a,...,0,a,,...,0q) spanning 3. Then V' =(a,,, ..., a,) spans the

orthogonal complement b of u in 8. The lemma is now obvious from Definition
5.10. Q.E.D.

We prove Lemmas 7.12 and 7.13 at the same time, by induction on dim 8. If
this is zero, there is nothing to prove; so suppose dim3 > 0, and the results are
known for lower dimensions.

Proof of Lemma 1.13. If u® or v” is zero, there is nothing to prove; so suppose
both are non-zero. Then dim u® < dim 8%; so if Y € c«(y), we have

8 (W) = c,o(8 (7))

by the inductive hypothesis for Lemma 7.12. Now (a) follows from Lemma 7.14
(or rather its analogue for cogradings, which is equivalent). For (b), we define
8,1, C h! as in Definition 7.10. Choose the Cartan subgroups H? = ¢ ,(H") and
H?=c,(H") in such a way that

T, C T3 CTg
A'=UA®= SA*= UVA?
A'24%2 4%
Then H? = ¢ (H?). Since
L(8)A* = centralizer of TgA>
L(u)A> = centralizer of Tg4>
L(v)A* = centralizer of Tg4?
we find

L(8)A* 2 L(u)4°, L(v)4> *)
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As these groups share the Cartan H3, we deduce that

Z(L(3))4> [ Z(L(w)4>| N[ Z(L(v))4*]. (**)
Using Lemma 7.6, one sees that (b) is a formal consequence of (a), (*), and (**).
Q.E.D.

Proof of Lemma 7.12. The first two assertions are immediate. For the third,
the case dimg®=1 is (9.2.15) of [25]. In general, the first conclusion of
Proposition 7.8 shows that we may replace ¢ by any other element of c.(y).
Choose an admissible sequence S = {«;, . . ., &} spanning 8°, and choose

¢ E cyr( -+ - (ca(Y)))-
The iterated Cayley transform is defined at each step by the case dimg® = 1, and
§(9) = ces(8 (7))
by the case dimg’ =1 and Definition 5.10. By Lemma 7.13 (which is now
available for this dimension of 8%), ¢ belongs to c.(y). Q.E.D.

We turn now to the “co” theory. In the formal version of Section 5, results
about cogradings were equivalent to results about gradings, because of the
duality of Definition 3.23. Now, however, we are trying to create such a duality
for regular characters. All the results must therefore be proved again, often by
somewhat different methods. This is not particularly hard—in fact most of it will
be left to the reader—but it is not trivial.

Definition 7.15. Let H*= T?4* be a f-stable Cartan subgroup of G, and
uCt? a subspace spanned by a strongly orthogonal set of noncompact
(imaginary) roots. That is, we assume that u is e-admissible, with € the grading of
Proposition 4.11. Put

t'={x et?|<{x,u) =0)

M = centralizer of t! in G,

so that H? is a Cartan subgroup of M'. Let M?4% be the Langlands
decomposition of the centralizer of 4% in G, and put

L=Luy=M'nM?>
By [20], for example, there is a #-stable Cartan subgroup
CU(H2)= Hl = TlAl g LAZ;

here t! is defined above, so H! is split in M!. H! is unique up to conjugacy by
L N K; we call it the Cayley transform of H? through u. Write

S=A4'nM?  s=LieS).
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Then
a' =38+ a?
an orthogonal direct sum, and H? = c,(H").

Notice that now we need to worry about the grading even to define ¢*(H ?); for
c;, the gradmg entered only in the definition c,(y). This is complemented by the
fact that ¢" will be defined on all of (H 2)’

Definition 7.16. In the setting of Definition 7.15, suppose ¢ € (H 2)’ Using
the notation of Definition 7.5, we define the Cayley transform of ¢ through u,
c¢*(¢), to consist of those y € (H )y such that
@) v[2= ¢l
(b) v, and ¢! lie in the same block for L.

In the definition, 7, (¢,) is a discrete series representation of L, since
H?>N L=T? is compact. By Harish-Chandra’s subquotient theorem for L,
'ITL(¢q) is a constituent of some ordinary pr1nc1pa1 series representation 77(7 ) of
L; the correspondmg regular character yq belongs to [(T'SY]*, and lies in the
same block as ¢! by definition. The notatlon yq is justified: by Corollary 8.13 of
[25], v; is really constructed for some y'€[(T iSY]™’, which can then be
extended to y € (H Y by the requirement (7.16)(a). Then y € ¢%(¢), so the
Cayley transform is nonempty. Suppose y € c%(¢). The theory of compactness of
blocks ([25], Proposition 9.2.12) guarantees that 3 must be 8(y )-admissible, and
therefore 8(7) admissible by Lemma 7.4. In light of the formal resemblances
between Definitions 7.16 and 7.5, Lemma 7.6 implies the following result.

LeMMA 7.17.  In the setting of Definition 7.15, suppose ¢ € (H 2);(. Then
(@)= {y EDc) |9 € cy(v))
= {y € D(cs)| ¥ and ¢ are conjugate by
Ad(Y), and T| 4, differs from ®|
by a sum of roots of Z(L) in g}.

CoOROLLARY 7.18. In thé setting of Definition 1.5, suppose ¢E(H %y and
w € W*. Then

c'(w X ¢)=w X c'(¢).
This is proved in the same way as Corollary 7.7.
ProPOSITION 7.19. In the setting of Definition 1.5, suppose ¢ € (H 2)’ Then

“(¢) consists of the W(LA* H") conjugates of a single orbit of W(L+ a*,}") on
(H )’ in the cross action. Every element of c"(¢) belongs to the same block as ¢.
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Proof. Just as in Proposition 7.8, one reduces to the case G = L. Then the
second claim is part of the definition of ¢*(¢), and the first follows from Lemma
9.3.12 of [25]. Q.E.D.

COROLLARY 7.20. In the setting of Definition 7.5, suppose o€ (H? "> and
Y € D(c,). Then

(a) cic'(e) = WL+’ b)) X ¢

(b) ce(y) = W(LALHY) - [W( + % §) X 7]

Since we are interested only in conjugacy classes of regular characters, the
extra conjugation action on the outside in Corollary 7.20(b) does not seriously
detract from the symmetry of the result.

Definition 1.21. Suppose ¢ € (ﬁ 2 "» and 3% C b Write u = iz(8") (notation

2.7). We say that ¢ € D(c™¥) if 8° is €’(¢)-admissible (Definition 4.12); or,
equivalently, if u Ch actually lies in the compact part t?, and satisfies the
hypotheses of Definition 7.15. In this case we define

¥ (¢) = c*(¢)-

Just as in Definition 7.10, we write
cgﬂ(cl(¢>)) = clcsa(¢>)
{c()|v€E ¢ (¢)}-

LemMMA 7.22. Suppose ¢ € (ﬁz o 8 ChY and w € W*. Then
wX ¢ EDc" ) EDc™);
and if these hold,

" (w X ) = w X ¥ ().

This is a consequence of Corollary 7.18.

PROPOSITION 7.23. Suppose y € (H'Y, ¢ €(H? and 8° CY". Then the
following conditions are equivalent.

(@) v € D(cy) and cl(p) € cue(cl(y))

(b) ¢ € D(c*) and cl(y) € ¢*(cl(9)).
Write W(8%) = W(R“ N 8%) as usual. If (a) and (b) hold, then

(©) c*eg(cl(v)) = W(E) X cl(¥)

(d) cuc®(cl(9)) = W(E") X cl(9).

This follows from Lemma 7.17 and Corollary 7.20.



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS IV 1007

LEMMA 7.24. In the setting of Definition 7.21, suppose ¢ € D(c*) and
Y € c¥ (). Then, in the notation of Definition 4.12,

9°(y)=c¥(0)(¢)  (Definition 5.19)
(R)YR(v) = { B €(R)T(#)|{B,5") =0} = (R*)7(¢)"
€(7) = ¥ ((9)) (Definition 5.20)

Just as before, it is most convenient to prove this with

LemMa 7.25. Suppose 8° = u® @ v® CH* (orthogonal direct sum), ¢ € (H? -
and ¢ € D(c™) N D(c™). Then

(2) ¢”(9) C D(c™).

(b) c"(c"(9)) C c*(9)-

The two lemmas are proved simultaneously, as before. In this setting, the case
of Lemma 7.24 when dim 8° = 1'is due to Schmid [20]; his proof appears in [25],
Proposition 5.3.1.

ProPOSITION 7.26. Suppose 8° C b*, and vy € H'
(a) If y € D(cy), then

g(cs (7)) =c(8°(7)) (Definitions 4.12, 5.19);

that is, the set of weak bigradings of R® defined by the elements of cy.(y) is
precisely the (formal) Cayley transform of the weak bigrading defined by v,
through 3°.

(b) If y € D(c™), then

g°(c* () = ¢ (g* ().
Proof. By Lemmas 7.12 and 7.24, and (a)<(b) in Proposition 7.23, we find

8(cse (7)) Cese(8%(7)),

and similarly for (b). Now equality follows from Proposition 7.23(c) and (d), and
Proposition 5.20. Q.E.D.

The problem of extending this result to strong bigradings is most conveniently
dealt with later.

8. A standard form for blocks. As was mentioned in the introduction, we
intend to describe each block in terms of two special elements of it. The
machinery to do this is now in place. Because the proofs are tedious, we will
begin this section by formulating all the major results before proving any of
them.
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Definition 8.1. Suppose ¢ € ﬁ)’( The c-packet of ¢, cp(¢), consists of all
conjugacy classes of regular characters meeting the orbit of ¢ under the cross
action of W™(¢), the Weyl group of imaginary roots (notation 4.11). (Here ¢
stands for compact.) That is

p($) = {vly € WH(3)" X cl(9)}.
If 3 CH* and ¢ € D(c,) (Definition 7.11), we set
p(9) = cp(cs(9)) 2 cs(¢);

the last containment is Proposition 7.8. Similarly, we define
p($) = wh($)" X cl(9)
(@) = 1p(c*(9)) 2¢°(9)  (#EN(CY)):

Analogous definitions are made with ¢ replaced by a bigrading of an abstract
root system.

If 7(¢) is a discrete series, then {7 (y)|y € cp(¢)} consists of all other discrete
series with the same infinitesimal and central character as =(¢); and
rp(¢) = cl(¢), the conjugacy class of ¢. If 7(¢) is a principal series representation
for a split group, then {7 (y)|y € rp(¢)} consists of all other principal series
sharing a composition factor with «(¢). In general, ¢p(¢) coincides with the
Langlands L-packet of ¢ (on the level of group representations). We have not
used his terminology in order to keep clear the duality between c-packets and
r-packets.

A number of facts about packets are obvious but worth stating.

LemMMA 8.2. The c-packets partition each block with infinitesimal character x;
that is, having a common c-packet is an equivalence relation. The abstract
cograding 8%(¢) is constant on c-packets; so if ¢ € D(c,), then cp(¢) C D(c,).
Analogous results hold for r-packets.

We will leave the verification of this to the reader. For our purposes, the most
important property of packets is

ProposITION 8.3. An r-packet and a c-packet can intersect in at most one
conjugacy class.

We will parametrize each block by parametrizing the r-packets and c-packets
separately, and describing which have a non-empty intersection.

Defmmon 8.4. Suppose y € H ¢. In the notation of Proposition 4.11, we say
that vy is almost minimal if the cogradmg 8(y) is trivial, and almost maximal if the
grading e(¥y) is trivial.

Thus v is almost maximal exactly when H is maximally split in G; this means
that w(y) is an ordinary principal series representation. If #(y) is a discrete series,
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or even a fundamental series representation, then y is almost minimal; but the
converse is not true. This is dual to the fact that a maximally split Cartan need
not be split, or even quasisplit.

THEOREM 8.5. Fix a block B of regular characters with infinitesimal character
x (cf. (2.17)). Then we can find regular characters y' € B (i = 1,2), such that

(@) ' is almost maximal, and v* is almost minimal.
These elements are uniquely determined up to conjugacy and the cross action of W*.
Fix any other element ¢ € B. Then we can find 8 CH°, w' € W* (i = 1,2), such
that

(b) w!' X y' € D(cy), w2 X y2 € D(c¥)

(©) ¢ € calcl(w' X y1)) N ¢ (cl(w? X ¥?)) (Definitions 7.10 and 7.21).
In particular, we can find 8',w' so that

() cp(@) = cpa(w' X v') rp(¢) = rp*(w? X v?) (Definition 8.1).

Now Proposition 8.3 shows that B is parametrized by quadruples (w',3', w?,
8%), via Theorem 8.5(d). To make this more precise (so that it can be used in our
proposed duality theory) we need a formal description of which quadruples
occur, and which define the same ¢.

ProposITION 8.6. Suppose y € 1-7;( is almost maximal, 3,u C a', w, yE W,
and

wXy€EN(c), yXy€EFd(c,).
Define
a(8) = {x EH7| cy(8°(w X 7))x = —x}.
(Definitions 5.19 and 4.12)
W = (1€ Wr|, =1}

Then the following conditions are equivalent

(@) cp(w X y)=cp,(y X ¥)

(b) There is a 7 € W® such that Tu=3, and w™'ry € W{(y) (Definition
4.13).

Analogous results hold for c* when vy is almost minimal.

The point of this result is not that it is particularly understandable, but that it
is phrased entirely in terms of the strong bigrading g?(y) (in light of the
description of W{(y) in Proposition 4.14).

PROPOSITION 8.7. Fix a block B, and v’ (i = 1,2) as in Theorem 8.5. Suppose
g ch, we We and

w' Xy ED(cy),  w?xyPe ().
Then the following conditions are equivalent.

@) cpa(w' xyHn rpgz(wzzx v)# @
(b) cpa(w' X g*(y") N rp~(W* X g(v*) # @.
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Here in (b) we use the notion of packets for (weak) bigradings mentioned in
Definition 8.1.

We now begin the proofs.
Proof of Proposition 8.3. Suppose ¢’ € ¢p(¢) N rp(y), i = 1,2. Since ¢' and &2
are both in cp(¢),
cl(£2) =cl(wx ¢"),
with some w € W™(¢"). Since they are both in 7p(y),
c(£?) =cl(y x ¢,
with some y € WR(¢!). Thus
c(wX g =cl(y x £,
so y " 'w e W,(¢') (Definition 4.13). By Proposition 4.14, w € WR(¢"), so
c(£%) = cl(w x £") = cl(¢"),

as we wished to show. Q.E.D.

For Theorem 8.5, we need some a priori control on the size of B. This is
provided by

THEOREM 8.8 ([25], Theorem 9.2.11). The blocks of regular characters with
infinitesimal character x are the smallest sets closed under conjugacy, the cross
action of W°, and the Cayley transformations of Definitions 7.10 and 7.21.

LEMMA 8.9. Suppose ¢ € H v. Choose a maximal €°(¢)-admissible subspace
8'ch, and a maximal 8 (¢)—adm1ss1ble subspace g? C b? (Definitions 4.12 and
5.10). Then ¢ € D(c® )ﬁ D(cg); choose y' € ¢ (¢), Y2 E c () (Definitions 7.10
and 7.21).

(a) v' is almost maximal, ¥* is almost minimal, ' € D(cy), v> € D(c*) and

cl(¢) € ca(cl(¥h)) N ng( cl(v?%)

(b) The W*° cross orbits WX cl(y') and WX cl(y?) depend only on
W X cl(¢) (and not on any of the other choices in the definition of v').

Proof. That ¢ belongs to the domains of the Cayley transforms in question
follows from the choice of 8'. That y! is almost maximal and y? almost minimal
is a consquence of Proposition 7.26 (compare the remark at the beginning of
Proposition 5.8). Now (a) follows from the first part of Proposition 7.23. For (b),
suppose 1 is maximal admissible for e*(w X ¢), and ¢! € ¢*'(w X ¢). We want to
show that ¢' € W* Xcl(y"). By Lemma 7.22, w~'u! is maximal admissible for
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€%(¢), and £' € w X ¢* "“'(¢). By Proposition 5.8, there is a y € Wi(¢)?; such
that w™'u' = y3. By Proposition 4.14, y € W (¢)*; so cli¢p) =cl(y X ¢), and
Proposition 7.23 gives

e (cl(9)) = ¥ cl(¢))
= cP(cl(y X 9))
=y X c*(cl(9))-

Therefore £' € (wy) X c*(cl($)); and by definition, y' € c*(cl(¢)). By Proposition
7.19, £' € W Xcl(y'), as we wished to show. The proof for y? is identical.
QED.

LeMMA 8.10. The regular characters y' of Lemma 8.9 depend only on the block
of ¢, up to conjugacy and the cross action of W*.

Proof. By Lemma 8.9(b), W“Xcl(y') depends only on W< Xcl(¢). By
Theorem 8.8, it therefore suffices to prove the following claim: suppose there is
another regular character ¢, a subspace u C}° that ¢ € D(c,), and that
¢ € c,(¢). Then ¢ and ¢ define the same elements v, up to conjugacy and W*.
(Once this is proved, Lemma 7.23 will give the analogous result for c", by
interchanging ¢ and y.) Consider first y'; say we define it by choosing &'
maximal admissible for €“(y), and choose

y' e ().

We claim that this same y' works for ¢. Since u is 5“(¢)-admissible, u is
contained in the —1 eigenspace of #(¢). Similarly 8' is contained in the +1
eigenspace, so 8' and u are orthogonal. We know that

sEC(¥),  VEC(Y)

By Lemma 7.12, §°($) = c(8°(y")); and u is §°(y)-admissible by assumption.
The inductive form of the definition of admissible now guarantees that ' @ u is
8%(y")-admissible. By Lemma 7.13, ¢ € ¢ g, (y"). By Lemma 7.23, 8'@u is
€X(¢)-admissible, and y' € ¢*'®%(¢). So y' can be obtained from ¢ by the
construction of Lemma 8.7, as claimed. The case of y? is identical. Q.E.D.

Theorem 8.5 is a consequence of Lemmas 8.9 and 8.10.

Proof of Proposition 8.6. If ¢ Ecpy(w X v), then

a(8) = — 1 eigenspace of §“(¢)
, (8.11)
Wa(é) _ WIR(‘#)a.
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Now assume (b). Since w ™'ty € W,(y)%,
c(y) = cl((w"l'ry) X y)

cl(w X y) = cl((1y) X 7).

Therefore
py(w X y) = cpm('r X (yX y))

=T7Xcpy(yXY)
(by Lemma 7.11). Therefore,

T X epy(w X ¥) = ep(y X ¥).

By (8.11), the hypothesis 7 € W*® gives (a).
Next assume (a). This means that there is an element ¢ € c(c/(w X v)), and a
6 € W® such that

o e cu(el(y X 7))-
Using Lemma 7.11, we can rewrite this as
pEaXc,(cd(yXy))
(*)
¢ € ¢, cl(ay X 7)).

Since y is almost maximal, w X y and gy X y are as well; so 8 and ou must be
maximal e(¢)-admissible subspaces of §h°. By Proposition 5.8, we can find
0, € WiR(¢)* with

8 = gyou. (**)
By Proposition 4.14, cl(o, ' X ¢) =cl(¢); so by Lemma 7.11,
c*(cl(9)) = 0o ¥ c"°_'5( cl(ag ' X ¢))
= 0o X ¢™(cl(¢))
2 cl(a40p X v);

the last containment is (*) and Proposition 7.23. On the other hand,
¢ € c(cl(w X v)); so the left side above is

W(3) X cl(w X v)
by Proposition 7.8. So we can find o, € W(8) so that

cl(w X y) = cl((0,000)y X 7).
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Now ¢ was chosen in W®; and o, and ¢, belong to W*® by (8.11). So if we
set T = 0,00, then
T € W®
cl(wX y)=cl(ty X ¥).
Finally, 6,8 = 8; so (**) gives
Tu=3.

These three conditions are (8.6)(b). Q.E.D.

Proof of Proposition 8.7. The implication (a)= (b) is obvious; so assume (b).

Replacing vy’ by w’ X v/, we may assume w’= 1. By Proposition 7.26, we can
choose

b€ cpu(v) (8.12a)
so that
g°(®) € (g (¥))- (8.12b)
By (8.12a), we can write
b=0'x9, o' €W, ¢Ecay) (8.12¢)

By (8.12b), we can find o2 so that
g’ X ¢) € cf'z(g”(yz)), o’ € WR(¢)". (8.12d)
Therefore
gi(o X ¢)E cﬁz(g“(yz)), 0=0,0,. (8.12¢)
This last inclusion means that 8> is § “(o X ¢)-admissible; so by Proposition 5.20,
co( g (o X ¢)) = W (8% X g“('yz). (8.12f)
We may therefore choose ¢ so that
Y E co(o X ¢) (8.13a)
g () = g“(v?). (8.13b)

If ¢ were conjugate to y2, we could easily get the conclusion of 8.7(a), by reading
back through the construction of y. It need not be, however. Two things will save
us. First, we made several choices in getting iy, so we can modify it a little
without changing its properties. Second, Lemma 8.10 guarantees that there is an
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element w € W7 such that
c(y?) = cl(w X {). (8.13¢)

We will use (8.13b) to deduce that w has a very particular form. Then w X ¢ will
be one of the allowable modifications of ¢ mentioned above. By 8.13(b)-(c),

w X g(y) = g(¥). (8.14a)
In particular, w commutes with 8°(y). By Proposition 3.12,
w=1'r%, Wwe Wy rewRy), rewfy)" (8.14b)

(in the notation of Proposition 3.12). Since ¢ is almost minimal, 5 9(¢) is trivial;
so Proposition 4.14 gives

e w,y),, e Wiy (8.14c)
Therefore we may replace w by 7', and get (from (8.13c))
d(y)=cl(wxy), we WRw)" (8.15)
By (8.12¢) and Lemma 7.11,
0X¢E cg(o0x7'); (8.16a)

so 08' is €“(o X ¢)-admissible. By (8.13a) and the inductive nature of the
definition of admissible,

8? and 08' @ 87 are €“(¢)-admissible. (8.16b)

Since y! is almost maximal, 05' @ 3 is a maximal €“(y)-admissible subspace. By
Corollary 5.14 and (8.15), we can write

w=ssw’  s'lew(es'), ssewEd), weWwWlw)' (8.16c)
By Proposition 4.14, w® € W,(y)%; so (8.15) becomes
c(y?) = cl(w X ¢), w=s's%,  s'e W(os"), sPe W(g). (8.17)
By Proposition 7.8 and (8.13a),
52X Y € ca(0 X ¢). (8.18a)
Now os' and 82 are orthogonal, so s' fixes 8°. By Lemma 7.11,
- s'SPX Y Eca(slo X @) = ca(a(07 's'0) X ¢). (8.18b)
Now 5! € W(e8'), so
fl=06"%loe W(%‘) (8.18¢c)
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By (8.12¢) and Proposition 7.8,
¢ =35"X¢€Ecy(y") (8.18d)
By (8.17), (8.18b), and (8.18d), we get
cy* € cg(cl(o X ¢)), ¢ € ca(y'). (8.19a)
By Proposition 7.23, this can be written
c(o X ¢') € co(cl(v?)), ¢ Eca(y')

But 0 = a'0? (see (8.12)); so
(e’ x ¢') € (02)-—1X ng( cl(yz)), ¢ € ca(yh),
. (8.19b)
o' € WR(@¢), o> WRe)"

But (8.18¢)—(8.18d) shows that ¢ and ¢’ define the same abstract real and
imaginary roots; so (8.19b) amounts to
(o' X ¢)Crp (YD), o' X ¢ E pa(y))
Thus
cpg.(y') N rpgz(yz) *=@. QE.D.

9. Cayley transforms of ® groups. Just as in the formal theory, there are an
easy case and a hard case.

LeMMA 9.1.  Suppose y € ﬁ;c, 8 Ch% vy €D(c,), and ¢ € c,(y). Then
Wi@)'= co(WI(7)
(Definitions 4.13 and 6.2). That is,
Wi(e)'={we wE) W) wl.=1}.
The analogous result holds for c*.

The proof that W(¢)? contains the indicated elements is along the lines of the
proof of Proposition 8.3; and the proof that it contains only these is like the
proof of Proposition 8.6. We therefore leave this to the reader. (The analogue for
c® which can be proved in the same way, is due to Schmid [20].)

PROPOSITION 9.2. In the setting of Lemma 9.1, suppose also that vy is almost
maximal. Then

g(cs(v)) = cs(8(7))
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(Definition 6.7). In particular, if ¢ € c,(y), then

RS =[W2R(y)“ n W(g)] /[Wf‘(y)“ nwe)”
and

= W) N W) |/[Wa(e)' N W),

are isomorphic by the natural map of Corollary 6.6. Analogous results hold for c*
when vy is almost minimal.

By Lemma 9.1 and Definition 6.7, we only have to prove the natural
isomorphism ®* = }°. Recall the group L of Definition 7.1. By the definition of
¢ (y) and the /¢ groups, we can immediately reduce to the case G = L. That is,
we make

Assumption 9.3. G contains both a compact Cartan H 2= T2 and a split
Cartan H' = T'4'. We have y € (H .o (H %), The infinitesimal character x
is integral. Write 8 = span of the abstract roots. The e(¢) and 6(7) are an
admissible grading and cograding (Definition 6.3); and ¢ € c.(y), ¥ € c*(¢). We
will define }° and 4° as in Proposition 9.2. Define

A = R(G) = Ad(G)/Ad(Gy).

We will prove Proposition 9.2 by proving that ®° and ®° are both naturally
isomorphic to }. A little notation is helpful.

Definition 9.4. In the general setting (2.1), put
¥ =[x € G|Ad(x) € Ad(G,)}
= Ad"'(A(Gy)

G’={xe G°| Ad(x) normalizes g, C 8}

G'={x€ G°|Ad(x) € AJ(G)]}

G°={x € G°|Ad(x) € Ad(G,)}
A go) = G?/ G, the universal R group of g,
%(G)=G'/G’= G/G* = Ad(G)/Ad(Gy) C Us,).

We say that G is small if R(G) = {1}, and large if R(G) = U(gy).

PROPOSITION 9.5. Suppose G contains a compact Cartan subgroup T? and
o (T2)' There are natural isomorphisms

(@) Wi“(¢)/ W3R (@) = AU(go)
(b) WiR(¢)/ WiR(¢) = R.(G) (notation 4.11).
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Proof Every component of G? meets the normalizer of t?, since the compact
Cartan is unique up to conjugacy by G,. Write 72 for the centralizer of T2 in G2.
It is well known (and easy to check) that Ad(7?)= Ad(T?)—that is, that
T2 ¢ G°—and that

W(G®, T%) = W(t, ) = WR(y).
Therefore
G%/G°= W(G* TY/W(G°, T = W(G2 T?/ Wik(9).

It is easy to verify that every Weyl group element preserving the notion of
compact root has a representative in G normalizing g,; so

W(G2 1% = WiR(9).
This proves (a); and (b) is similar. Q.E.D.
PROPOSITION 9.6.  Suppose G contains a split Cartan subgroup H' = T'A". Put

(HY =G6*n H'
H'= centralizer of ¥' in G*  (notation 9.4).

Then there are natural isomorphisms

(@) H'/[H N G = A(g,)

(b) (H'NG)/(H'n G =H'/(H)* =4(G)

(©) U(ge) = P(R)/(L(R) +2P(R)) = Z,(R)/2Z\(R)_
(notation (3.3), using R = A(g%, H7)). Now suppose vy E(H');( is integral. Recall
from Proposition 3.16 the map

£: Wy (8 (1)~ Zy(R) =[ Z,(R)]"

defined by the cograding 8(y). Use (c) to identify [U(gy)]" as a subgroup of
[Z,(R)]" (namely the elements of order 2); thus we have
(d) &: Wy (8(v) > [U(g] ™
Then 5
(&) Wi(3(y)) = ¢~ (Ann &(G))
and so we have a natural surjections
() W(go) > [WHE()/ WS
® K(G)~>[W,(6()/ WS
If 8(y) is a principal grading (Definition 6.3), these maps are isomorphisms.

Proof. Since the split Cartan is unique up to conjugation by G,, every
component of G2 has a representative normalizing ). As all roots of b, are real,

W(Gy,H' N Gy) = W(ah'");
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so in fact every component of G> meets H'. Now (a) and (b) are clear. For (c),
list the simple roots of b} in g, (for some positive system) as {a, ..., ). To
specify an automorphism of g, centralizing §,, we must specify its eigenvalue on
each root vector X,; and these may be any real number. The positive real
eigenvalues are realized by Ad(H{), so

Ad(H')/Ad(HJ) = P\(R)/2P\(R),
the correspondence being
AEP(RYyoheH' if (=1)M=a(h)/|a(h).
Now H' N GO is generated by H{, Z(G°), and the elements mj of (2.4). Since
a(mg) = (=1)*?

(by (4.4¢)), (c) follows.

For (e), suppose w € Wz(g(y)). We want to show that w X y=w -y if and
only if £(w) is trivial on }(G). So fix r € R(G), and a representative x of r in T
(see (b)). We will show that

w X y(x)=(w- y)(x)SEw)(r) =1 (*)
Clearly w can be replaced by any ww,, with w, € Wo(g(y)). By Proposition 3.20,
we may therefore assume that there is a superorthogonal set 8, ..., B,, such
that

S(y)(B)=1, alli

W=HSB'

To say that x is a representative of » means that, if A € P,(R) is a representative
of r in the isomorphism of (c), then

a(x)=(— l)<"")‘>, all a € R.

By the definition of ¢ (proof of Proposition 3.16),
£w)(r) = §(ITss)()
=TI (= 1)¢A»

§(w)(r) = H Bi(%)-
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On the other hand, by [25], proof of Lemma 8.3.17, we have
(v X ) IL0w - 1)) =TT Bi(x),

proving (*). Parts (f) and (g) follow; and the last claim is Proposition 6.4(d).
Q.E.D.

PROPOSITION 9.7.  Suppose we are in the setting (9.3). Consider the diagram (of
isomorphisms)

(o)

[/ Ws()]" — [W@)/W5(9)]

Here the map on the left if Proposition 9.6(f), that on the right is Proposition 9.5(a),
and that on the bottom is Corollary 6.6. This diagram commutes, and identifies the
subgroups R° on the left, R° on the right, and R.(G) on top.

Proof. We need only worry about commutativity; then the last assertion is a
consequence of Propositions 9.5(b) and 9.6(¢). For the commutativity, all maps
are really defined inside G, without direct reference to the group G. So we can
reduce to the case when g is simple. By Corollary 6.6, all the groups are
isomorphic to Z,(R), which is of course the fundamental group of Ad(G°). Since
it must also be a product of copies of Z/2Z, we see by inspection of cases that
(g, has order two except when g is of type D,,. Since the arrows are all
isomorphisms, the diagram commutes except perhaps in this case. So suppose g is
of type D,,; thus g, = 80(2n,2n). We may take

G°©=80(4n,C) 2 SO,(2n,2n) = G.

As representatives of generators of AU(gy) = G2/G° we can take the diagonal
matrix r with entries

[(-LL..., 1), (=1..., )]

0 1,
s = .
-1, 0
Now the maps in the proposition can be computed explicitly on these elements,

and one finds that the diagram commutes. The simple but tedious details are left
to the reader. Q.E.D.

and the matrix

One can also prove this proposition by observing that the maps are in an
appropriate (very restricted) sense functorial in G: one considers the category of
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subgroups containing both H! and H?, and satisfying (9.3) for appropriate twists
of ¢ and y. One can show easily that there is such a subgroup locally isomorphic
to a product of SL(2,R)’s; so the proposition is reduced to the trivial case of
SL(2,R). This is a slightly more satisfactory argument, but the necessary
verifications seem to me to be a little worse than for the proof given first.

In light of the discussion after its statement, Proposition 9.2 follows from
Proposition 9.7.

10. Characterization of g“(y). We begin by using what we have proved so far
about the structure of blocks to formalize the problem of constructing G.

THEOREM 10.1.  Suppose G is another real reductive group, with abstract Cartan
E)“ Fix a regular infinitesimal character X for G, and a corresponding weight
}\" € (h)* as in (2.6). Suppose that the mtegral root system R\ is isomorphic to
R4, by an isomorphism takzng (RY* to R* (\%). Fix such an isomorphism, and use
it to zdenttfy W and W(R(}\“)), and the span of R® in (§)* with the span of R(AY)
in (h%)*. Write R® instead of R(}\“) using the isomorphism.

Now fix blocks B, B for G and G with infinitesimal characters x and X. Suppose
there are elements v' € B, ¥' € B, such that

@) [2°(YH] = g°(¥") (Definitions 3.23 and 4.12)

(b) ' is almost maximal. (Definition 8.2).

Then there is a bijection (“duality”)

d : conjugacy classes in B —> conjugacy classes in B,

with the following properties. Suppose ¢ € B, w € W“ and 8 CY)? is in the span of
R?; write 8 also for the corresponding subspace of f)“

© [g(clo)]” = g“(d(cl9)))

d) If ¢ €D(cy), then

d(cy( cl(#))) = e¥(d(<l(9))),

and similarly for c*.

(e) d(cl(w X ¢)) = w X d(cl(¢))-

Theorem 1.15 will be deduced fairly easily from the formal properties (c)—(e)
of the bijection, using [24]. In (b), we could just as well have taken y' to be
almost minimal. Probably the result is true without hypothesis (b), but proving
this would require a little more work.

Proof. By (a), ' is almost minimal. Choose a maximal 6(7 )-admissible
subspace 80 of f)" then the correspondmg subspace 8° of h* is maximal
e(y )- admlss1ble by (a). Fix y>€ co(y'). By Proposition 9.2, there is a
y’€¢ (y ), such that

[8°(¥)] =2"(¥)
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By (10.1)(a) and Proposition 4.14, we get

(2) [2°(v)] " =8°(¥)
(®) wWi(y') = Wi(¥')
(102)
(©) v! and ¥? are almost maximal
(d) 7! and y? are almost minimal.

We define the duality map d by
dlepa(w' X 1') N pT (W X ¥%) ] = 1p* (W' X ') 0 pa(w? X )

whenever both sides are defined and non-empty. Using (10.2), Theorem 8.5, and
Propositions 8.6 and 8.7, we see that this is a well defined bijection. By
Proposition 9.2, it satisfies (10.1)(c). By Lemmas 7.11 and 7.22, it satisfies
(10.1)(e). Part (d) is a little tricky, and requires two lemmas.

LemMma 10.4.  Suppose 3 = u® b C by (orthogonal direct sum). Then the domain
of the composition c, - cp, is

D(c, - ep,) =D(cs) N D(c,) C D(cs)
Suppose that vy is almost maximal, and lies in this domain. Then
co(Pu(8)) = {# € ep(v) N D) [ *(8°(9)) N ep (&(7)) # D)
Analogous results hold for c” o rp*.

Proof. By Lemma 7.13, ¢ (cp,(Y)) Ccp(y). So by’ Proposition 7.23,

(P (1) S {® Ep () N D(c”)|c"(g“(9)) Nep (g°(v)) D}

So suppose ¢ belongs to the right hand side. The proof that ¢ belongs to the left
side is a straightforward imitation of the proof of Proposition 8.7, except at one
point. In that proposition, we knew that y? (the analogue of ¢) was almost
minimal; but ¢ need not be. This was used in one place. We constructed an
element y, and wanted to know that

cl(w X ) = cl(v?)

for some w € WR(y%)?. This was done in two steps (see (8.13c) and (8.14)), both
of which used the almost maximality of y. In the present case, the assumption
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¢ Ecpy(y) (Which is a single orbit of WR(¢)?) will give
cd(wXxy)=cl(¢), some we WRy)”

for the analogously constructed y. Details are left to the reader.

LeMMA 10.5. Suppose ¢ and y are regular characters, and ¢ € D (c,). Then the

following conditions are equivalent.

() ¥ € ci(cl(9))
(b) ¥ ED(c?), Y € cy(cp(9)), and ¢ € c*(rp(Y)).

Proof. By Proposition 7.23, (a)=>(b). (Notice that c,(cp(¢)) is defined, by

Lemma 8.2). So assume (b). Then we can write
' =p"®38Yh7,
an orthogonal direct sum, with
h* = +1 eigenspace of §¢(¢)
h* @38 = +1 eigenspace of §°(y)
8®h~ = —1 eigenspace of 8°(¢)
b~ = —1 eigenspace of §°(v).
Since y € c¢,(cp(9)), there is a w* such that
wr e w@oh), wt Xy e cs(cl(9))-
Since ¢ € ¢*(rp(y)), Proposition 7.23 provides an element
Y € cg(¢) N 1p(¥);
so there is a w~ with
woEW®BT), (W) Xy Ecycl(d)).
By Proposition 7.8, (10.7a) — (10.7b) imply that there is a w, with
woE W(8), (W wew™)Xcly=cly.
By (10.6) and (10.7a)-(10.7c),
wo € WR®W),  wowt € WRy)”
By Proposition 4.14 and (10.7¢)-(10.7d), we deduce that

(w™ )_'X cy = cly.

(10.6)

(10.7a)

(10.7b)

(10.7¢)

(10.7d)
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By (10.7b), therefore,
Y € cy(cl(9)). QE.D.

We return now to the proof of (10.1d). The idea of the proof is this. Duality d
is defined to respect Cayley transforms based on the almost maximal or almost
minimal elements; so we must express c, in terms of these. Lemmas 10.4 and 10.5
accomplish this. So suppose ¢ € D(c,), and ¢ is another regular character. We
must show that

¥ € ey cl(¥)) S d(¥) € *(d(cl(4))). )
By (10.1c), we may as well assume that ¢ € D(c®), and d(cl(y)) € D(c,). Write
el(9) = cpy(w' X v') N p” (W X 7).
Thus
p(9) = Pa(¥' X))
By Lemma 10.4, the definition of d, and (10.1c), we conclude that
d[cscp(d)] = c*rp(d(cl($))).

Using also the analogous formula for c,, we see that () follows from Lemma
10.5. Q.E.D.

Now we can direct all our efforts to proving the existence of a ¥' satisfying
(10.1a). To do this, we need to describe abstractly which bigradings can arise
from regular characters.

ProposiTioN 10.8.  Suppose H = TA is a §-stable Cartan subgroup of G, and
¢ € H,. Write

g=2(9) = (8.€(¢).8 (¥)) = (86,8 ) ES(R(9))

for the bigrading of Proposition 4.11. Write p™,pR for the half sums of positive
integral imaginary coroots (respectively, real roots); and identify Y with b* using

<s 2

(a) There is an element
x € Bi(R()) N (ito)
(Definition 3.3) such that

Ca,x +pPy=¢(a) (mod2), a€ RF(¢).
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(b) There is an element
Y E P(R(¢)) N ag
such that

(@, y+p™=8() (mod2), acR(9).

The proof involves the following fairly well-known fact.

LemMa 10.9. Suppose g is a complex reductive Lie algebra, ) C g is a Cartan
subalgebra, 0 is an involution of A(g,Y), and A is a set of positive imaginary
roots (Definition 3.10). Then there is an involution ¢ of g such that

(a) b is o-stable, and o, = 0

(b) If a is a (A)*-simple root, then oX, = — X,,.

Proof. We proceed by induction on |A™|. Suppose first that this set is empty.

Then we can find a positive system A*(g,}) stable under —4. By the
functoriality of the correspondence between Dynkin diagrams and semisimple
Lie algebras, we get an involution g, of g such that ogh = b, and ao|, = — 6. We
may arrange for o, to permute the simple root vectors X, for a Chevalley basis;
then o, will commute with the principal automorphism o, of g (see [10],
Proposition 14.3) which is —1 on §. Then ¢ = 0,0, has the desired properties.
_ Next, suppose A™ is non-empty. Choose a simple imaginary root B, and set
6 = sp0. Then the ﬁ-imaginary roots are the #-imaginary roots orthogonal to S.
By induction, we can find an involution & of g satisfying the conditions of the
lemma for § and 6. Write

@, :SL(2,C)—> Ad(g)
for the root SL(2) (compare (2.3)-(2.4)) with

%y ) sraw

Since 8 = — B, & preserves the image of ®;, and pulls back to an involution of
SL(2,C) which is #—>h~! on diagonal matrices. Therefore there is a non-zero
a € C such that

5.[<1>l,(g)]=<1>,,[(_2_l g)g(a9] "O")]. (10.10)

(Here we write - for the action of 4.)
Let x be a square root of —a?, and define

0 x)
o, =@ ,
s B(-—x”l 0
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a representative of s, in W(g,h). We will choose o to be one of the two
automorphisms

0, = 0,0, 0, = Gog .

Obviously o; preserves b, and o)), = S30~ = 6. To see that o; is an involutive
automorphism, we compute (say for g,)

ol = 0360,G

= 0’3[6 . 03]6

= o[ 6 - 0]
By (10.10),
_ 0 a)( 0 x)( 0 —a)
6:0,=®
p B[(-—a" o/\—x=t o\a=' o0
0 a*x !
=0
B(—a_zx 0
Since x>= —a%, x = —a*"!; so
6-a,=0,(0 _x—l)=o"'.
B 'B(X 0 B
Therefore,

o7 =0g[0-05] =00, ' =1,
as required. Define gradings
¢ € E(AR8)), &€ E(AR@)).
(Definition 3.13) by
(—1)¥“ = eigenvalue of g; on X, ,
and similarly, for €. Since
0, = 040,05 ',

it is clear that

€ =583 X¢.
We claim that also

€=ch(e) (10.11a)
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(Definition 5.2). By Lemma 5.12 and the choice of 4, it will follow that one of the
¢; satisfies

g(a)=1, al a€ (A"':‘)+ simple.

Then ¢ = o; satisfies the conclusions of the lemma. Now by Definition 5.2 and
the definition of o;, (10.11a) is equivalent to

X, if @ and B are strongly orthogonal
Ad(og)X,=1{—X, if a and B are orthogonal but not  (10.11b)
strongly orthogonal.

Now a and B are strongly orthogonal exactly when ®,4(SL(2,C)) fixes X, so the
first case is obvious. In the second case, X, is the zero weight vector in a three
dimensional representation of ®,4(SL(2,C)). Since o5 acts by —1 on such a
weight vector (as is obvious in the adjoint representation, for example), the
second case follows. Q.E.D.

The dual of Lemma 10.9 is

LemMa 10.12. Suppose H = TA is a 0-stable Cartan subgroup of G, and
A" (g,b) is a fixed positive system. Suppose Ay € b* is a A" (g, h)-dominant weight
of a finite dimensional representation of G. Then there is a vy = (I'y,¥,) € H’ such
that

(@ Yo =20+ p(A* (g,5)) )

b)) Ifaisa (AR)+-simple root, then 8(yo)a) = 1 (Definition 4.5).

Proof. Suppose first that there are no real roots. Let Ay € H be a weight of a
finite dimensional representation of G, with dA, = A;. Define

Lol = Aol + 20(A% (b, 1))
I10|A = Aol 4
Yo= Ao+ o(A" (a,9)).

Obviously v, = (T, ¥o) € H’, and satisfies the lemma. We now proceed by
induction on |AR|, using the Cayley transform c? of Definition 7.16 in place of
the construction used in the previous lemma. Details (which are easier in this
case) are left to the reader. Q.E.D.

Lemma 10.12 is easier than Lemma 10.9 because it is obvious that every real
reductive group has a fundamental series of representations. Lemma 10.9 would
have been just as easy if we had invoked the dual fact that every real reductive
group has a quasisplit inner form. We essentially proved that fact at the
beginning of the proof of Lemma 10.9.
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A more direct proof can be given for Lemma 10.12. It is shown in [24] that the
regular characters satisfying (10.12a) are parametrized naturally by (H/Hg)". In

this parametrization, one can take vy, corresponding to the trivial character of
H/H,.

Proof of Proposition 10.8. For (a), use Lemma 10.9 to find an involution ¢ of
@ such that o, = 4|, and

e(o)(@)=1, a € R™(¢) simple.

(Here we define €(o) like e(¢), using ¢ in place of §. Thus if B8 is any imaginary
root, 6X, = (—1)“?X;.) Then

e(0)(a) =<a,pF>  (mod 2). (10.13)

The automorphism 66 of g is trivial on b, so it is of the form Ad(exp(x,)) for
some x, belonging to the span of the roots in §; that is

6 = o Ad(exp x,) (10.14a)
Now
1=6>= [oAd(expr)]2
= o[ o - Ad(exp x) |Ad(exp x,)
= Ad(exp(fx, + x)).
Thus
<a, iox"z% > €z, al aelb). (10.14b)
Put
x= 0x—"2:r’l—’-‘2 € P,(A(s,D)); (10.14c)

the last inclusion is (10.14b). Obviously x satisfies the first condition of (10.8)(a).
For the second, suppose a is an imaginary root, and X, a root vector. Then
0o = a, so

{a, xpp = <@, 0xy + x¢

= imr{a, X ). (10.144d)
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Therefore

(- 1)@Xx, = ox,

= o[ Ad(exp(x)) X, ]
= o[ exp{a, X)X, |
=o[(-1)**”X,] by (10.14d)
— (_ 1)<a,X>( _ 1)6(0)(01)Xa

(=) @X, = (= 1)*+Dx by (10.13),

This proves the second condition of (10.8)(a).

The proof of (b) is analogous, but requires a technical observation (formula
(10.16) below) to get started. Choose an orthogonal set { B, ..., 8,} C R%(¢)
such that

m is maximal for orthogonal sets of roots, and (10.15a)
{ B } is strongly orthogonal in R R(<1>). (10.15b)
If B, + B, € A(g,b), then
CBix B ey =<B,o>*<B,9»>€Z

) ,é,- * ,éj € RR(¢). This is not the case, by (10.15b); so { ,é,.} is strongly
orthogonal in A(g, §). 3
By Proposition 6.4(e), there is a principal cograding 8, of AR(g,5) so that

§(B)y=1, ali (10.15¢)

By the definition of principal cograding, there is a system (A* )R(g, b) of positive
real roots, such that if we write pf for half its sum, then

§i(a)=<&pl>  (mod2). (10.15d)

By (10.152)—(10.15c), there is a maximal orthogonal set in R R(9) _which is
01| gr(4)-admissible. By the proof of Proposition 6.4(e), it follows that 8| zn,, is
principal. The cograding 8, € E(R"(¢)) defined by

So(a)=<&,p®  (mod?2) (10.15¢)

is obviously principal; so it differs from 51| RR(¢) Dy an element w of W(R R(9)).
After acting on (A*)R(g, b) by w, we conclude that

&y =¢p™ &  (mod2), all ae€ RR(9). (10.16)
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Now extend (A*)R(g,h) to any positive system A* (g,b), and fix any y, as in
Lemma 10.12. By (10.12b)

§(vo)(@) =<& ol (2 €A%(g,Y)).
By (10.16),

§(vo)(@)=<&p™  (a € RF()). (10.17)
By Definition 4.5,

(- 1)6'(4>)(a) =(- 1)5(70)(a)r0(ma)@(ma)— 1(_ 1)<5,, T0—3)
5 . (10.18a)
(= 1)P® = Ty(m,)®(my) ™' (= 1)$&rom¢+e"

for a € RR(¢); the second equality uses (10.17). Since G is linear and T is
compact, there is a weight A € H of a finite dimensional representation of G,
such that

Alp=[To—@]|7. (10.18b)
Write A = dA. By (4.4¢),
A(my) = (= 1)@, (10.18¢)
Now (10.18) gives
(- 1)6<¢)(a>= (- 1)<&,A—m—¢)+p“> (10.19)

Let y be the projection of A — (¥, — ¢) on the span of the roots. By (10.18b),
y € a}. As the differential of a weight of a finite dimensional representation, A is
integral; and ¥, is as well by Lemma 10.12(a). So the integral roots for y are
exactly R(¢), proving the first condition of Proposition 10.8(b). The second
condition is (10.19). Q.E.D.

Finally, we need to describe the ® groups which can be attached to regular
characters.

ProposiTION 10.20.  Suppose H = TA is a §-stable Cartan subgroup of G, and
Y € H,. Use the notation of Proposition 4.11. Choose a set {aj, ..., o} of
superorthogonal imaginary roots for €(y) as in Proposition 3.14, and { B, . . ., B;}
superorthogonal real roots for 8(y) similarly. Define

®={ B €Ag,b)| Bl € span{a;}}
= {,B|so‘I ...saﬂﬁ= _,8}
¥ = { B EAg,D)| Bl, Espan{ B;})
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For B € ®, put
op = I1(s.)P € W(v)
and for B € ¥, put
7= [T ()% € Wh(n)
J
Put
Q.. = group generated by {oz| B € ®}
Q. = group generated by {14| B € ¥}
W) = Q. W3 (¥)
W)= 0. W5(v)-
(a) For all B € ®, o5 € W{T(y); that is
W) € W () € Wif(v) € WiR(v)
() W3(v) € WE(y) C Wi(y) € W3(v)
If G is small (Defirition 9.4), then

© Wi(y) = W3(v)

(d) Wit(y) = WE(¥)-
If G is large (Definition 9.4), then

(e) WiR(y) = W3(v)

(®) wi(y)=WwE()

In order to reduce this result to subgroups of G, we need an elementary and
well-known structural fact.

LemMa 10.21.  Suppose t, C ¥y, ag C b, are abelian subalgebras of g,. Write G',
G for their respective centralizers.

(@) If G is small, so is G*.

(b) If G is large, so is G*.

Proof. For (a), recall that G is small exactly when Ad(G) is connected. Now
Ad(G") is obviously a homomorphic image of Ad(G)%; so it is enough to prove
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that G' is connected whenever G is. But this is immediate from the Cartan
decomposition G = K - exp(p,) and the corresponding fact for compact groups.

For (b), we may as well assume G = Ad(G) C Ad(g) = G°. Extend q, to a
maximal abelian subalgebra af’ of p,. Define

F={xeexp(iaf)| x*=1} C G°.

Suppose x € F. Since x € exp(ialf), X = x ~!; here bar is the complex structure.
Since x2 = 1, it follows that x = X. So x normalizes g,, and (since G is large),
F C G; and therefore also F C G,

Now suppose g € G°© normalizes G%; we will show that

Ad(8)lyp € Ad(G3°F) C Ad(G™), *)

proving that G® is large. Extend ag to a Cartan subalgebra Y = tf + ag' C gg°
Obviously it is maximally split, and therefore unique up to conJugatlon in G§°; so
we may assume (after changing g inside gGg°) that g normalizes fy. By
Proposition 4.16

W(G,H™)= W(Gy,H™ N Gy);

so we may even assume that g centralizes by. Therefore g belongs to (H m)C,
Write g = exp(X), X €p™.

Since Ad( g) normalizes m, = 3", the (necessarily imaginary) roots of §™ in m
must take imaginary values on X. So we may modify X by an element of tf'
(which doesn’t change gG¢) and assume that X centralizes m. Choose a system of
positive restricted roots (roots of a™ in g) so that A(g% a™) is spanned by simple

roots &, . . ., &,. List the remaining simple restricted roots as &, , ..., &,,,-
Write
G=m® > T
aci(g,a™)
ge=me® > .
aesA(ga™)

Now the group M, C G§° has an open orbit on each gj; so since g centralizes m,
Ad(g) is a non-zero real number &(g) on each g, for @ € A(g", a™). (For the
roots not in g% g may not preserve the real root space gj, so we cannot define
a(g) in general.) After modifying g by 4™, we may assume that all the a(g) are
+ 1. Now choose Y € iag so that

<&,~,Y>=,/—171, i=1...,r and a(g)=—1
a,Y>=0 otherwise

Then g’ = exp(Y) has the following properties. First, Ad(g’) agrees with Ad(g)
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on all the g5 (i=1,-- -, r) and so on all of gg°. Second, g’ obviously belongs to
F. This proves (*). Q.E.D.

The following proof assumes some familiarity with the structure of &/ groups
in products of SL(2, R)’s—see [25], Section 1.5.

Proof of Proposition 10.20. Clearly it suffices to prove (c)—(f). For (c), let L be
the centralizer of T in G. By Lemma 10.21(a), L is also small. We can replace y
by a regular character v, for L, defined in Definition 7.3. (Of course, we have to
choose a q.) This does not change W) (Lemma 7.4(a)) and it is easy to check
that it does not change W either. So we may as well assume that H is
maximally split on G. Since K(G) = {1}, (c) follows from Proposition 9.6(g). For
(e), we consider the centralizer of 4, in G, and use Proposition 9.5 instead.

Now consider (d). Let t' be the orthogonal complement of the span of the a;,
and let G! be the centralizer of t! in G. By Proposition 3.14,

W) = W (n(Wi(x) 0 W(s"h)).

In this way, and again using Definition 7.3, we can reduce to the case G= G;
for this does not change the root system ®. Since a; are superorthogonal, we now
have

RF() = (+a)

and all of these are noncompact. Write u for the span of the a;. Define a new
Cartan subgroup

H'=c"(H)=T'4".

(Definition 7.15); this t' is really the same as the one defined above. Since T is
central in G, H' is split; that is, all roots are real. Write {&)} for the real roots
corresponding to the ;. Define maps

E:TI> {21y, 1) =(&()

CWRM- (1Y, L) =((=1™) if w=]]s>.

Both these maps are related only to the group G*, which is locally a product of »
copies of SL(2,R). By [25], (1.5.21), £ and ¢ have the same image. Since G is
small, T' is generated by T, Z(G), and the various mg, for B € A(g,p"). Clearly
¢ is trivial on T and Z(G); and

§(mg) = (&(mg))
= (( _ 1)<&i’§>)
= §(9%)-
with 8 € A(g, §) the root corresponding to B. This proves (d).
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For (f), set a' = orthogonal complement of the B;. Just as in (d), we may pass
to the centralizer of a'. As this centralizer has 4! as a direct factor, we may even
assume a' = {0}. Thus

RA(y)=A%g.h) = {5},
and
S(v)(B)=1, allj.
Again it is helpful to write 8 for the span of the Bj, and to introduce
cs(H)=T'

as in Definition 7.1. Write ,é; for the (noncompact) roots of t' in g corresponding
to the B;. Define

E:T>(=1},  &n=(B()

using the B; as before. The study of W](y) can be reduced to the centralizer of
T, in G, which is a product of copies of SL(2, R). If we identify W® with the dual
group of { +1}" in the obvious way, then

WH(y) = Ann§(T)
([25], Lemma 1.5.22). We can also define
(WG TYN W({£B))~> (=1}

as above; and { and £ have the same image. So we have to show that the
annihilator of the image of { is generated exactly by the various 75. So suppose
w € W({+8,)). Since G is large, w € W(G, T") if and only if w preserves the
notion of compact. Write

Then

Since all the ﬁj are noncompact, we see that

wEW(GTYe > (B, fre2z, alf.
jEA

On the other hand, in the pairing of W/ with { +1)" mentioned earlier,

Ewygy = T (= 1)AP;
jEa
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SO

w€E W(G, T')@({(w),m} =1, all B,

as we wished to show. Q.E.D.

11. Existence of G.

THEOREM 11.1.  Suppose y € H’ < Let G°© denote a complex simply connected
semisimple Lie group with root system R® (see (2.6)). More precisely, we fix in the
Lie algebra § of G© a Cartan subalgebra b%; and we fix once and for all an
identification of b* with the span of R? in b, taking A@GC, f)") to R°. In particular,
we identify W with W (g%, 5%).

(@) There is a real form o of G, with Cartan involution 6 and a §-stable Cartan
subalgebra Y, such that we have an isomorphism

f)——l—-—> span of R(y)in}

satisfying

(1) i(A@B) = R(y)

(2) l(olb) = ol.rpan of R(y)
If we write € for the grading of the A(g, b)-imaginary roots given by 0, then e induces
a cograding i(e) on RR(y) by (1). We can arrange

3) i(e)=8(v)

(b) Define
Gi= (x€ G| Ad(x) normalizes 8o}

H? = centralizer of Yy in G*

Then we can find a regular character ¥* of H?, with regular integral infinitesimal
character satisfying

[g‘M] =)
(Definition 3.23).

(©) There is a group G C G? of finite index having the following property. Write
H=H>NG, ¥= 7. Then

WiF) = Wi(n)"
In particular, if v is almost minimal, we get

[8°(n] =2&°(D)-
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Proof. Let h be any Cartan _subalgebra of §. Using appropriate inner
automorphisms to identify ) with §* and § with §°, we get

i :f)—)Span of R(y)in b,
i :A(3,5)~> R(7)

Since R(y) is f-stable, we can define 6 on b to satisfy (a2) of the theorem. Now
use Lemma 10.9 to construct an involution ¢ of g, satisfying

ol;=20
oX;=—X,, ¢5LE[A"F‘((;,EV))]+ simple.
Here we use the identification
i :A%(3,5) = R(y)

to define (A™)*. If €(o) is the grading of A defined by o, then the corresponding
cograding §, of R"(y) obviously satisfies

S(@)=<&p">  (mod2).
By Proposition 10.8(b), there is an element y € af, satisfying
{&,yy€Z, all a € R(y)

5 5 (11.2)
0 (a) = dy(a) + <a,v) (mod 2).
Let y denote the element of h corresponding to y under the map i. Then
¥=0=y
(11.3)

(B, yyEZ, all BEA®,D)
Define
0 = o o Ad(exp imp).

By the first part of (11.3), o and Ad(exp imy) commute; so by the second, 4 is an
involution. Because of the second formula in (11.2), it is easy to check (a3) of the
theorem. Any involution of a complex semisimple Lie algebra is the complexified
Cartan involution for a unique real form, so the rest of (a) follows. The proof of
(b) is entirely similar, using Lemma 10.12 and Proposition 10.8(a). At some point
one has to lift an integral weight of § to a weight of a finite dimensional
representation of GC; there one uses the assumption that GC is simply
connected. Details may be left to the reader.
For (c), a generalization of Proposition 9.6(e) is needed.
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LEMMA 114. Suppose H?>= TA* is a O-stable Cartan subgroup of a real
reductive group G*, and y* € (H?),. Then we can find a subgroup G' C G2, of
finite index, with the following properties. Write

H'=H>N G, Y=y

@ Wiyh)=wiQE)
(b) There is a natural surjective homomorphism

s G > WRENY/WRGHH ]

(c) Suppose G C G' is a subgroup of finite index, and H=H' N G, y=y'|y.
Then

Wi = (we W) [s())(w) = Lallg€ G

(d) Suppose X is any subgroup of W3X(y') containing W{(y"). Then there is a
subgroup G as in (c), such that W(y) = X.

Proof. There are natural maps 7: G*—> G?/G,, i: H*/(H? N Gy)—> G*/G,
which are surjective and injective respectively. Put

G'= 77—‘(1'(1%2/15!2 N Go))-
Then H' = H?, and for every G C G' as in (c), there is a natural surjection
G—>H/H N G,. (11.5)

Put L = centralizer of T, in G'. Choose a #-stable parabolic g =1+ u C g, and
use it to construct a regular character y, for L (Definition 7.3). It is clear from
the definition that if w € WR(y') ¢ W(L, H), then

X ¥)g=wX(vs) (W va)=w- (o)
By Lemma 7.4,
WA(v)=WR(r")  (i=12).
Fix h € H'. Then for w € WR(y),
[(wx T ][(w- T =[(wxTY®)][(w-T)W] " (116)

by Definition 7.3. Denote their common value by [§(h)](w). Then § defines a
group homomorphism

5:H‘—>[W§‘(y)]‘
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(It is not obvious that §(k) is a character of W1(y); but by (11.6), it is enough to
check this for L. There it follows from the definition of the homomorphism of
Proposition 9.6(e).) If G is as in (c), then clearly

WH(y) = Ann(§(H))
={weWwi(nI[§()](w)=1alhe H. (11.7)
Taking G = G, (the identity component of G') and applying Proposition
10.20(c), we conclude in particular that § is trivial on H'! N G; so it is defined on
H'/H'N G,. Taking G = G', we see that Ann(5(H)) = W](y); so
§:H/H N Go~>[Wi(v)/ W]

a surjection. Composing § with the surjection of (11.5), we get the map s of the
Proposition. Parts (a)-(c) are clear from (11.7), and (d) is a consequence of (c):
take

G=s"'(AnnX). QED.

To prove Theorem 11.1(c), recall from Proposition 10.20(a) that
Wi (v) C W (y) € W3(v).

The group WiP(y) depends only on the grading e(y) (Definition 3.13); so
condition (b) of Theorem 11.1 says that

W (y) = WI(¥)-

The group W (y) is defined using all of A(g, b) (and not just the integral roots).
If we had used only R(y), we would obviously have gotten a smaller group

X Cc WE().

By the symmetry of the definitions in Proposition 10.20, and Theorem 11.1(b),
we see that (if we transfer everything to %)

Xe=wi(y)".
This shows that
wREY) ' Wi C Wi (11.8)
By its definition, G2 is large (Definition 9.4). By Proposition 10.20(f),

WRE) = WR ().
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By Lemma 11.4(d) and (11.8), we can find G C G? of finite index, so that
Wi = WiR(v)*. QED.

THEOREM 11.9. Suppose G is a real reductive group (cf. (2.1)) and

= (7(Y,), - - - » #(y,)} is a block of irreducible admissible representations of G
havmg the fixed nonsingular infinitesimal character x of (2.6b). Write b for the
span of the abstract integral roots R°. Fix a complex simply connected semisimple
Lie group G, with Lie algebra §, having abstract Cartan subalgebra %° C § and
root system

A(§,5%) = R“.

(We use this identification constantly below.) Then there is a real form §, of &, and
a subgroup G of GO, with Cartan involution §; and a block B
={7(¥), ..., 7))} of trreduczble admissible representations of G, having the
following properties. Write d: B—> B for the bijection taking v, to ¥,.

(@) @(Y;) has nonsingular integral infinitesimal character—that is, the same
infinitesimal character as some finite dimensional representation of G.

(b) The strong bigradings of R® and R* defined by v; and ¥; (Definition 4.12) are
dual in the sense of Definition 3.23:

[2°(r)] = 8°()  alli.

() If 8 C b = b7, then Y; € D(c,) if and only if ¥; € D(c®) (Definitions 7.10 and
7.16); and in that case

d(cg( cl(y,.))) = cg( cl(¥))
That is,
cy(cl(r)) = { clyj cy, €Ec (cl(y,))}

Analogous results hold for c*.
d) If we W, then

d(cl(w X v))) = cl(w X 7).

This is immediate from Theorems 10.1 and 11.1: given B, we fix an almost
minimal y; € B, and construct G, ¥;, using Theorem 11.1, to satisfy (a) and (b)
for i = i,. Then the existence of the bijection 4 with the stated properties is
Theorem 10.1.

12. The Kazhdan-Lusztig conjecture

Definition 12.1. Fix a block B of regular characters for G with infinitesimal
character x, and a constant ¢, €(1/2)Z. If H=TA is a #-stable Cartan
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subgroup of G, and y € H o define the integral length of v by
I'(v)=4il{a € R* (7)|0a & R* (F)}] + 1dim A — c,.

We assume ¢, is such that //(y) is always an integer. In [25], Definition 8.1.4,
I'(y) was defined with ¢, equal to half the dimension of the split part of a
fundamental Cartan in G. It was asserted incorrectly there that this makes //(y)
an integer; that is the case if y is integral, but not in general. That there is such a
choice of ¢, follows from Lemma 8.6.13 and Theorem 9.2.11 of [25]; these show
that for any c,

F(yy=1'(y) (modZ), all v,y'€B.

It is inconvenient to normalize // in any uniform way: to make some formulas
nicer, we want to use different kinds of normalizations for G and G.

Definition 12.2. Suppose y € ﬁ; Write II(y) for the simple roots of R ™ (y).
The r-invariant of vy is the subset r(y) C II(y) defined by

7(Y) = {a €TI(y)| a is imaginary and €(y)(«) = 0; or
a is complex and —fa € R * (v); or a is real
and & (y)(a) = 1}.

The abstract T-invariant is the corresponding subset 7(y) C I1? (cf. (2.6b)). We
may identify either of these sets with the corresponding simple reflections in
S(y) C W(y) or S¢ C W4, respectively—cf. (2.5b), (2.6b).

Definition 12.3 ([24], Definition 6.4). In the setting of Definition 12.1,
consider the ring Z[u,u '] of finite Laurent series. The Hecke module of B,
9M(B), (or simply M) is the free Z[u,u '] module with basis {c/(y)|y € B}. An
element of 9M(B) is thus a formal expression

>av.a,€Z[uu"'], yEB,
with conjugate y’s identified. For each s € §¢, we define a Z[u, u ™ ']-linear map
T, : 9YB)—>9YB),

as follows. It is enough to define each T,y (y € B). Write a € II(y) for the
simple root corresponding to y. There are several cases.

(a) a imaginary, e(a) = 0. T,y = uy.

(a*) a real, §(a)=0. T,y = —y.

(b) a complex, fa € R* (y). T,y =sX y

(b*) a complex, a & R* (y). T,y = u(s X y) + (u — 1)y

(c) « imaginary, e(a) =1, s & WR(y). (In the terminology of [25], a is type I).



1040 DAVID A. VOGAN

Then c“(y) consists of a single element (cf. [25], Definition 8.3.6), and we set
Toy=sXy+c*(y)

(c*) a real, §(a)=1,s € WR(y). (Then a is Type II in the sense of [25]). In
this case c,(y) has just one element ([25], Definition 8.3.16), and we set

Tsy=(u— l)y—sx Y+ (u— l)ca(y).

(d) a imaginary, e(a) = 1, s € WF(y). (In this case « is type IT). Then c¢*(y)
consists of two elements y$ , with y§ = s X y$ . We define
Ty=y+y§+ye
(d*) a real, 5(0:) =1, s € W(y). Now a is type 1.) Then ¢, (v) consists of two
elements y;", with v, = s X vy, . Put

Ty=(u=2)y+(u—- (v + v )

We will explain the pairing of cases ((a) with (a*), etc.) in due course.

Although we have no need of it, the Hecke algebra is floating around in the
background somewhere; so we should recall its definition. For more about it in
this context see [15].

Definition 12.4. The Hecke algebra of W*, 9(°, is the Z[u,u~"] algebra with
generators {T,,| w € W*}, subject to the relations

T,.=T1,T,, (w; € W, L(wywy) = I(w)) + [(w,))

(TL+IT—w=0 (s€5°).
Here / denotes the length function on W.

It turns out that 3(* is a free Z[u,u '] module with basis {T,,|w € W}. The
first relation in Definition 12.4 shows that the various T, (s € §) generate ¥(°.

PROPOSITION 12.5.  The operators T, of Definition 12.3 come from an action of
the Hecke algebra 3(* on 9(B).

For A“ integral, this is proved in [18]. The general case is a consequence of the
following result.

LEMMA 12.6. In the setting of Definition 12.3, we can find a second group G*
and a block B* for G2, such that

(a) The representations in B* have integral infinitesimal character.

(b) The abstract ordered root systems

(Ra, (Ra )+) and (A(g2, (bz)a)’A+ (92, (bz)a))

are isomorphic. Henceforth we identify them, and so also the abstract Weyl groups.



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS IV 1041

(c) There is a bijection i : B—> B? which commutes with Cayley transforms and
the cross action of W*°, and satisfies

g'(v)=2%(i(v)) (v€B)

(Definition 4.12).
(d) The induced isomorphism i : (B)—> (B2 respects the operators T,.

Proof. Apply Theorem 11.9 twice; this gives G? satisfying (a)—(c). Now (d)
follows by inspection of the definition of 7,. Q.E.D.

We will use this lemma from time to time to extend purely combinatorial
results proved for the integral case in [18] or [24] (sometimes using algebraic
geometry in a way which does not obviously extend) to the general case; the
proof of Proposition 12.5 is typical. In the future we will simply refer to [18] or
[24], even though the statements there cover only the integral case. We turn now
to the definition of the Bruhat order.

Definition 12.7. In the setting of Definition 12.1, suppose ¢,¢’ € B, and
s € B?. We say that ¢ > ¢’ if and only if

() I'(¢)=1"(¢)— 1, and
(b) ¢’ appears in T,¢ (Definition 12.3).

Suppose ¢—s->q>’. It is easy to check that if « € R* (¢) is the corresponding
simple root, then either

a a is complex, fa & R'(¢), and ¢’ € cl(s X ¢); or
(¢) (

. < (12.8)
(b) a is real, 8 (p)(a) =1, and ¢’ € ¢, (c/(¢))

(Definition 7.5). In this case we also have the relations
sXop—>s X, sX o9, ¢—>s X ¢
(The existence of case (b) is of course the source of all our woes.) These

conditions can also be formulated in terms of the R ™ (¢')-simple root o’
corresponding to s: we get

(a) o is complex, fa’ € R * (¢'), and ¢ € cl(s X ¢'); or

(b) o’ is imaginary, €(¢')(a) = 1,and ¢ € C"‘(cl(cp’)), (12.8)

Definition 12.9. In the setting of Definition 12.1, the Bruhat order on B is the
smallest ordering such that

m(v‘r(«p),'rr(y)) #0-o¢ <y

(notation 1.2). More explicitly, ¢ <y if and only if there is a sequence
¢ =g, by, - - -5 ¢, = 7, such that m(7(¢,_,), 7(¢;)) #0fori=1,...,r.
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LEMMA 12.10. The Bruhat order is an order relation: that is,
(@) ¢ <y < ¢p=¢ =y. We also have

(b ¢ <y=1"(e) <'(y)

(© ¢<vyandl'(¢)=1'"(v)=¢=1.

Proof. Obviously it suffices to prove (b) and (c); and for these, we may
assume m(7(¢), 7(y)) = 0. Then they are precisely Proposition 8.6.19 of [25].

LeMMA 12.11. The Bruhat order may be defined using the formal character
multiplicities M(w(¢),7(y)) in place of m(7 (), 7(y)).

Proof. The definition of < may be reformulated as follows: ¢ < y if and
only if we cannot index B as

B={§,§,...,§),

with y preceding ¢ and still have the matrix
m = (my) = (m(7(§),7(§)))

be upper triangular. (The hard part is only if; so suppose it is false that ¢ < y. To
construct the required indexing of B, list first all the elements less than y
(compatibly with <), then vy, then all the elements less than ¢ but not less than v,
then ¢, then everything else. This has y preceding ¢, but makes m upper
triangular.) Set

M= (M(7().7(5)))
By (1.3), m = M ~'; so m is upper triangular if and only if M is. Q.E.D.

In the case of Verma modules, the Bruhat order is usually defined directly on
the Weyl group, and the formulation of Definition 12.9 is a theorem (see [8]).
Essentially because Cayley transforms of regular characters are multi-valued, no
easy generalization of this approach is available to us. Even a posteriori, I know
of no simple combinatorial description of the Bruhat order on a block. To make
computations, a larger relation was introduced in [24]; we use a slight variant of
it here.

Definition 12.12. Suppose y € B. Define 8" (y) to be the smallest subset of B
containing y, and closed under the cross action of simple real reflections
s € S(y) (cf. (2.5), (2.6)). (This is smaller than the r-packet rp(y) of Definition
8.1, which was closed under the cross action of WR(y). WR(y) is not generated
by simple real reflections in general, because the simple roots of (R ®)* (y) need
not be simple for all of R * (y).) The Bruhat r-order is the smallest relation on B
containing the Bruhat order, and constant on the various §"(y). We write it as

<. For duality, we will also have to consider the sets §°(y) (closed under the

c
cross action of simple imaginary roots) and the c-order <.
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These two orders do admit straightforward descriptions which we will record
here.

LemMa 12.13.  The Bruhat r-order is the smallest order relation on B which is
constant on the §’ (y) (Definition 12.12), and has the following property. Suppose

¢,y € B are related as follows: there is an s € S°, v’ € B, with y—s> Y’; and at least
one of the following conditions is satisfied.

(@) ¢>v or

(b) there is a ¢’ € B, with ¢—s>¢’, and ¢’ é Y'. Then ¢ 2 Y-

The Bruhat c-order has an analogous description with ( S <) replacing ( < ).

In order not to interrupt the development, we postpone the proof to the end of
the section.

LEMMA 12.14 ([24], Lemma 6.8, and [18]). In the setting of Definition 12.3,
there is a unique Z-linear map D : OW(B)—> ON(B) with the following properties.
Define R, € Z[u,u™'] by

1 1, — M
Dy=u '(y) 2 (_ 1)1 ()] ’(Y)R¢y¢'
$EB

Then we require
(@) D(um)=u"'D(m), all m € N
(b) DT, + Ym) = u~ (T, + 1)D(m), all m € M
© Ry =1 ,
(d) Ry, #0 only if ¢ <y (Definition 12.12).
This map has also the following properties.
(e) R,, is a polynomial in u, of degree at most I'(y) — I'($).
(f) D? is the identity.
(8) The specialization of D to u =1 is the identity.

LemMa 12.15 ([24], Corollary 6.12 and Theorem 7.1). In the setting of Lemma
12.14, fix v € B. Then there is a unique element

C7= 2 P¢v¢ (PMEZ[u,u‘l])
¢EB

of ON(B), with the following properties
(@) DC,=u""c,
®) P, =1
,
(©) Py, #0only if <y
(d) If ¢+#, then P,, is a polynomial in u, of degree at most 1 /21 (y) —
I'(¢) - 1).

In [24], two methods for computing the polynomials P,, are discussed. Both
are quite cumbersome in practice.
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CoNJECTURE 12.16 (The Kazhdan-Lusztig conjecture for real reductive
groups). Fix a block B of regular characters for G, with nonsingular
infinitesimal character x ((2.10)—(2.12)); and define polynomials P, (u) by
Lemma 12.15 above. Then

M(,y) = (=1)"'®~"OP (1)

(notation (1.1), (12.1)); that is,
()= 3 (=107 OP, ()
PEB

in the Grothendieck group of admissible finite length representations of G.

TueoreM 12.17 (Lusztig, Beilinson—Bernstein; see [24], Theorems 1.6 and
1.12). Conjecture 12.16 is true whenever the infinitesimal character of x is
integral; or, more generally, whenever there are no non-integral roots in the rational
span of the integral roots. The polynomials P, have non-negative coefficients.

To say that x is integral means R® = A(g, §*) (notation 2.6)). The hypothesis
for the “more generally” statement may be formulated as

QR N A(g, %) = R“.

This case may be reduced to the first by the methods of [21]. The same
arguments reduce Conjecture 12.16 to the case

QR = A(g, b%).

This is the case which Bernstein informs me he can handle; so when the dust
settles, Conjecture 12.16 will presumably be proved. In any case, Theorem 12.17
already covers all cases when GC is of type 4,, for example.

We will now give the proof of Lemma 12.13. The non-formal part is contained
in the next result.

LemMA 12.18. Suppose ¢ and vy are distinct elements of B, and m(7 (o), w(Y))

# 0. Then we can find a v' € B and s € S with yi) Y’ (Definition 12.7). For any
such s, at least one of the following conditions is satisfied.

(@) m(7@(9),7(y)) #0

(b) There is a ¢’ € B, p>¢' and m(7(¢), w(y")) # 0.

(c) The relation y—s> y' is of the form (12.8b); and either (a) or (b) holds with
s X v’ replacing v'. N

Conversely, suppose ¢ and vy are distinct, y— ', and at least one of (a)—(c) holds.
Then either ¢ < v, or s is a real reflection for v, and ¢ < s X y.

This simply summarizes formally the algorithm for controlling the composition
series of 7(y) given in [25], proof of Proposition 8.6.19.
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1
Proof of Lemma 12.13. Write < for the relation described by the lemma;
here / stands for lemma. We will prove that

r l
¢ <y <y (12.19)
r 1
by induction on /’(y). So suppose ¢ <y; we want to show that ¢ <vy. By
definition of %, we can find ¢ € B, ¥ € §"(y), such that

(a) m(q‘r(xp),w(?)) +#+ 0, and

r (12.20)
(b) either ¢ <4, or §'(¢) = §'(Y).

i !
We claim that ¢ < y. Since < is defined to be constant on §” (y), we may as well
assume y = y. By Lemma 12.18, ¢ and y are in the relationship required by

Lemma 12.13; so x,l/<y Now [/ (t{/) < I'(y); so (12.20)(b) and the inductive
hypothe51s guarantee that either ¢ < Y, or Q’(cp) 8" (y). Now the desired
relation ¢ < y follows from the transitivity of <

Conversely, suppose ¢ < y. By the definition in Lemma 12.13, we can find a
Y € B, ¥ € §" (), such that

(a) ¢ and ¥ are in the relationship described by Lemma 12.13, and

! (12.21)
(b) either ¢ <y, or §'(¢) = §'(¢).

By the converse direction of Lemma 12.18, ¢ 2 v; and the argument is completed
c
as above. The statements about < are proved in the same way. Q.E.D.

13. Duality for Hecke modules and proof of the main theorem.

LeEMMA 13.1.  In the setting of Lemmas 12.14 and 12.15, we have the following
additional information

(@) If P,, #0, then ¢ <

(b) If R,, # 0, then qb<

Proof. Since all of the objects in question depend only on the combinatorial
structure of the block (see Lemma 12.13), Lemma 12.6 allows us to assume that

R%=A(g,b"), and therefore (by Theorem 12.17) that P, has non-negative
coefficients, and

Po(1) = £ M(,).

Now (a) is a consequence of Lemma 12.11. In fact we get the stronger statement
c
that < may be defined by P,, in place of M(¢,y). Write Q,, for the inverse
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matrix to P,,. By the proof of Lemma 12.11, Q,, can be used to define < ; SO

Y= Z Q4y(¥)C,
d <y

By Lemma 12.15,

Dy= 3 u"¥Q, (v )C,
c
$<y

=, Hy)=1'(¢ -1
=y ' Ec: u' M=o (uHC,.
b <y

Comparing this with Lemma 12.14 gives

_ 1) — 1! 1 — _
R¢v =(- 1) @ =1'(v) czc u!'™ (xP)QM(u I)Pw(u)
<Y<y
Now assertion (b) of the lemma is immediate. Q.E.D.

Definition 13.3. In the setting of Definition 12.3, the dual Hecke module
"5!((3) (or simply 9M) is the free Z[u, u '] module having the same basis as M (B)
(that is, {c/(y)|y € B}), endowed with the following structures. When we want
to regard y as a basis element of M, we write it as . Put

@ I'G) = -1') v
Define a Z[u,u ~")-linear pairing from 9M.(B) ® MU B) into Z[u,u '] by

0, oFY

(b) Ay { (=)', 4=y
Use a superscript ¢ to the left to denote the transpose with respect to this pairing:
if A is a Z-linear operator on 9(B), then ‘4 is the unique Z-linear operator on
9N B) satisfying

(©) (Ax, y) ={(xAp) (x EM, y €M)
For s € S, define T, : 9— 9 by

@) T,= ~'T, + (u—1).
Recall the map D of Lemma 12.14. Write bar for the unique automorphism of
Z[u,u”"] sending u to u™". Define D: ?le—)?fTL by the requirement

(e) {Dx, yy=<x,Dyy (x € U, y €M)
To see that (¢) makes sense, fix y € 9, and consider the map

fy:%—»Z[u,u”'], £ (x)=<{Dx, y).
Clearly f, is Z[u,u " '}-linear; so it is given by
K(x)=<x,2)

for a unique z € 9.
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LeMMA 134. The map D:9—>9 of Definition 13.3(e) has the following
properties. Define elements Ry, € Z[u,u™"] by

Sy =1y "@-'NHp. X
Dy=u ) 2 (_1) ¢) (Y)Rm‘"i’
$EB

Then
(@) D(um) = u~"'D(m), all m € 9N.
() D(T, + 1)=u~ (T, + 1)
(©) Ry; =1 .
(d) Ry; # 0 only if ¢ >y (Definition 12.12).

Proof. Part (a) is equivalent to
(x, D(um)y =<{x,u"'D(m)), all x €M, meEMN.
By Definition 12.10(e), this equation can be rewritten as
W=m, all x €9M, meMN.

In this form it is a consequence of Lemma 12.14(a). By a similar calculation, (b)
amounts to

(—T.+w)D(x)=D[(~T,+u)(u"'x)], all x€M;  (135)
for /(7,) = — T, + (u — 1). To prove this, write the right side as

=D[(T, + 1)(u" %) ] + D[(u+ 1)(u"'x)]

=—u (T, + 1)D(u"'x)+ (1 + u) Dx (by (12.14)(b) and (a))
= —(T,+1)Dx + (1 + u) Dx (by (12.14)(a))
=(—T,+ u)Dx.

This proves (13.5), and so (b). For () and (d), we may as well compute the
matrix of D. We have

Ry, =u"(— 1)"("")"'@) [ coefficient of ¢ in Dy ]
= u™ "0, DY)

— u ' TDE T
(13.6)

= u~'O(—1)l'®-r'm [ coefficient of y in D¢

=y '™ [u_ll(¢)R7¢(u)]

()= -1
= y!"(®) (Y)Rw(u )

x((

Y
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Part (c) follows from (13.6) and Lemma 12.14(c), and part (d) from(13.6) and
Lemma 13.1(b). Q.E.D.

Although we will not use the fact, Lemma 12.14(e) and (13.6) shows that R
a polynomial, of degree at most //(y) — I/ (¢): here we are also using Defmltlon
13.3(a).

LeMMA 13.7. In the setting of Definition 13.3, there are unique elements
{C |y € B} of‘.’)lLsuch that (if we define C, as in Lemma 12.15)

v _1)"(7)’ o=y
c,Cy=1( 1
(CpC, 0 oy (1

More explicitly, define P, as in Lemma 12.15, and write (Q,,) for the matrix
inverse of (P,,). Then

= Z (- 1)1 @~ (Y)Q‘N&). ()
b >y
Write
Pyy=(-1)'@ g, (3)
so that
C,= X Pyo. 4)
$EB
Then
(@) DC = u"(Y)C
(b) Py

©) Pqsy #* 0 only 1f¢
(@) If ¢ v, then P is a polynomial in u, of degree at most 1/ 2(1'(y) —
I'@) - ).

Proof. The statements through (4) are obvious, since P is upper triangular for
c
> (Lemma 13.1(a)). For (a), we compute

(C,,DC,> =(DC,,C,)
= ul’(¢)m
= u—l'(&)m

by Lemma 12.15(a), and Definition 13.3(a), (¢). Now (a) follows from (1) of the
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lemma. Since P is upper triangular for > with I's on the diagonal, Q = P !is
as well; so (b) and (c) follow. Part (d) amounts to

deg Q,, <3(V'(M) = 1"(#)=1), ¢#7; (13.8)

we will prove this by induction on //(y). Since P, = Q,, =1, the ¢y entry of the
equation PQ =1 is

0= CZC Qo Pyy
<Y<y
(13.9)
O_Q¢Y+P¢Y+ 2 Q«N/PM
¢2¢2¥

By inductive hypothesis and Lemma 12.15(d),
deg( QgyPyy) <H(I'(M) - I'(W) + ' (%) = I"($) —2)
=1’ =@~ 1)~

whenever ¢2¢2y. Now Lemma 12.15(d) shows that every term of (13.9)
except perhaps Q, satisfies the degree estimate in question; so (13.8) follows.
Q.E.D.

ProrosiTiON 13.10.  Fix a block B = {cl(y,), . . ., cl(v,)} of regular characters
Jor the real reductive group G, having nonsingular infinitesimal character. Fix a
second group G and a block B = {cl(¥), ..., cl(¥)} satisfying the conclusions
(a)—(d) of Theorem 11.9.

(a) The zntegral length function for B (Definition 12.1) may be normalized so
that I'(y)= - 1! (y)for all y € B.

(b) If we identify MU(B) with G)IL(B) (Definitions 12.3 and 13.3) by 1dentzjj)zng
their bases as indicated by the notation, then the operators T, for NM(B) are
identified with T,.

(c) If ¢,y € B, then ¢ £y if and only if ¥ ;qﬁ
Proof. Part (a) is an easy consequence of Theorem 11.9(b) and Definition

12.1; in fact one only needs to know that 8°(y) = —8°%(¥). Part (c) follows from
Lemma 12.13; for (11.9)(c), (d), show that

§ ’ w_ S v
Y Yoy ¥ (13.11)

(Deflmtlon 12.17). To prove (b), notice that (coefficient of ¢ in 'T Y) =
(= 1Y@ =" (coefficient of y in T,p), by Definition 13.3. This allows us to
compute T case by case, using Definition 12.3. By Theorem 11.9(b), v is case (x)
of that definition if and only if ¥ is in case (x*). As an example, suppose v is in
case (d); write c*(y) = v . Then y appears with coefficient 1 in 7,y, and with
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coefficient u — 1in T,y% (case (c*)). Since also //(y%) = //(y) + 1, we compute

Ty=y+ > (1-u).

PEC(Y)

By Definition 13.3(c), we get

[y =w=2)y+ > (u— 1.

PEC(y)

By Theorem 11.9(c), this can be written

Ty= 3 (u—1)o+ (u—2)7.

dECi(Y)

This is the formula for T,y in Definition 12.3(d*). The other cases are similar.
Q.E.D.

PROPOSITION 13.12.  In the setting of Proposition 13.10, suppose the integral
length function on B is normalized in accordance with Proposition 13.10(a), and
6)IL(B) is identified wzth "JIZ,(B) as in (13.10)(b).

(a) The operator D of Definition 13.3(e) coincides with the operator D for B
defined by Lemma 12.14.

(b) The elements C of Lemma 13.7 coincide with the elements C; for B of
Lemma 12.15.

Proof. 1In light of Proposition 13.10, Lemmas 13.4 and 13.7 show that D and
C satisfy the defining properties of D and C;. Q.E.D.

THEOREM 13.13.  Let G be a real reductive group, and B = {c(y,), . . ., cl(v,)}
a block of regular characters of G having nonsingular infinitesimal character. Let G
be a second reductive group, and B= {cl(¥y), ..., cl(y,)} a block for G; and
assume that the bijection y;—> ¥, satisfies conditions (a) (d) of Theorem 11.9. Then
the inverse of the Kazhdan—Lusztig matrix (P,,) (Lemma 12.15) is the matrix

(@) (Py) ™" = ((— D@~ "VPy,
In particular, suppose that the Kazhdan—Lusztig conjecture (12.16) holds for (G, B)
and (é, l?), so that

(b) M(n(9),7(v)) = (= 1)@ "0P, (1)
M(m($).7(¥)) = (= 1)@ OPy(1).
Then
(©) m(7(9),m (1)) = Piz(1)
= (=)' O7OM (7 (3),7($))
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This is immediate from Proposition 13.12, Lemma 13.7(3) and (1.3). With
Theorem 11.9 (and Theorem 12.17), it gives Theorem 1.15.

14. Duality and primitive ideals. In this section, we will lay the foundation for
a study of certain Weyl group representations attached to blocks. This is
connected with the problems studied in [1] and [2] for complex groups—Fourier
inversion of unipotent orbital integrals and related matters. They will be pursued
in a future paper with Barbasch.

Definition 14.1. In the setting of Lemma 12.15, suppose ¢,y € B and ¢ < y.
Define

1(,) = coefficient of u'/X/'M =@ =D in p_.

Lemma 14.2 ([18], Section 5). In the setting of Lemma 12.15, suppose y € B,
sE S“.
(@) If s & 7(y), then (Definitions 12.2, 12.7)

= 1/2(1(y) = 11($) — |
YOT e

(b) If s € 7%(y), then
(T, —u)C,=0

LemMA 14.3.  In the setting of Theorem 13.3, suppose ¢,y €E B, ¢ < vy, s € S%,
s € 79¢), and s & 7°(y). Then

B(9.7) = B(1:9).
Proof. By Proposition 13.12, Lemmas 14.2 and 13.7,
p(9,y) = u”/AO=I@ =D Teoefficient of C, in (T, + 1)C, ]

= u“/z("<‘5’>"'(?>“>[<(7; + I)Cy’é¢>](_ 1)/

u“/z("“i')"'(*)“)[(CY,('TS + 1)é¢>](_ 1)/

u—1/2<1'(¢)—1’<&)—1)[<cy,(u — 7})5¢>](— 1y'®

—(=1)!"®y~ 1/200($) = 1'(¥) = D)

[ coefficient of C; in (T, + 1)C; | (— l)"d)

(¥, $).
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Here we are using several obvious facts. First, since ¢ # y, we may replace
T,— u by T, + 1 in the next to last line. The result is trivial (u(¢,v) = w(¥,9)
=0) unless //(¢) — I'(y) is 0dd; so —(—1)"® is equal to (— 1) ; this is used
at the end. Q.E.D.

Definition 14.4. Fix a block B of representations with infinitesimal character
Xx.- Write Z(B) for the free Z-module with basis B. We identify Z(B) with the
Grothendieck group of the category of finite length admissible representations
generated by the 7 (y), by sending y to the class of #(y). Make W¢ act on Z(B)
by the coherent continuation representaiion ([25], Definition 7.2.28); write #(w)
for the operator corresponding to w € W*. Explicitly ([25], Chaper 8), fix y € B,
s € §¢ and label cases as in Definition 12.3. Then

(a) H(s)y=—v
(a*) t(s)yy=y
(b)(®*) Hs)y=sXy
(©) H(s)y=c(y) —s Xy
(c*) t(s)y=sXy
(d) ts)y=v3+v<—-vy
(d%) Hs)yy=vy

LEMMA 14.5. In the setting of Definitions 12.3 and 14.4, let M(B)->Z(B) be
the Z-linear map defined by

e(umy) = (—1)""y.

Then
(a) For m € 9(B), s € S*°

€(— T,m) = t(s)e(m).
(b) If the Kazhdan—Lusztig conjecture holds for B, then
€(C,) = (=17

(cf. (12.16)).

Proof. Part (a) is easily checked by comparing Definitions 12.3 and 14.4. Part
(b) is a reformulation of Conjecture 12.16. Q.E.D.

LR
Definition 14.6. In the setting of Definition 14.4, the LR preorder < on B is
the smallest preorder relation with the following property. Fix w € W, y € B,
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and write
H(W)T(Y) = 2 a,7(d).
$EB
Then we require that

LR
a,#0=7vy <¢.
The cone over vy is
- LR
e(y)={s€Bly<¢}.
Define

FLR(y) = span of {7-7(¢) | yL<R¢} CZ(B).

Thus §*R(y) carries a representation of W¢ by restricting the coherent

. . . . . LR LR .
continuation representation on B. We define LR equivalence ~ by ¢ = v if and

only if

LR LR
Yy <o <vy.

The double cell of v is

CR(y) = {9 € Bo=y).
We must also define

S () = () — (),

and VR (y), VLR (y) in analogy with ¥R (y). Clearly ViR (y) is ¢(W“)-invariant,
and we define a representation of W of V*® (y) by the natural isomorphism

VEE(y) = T )/ V3 ()

We call this a double cell representation. When G is complex, all of these
notations can be refined into separate “left” and “right” pieces—see [2], for

L
example. The notation here is consistent with [2], although < and so on are not
defined in general.

LemMA 14.7.  Suppose the Kazhdan—Lusztig conjecture holds for B, y € B, and
s € §“ Then, in the notation of Definition 14.1,

(R =T+ X T(r)+ Ey (. 7)7(9)

Yo SET(¢)
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if s & 79(y); and
1(s)m(y) = —@(y)

if s € ().

This is clear from Lemma 14.2 and 14.5.

COROLLARY 14.8. Suppose the Kazhdan—Lusztig conjecture holds for B. Then
L<R is the smallest preorder satisfying

@) if v/ >, then YL<RY'

(®) if 7.6 € B, s & r°(y), s € 1(9), and u(s,7) =0, then y < ¢,

COROLLARY 14.9.  In the setting of Theorem 13.13 and Definition 14.6, suppose
the Kazhdan— Lusztig conjectures hold for B and B. If v,¢ € B, then

LR . LR
(@) vy <¢ if and only if ¢ <y. In particular
[eH(n)] = (3.
Define a pairing between Z(B) and Z(B) by

F(Y) (D)) = 84, (= 1)

Then if m € Z(B), n € Z(B) and w € W* we have
(b) <t(wym,ny = (= 1Y {m, t(wyn).
In particular, there is an isomorphism
(c) VER (y) = VR (})* ® (sgn), with sgn the sign representation of W*.

Proof. Part (a) follows from Corollary 14.8 and Lemma 14.2. It is enough to
prove (b) when w = s € §7; and then it follows from Lemmas 14.7 and 14.2. Part
(c) is immediate from (b). Q.E.D.

THEOREM 14.10 (King [26]). In the setting of Definition 14.6, there is a natural
map (the character polynomial)

ch : VER(y) > S(b%);

here the right side is the symmetric algebra of 4*. We have

(a) ch(7(y)) is a homogeneous, W °-harmonic polynomial.

(b) Up to a non-zero constant, ch(7(y)) is Joseph’s Goldie rank polynomial
([12}) for the primitive ideal Ann(7(y)) C U(g).

© Ifwe we,

ch(t(w)@(v)) = w: ch(7(v)).

COROLLARY 14.11. The double cell representation of W* on V'R (y) contains
Joseph’s Goldie rank representation associated to Ann(7(y)).
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One would like to show that every constituent of ¥*®(y) lies in the same
double cell in W, ([2], Definition 2.12). There are certain minor technical
obstacles to proving this, but probably they can be overcome.

15. An L-group formulation. In this section, we will sketch without proofs
another approach to the definition of G in Theorem 1.15. This method is adapted
only to algebraic groups (and not to the minor modifications of them usually
allowed, such as the class of groups defined in section 2). Notation will not be
particularly consistent with the rest of the paper, nor even with our main
references [5] and [22].

Let G be a reductive algebraic group over C. Fix once and for all Borel and
Cartan subgroups

B“ D H* (the abstract Borel subgroup, etc.)

(15.1a)
A" = A(g,H") 2 (A7) + = A(g, b%).
These specify a root datum ([22])
V= (X*(H"),A% X (H"), (A%)"). (15.1b)

Here X*(H*?) is the lattice of rational characters of H¢, and X ,(H ?) is the lattice
of one parameter subgroups of H*. We may regard X*(H“) as contained in
(b%)*, and X ,(H,) as contained in b*. Fix a dual group ([5])

LGO;)L(Ba)OQL(Ha )0 (15.2a)
with root datum
V7= (Xu(H"), (A", X*(H"),A7). (15.2b)
This means that we are fixing isomorphisms
X*(H )= X, ("(H")), (15.2c)

and so on.

Roughly speaking, our objects of study will be pairs (G '(R), '), with G' C G
a reductive algebraic group of the same rank as G, G (R) a real form of G', and
#! an irreducible admissible representation of G '(R). (Actually we will consider a
slightly smaller class of pairs; G' will be among other things the identity
component of the centralizer of a semisimple element of G.) To each pair we will
associate a dual pair of the same sort in “G°. However, technicalities abound.
First, we will actually study only conjugacy classes of pairs. Second, the
representations will be determined only up to “translation” in the sense of
Jantzen and Zuckerman (see [25], Chapter 7). A more serious problem is evident
in this example: take G= G'=SL(2,C), G!(R)=SL(2,R). Let #' be a



1056 DAVID A. VOGAN

holomorphic discrete series representation of G'(R), and #* the corresponding
antiholomorphic representation. Then the pairs (G '(R),#') and (G !(R),#?) are
conjugate under G (by the matrix (, _%)); so we cannot hope to formulate a result
like Theorem 1.15 in this setting. The cure proposed here is to consider along
with G'(R) and 7' certain additional “rigidifying” data.

Definition 15.3. A real datum for G is five-tuple g = (B, H,0,t,%), such that

(a) H C B are Cartan and Borel subgroups of G

(b) o is an involution of H preserving A(g, ). Write t = §°, a = §~* for the
+1 and —1 eigenspaces of o.

(c) Let [X*(H)]° denote the invariants of ¢ in X*(H). Put

X,(H)={x€t|{x,[X*(H)]) € Z}
2 {x Et|{x,X*(H))EZ)
= (XD

Then t €t/ X, (H).

(d) With notation analogous to (¢), x € a*/X ~°(H); here X "°(H) C X*(H).
A dual real datum for “G° is a five-tuple § = (“B°'H°,5,1,%), such that (in the
natural isomorphism § = (*§%)* determined by B, “B° and (15.2c)) ¢ is the
negative transpose of o, f = x, and X = ¢.

Definition 15.4. Suppose g = (B, H,0,t,x) is a real datum for G. A realization
of g is a four-tuple (G'(R),B,t,v), with the following properties. Choose
representatives t° € t, x° € a* for ¢ and .

(a) G'is the identity component of the centralizer of exp(4it®)

(b) G'is endowed with a real structure so that H is defined over R; and there
is a Cartan involution § of G' (for G'(R)) which fixes H, such that 8|, = o.

(c) v is a regular character of H(R) for G !(R).

(d) Write (3")® for half the sum of the positive imaginary (that is, o-fixed)
coroots of b in g', and € for the grading of the imaginary roots defined by the
notion of compact root for G'(R). Then we require

e(@) = (o, (p)"+26% (mod 22).

(e) Write (p")? for half the sum of the 2y -integral positive real roots of § in g'.
Choose a positive system (A®)* for all the positive real roots, such that if pR s
half its sum, then {a, p® — §R) € 2Z, all a real and x’-integral; this is possible by
(10.16). Now choose a f-stable parabolic Q = LU of G', with LD H the
centralizer of t. Write p(u) for half the sum of the roots of § in u, and g for
p(w) + 7. Write H(R) = TA as in (2.9), and write 2p(u N p) for the determinant
of the action of T on the —1 eigenspace of # in u. Then we require that there



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS IV 1057

should be a p € X*(H) such that if y = (I, ¥) (cf. (2.10)),
F=2"+p+p
Ll7 = plr +20(u N p)

F,a)>0  for a€A*(g',b),2x" — integral.

PROPOSITION 15.5.  Every real datum for G has a realization, which is unique up
to conjugation in G and Jantzen—Zuckerman translation on the regular character
involved; and the realization determines the real datum uniquely.

So far this is not particularly difficult. The next step is to define the cross
action (of the 2x%integral Weyl group of H in G'), and the Cayley transforms,
for real data and their realizations. (The operations on realizations do not change
G '(R).) This is in the spirit of section 7, and we leave it to the reader.

Definition 15.6. Blocks of real data are the smallest sets closed under
conjugation in G, Cayley transforms, and the cross action.

This is a stronger requirement than the obvious one of asking only that the
data have realizations with the same G '(R), and regular characters in the same
block.

PROPOSITION 15.7.  Suppose g' and g* are real data in the same block for G,
with realizations on the same G '(R); and suppose these realizations differ by Cayley
transforms and the cross action inside G'(R). Then g' and g* are conjugate under G
if and only if the regular characters y' and y* for G'(R) are conjugate under G'(R).

This is hard; it is proved in the same way as Theorem 10.1.

Definition 15.8. Suppose g' and g? are real data in the same block for G.
Choose realizations on a common G '(R), differing by Cayley transforms and the
cross action inside G'(R). Write v!, y? for the corresponding regular characters;
and set

m(g', g%) =m(7(v"),7(v"))

M(g', g% = M(7(v")7(v?))
(notation (1.1), (1.2)). If g' and g? are in different blocks, we put m(g', g%
=M(g' g =0.

This definition makes sense, even on conjugacy classes of real data, by
Proposition 15.7.

PROPOSITION 15.9. Suppose g' and g* are real data for G, and §', * are dual
real data for “G° (Definition 15.3). Assume that the Kazhdan—Lusztig conjecture
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12.16 holds for all real groups which appear. Then

M(g' ") =<(g" gYm(& &)
with €(g', g%) = + 1; and we can determine the sign.

This proposition is just a formal combinatorial result about manipulating real
data, and is proved by the methods of sections 12 and 13. It is interesting only
because of Proposition 15.7, which relates it to multiplicities and character
formulas in real reductive (algebraic) groups.

Example 15.10. Suppose G = SL(2). Put B = upper triangular matrices,
H = diagonal matrices, 6 = 1 on H, x = 0. We identify § and §* with C, in such
a way that & corresponds to 1 in b, and « to 2 in h*. Then

X*(H) =1, X*(H)=12
We consider real data
g =(B,H,0,t,X),
with B, H, o, and x as above; thus

teC/Z

If 2t ¢ 1/22Z, then G'= H, and things are dull. There are four other cases:
t=0,1/4,1/2,3/4.1If t = 1/4 or 3/4, then we can find a realization

(SU(2), B, T, 7)

of g,; here 7(y) is the trivial representation of SU(2). These two labellings of the
trivial representation of SU(2) belong to different blocks. The dual real data
have realizations

(PGL(2,R),"B 1,72),

here 7(y =) are irreducible principal series representations which agree on the
identity component of PGL(2, R). (The need to distinguish these two representa-
tions gives rise to the need to label the trivial representation of SU(2) by 1/4 or
3/4.)

If 1=0 or 1/2, then g, has a realization (SU(1, 1), B,t,y + ), with 7(y +) a
holomorphic discrete series representation for SU(1,1). Now g, and g, , are in
the same block for G, but these two realizations do not differ by Cayley
transforms and the cross action inside SU(1,1). However, we can choose a
realization (SU(1,1), B¥,0,y~) of a conjugate of g,; here w(y~) is an
antiholomorphic discrete series. This realization differs from the previous one of
81,2 by the cross action inside SU(1, 1).
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16. Examples.

Example 16.1. Weyl groups of SL(n,R). We can choose representatives for the
Cartan subgroups of SL(n,R) as follows. Choose r < [n/2]. Then there is a
unique conjugacy class of Cartan subgroups with r-dimensional compact part. As
a representative, we choose H” = T'A"; here

A= {d(e"',e"',e"z,e"l, S, eMeTed, L, et )

22":‘"'2)’]'

=0, X y; € R}
(16.1a)
T = {d(t(¢|), e U )€ s 6 0,) |0 ER, £(9)

. n—2r
=( cos ¢ SIH¢),€;=i17 II €,~=1}

—sing cos¢ i=1

(Here and throughout, d applied to a set of numbers (or square matrices) will be
the matrix with these numbers on the diagonal.) The standard identification of
the complexified Cartan subalgebra (§")* with

{o= > ve €C"| Ev,.=0}

gives

r n—2r
(a)* = { S xi(ey_ +e)+ > yie + Zr}

= /=t (16.1b)

() = {ZV-Teoi(en1 — e}

The Cartan involution 8" acts by sending v to — v, then interchanging the first r
pairs of coordinates:

n

0'(20,.e,.) = —[ D (vyg 1+ vy 1e)+ D vjej]. (16.1c)
i=1 Jj=n—-2r+1
In the notation of Definition 3.10, we have
R=A5)= (¢ ¢li#))

RR=(aE€R|a=—a)}
(16.1d)

={e—¢li,j>n—2r+1}

RP={x(ey_—e)|1<i<r).
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If the root system is ordered lexicographically, then in the notation of
Proposition 3.12,

I)R=(0,...,O,(n——2r--1)/2,(n—-2r-—3)/2,..., —(n=2r—1)/2)

n—2r

=S [ -2r =2+ D/2]ens,

j=1

R (1/2,-1/2,1/2,-1/2,...,1/2,—1/2,0...0)

©
|

(16.1¢)

21 1/2(eyi-1 — ex)

RC= {(ezk —ey) (€1~ ezz—1)| < k< "}
R7=RCU RR
RI={e—¢li,j<2r)

The subgroups of SL(n, R) corresponding to R€, RY, and R/ are (up to center)
SL(r,C), SL(r,C) X SL(n — 2r,R), and SL(2r, R). Hence

(WC){); S,, the permutation group on r letters; (16.1f)
it acts by permuting {e,,e;, ..., e,,_;} and {e,, . . ., e,,} simultaneously. Also,
WR=S,_,., (16.1g)

acting by permuting the last » — 2r coordinates, and
WwiR=(2/22), (16.1h)

acting by changing signs on the ¢, coordinates of (16.1a). To compute WF—the
elements of W™ having representatives in G—we use Proposition 10.20(a), (d).
The roots {ay, ..., a,} of that Proposition are just

o =ey_ | — ey, (i=1...,r).

These span t’, so, in the notation of Proposition 10.20, ® = R. We must compute
the elements o5 € WR(y). Suppose first that n > 2r. Then if g = € — €,, We
have

@ m={y 7

Oﬁ = Sa’_
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So in this case @, = W'R, and (by Proposition 4.16)
Wik = iR
W(G,H")= S8, X (8,5 X (Z/2Z)") n>2r (16.11)
= W(BC,)X S,_,,.

Here W(BC,) is the Weyl group of B, or C,; this last isomorphism is by the
standard embedding of that Weyl group in §,,. Next, suppose n = 2r. If € and §
are O or 1, j# k, and B = e, — e5_;, then

_[x1, i=jork
@ p={*p
OB = s"‘js‘xk .

Therefore

Q,={s,...5,|lLERT} C wR

WiR=0,=z/22)""

WR/WiR=2/22.

So

W(G,H")y= S, X (Z/2Z)"""
n=2r (16.13)
= W(D,)

(This is also clear from the fact that H" is fundamental, so that W(G,H")
= W(K,T").) Of course replacing SL(n,R) by GL((n, R) makes WiR equal to
W'® in this case by Proposition 10.20(e).

Example 16.2. The block of the trivial representation of SL(3,R). The Cartan
subgroups H° (split) and H' (fundamental) are as in Example 16.1. Any regular
character corresponding to the same infinitesimal character as the trivial
representation must have differential half the sum of a set of positive roots. On
H° W(G,H)= W(g,b), so (up to conjugacy) we can consider only the regular
characters y° with differential

70 =(1,0,— 1) =p; (16.2a)

we are introducing coordinates as in (16.1b). Since H° has four connected
components, there are four such regular characters. We write them as

Vo= Yooy EHYY (6= 1)
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with the convention that
v2(d(8,,8,,85)) =T1d, (8, = =1).
Since d(§,) is in SL(3,R) only if I1§; = 1, we have
Veneren = Y(—ep—enen) -
We have

'7_7(7?1,1,.)) = trivial representation; (16.2b)

for since H is split, 7(y?) is just the principal series representation induced from
the character y° of H°. By Theorem 8.5, the other regular characters of H° in the
same block as y! are obtained by the cross action of the Weyl group; so we will
now compute this. Suppose a = e, — e,. Then

P =p— 0
so by Definition 4.1
XY =1«
as a character of H°. Now
a(d(8,,8,,85)) = 8,8, ";

so s, X v2 looks like 7?—:..-e2,c3) on diagonal matrices with entries = 1. However,
we have also changed p to s,p. This we can reverse by conjugation by s,; and we
compute

s, X Y2 conjugate toy(_., . o, (x=e —e). (16.2¢)
Similarly,
sg X y) conjugatetoy? _ . (B=e€,—e;). (16.2d)
Using these, we compute
cross orbit of y9 = {y?, Yo Yo 1} (16.2¢)

On H', W(G,H)= W™ has order 2 ((16.1i)); in the coordinates (16.1b), the
non-trivial element of W(G, H) interchanges the first two coordinates. Since H''
is connected, there are just three regular characters (up to conjugacy) with
differential conjugate to p. We choose

¥'=(0,-11)
¥ =(1,0,-1) (16.2f)
¥ =(1,-10)
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as representatives. Since H ' is connected, the cross action of W(g,}) is just the
usual action on ¥, so we will not say more about it. We would, however, like to
specify Cayley transforms explicitly. So let a be the abstract simple root
corresponding to e, — e, on b°. If ¢, (y°) is defined, and y belongs to it, then the
root a' on h' corresponding to a must be imaginary. By (16.1d), this forces
y = y?; that is,

(¥)=7 all Y €D(c) (16.2g)

The domain of c, is easily computed to be {y{,y%, _,,}. We arrive finally at Fig.
16.2 for the block of the trivial representation in SL(3, R). In it, the abstract Weyl
group S; is acting on R? as usual: a = e, — e,, and the reflection s, fixes the line
through exp(57i/6); B = e, — e;, and s, fixes exp(im /6). The cross action of the
Weyl group is then the geometric one on the points representing regular
characters; and Cayley transforms are shown by arrows.
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We can say a little more about the nature of the representations 7(y). As was
mentioned already, ﬁ(y?,l,l) is the trivial representation. The only other unitary
representation among the six is the irreducible standard representation

7(v’) = 7(v’), (16.2h)
which is a tempered fundamental series representation. Both 7(y') and 7 (y?) are

Langlands quotients of reducible (nonunitary) fundamental series representa-
tions; we have

7(v') = w(y") = 7(v’)

7(v?) = n(v*) — 7(v’)

(16.2h)

in the Grothendieck group. Both #(y%,_;,) and =(y}_, _,) are Langlands
quotients of ordinary non-spherical principal series representations. Their formal
characters are

7‘7(70_,,_1,1) = W(Yo—n,—l,l) - 77(7')

(16.2h)
7_7(7(1),—1,—1) = W(Y(l),—l,—l) - "7(72)~
Finally, the formal character of the trivial representation is
ir'(y?) = w(y‘,’) —a(y") - 77(72) + w(y3). (16.2h)

All of the formulas (16.2h) are well known, but we may as well outline their
derivation from the Kazhdan-Lusztig conjecture. We first tablulate the objects
of Definitions 12.2 and 12.3, normalizing !’ to be zero on y>.

TABLE 16.2(i)

y 'y () T, (v) T,(v)
.Y3 0 [} ,Yl y2
y! I« =Dy +uy’ YA+
1 1B Yyl (u =1y +uy’
Yo 2 a (=%, =+ (= 1)y? %
Wor-r 2 B R A =Dy =¥+ =1y
" 2 ap =Dy —v2 -1 (=17 =)y + (= 1y

The Bruhat r-order of Definition 2.12 turns out simply to be the partial order
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defined by //(y). The map D may be computed by the algorithm of [24]; one gets

TABLE 16.2(j)

D,Y3 = .Y3
Dy'=u'[y' = (u=1¥)
Dy’ =u"'[y’ = (u—1Y’]
DY%, y=um Y s — (= DY+ (P - w)yY]
DYY = um Y o = (= DY+ P = w)y]
DY) =u= YY) — (u— 1)y = (u— Dy + (? = 2u + 1)y’]

Of course it is elementary (but tedious) to verify that the map D defined by
Table 16.2(j) satisfies the defining conditions for D in Lemma 12.14. The
formulas are organized so that the polynomlals R, (Lemma 12.14) may be read
off easily. It should be observed that if ¢ = v, y = vy% 1.—11> then R, = u? — u.
For complex groups of rank two (that is, the case orlglnally studied by Kazhdan
and Lusztig) one always had R,, = (u— 1), with k=1'(y)—['(¢). More
generally, the constant term of R,, is always *1 in the case of complex groups
(f R,, # 0); and even that fails here.

From Table 16.2(j), it is fairly easy to compute the elements C, of Lemma
12.15. They are:

TasBLE 16.2(k)

Y C,

¥ P

y! v+

,YZ .Y2+ ,Y3
Yoo Yo+ Y
Y- Yoo+

Nt W+y+y'+9°

In particular, the non-zero P, are all 1 or 0, just as in the rank two complex
case. The important distinction from the complex case is that ¢ < y does not
1mply P, +# 1; take for example ¢ = Yy=97" L-L1- Thls says that the relation

“occurs m the formal character of” is not transmve y? occurs in the formal
character of y2, and y2 in the formal character of y° 1,—1,1» but v> does not occur
in the formal character of y° 1.—1.1- By applying Theorem 1.15, we deduce that
the relation “is a composition factor of” is not transitive in general. This
phenomenon is well known, as it occurs in all of the rank one groups but
SL(2,R) and SL(2,C).

The formulas (16.2h) follow from Table 16.2(k) by Theorem 12.17.
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Example 16.3. The block of the trivial representation of SU(2,1). This block is
in duality with the one of Example 16.2 in the sense of Theorem 1.15. To prove
that, one computes the strong bigradings attached to a non-holomorphic discrete
series, and to the trivial representation (Definition 4.12), and verifies that they
are dual to those attached to y? and y? for SL(3,R) (Example 16.2). Then the
duality in question follows from Theorem 10.1. Write ¥ for the SU(2, 1) regular
character dual to y for SL(3, R). Then

#(¥*) = trivial representation
ﬁ(?') = Langlands quotient of a principal series

7‘1(}"2) = Langlands quotient of another principal series

(16.3a)
7(¥~1,—1,1) = holomorphic discrete series

7(¥1,—1,—1) = anti-holomorphic discrete series
w(?‘,’) = non-holomorphic discrete series.

By Theorem 10.1, Figure 16.2 applies to these representations as well. We leave
to the reader the task of computing D and the various C;; by the results of
section 13, one only has to perform some simple manipulations with Tables
16.2()-(k). An interesting feature of this example is that all of the «(y) are
unitary representations of SU(2,1); and we saw that only two of the 7(y) for
SL(3,R) were unitary. For this reason and others, it seems very unlikely that the
duality relationship has anything to do with unitarity.

Example 16.4. The gradings of D,. We realize R = D, in R* (with basis {e;})
as usual, by

R={e * ¢|i#j}. (16.4a)
Then
group of permutations and even numbers of
W(R)=W=" . (16.4b)
sign changes on the basis {e;};
this group has order 192. Put
R* ={e*¢|i<j}
(16.4c)

II={e —ey,e;,—e3,e5—e4,e5+ €4} = {a,ap,0,,a3}.

The numbering of the simple roots in II is explained by the Dynkin diagram,
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which is

o3

/

o —0g (16.4d)
L)
(This is not the usual numbering of the simple roots, but it is a natural one.)
By Lemma 3.14, a grading € € E(R) is determined by its restriction to {«;},

which may be arbitrary. If ¢ = (g, 0, o, b3) € (Z/22)%, then we define
€, € E(R) by

€q(0) = ¢;. (16.4¢)

We may represent a grading e by putting e(«;) at the «; vertex of the Dynkin
diagram; thus

1
<10
€(0,1,0,1) 0

To compute the orbit of the cross action on E(R) (Definition 3.24), suppose a
and B are simple roots, and €(a) = 1. Then

€«(B) if (&, B) even

1—¢(B) if<a& B)odd. (16.41)

(s X €)(B) = {

Thus s, X € agrees with € except on the vertices adjacent to «. Using this, we
compute easily that the orbits of the cross action on E(r) are

“{010 11! 1ol
@P—{m 1l o }

0 1
0 0 1 1
={109, 119 o011, oo
% { 0 0 1 1}
on={000, 019, 111, 101} (16.4g)
1 1 0
1 1 0 0
= 00 ) 01 ’ 11 ’ 10
O { 0 0 1 1}
®,={oog}

(Here p stands for principal, and ¢ for trivial.) All of these arise as the grading by
compact and noncompact roots in some real form G of SO(8,C). The relevant
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real forms are tabulated below. In each case the set R, of compact roots is
specified.

TABLE 16.4(h)

Orbit in E(R) G R, = compact roots
9, SO(4,4) (e e, *e;*xe) =D, X D,=(4)*
0y S0(2,6) {teytey,xe,x ey, Teste ) =Dy= A,
On 50*(8) {e—eli,j<3)U{e+e,]i<3)=4,
Om SO*@8) {e.—¢glij)=4;
0, S0(8) Ry=R=D,

We stated at (3.26) that the cross orbits on E(R) were in one-to-one
correspondence with equal rank real forms of GC. This appears to contradict
Table 16.4(h), since SO*(8) is attached to both O, and Oy;; and in any case
SO*(8) = SO(2,6), which is attached to 0;. The point is that the isomorphism
S0O(2,6) = SO*(8) cannot be realized by conjugation in SO(8,C); and neither
can the isomorphism between the two versions of SO*(8) used for Oy and Oyy;.
By “real forms” at (3.26), we meant “real forms up to G ®-conjugacy.” To replace
this with “real forms up to isomorphism,” we must expand W to include
automorphisms of the Dynkin diagram. Here 0,, O, and O, differ by the
automorphisms which rotate the Dynkin diagram.

Set

ep=01g, q=10(1), en=00(1), em=00(1), e,=008

0. =WxeCE(R) (e€E(R)). (16.4)

Since the various R(€) are tabulated in Table 16.4(h), we can immediately write
down Wy(e) = W(R,). The cardinality of W,(¢) may be computed by the
formula

0] = [W/Wy(e)]

ior the order of a finite homogeneous space. We would like also to specify the
inclusion

W)/ Wole) = We)> Z(R)

of Proposition 3.16. First we must describe Z(R). In the notation of Definition
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3.3, we compute
L = lattice of coroots
= {(xl,x2 ,X3,%,) € Z*| > x; =0 (mod 22)}
P={NeR!\ -\ €Zallij}

(16.4j)
= (ALA2, AL A |all A, EZ, orall A, € 1/2Z)

Z(R)y=P/L={0,(1,0,0,0),(}.1.3, - 1). (3.1,

)}

D=
=

b
= {0321’22523};

here we write X for x + L. In the following table, the second column gives an
element of ﬁ(R) defining € (cf. Lemma 3.14 and Propositon 3.16); Q(e) is
exhibited as a subgroup of Z(R) (Proposition 3.16); and we give representatives
of Wy(e)/ W(e). For that purpose, we write s; = s, .

TasLE 16.4(k) R groups for D,

Representatives of generators of

Grading A Wy(e) RG] A(e) in Wy(e); (xy, X5, X3, X4) >—
6 (1,1,0,0) Z2/2z)* Z(R)={0,2),25,23} (X}, —X3,X3, —X4), (X3, X4, X, X3)
€ (1,0,0,0) Ss= W(4,) 0,2,) x—=> —x
€1 (G3:3,—3) Sa=W(4y) (0,25} x> =X
€1 (3,5,3.1)  Sa= W(4y) {0, 23} x> =X
€ (0,0,0,0) W= W(D,) (0) —

The easiest way to calculate Q(e) is by first calculating |U(e)| as described
after 16.4(i). The elements exhibited in the last column obviously belong to QU (e),
and so generate it by counting. Now the formulas for A(e) are immediate from
the definition of the map in Proposition 3.16.

Example 16.5. Cayley transforms of the principal grading of C,. Realize
R = C, in R" as usual, with

R={*exel|i#j}U(+2e)
W(R) = W = permutations and sign changes of {¢;}
= S, X (Z/2Z)" (the hyperoctahedral group) (16.5a)
R™ = {e=*¢l|i<j}U({2e)

IT={g—e, |1 <i<n—1}U/{2e,).
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We consider the grading € € E(R) defined in any of the following equivalent
ways. Put A=(1,1,..., 1). Then

e(a) ={a,A) (mod 2)

€(x(g+e))=1, €(e,—¢)=0

16.5b
Ry(e)= (e~ ¢} =4,_, ( !
Ri(€) = {e+ ¢)}.
Then
Wo(e)= W(A,_))=S,C W (16.5¢)

W,(€) = group generated by W(¢) and —1d.

There are two kinds of one dimensional Cayley transforms. The simpler is
(Definition 5.2, Lemma 5.1)

a=2e,, R'={zx¢=xel|i,j#m), &= trivial
{ ! } (16.5d)
c?(€) = €| za.
More interesting is the second kind:
a=¢ + e
R*={xexeli,j#rs)U{x(e—¢)}
= REURS
€ = trivial on R/

(16.5¢)

1

E(e, —e)
c"‘(e)|R‘a = €|R;'
c(e)(e,— &) =1
=1-€(e — ¢).

It is not hard to convince oneself that every admissible sequence is (up to
permutation and sign changes) conjugate under Wy(e) to one of the following
form:
S=8,.,={26...,2¢,,6,,te. 5,6, €,,...
ep+2q—l + ep+2q ’ep+2q—l - ep+2q 9ep+2q+l + ep+2q+2 H (165f)

ep+2q+3 + ep+2q+4’ cee ep+2q+2r—-1 + ep+|q+2r}‘
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For this sequence S, we have

RS={ie,.+ |1j>p+2q+2r}U{p+2q+2j| ep+2q+2j|1<j<r}

=RSUR]
CS(G)IRSS = ElRf
(16.5g)
¢S()lrs = (1= s
The algorithm of Lemma 5.6 replaces S, ,, by S,.,,_y,; so if we put
S/ = Sp+2q,0,r (16.5h)
then S’ is strongly orthogonal, and
cS(e) = ¢ (e). (16.5h)
Since the roots B, =e,,5,.2 1~ €4y,+2 lie in Ry(e), the corresponding

reflections S belong to Wye). In c¢S(e), however, ,B is an odd root; so
Sp & WS (e)) This observation leads, in the context of Lemma 6.1, to

Wo(c (e)) = W(An—(p+2q+2r)—1)
E(Wo(€)) = W(Ap_(pragrarn—1) X (2/22) (16.51)
(3 =spanof S, , (cf. (16.5f))).

Using Lemma 9.1 (case of ¢®) and Proposition 4.16, one can continue from here
to determine the Weyl groups of all the Cartan subgroups of Sp(n, R). We leave
this to the reader.

Example 16.6. Connection with the “very strange formulas”. Let G be the
group SL(2,R), and consider the regular character y° for the split Cartan
subgroup, such that 7(y°) is irreducible and has the same infinitesimal character
as the trivial representation of G. One checks easily that the cograding 8(y°) is
trivial; that is, the roots do not satisfy the parity condition. Thus {y°} is a block
by itself, and #(y°) is an irreducible (non-spherical) principal series. The dual
group of G of Theorem 1.15 is SU(2) and 7 (3°) is the trivial representation. As
SU(2) is connected, we have

G=G°  (Definition 9.4.) (16.62)
Now consider G€ = SL(2,C), and define

A={(‘i)’ e(},)pea}, N=[((1) ’l‘)|xec} (16.6b)
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as

usual. The Iwasawa decomposition of G is now

GC= GN. (16.6¢)

This verifies a conjecture of P. Sally that G°4N may be regarded as a complex
simple Lie group; I am grateful to him for supplying this example.
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