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IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE
GROUPS II. THE KAZHDAN-LUSZTIG

CONJECTURES

DAVID A. VOGAN, JR.

1. Introduction. Let G be a connected semisimple Lie group. In [15], a
study of the irreducible characters of G was begun, using the ideas developed by
Jantzen for Verma modules and extended to group representations in [13]. In
particular, the explicit determination of these characters was reduced to the
problem of decomposing certain representations {U(X)} attached to an
irreducible representation X; by this was meant the determination of the
irreducible composition factors of each U(X), and their multiplicities, in terms
of the Langlands classification of irreducible representations. It was conjectured
([15], Conjecture 3.15) that each U(X) is completely reducible.

Since [15] was written, Kazhdan and Lusztig have given in [9] a conjecture for
the characters of irreducible quotients of Verma modules. (By [4] or [8], this is
equivalent to finding the irreducible characters of a complex semisimple Lie
group G). The present paper generalizes this conjecture to representations of
real linear groups, and reduces its proof to the complete reducibility conjecture
mentioned above; in fact, the conjectured formulas are equivalent to the
complete reducibility conjecture. (The assumption of linearity is invoked only in
section 7 below, for minor technical reasons; it can almost certainly be
eliminated with a little cleverness.)
The idea of the argument is very simple. Let be the complexified Lie algebra

of G, 0 a Cartan involution, and g + tt a 0-stable Levi decomposition of a
0-stable parabolic subalgebra q c_ 8. The idea is to try to compute H’(u,X) as an
module whenever X is an irreducible Harish-Chandra module. This is done

first when X is an irreducible representation induced from a discrete series on a
cuspidal parabolic subgroup of G (Theorem 6.13). Once the answer is known for
some X, one can compute Hi(u, U,(X)) (Theorem 7.2). If U,(X) is completely
reducible, this information (via [14]) allows one to determine the irreducible
constituents of U,(X) and their multiplicities (Proposition 5.5); and induction
can proceed. The (conjectured) character formulas can be computed from the
multiplicities in the various U,(X), as in [15], or can be written in terms of the
Hi(u,X) by an Euler-Poincar principle (Theorem 8.1msee also the remarks at
the end of section 8).

Because the computations in general are quite complicated, we will first treat
the Verma module case, assuming the infinitesimal character to be integral.
Most of the ideas are already apparent there.
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2. Definition of U(X). We recall here some definitions from [15].
Let 8 be a complex semisimple Lie algebra, and b a Cartan subalgebra. (From

section 4 on, 8 will be the complexified Lie algebra of our real semisimple Lie
group G.) Let U() denote the universal enveloping algebra of 8, (fi) its center,
and

w

the Harish-Chandra isomorphism; here W:-- W(fi/O)is the Weyl group, and
S(b) is the symmetric algebra of b. If b* (the dual of b), we define
Xa (8)--> C by Xa(z)= (z)(). If X is a 8 module annihilated by an ideal of
finite codimension in (g), we say that X is (8)-finite; the category of such
modules is closed under extensions and tensor products with finite dimensional
modules, and contains the irreducible 8 modules. If X is (g)-finite, and h *,
we define

Pa(X) (x X for all z 3(8) there is a positive

integer n such that (z Xa(Z))"x 0}.
Then

x= E
*/W

finite direct sum. We say X has generalized infinitesimal character or Xa if

Write A A(8 b) for the set of roots of b in 8. Recall that b* is endowed with
natural bilinear form (, coming from the Killing form on 8. The weight
b* and its associated infinitesimal character Xa are called nonsingular if

(a,} :/: 0 for all a A(8, ).
Fix now a nonsingular weight *. Define

Rx ( a k(8’))]
2(a’)) Z

R- { a Ra (a, ) > O)
c_

simple roots of Rx+ );
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recall the well-known fact that Rx is a root system. For each c 1-Ix, we choose
(by Lemma 3.1 of [15]) a positive root system ,t’ for A(g, b), containing Rx+, so
that c is simple for ’t’. Next we choose an integral weight/x, dominant for ,t,,
so large that for every fi ,t’, either

Re( fi, X + t,1) > 0, or

Re(fi, X + t,l)= 0, and

Im< fl, h +/,l> > O.

(When these conditions hold, we say h +/,l is strictly positire on t9.)

m

and define/x,2 to be m times the fundamental weight of ,t, corresponding to the
simple root ix. It follows that if 6 Rx+,

with equality if and only if (3 c. Let F," denote the finite dimensional
irreducible g module of highest weight t with respect to ,t,. If X is a ,3(g)-finite
g module, we define (cf. [15], section 3)

#l,(x) e/,(e(x) (R) el, )
,(x) e+e_a(e+,(x)(R) (e).)
(x) e+e(e+.,_e(x) (R) F)
(x) e(e+.a(x) (R) (F2 )*)
(x) (A(x))
%(x) %’((x))
(x) { e n [+o(x) o}.

THEOREM 2.1. Let X be an irreducible module with infinitesimal character h.
Suppose X is either a highest weight module, or a Harish-Chandra module for some
real form of . Then if r(X), %&X has X as its unique irreducible submodule
and irreducible quotient. The sequence

dl #[2
0 --) X --) %q.X X--) 0 (2.2)
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is a chain complex, and U(X) is defined to be its cohomology, (kerd2/Imdl).
U(X) has finite composition series, and a ’( U(X)).

Proof. For highest weight modules this is due to Jantzen [7], although he
does not state his results in this way. For Harish-Chandra modules of linear
groups it was first proved in [13]. The proof given for Harish-Chandra modules
in [15], Theorem 3.9, applies to all cases. Q.E.D.

Definition 2.3. In the complex (2.2), put

K K(X) kerd2, Q= Q(x) dlX
Thus we have short exact sequences

(a)
(b)
(c)
(d)

O- K. - %C/.X--> X --> O
O --) X %g/.X--> Q, --> O
O--) X K. - U. - O
O U.- Q.-XO.

(2.4)

These will play a crucial role in our calculations.
Finally, we restate Conjecture 3.15 of [15].
CONJECTURE 2.5. In the setting of Theorem 2.1, U,(X) is a completely

reducible g module.

Although the preceding formalism is the appropriate one for defining the
--invariant, and works well for linear groups, certain technical problems (cf. [15],
Lemma 4.9) make it convenient to consider non-integral roots as well. If h b*
is regular, we define A- to be the set of roots which are strictly positive on ;
recall that this means

A ( c A(g, t3) Re(c, } > 0, or Re(a, } 0 and Im(a, } > 0}. (2.6)
Let c be a simple root of A-. If c is integral, we can and do assume l 0; thus

+2, etc. In this situation we may write/ =/z2. If a is not integral, choose a
sum of roots/ b* so that +/z is regular and dominant for s(A-); here s is
the simple reflection in W(g/O) corresponding to c. If X is a ,g(g)-finite g
module, define ([13], Section 5)

%(X) Px(Px+(X) (R) F,*).
Here of course F is the finite dimensional irreducible g module of extremal
weight/.
THEOREM 2.7. Let X be an irreducible module with infinitesimal character ),

and suppose a A is simple but not integral. If X is either a highest weight
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module or a Harish-Chandra module for some real form of q, then p(X) is
irreducible, and

Proof. For highest weight modules this is due to Jantzen [7]. For
Harish-Chandra modules it is essentially Theorem 5.20(a) of [13]. Q.E.D.

In both cases the result follows formally from the existence of some kind of
character theory for the categories in question.

3. Case of Verma modules. Retaining the notation of section 2, we assume
in this section that k is regular and integral; thus Rx A(, b). Put + Rx+. Let
b b + u be the Borel subalgebra of q corresponding to -A+. For w E W(, b),
define

(R)
b

here p 1/2 ]a+ a. Let L be the unique irreducible quotient of Mw.
If X is any module on which b acts semisimply, then the cohomology groups

Hi(It, X) are semisimple modules. For/ E *, we let Hi(It, X)t denote the/z
weight space. An easy application of the Euler-Poincar6 principle gives the
following well-known result.

PROPOSITION 3.1. The formal character chL as an b module satisfies
dim la

)i + )chLw 2 E (-1 dimHi(It, Lw)yx o chMy.
yEW i=0

Now Kazhdan and Lusztig (cf. [9]) define a family of polynomials
w W} in a variable q. If < denotes the Bruhat ordering on W, these satisfy

(a) Py, 0 unlessy < w
(b) Pw, (3.2)
(c) If y < w, deg Py, < 1/2(l(w)- l(y)- 1). (Here is the length function

on W.)

Next they define a new relation -< on W by

y -< w if and only if y < w and deg py, 1/2(l(w) l(y) 1).

If y -< w,/(y, w) denotes the leading coefficient of py, w. The py, also have the
following property:

Suppose y < w, s is a simple reflection in W, and ws < w. Then

(d) Py, ql-apys, + qapy, w,- l(Z, ws)ql/Z(t(w)-t(z))py, (3.2)
Z

y < z-< ws
zs<z
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where a if ys < y and a 0 if ys > y. Clearly these relations allow one to
compute Py, by induction on l(w). The Kazhdan-Lusztig conjecture reads
(setting % (- 1)(w)):
CONJECTURE 3.3. ([9], Conjecture 1.5) chLw=y<wey%Py, w(1)chMy.

Comparing this with Proposition 3.1, we see that it would be enough to prove

CONJECTURE 3.4.
1/2(l(w)- 1Cv i) in py, w.

The dimension of Hi(tt, Lw) yx+ is the coefficient of

(In fact, the two conjectures can be shown to be equivalent.)

THEOREM 3.5. Conjecture 2.5 implies Conjecture 3.4.

Proof. We proceed by induction on l(w). If w 1, L M is an irreducible
Verma module. If Hi(l,Lw)yx+p v O, then clearly L has a weight of the form

g.,
with (flj.) a set of positive roots. Also

aA

with n > 0, since h is dominant; and some n is positive unless y 1. On the
other hand, every weight of L M is of the form

X+p+ mc
cA

with m >/ O. This forces (fij) O, n 0 for all a; so 0 andy 1. Obviously

dimH(u, M1)+= 1,

so Conjecture 3.4 is true when w (as is well known).
Suppose then that Conjecture 3.4 holds for l(w’)< l(w), and l(w) > 0. Then

we can find a simple root c II such that the corresponding simple reflection s
satisfies l(ws)= l(w)- 1. Put X Lws; then by [7] a -(X). The first step is to
compute Hi(u, Ua(X)). For simplicity we write q q0, U= U(X), Q Q(x),
etc. with definitions as in section 2. To define U, we can and do choose/z2 0;
write F F2, the representation of extremal weight /x2; we write /x =/2. Fix
y W, and suppose for definiteness that ys < y. Choose a b-stable filtration
0 Fo C_ F C_ F F, with dim(F//F,._l)= for < < n. This gives rise
to a b-stable filtration of q+X Px(+X (R) F), and hence to a spectral sequence
for Hi(tt, qgX)y’+ o. A typical E2 term is

[Hi(IA,X)( E/Fi_ yA+p.
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Now every weight of Hi(u,X) is of the form

y’Q,- + t,) + v + Z maa
aA

<a, y> <o

with m > O, and the weight of Fi/Fi_ is of the form

yv +
<,yx><o

with m/ > 0. So this E2 term is zero unless

yX + p y(X ) + p + m,,,a + y# + m,fi

y + p + m,a + mfi.
Clearly this forces y’ y, and the weight of Fi/Fi_ must be y/x. So the spectral
sequence collapses, giving

ni(tt, qg/g)Yh+t ni(it,+S) Y(h-")+@ %,. (3.6)

Now we use the dual filtration of F* to compute Hi(It, S)Y(h-")+; the spectral
sequence collapses to the long exact sequence

---) Hi (tt, X ) ySa+O( C_sy, ---), Hi (u, +X ) Y(x- ")+’-->

ni(It, X)Ya+( O_y.-- (3.7)

On the other hand, we have a long exact sequence from 2.4(a)"

----> H (u K) Y’ + P---> n (It cpX ) Y + --- H (1.t, X ) Y’+ .)

--) H (H X ) ysh + o( C ys, () Cy, --> H (It tl/X ) YO" " + t’ () Cy, --> H (Lt X )y +

(R) C_y. (R) Gy. ... (3.8)

Here the second row is just (3.7); the first isomorphism is (3.6); and the second
is the identity map. As will see in section 4 (Theorem 4.2) this diagram is
commutative up to a nonzero scalar. By a simple diagram chase, we deduce

Hi(it, K) y’+- Hi(tt, X) ysh+@ %,-ys," (3.9)

(The ismophism is not canonical, but we will not need that.) Now look at the
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long exact sequence from 2.4(c). Combining it with (3.9) we get

----) n (1A X )yh + o---) n (it X )ySh+ t( %(t_st>---- He(It, U) Yh + t--- (3.10)
By inductive hypothesis,

dim Hi (it, X )y+- coefficient of ql/2(l(ws)- l(y)- i) inpy,

Furthermore

zero unless has the same parity as l(y) l(ws).

dimH (It, X )ys, + o coefficient of ql/2(l(ws)- l(.vs)- i) in Pys,

zero unless has the opposite parity from l(y) l(ws).
This shows that the long exact sequence (3.10) collapses into a family of short
exact sequences; and if we define a polynomial r in q so that the coefficient of
ql/2(l(w)-l(y)-i) is dimHi(It, U)yx+, then

r(q) =Pys, + qPy, w. (3.11)

Suppose now that U is completely reducible (i.e. that Conjecture 2.5 holds). We
will compute the constituents of U and their multiplicities. So let z W. If L is
to occur in U, we must have c z(lz),i.e, zs < z. In that case the multiplicity of
L in U is just

dimH(it, U)ZX+O= dimHO(it, X)2x+o + dimH l(tt, X)x+o.
The first term is zero unless z w, in which case it is 1; in that case the second
term is zero (since it is a coefficient of Pw, 0). If z 4: w, the second term is the
coefficient of q/Ww)-tz)-l) in P,ws; so we have

U L @ l(z, ws)L (3.12)
Z

y< z-<ws
zs<z

Combining (3.12) and (3.11), we get the statement of Conjecture 3.4 for Lw.
(Here we use the identity 3.2(d).) Q.E.D.

In addition to Conjecture 2.5, there were four important parts to this
argument. The first was the computation of Hi(it, X) when X is a "nice
irreducible." Next, we needed the commutativity of a certain diagram. Keeping
track of various parities was necessary to make long exact sequences collapse.
Finally, we needed a way to determine the irreducible constituents of U from
the groups Hi(u, U); in this case H sufficed. These steps can all be carried out,
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with varying degrees of difficulty, for Harish-Chandra modules: they are given
by Theorem 6.13, Theorem 4.2, Definition 7.1, and Proposition 5.5 respectively.
(The only one of these requiring linearity of G is Definition 7.1.)

4. Homological algebra. Let q + tt be a parabolic subalgebra of g; we
assume that b c_ L We do not assume any longer that k is integral (although it is
still assumed regular), and we assume no relation between A- and the roots of b
in u. We fix throughout this section a simple root a of A-. Notation is as in
section 2, although we may again drop the subscript a; in particular s s, W
corresponds to a. We will be interested in the functors qo and q, which are the
analogues for of q) and . More precisely, let

0H 1/2 /3;
/ A(, )

let F be the finite dimensional representation of of extremal weight/; and
define

) (R)

etc., whenever Y is a (I)-finite I-module. The extra OH is included because of

THEOREM 4.1. ([2]) Let X be a ,_(g)-finite g module with generalized
infinitesimal character (i.e. X Px(X)). Then Y Hi(H,X) is a (I)-finite
module, and

Y q) Pwx_o(Y);. Wt\ W

here W= W(/)), the Weyl group of b in L
pSince WopH p for wo W, Px-o Pwow-, so wX-

w WW.
is well defined for

THEOREM 4.2. Let X be a 3()-finite module with generalized infinitesimal
character . With notation as above, suppose cl + u,

_
), and a A is simple

and integral.
(a) Suppose a A(u). There is a natural isomorphism

e_pu(ni (lt, l)S )) - f9(Ui (li,X ))
of modules, and a natural long exact sequence- qx(H (u,X)) P,_,_o.(Hi(u,qX))/,(Hi(u,X))-...

of modules. Suppose 3(g) actually acts by scalars on X. Let q)/X-+ X be the
natural map corresponding to the identity under Hom g(p/X,X)- Homg(X,X)
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(cf. [17]). If we consider the induced map on cohomology, then the following
diagram commutes up to a non-zero scalar"

Here the map on the right is induced by the natural isomorphism

r, -= Hom (+ r,
and the identity.

(b) Suppose a A(). Then there is a natural isomorphism

P _p.(Hi(11, tpX)) (Hi(H,X)).
Defining maps q@X- X, epg& Y---> Y as in (a), we get a commutative diagram

P_o (Hi(tt, q)C/X))

and similarly for the natural maps X--

’ P_o(Hi(1.t,X))
) P_o(Hi(II, X));

(c) Suppose a A(tt). Then the formulae of (a) hold, with all arrows reversed.

Proof. We consider only (a); (b) and (c) are quite similar. We first construct
the long exact sequence. To do this, choose a 0-stable filtration

0= FoC_F C_ Q_Fn=(F,)*

such that Fi/Fi_ is an irreducible module. By Theorem 4.1,

P_,_o.(Hi(I.t,f/X)) e_t_o.(Hi(tI,X (R) (F,)*)).
We compute the left side using the spectral sequence of the filtration. A typical
E2 term is

P_,_o.(H(tt, X) (R) Fi/Fi_ l).
By a theorem of Kostant ([10], Theorem 5.1), and Theorem 4.1, this is zero
unless there is a weight ), of Fi/Fi_ , and some w W, such that for some
w0 W,

X- t o. Wo(WX- o. +



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 815

Since the set of weights of Fi/Fi_ is W stable, we may assume w0
write

with n > 0. Thus

1. We can

W-I(x- /.)--X- /. -["

Since X-/x is also dominant (but singular) for A-, this forces

and thus w -1- or s. Furthermore we must have y- -/z or -s/z. Since these
weights are extremal in F*, this gives

Fi/Fi_ (Fx)*or
respectively. Thus the spectral sequence does collapse to the desired long exact
sequence. (Since

-/ s/ mc, rn > 0,

and c is a root of [9 in n, the (Fx)* term of the filtration may be chosen to
precede the (F)* term. This accounts for the direction of the arrows.)
We only sketch the proof that the last diagram in (a) commutes. This proceeds

by induction on i. Suppose first that 0. Then

H(n,Z) Z,
the space of n-invariant vectors in Z. Let 0 be an element of

and put F F. We can regard p+X as contained in (X (R) F*)(R) F, and hence
write

,o E(x, (R) vi*) (R)

Filter F* as in (a) and define k so that

F,/F,_ --(F)*.
Let F be the dual filtration of F. The argument for the first part of (a) shows
that the natural inclusion
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is an isomorphism; so we may assume that all vj occuring in the expression for 0
lie in Fk- . More precisely, we may assume that the vj and v* are dual bases of
F and F* obtained from bases of the I-primary subspaces, consistent with the
filtrations; in particular suppose ())=1 is a basis for the type of extremal
weight . Then the map

((x)) =- ((x))
takes ,0 to

= E (0.(R)*)(R)
l<j<t

Again the argument for the first part of (a) shows that we may assume vi* Fk
whenever x, 4 0. Since { v/* }ti= is a basis for the type of F* of extremal weight
-/, the map

h2((+x)"), -[+(x")

under consideration takes 5 to

l<i,j<t

The two remaining maps

and

hi.((+x)") -x"

are just contractions: they take 0 and 5 to

E Xii E Xii
l<i<t

respectively. Unfortunately it is far from obvious that these differ by a scalar. To
see this, we need to construct an explicit inverse for the isomorphism fl from
P_o.(/X) to q((X)). To do this regard q0[((pX)) as contained in F (R) pX
via the natural inclusion Fx C_ F. Let X X0, Xl,..., U be representatives of the
distinct W orbits of the form X-/ + y, with , a weight of F. For each i,
< < N, choose z ,(g) so that Xi(zi)= 0, but h(zi)= 1. Choose n > 0 so

large that (zi)", annihilates the X generalized eigenspace of ,(g) in F (R) Y
whenever Y has infinitesimal character X-/x, and 3(g) acts by scalars in Y.
(This is possible by [10].) For 5 q0,((pX)), define

g() ( I zin) F (R)
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We will prove three things about g" first that it actually maps q[((+X)H) into
P_p,(qd/X); next that f g is a scalar (possibly zero, but depending only on
8, X, and/0; and finally that h g f2 h2. At that point we will only need to
show that the scalar is non-zero. Suppose not; since f is an isomorphism, this
forces g 0. If we take X for example in category (9 of Bernstein, Gelfand, and
Gelfand, then the module H(u,X) lies in category (9 for [. It follows easily (cf.
[7]) that f2 is necessarily an isomorphism. Since 0 h g f2 h2, it follows
that h2 is necessarily zero. But by taking X to be the b-finite dual of an
appropriate Verma module, we can easily arrange

(H(tt,X)) 0

e_._o.((,+x)) + o,

forcing h2 4: O; details are left to the reader. So it remains only to prove the
stated properties of g.

First, we want

g((+x)") c_ e_..(+x)".

Evidently g commutes with the action of I, so it suffices to show that g(3) is
annihilated by tt. Suppose not. Write

If x u, then

0 yi t)i, with Yi (/X )u"
l<i<t

( g(6)) x(II?) ,
ni(IIz,)(x)

g(,)

with an obvious extension of the domain of definition of g. Now

x x .y @ + y x
Eyi x, (x)" g;

for the action of u takes U to U+ 1. Choose a maximal set {Xl,..., x) G u so
that

0 -- g((Xl... Xr)’-O).
Clearly such a maximal set exists, since

(x, Xr) -Yi ( (X, Xr)V (d/X)U( Fk+r-1

and F +r- 0 for large r. We want to show that the set is empty, i.e. r 0. Put
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g((Xl... Xr)-O). NOW if x0 u,

X0"031 XO" g((Xl... Xr)’) g((Xo... Xr)ff.)) 0

by the maximality of r. Also o lies in q@X C_ F (R) +X, since g is just the
projection on this space. So

If we decompose 1 according to the action of (I), it is easy to see that the
characters occurring are of the form X-/- p + 7, with y a weight of in
F,/r- 1; for this holds already for (xl... xr)5. So we get

By Theorem 4.1, there is a w W such that

In particular

Since y is a weight of F, which has extremal weight/, this implies that y w/,
and

Since X-/ and/x are dominant for zX-, and X-/ is singular only with respect
to the simple root a, we get

7 =/ or 7 s/ =/x- ma.

Since is a weight of F* +r-1, the second case is impossible and the first forces
r 0.
We turn now to the proof that f g is a scalar. So we continue to fix

l<i<tYi (R) vi, withy; (qX)". Choose a basis {Xq, Yr, L) of , with Xq u,
Yr , L ; here + is the parabolic opposite to . Write

N

I Z r" E aafly YaLflXy
i=1

using multi-index notation. Then g() can be written as a sum of terms of the
form

YaL.vi ( L,tfl, Xy,t)i

in a computable way. Keeping track of the weights of the center of f, we see that
fl g() depends only on the terms of the form Lay (R) Y,L,Xr,vi. More
precisely, there are elements u,,.j UO), < i, j < t, depending only on g, X, and
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/z, such that if y (X)",

(fl g)(P-o(Y (R) Di)) E (uijY) (
j=l

Here we must bear in mind that Pi_ can be written as an element of 3(0, just
as we used g as a projection for g earlier; so we can also find u0. U(f) such that

j--1

whenever y P__((/X)). We want to show that there is a constant c such
that

where Ix_,_o c_ 30) is just the kernel of the infinitesimal character X -/x p;
clearly this will prove thatf g c. id. To see this, we choose X so that (X)
is an irreducible module whose annihilator is precisely U(1). Ix_,_o. This can
be achieved using an appropriate highest weight module for X, so that (X)H is
an irreducible Verma module for (cf. [3]). In that case (X) (R) F has a unique
irreducible composition factor of infinitesimal character X- p; as fl g is an
intertwining operator for I, this implies that

f g p o. cP o.

Hence u cu ij Ann((+X)) U0) Ix_,_o., as desired.
Last, we must show that h g f2 h2. So suppose

l<i<t

On the one hand

(h g)(6) hl(I-Izin,o)

II2;’(hl)

l<i<t l<i<t
Xii

if we extend h to all of F (R) F* (R) X in the obvious way; the last equality is
because X has infinitesimal character X. We have essentially already seen that

A h2()- E Xii’
l<i<t

completing the proof of commutativity for H.
To extend to higher cohomology, we use a standard dimension shifting

argument (cf. [2], [14]). Suppose the result known for Hi-1, with > 0. One
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knows that U(I) is free over the image of the Harish-Chandra homomorphism
from (.q) to 3(I); choose a free basis {a,.}, and let A be its linear span. By
induction on degree, one verifies an isomorphism

u(u) (R) A (R) (R)

as a left u module and right }3(g) module. It follows that if X is a U(g) module
with infinitesimal character X, then

I Hom)()(U(),X)
is a U(g) module with infinitesimal character X, containing X, which is injective
as a U(tt) module. The short exact sequence

gives rise to

O--> x I--> Q O

0-) +x --> /I- q.,Q --> 0

0 --) q)+X -- q)q.,I --) epq,Q --> O.

Since F* (R) I is injective as a U(u) module for formal reasons, and +I is a direct
factor of F* (R) I, qA is injective; and similarly q@l is. Thus in the associated long
exact sequences, the maps such as

ni-l(lI, Q )--> ni(li, X)
are surjective. With some straightforward verifications, the commutativity of the
diagram for H-(t, Q) gives that for ni(lI, S). Q.E.D.
COROLLARY 4.3. Suppose X is an irreducible Harish-Chandra module for .q

(Definition 5.2) with respect to a subalgebra c_ and Cartan involution O. Suppose
ct and are O-stab&. Then ni(lI, S) is a (possibly reducible) Harish-Chandra
module for . In the setting of Theorem 4.2 and (2.4), we have

(a) P o.(Hi(tt, Ka(X)) and q)[.,t tnitlI’xt ,X)) have the same composition factors
and multiplicities whenever zX(u); and

(b) P__o,(Hi(tl, Q,(X)) and q)xd/x(H (tt, X)) have the same composition
factory and multiplicities whenever -- A(tt).

Pro@ The first assertion is [14], Corollary 3.10. For (a), for example, we
compare the long exact sequence of 4.2(a) with the long exact sequence in
cohomology coming from 2.4(a), and use the commutativity of the last diagram
in 4.2(a). By [17], Theorem 1.2, the map f2 in that diagram is an isomorphism. A
simple diagram chase gives the result; and (b) is identical. Q.E.D.
The corresponding result for non-integral walls is quite trivial, but we state it

for reference.

PROPOSITION 4.4. Let X be a (g)-finite g module with generalized
infinitesimal character X. With other notation as at the beginning of this" section,



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 821

suppose A is simple and non-integral. Then (with ttte notation established for
Theorem 2.7)

Proof. This is obtained from the collapse of the spectral sequence in exactly
the same way as the first assertion of 4.2(a). Details are left to the reader.
Q.E.D.

5. The special cohomology class of a Harish-Chandra module. In this section
we consider the problem of recognizing a Harish-Chandra module on the basis
of knowledge of some of its cohomology. To indicate what we need, we first
state a result for highest weight modules, which was used implicitly in section 3.

PROPOSITION 5.1. In the settingof section 3, suppose X is a module offinite
length. Then the multiplicity m(Lw,X) of L as a composition factor of X satisfies

m(Lw,X) < dimH(tt,X)wx+p.

If X is completely reducible, equafity holds.

This is obvious. The version we need for real groups will be based on the
results of [14].

Henceforth we suppose, as in the introduction, that g is the complexified Lie
algebra of a real semisirnple Lie group G; K is a maximal compact subgroup of
G, with complexified Lie algebra f, and the Caftan involution is written. 0.

Definition 5.2. A Harish-Chandra module for G is a g module of finite length
which is a direct sum. of finite dimensional semisimple f modules. We may
sometimes implicitly assume that G has finite center, and that the f modules lift
to representations of the group K; but this is not particularly important.
We define a "norm" on the set of irreducible f-modules as in [14],

Definition 5.1; and define the lowest f-types of a Harish-Chandra module X to
be the smallest f-types (with respect to II) occurring in X.

Fix an irreducible Harish-Chandra module Y, and let ff be a lowest f-type of
Y. Let q + u be the 0-stable parabolic subalgebra of q associated to by
Proposition 4.1 of [14]. By Theorem 7.16 of [14], the conjugacy class of q
depends only on Y. Let/2 be the highest N f-type of/ with respect to tt 3 f (i.e.
the representation on u N f invariant vectors in/), and put

= (R) (/"(,, n ,))*;
here R dim (u n p).
THEOREM 5.3. ([ 14], Theorem 10.1, [13], Theorem 4.5). With notation as above,

ff occurs exactly once in Y, and l occurs exactly once in Hn(tt, Y). Let Y denote
the unique irreducible subquotient of Hn(u, Y) containing the f-type ff. Then
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Y is independent of t; and the position of Y in the Langlands classification of
irreducible Harish-Chandra modules can be computed from that of Y.

The specification of Y in terms of Y is made explicit in Theorem 4.5 of [13].
The Langlands classification will be discused in more detail in section 6.

Definition 5.4. With notation as above, the representation Y is called the
special cohomology class of Y.

PROPOSITION 5.5. Suppose X is a Harish-Chandra module for 8, and Y is an
irreducible Harish-Chandra module for of non-singular infinitesimal character .
Let q + u be the O-stable parabolic subalgebra associated to Y. Then the
multiplicity m(Y,X) of Y as a composition factor of X satisfies

m(Y,X) < m(Y*,Hn(u,X)).
If X is semisimflle, equality holds.

Proof. Let bl be a maximally split 0-stable Cartan subalgebra of I; write
f + a l, with l) rq t, c bl rq . (Here 13 is the eigenspace of 0 in 8.)
Extend to a Cartan subalgebra of rq t (and hence of t). We ay write/ t*
for the highest weight of the t-type/x. In that case the element h t* associated
to/ by Proposition 4.1 of [14] has the following properties" first, ; actually lies
in (tl)*, and (by definition) the roots of in are precisely the roots of in
orthogonal to , i.e.

A(I,t) { A(q,t)l(,X) 0}. (5.6)

Next, X is close to/, i.e. there is a constant A depending only on 8, such that

-/1 < A. (5.7)

(This is immediate from Proposition 4.1 of [14].) Finally, in the Langlands
classification, Y is associated to the Cartan subalgebra b and a weight of the
form

(,u) (tl) * + (ClI) * ()I),
([ 14], Theorems 1.2 and 7.16).
We want to study Hn(u,X) using the spectral sequence of Theorem 3.9 in

[14]; in particular we are interested in the rq t-type . The E terms of this
spectral sequence look essentially like

/4e(. ,x) (R) (/ q(. ))*.
(Actually this is a sum of several E terms; but this point is unimportant.) Since
we are interested in

Hg(u,X)
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(i.e. the/ N f-type), it would be convenient to know that

n (R) n o (5.8)
whenever p > 1. Because of (5.7) above, this will be the case if is very regular
with respect to u N f, i.e. if

(a,X) is large when a A(u Cq f, t).

So the first step is to arrange that, using Zukerman’s translation principle ([ 17]).
So we choose an integral weight ([91)* with the following properties:

(a),(c,’lt) is large when a A(tt, t)
(b) 7 is dominant for (x, (5.9)
(c) (a, 7It’) 0 when a A(I, t)
We leave to the reader the easy verification that this is possible; one can take

for 7 a rational approximation of Re(X,,), multiplied by a large integer. Now
apply the translation functor from infinitesimal character (, ,) to (X, ,) + 7. The
spectral sequence technique used in section 4 shows that, on the level of
cohomology, this amounts to applying the corresponding translation functor for
I. Furthermore the effect of this translation on Langlands parameters is
computed in [13], Corollary 5.17 (see also [15], Corollary 4.8); the conclusion is
that the translation affects neither hypotheses nor conclusion in our theorem.
(We needed 5.9(c) to insure that the 0-stable parabolic associated to the translate
of Y is still q.) So we may assume (5.8). One concludes immediately that the
"edge homomorphism"

is surjective. By Theorem 3.5 of [14], this computes the action of U(g) on
H(u ,X)" modulo the kernel of r’; and in particular, the U(g) module
H(uG,Y)" occurs at least m(Y,He(u,X)) times in the U() module
H(u Cl f,X)". By a theorem of Harish-Chandra, the U(g) action on one f-type
of an irreducible Harish-Chandra module is irreducible and determines the
whole module uniquely. Hence Y occurs at least m(Y,He(u,X)) times in X.
The last assertion of the theorem follows trivially. Q.E.D.

6. The cohomology of irreducible induced modules. The next step in our
program of generalizing the Verma module arguments is to compute H’(u,X) as
an module whenever X is a "standard irreducible," i.e. an analogue of the
irreducible Verma modules (cf. Definition 6.7 below). The main case to bear in
mind is when X is a discrete series representation. From here on, we will be
making constant use of the Langlands classification of irreducible Harish-
Chandra modules, in the form described in [13] and section 4 of [15]. We recall
briefly the definitions. The real Lie algebra of a Lie group is denoted by the
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corresponding lower case German letter, with a subscript zero; complexification
is indicated by dropping the zero as before.

Let H c_ G be a 0-stable Cartan subgroup; put T1= H Cq K, A l= H t
exp(l0). Then H l= T 1. A l, a direct product. (One should remember that T
need not be abelian.) Let MA be the Langlands decomposition of GA’, the
centralizer of A in G. T is a Cartan subgroup of 34 i.

Definition 6.1. An M 1-regular pseudocharacter, or simply pseudocharacter of
H 1, is an ordered pair 7 (F, ), with F an irreducible representation of H 1, and
75 fi*. Further, we require the following compatibility" ], should be purely
imaginary, and regular with respect to A(m,tl). Let A+ (ml, t) be the positive
system defined by 7, and write Ore’, 0,’c for the obvious half sums of positive
roots. Then we want

dF + Pro’- 2P,,,’c"

We write (/ 1), for the set of pseudocharacters of H 1. The pair (F, ) defines in
natural way a discrete series representation (7) of M l, and a character

rl ,- exp(l,)

ofA .
Definition 6.2. Let 7 6 (/-) )’. Choose a parabolic subgroup P MA

associated to H in such a way that if , ],, then

Re<a,,) < 0

in n. The Langlandsprincipal series with parameter 7, r(7),for every root a of a
is defined by

II(7) Ind,(7) (R) , (R) 1.

Its irreducible subrepresentations (7) are called the LanglaMs subrepresenta-
tions of

THEOREM 6.3. ([11]; [15], Theorem 4.2; [13], Theorem 2.9). Every irreducible
Harish-Chandra module X for .q is infinitesimally equivalent to some (7); and
(H , 7) is unique up to conjugation. If r(7) has nonsingular infinitesimal character,
then it has exactly one irreducible subrepresentation, which we call (7).
One should bear in mind that the infinitesimal character of r(7) corresponds

to (b)* via the Harish-Chandra homomorphism. The next definition is just
(2.6); we repeat it for emphasis.

Definition 6.4. Suppose 7 (/-))’ is regular (i.e. ;(7) has nonsingular
infinitesimal character). Set

A- a A(,I)[Re(a,7) <0, or Re<a,7) 0, and Im<a,7) >0).
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Recall from [13], Proposition 6.1 or [15], Proposition 4.5, the element m H
associated to every real root c of [1 in 8; if G SL(2, FI), m is the element of
order two, and m is defined in general by embedding a covering group of
SL(2, Pl) in G using e.

Definition 6.5. The real root A(g, 1) is said to satisfy the parity condition
if the eigenvalues of 7(m) are of the form

exp( +_ 2ri(7, e)/(c, c));
here e _+ is defined as in the remarks after Proposition 5.14 of [13].

PROPOSITION 6.6 (@ [13], Proposition 6.1). Suppose y (/_)l), is regular, and
satisfies

+ +(a) For all Av either
(b) If A is real, then does not satisfy the parity condition

Then r(/)= () is irreducible.

Definition 6.7. The representations r(7) arising in Proposition 6.6 are called
standard irreducible modules.
To describe the cohomology of the standard irreducible modules, another

definition is convenient.

Definition 6.8. Let c- + tt be a 0-stable parabolic subalgebra of 8, with
_D . Suppose y (/ 1),. Let

such that
(a) -/. (F., 7.)
(b) 7q=-P(U)=
(c) FIT, and F[ T differ by a "sum of roots," i.e. a tensor product of several

one-dimensional representations of T on root subspaces of
Clearly 7 is unique if it exists, because of the compatibility required between

F and 7. We leave to the reader the easy verification that 7q does indeed exist.
Finally, we need a way to keep track of induction arguments, substituting for

the length function on W in the Verma module case. The first part of the next
definition is a slight modification (by a constant) of the one in [15], Section 5.

Definition 6.9. Suppose 7 (/)’ is regular. Set I(=(7)) f(7) 1/2l{a
A- 10c A }1 + 1/2 dim Ct CO, with co equal to half the dimension of the

split part of the fundamental Cartan subalgebra of 8. If q + tt is a 0-stable
parabolic subalgebra, and 1 [, define

l(7) { A(u, )10( , and either is compact and (,) < 0,

or a is noncompact and

+ 1/21 (c
It is fairly easy to verify that both l(,/) and 1.(7) are integers; for 1(,) one has
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to remember that if l is identified with the fundamental Cartan subalgebra by a
Cayley transform, then 0 is modified by a Weyl group element of determinant
(-- l)dim ’-2Co.
THEOREM 6.10. Suppose y (12t) is regular, and 0 + u is a O-stable

parabolic subalgebra, with ) L Then the representation () of occurs exactly
once in H*(u, ()), in degree lo(y).

Proof. Since both the Langlands classification and the cohomology groups
behave well with respect to Zuckerman’s translation functors (cf. [15], Corollary
4.8), it suffices to prove the result with y replaced by y + , for some weight of
a finite dimensional representation, such that y + is regular and

+ ++
So we may clearly assume that

IRe<,rt,>l is large for A(g, O’) non-real.

Under this hypothesis, the 0-stable parabolic subalgebra 01= l+ n of
associated to () as described in section 5, is just the one defined by 7]t,; in
particular is the centralizer of in , and g I. Choose a Cartan subalgebra
of f contained in l, and a Borel subalgebra of f contained in 0 f and
01 f; let k+ (f,t) be the corresponding positive system, which we use to
identify representations of f with their highest weights.
We first calculate the lowest f-types of (2o)" This is done in Theorem 7.16

of [14], in terms of the lowest (i 0-types of a certain representation of I.
Using Lemma 6.33 of [14], it is easy to express that representation in our present
notation; and Theorem 7.16 of 14] becomes

LEMMA 6.11. Let {/) be the lowest Mr-types of ((Vo),,). Then
( i + 2P(u 9)) is the set of lowest f-types of (yo); here 2p(U )

The same result calculates the lowest f-types of (7), but in a positive root
system respecting q. So we choose w E W(f,0 which takes the positive root
system defined by qln f and A* (f,)n A(q f,) into A* (f,0. Then we get
(since 7o’ (Tq)1no + p(H) p(H 1) + p( n H1)).
LEMMA 6.12. In the notation of Lemma 6.11, set a p(u) p(u 1) + p( ul).

Then the lowest f- types of (7) are

{w(/7 + 2O(tt t"l ) + a)};
and every - type of (y) is of the form

w(/7i+2p(u Ap)+a+ Q),
with Q a sum of roots of in 1.
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Proof. The first statement is just Theorem 7.16 of [14]; and the second is
established in the proof of Lemma 8.8 of [14]. Q.E.D.
We now use the spectral sequence in Theorem 3.9 of [14] (cf. also section 5) to

compute

H*(II, .(.))i+ 2o<ulInO),
i.e. the indicated f-primary subspace. The E terms of this spectral sequence
were written down after (5.7). Suppose one of them contains the f-type in
question. Then there are an f-type occurring in HP(u Cl f, (7)), and q roots
fil fiq of in u n 0, such that

i + 219(lI1 I n ;p) 8 Z i.
By Kostant’s version of the Bott-Borel-Weil theorem, there is a f-type fro of (7),
and a Weyl group element wo (having a certain property with respect to
A + (I n f)) such that l(wo)= 19, and

a Wo(o + p) p;

here of course

19c 1/2 Z a.
aA+(f,t)

Since 7It. is close to/i, and is assumed to be very regular, i and 6 lie in the same
Weyl chamber for f; so w Wo-1 Our equation now looks like

w( + 2o(ul n f’l )+ 0 + E i)= /0 -- Pc"

Inserting the information from Lemma 6.12, we get

i + 219(ul n ln ) + o + fii g "!- 2t9(. n O) + Q + a + w

with Q a sum of roots in (]1. Clearly

a= a= - a
A(u) a Ea(u)-- A(ul C t)

.A(.) aZX(u)

W pc 19c .
aEA(unO

So we can rewrite the above equation as

2 i---- 2 a+Q.
aA(unun)
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Clearly this is impossible unless

(/3i)=A(uNu’cq),Q=0.
So the Cq f type i-t" 20(1110 (p) occurs exactly once in E
exactly once in H*(u, (7)); the degree in which it occurs is

and hence

I{a A(u, tl)l a is compact, and (a, Tlt,)< 0,

or a is noncompact, and (a, ’)/Itl ) 0},1
It is an easy exercise to check that this is precisely/0(7).

It remains only to check that the irreducible representation of r(T0)
occurring in H*(11, (7)) and containing the lowest A tMypes of (7), actually
coincides with (70). By the Langlands classificatio.n, we can write

where ’(7) (ctl)*. (This assume the easily verified fact that the ( f-type we
have been dealing with is f3 u1-minimal in the cohomology ([14], Definition
3.11).) By Theorem 4.1, there is an element w W(!g/t 1) such that

w(v).

Since H*(u,X) behaves well under translation, we may assume this holds for all
7 in some Weyl chamber. Hence

for all ()1),; clearly this forces w W([1/I). By shifting 7 again, we can
arrange for the stabilizer of FoI r, in W([1/b1) to be all of W(I1/b) (cf. [15],
proof of 6.1). For such 7, we deduce

(since (7) depends only on the conjugacy class of 7). This equality persists to
all 7 by translation, as desired. Q.E.D.
Up to this point, our arguments have been fairly routine extensions of those of

[14]. The next result seems to be fundamentally deeper, however. (Even if a
more elementary proof exists, the ideas used below are interesting in their own
right.)

THEOREM 6.13. Suppose 7 (I1 1), is regular, and (7)= r(7) is a standard
irreducible (Definition 6.7). Then r(7) has no cohomology other than that specified
in Theorem 6.10. More precisely, let + 11 be a O-stable parabolic subalgebra of, )2 c a O-stable Cartan subalgebra, and (7) (H2)’ a regular character for
(so that 2 (h 2), is a regular character for ). Then (72) occurs in H*(u, (y))
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if and only if (H l, 7) is conjugate to (H 2, It2); and in that case it occurs exactly
once, in degree/0(y2).
The proof requires some preparation. We will need to study extensions in the

category of (8, f) modules (cf. [1]). This problem is related to cohomology by

THEOREM 6.14 (Zuckerman). Suppose y (I2t) is regular. Let + tt be
the parabolic associated to 3/ (as in section 5). Then there is a spectral sequence
Extn(HR-q(u,X), r(y0)) Extfq(x,r(7)). Here R dim(u (q ), and X is

an), (,) module; the E’q term is zero unless p and q are both non-negative.

The proof of this result relies on Zuckerman’s "derived functor" construction
of representations, which has not yet been published. So we leave the result
unproved; since our goal is simply to formulate a conjecture, this is not very
serious.

LEMMA 6.15. Suppose is split, and i is a fine f-type ([14], Definition
6.11). Suppose X is a (,) module offinite length, containing the f-type exactly
once; and suppose () acts by scalars in X, according to a regular infinitesimal
character. Let r(y) be the principal series representation of containing l, such
that U() acts by the same scalars in the lz -types of X and r(y). Then there is a
q-module map from X to r(y) which is non-zero on the f-type t.

Proof. Recall that r(7) is defined in such a way that (7) is its unique
irreducible subrepresentation. By the assumptions of the lemma, (7) must be
equivalent to the unique irreducible constituent of X containing /. By
Casselman’s (apparently unpublished) realizability theorem, we can find a
representation of G on a Hilbert space of which X is the space of K-finite
vectors. Let G= KAN be an Iwasawa decomposition; suppose X a* is
dominant and gives the infinitesimal character of X. Let N be the unipotent
group "opposite" to N, and let p be half the sum of the roots of a in n. Consider
the asymptotic expansions of matrix coefficients of ( along the positive Weyl
chamber A / (cf. [16], Theorem 9.1.1.1). Every exponent occurring in such an
expansion is of the form w)t-Q-o, with Q a non-negative integral
combination of roots of in n; in particular, the weights + a p, for a a root
of in n, do not occur.

For fixed w X, consider the map

V ev,

taking v to the (polynomial) coefficient of ex- in the expansion of (((a)v, w). It
follows easily Oust as in the proof of Casselman’s subrepresentation theorem)
that if Yl , Y2 c, then

PYIt, 0

[(x + ev, w.
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Since g(g) acts by scalars on X according to a regular infinitesimal character, a
standard argument now shows that we must in fact have Y acting semisimply
on the p, w; so O(Y2) always acts trivially, and therefore p, is constant. Thus we
have maps

x/x-c
%(Y" v) (?- p)(Y)v (Ya);

of course %(v) is just gv, w.
By the definitions in Langlands’ classification (cf. [11]), the exponent ?-p

occurs in the expansion of the matrix coefficients of the/ f-type in (7), and
hence also in X. So we can find a w X so that % is non-trivial on the/ f-type.
By Frobenius reciprocity, this gives a map (for some l M)

X --> Indnv61 (R) k (R)

which is non-trivial on the/ f-type. Since ? is negative for N, the left side is of
the form r(7’). Clearly (7’) is equivalent to the unique irreducible constituent
of X containing/, and hence to (y); so r(7) is equivalent to r(7’), proving the
lemma. Q.E.D.
COROLLARY 6.16. Suppose Xo (7) and X ,(.yl) are distinct irreducible

(fi, f) modules with regular infinitesimal character, and Extl, (Xo,X1) :/: 0. Then for
some (0, 1), X is a subquotient of r(’l-i).

Proof. By translation, we may assume that Xo and X have distinct lowest
f-types (argue as at the end of the proof of Theorem 6.10). Let (/i, qi) be lowest
f-types of X and associated 0-stable parabolic subalgebras; by a further
translation we may assume [i is split. Suppose for definiteness that ]l/z111 0ll;
since

Ext f(Xo, Xl) Ext,,(X ,X0)

([ 15], Lemma 3.16), this causes no loss of generality. Let E be a proper extension
of X0 and X1; thus

O- XI- E-Xo- O

is exact, and X is the unique irreducible submodule of E. Obviously E has no
self-intertwining operators other than scalars, so () acts by scalars on E. By
the proof of Theorem 5.2 of [14],

Hg(ttl, E)
contains the il f type /l exactly once; and this is accounted for by the
occurrence of (,l) as a composition factor. Furthermore Theorem 2.6 of [2]
(cf. [14], Theorem 3.3) implies that g(I) acts semisimply in He(ul, E). Since is
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[lsplit and l is fine (by [14]) we can apply Lemma 6.15. The conclusion is

Homt,ar(HR(n,E), r([o,)) v O.

By a trivial "corner argument," Theorem 6.14 says

Hom, r(E, (yl)) v 0.

Since (),1)= X1 is the unique irreducible subrepresentation of 71, X1 is the
unique irreducible subrepresentation of E, and XoX1, any non-zero map is
injective; so X0 occurs in ’(l). Q.E.D.

Proof of Theorem 6.13. We proceed by downward induction on dim n; and
for fixed n, by downward induction on the degree in which (y) occurs.
Notice that if we can only show that (H,) is conjugate to (H, ), then we are
done by Theorem 6.10.

Suppose first that () is actually a quotient of Hi(n,(7)). Let = + u
2 and ql f2 f2be the parabolic subalgebra of associated to , + (u2 + u) + u

the corresponding parabolic subalgebra of g; put R =dim(u2 ). By
translation, we may as well assume that 2 is very regular, and that f2 is split.
The regularity of y2, together with the spectral sequence in the proof of
Proposition 5.5, shows that if Y is any Harish-Chandra module for I, then
[2(1) [2(()q2) cannot occur in HJ(n2, Y) unless j R. The long exact
sequence in u2 cohomology associated to the quotient map

H/(rt, (T)) --) ()’2)
now shows that

contains (),,) as a subquotient. Now the Hochshild-Serre spectral sequence

Hf (nE, H q (n, (r)))
respects the module structure. We want to use this to investigate the
occurrence of ,(T,)in He+(n’,(T)). This will be non-zero unless
occurs in either

(a) HR+i(Ha, Hi-j+I(H,))),j ) 2, or
(b) HR-j(g2, Hi+j-I(g,(y))),j 2.

The first case we already know to be impossible. In case (b), the inductive
hypothesis would give (H 2, 2) conjugate to (H 1, ), and we would be done. So
we may assume HR+i(l,(y)) contains 2 u2:(0. If 0, then dim > dim
and we are again done by induction. So u= 0, and I; thus is split, and b2
is a maximally split Cartan subalgebra of I.
Changing notation, we now let ql= I1 + ul be the parabolic associated to

again a translation allows us to assume that is split, with maximally split
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Cartan subalgebra b l. Write

i ti ..}. i

v2 (X2,
with a 01)*, etc. The spectral sequence in the proof of Proposition 5.5 shows
that the lowest N -type of =() has approximately the same length as some
-type of (). More precisely, this implies that there is a constant C depending
only on g, such that

Let " 2 be the -inner automorphism that takes (,&)) to (2, ); then
+applying (*) to all translates of , we get whenever ()* is a &v dominant,

real combination of roots, then

I  lel.
Apply this to such that [, 0; by the special nature of , there are many

+such which are dominant (but singular) for v. We get

so in this cse [: 0. It follows that (a) 2. By a standard argument, we
can therefore find an element x K such that

Ad(x)" Cl

__
CI2.

Replacing (H1,)’) by its conjugate by x, we get a _Cl2, and hence
M 1Al C_ M2A 2. In particular t0 C_ rag; so (replacing H by another conjugate),

and therefore

We claim that I. Assuming this for a moment, let us complete the proof of
the theorem. It follows easily that ? and )2 have the same length. We can now
apply the arguments in the proof of Theorem 5.10 to compute the multiplicity of
the lowest A f-type of 2r,()’o) in H*(u2,(y)); and just as in the proof of that
theorem, we conclude that (after a translation) this is zero unless )’2 is conjugate
to )’, as desired.
We have shown that any quotient of Hi(u, ()’)) is of the form ,(),2), with ),2

conjugate to . Finally we claim that Hi(u,(y)) is completely reducible.
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Suppose not; then we can find a quotient representation (3,2) of Hi(tt,’(y)),
and another constitutent 3r(,o) of H;(u,(’/)), such that

Ext,, tn(t(y), t(y)) v 0.

Since 2rt(,,) occurs exactly once in the cohomology, we may assume that these
representations of are distinct. By Corollary 6.16, either

(a) ;i] is a subquotient of r(y), or
(b) is a subquotient of rt(,).

It is easy to check that rt(,2) is a standard irreducible, since or(),) is and , is
conjugate to ),2. So case (a) is impossible. In case (b), write

3 (X3, 3)
according to the decomposition b3 __t3+ 03 of the corresponding Cartan
subalgebra. Then (see for example [14], Lemma 8.8) we have

by a translation we can arrange to make this difference very large. But is
close to the norm of the lowest f-type of (7); and 1,21 is close to the norm of
the lowest N f-type of (7), which in turn is close to the norm of some f-type
of (,) by the spectral sequence after 5.7. So again we have a contradiction,
proving Theorem 6.13.

It remains only to verify our assertion that = . It is convenient to prove
something much more general. Suppose , ( )’ is a pseudocharacter, and
a A(, b) is a real root satisfying the parity condition. By Proposition 4.5 of

^2t[15], there is a pseudocharacter Ca(q,) (H ) such that 7 occurs on the right
andC (7) on the left of a character identity of the form given by Theorem 4.4 of
[15]. Here H 2 is the more compact Cartan obtained from H by a Cayley
transform through a. Ca(y) is not unique. The real roots of A(.q,)2) may be
identified with the real roots of A(,b) orthogonal to a. So the following
definition makes at least a preliminary sort of sense.

Definition 6.17. Suppose (/)’. A sequence (fl,fl2,’’’,flr) of
orthogonal real roots is called admissible for , if one can make choices so that
C,CI,_,... C,(y) is defined. The compactness of ,, c(y), is the dimension of t’
plus the order of a maximal admissible sequence for y. By "maximal" we mean
that ,’= C, C,(y) is defined, but no real root for {’ and the corresponding
Cartan satisfies the parity condition. So c(y) is not obviously well defined. Our
first task is to prove this.

LEMMA 6.18. Suppose " (’)’, a),A(g,b)2_ is real and satisfies the parity
condition. Fix a choice Ca(y) y’ in (H If fl A(g, 9) is real and orthogonal
to a, let fl’ A(g,b2) be the corresponding real root. Then the , and y’(m,)
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involved in the parity condition satisfy
(a) If a and span an A A , or a G2, then

v(m )

(b) If a and span a B2, and both are long,

(c) If a and span a B2, and both are short,

B,-’B

7’(m,) 7 (mt)7 (mo-2+ ),
for an appropriate choice of m+/ (which is defined only up to inverse).

Proof. Recall that -% is defined as the parity of

2(a2, 2p)

where 2p is the sum of a set of positive compact imaginary roots of ha, and a2 iS
the root of b2 corresponding to a (cf. [13], remarks proposition 5.14). Obviously
this is independent of which positive root system is chosen. A very routine
argument therefore reduces us to the case when G is split, with b a split Caftan
subalgebra spanned by a and/3. Thus G is SL(2, FI) SL(2, FI), SP(2, Ft), the
split real form of G2, or a covering group of one of these. We can therefore
compute explicitly; details are left to the reader. Q.E.D.
Lemma 6.18 guarantees that the notion of a maximal admissible sequence

(/ /,) depends only on the roots, and not on choices of C, Ct,(7). We
turn now to the proof that c(7) is well defined. Just as in the proof of the lemma,
we may assume G is split, and b is a split Cartan subalgebra. We may also
assume G is simple. It is convenient to treat several cases separately. Notice that
%is -1 for alla.

Case I. 7(m)-"- for all a. (This always holds if G is linear.) Only
integral roots can possibly satisfy the parity condition, so we we let R denote the
system of integral roots of b in . We write/ { k } for the coroots. By Lemma
6.15 of [14], if + D ,
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Since % is always 1, it follows that if we put

/o ( & a does not satisfy the parity condition )

/l ( & a does satisfy the parity condition ),

then for i, j (0, 1),
i q" j -- i+j (mod2)"

Thus we can think of R0 and R as the compact and noncompact roots of a
compact Cartan subalgebra o in an equal rank semisimple symmetric pair
(fi,t). By Lemma 2.61 of [12], for example, and Lemma 6.18, c(7) is nothing
but the rank of this symmetric pair, ie. the dimension of a maximal reductive
abelian subalgebra orthogonal to I. In particular it is well defined.

Case II. 7(m2) +__ for all a, but 7(m,0 is not always
___

1. By Lemma 6.15
of [14], 7(m,) --- if a is short in type B,,, C or F4, and 7(m) +- otherwise.
It will therefore be convenient for us to refer to all root lengths in A,, D,,, G2,

and E as long; we apologize for G2. A long root a satisfies the parity condition
if and only if

1/2Z-Z.

If is long, (m2) 1. So in the setting of 6.18(c), the sequence (,/9) is
admissible if and only if and fi are integral, and (fi, a) is not admissible. Let R
be the system of roots which are either short and integral or long and half
integral (i.e. integral for 27). It is an easy exercise to verify that this is a root
system; we need only show that if is long and half integral, and fi is short and
integral, then s() is half integral (which is obvious), and s(fi) is integral
(which is easy to check, since 2(a,7)/(fi,/3)= 2. 2(a, 7)/(a,a) is integral).
Put

Ro

R

a R a does not satisfy the parity condition}

{a R la is long and integral or short and

does not satisfy the parity condition}.

{ a R[a does satisfy the parity condition)

{ a R [a is long and not integral or short and

does satisfy the parity condition).

It is routine to check that

R + Rj
_

Ri+j (mod2)"



836 DAVID A. VOGAN, JR.

So again we can think of R0 and R as the compact and noncompact roots of an
equal rank syln.metric pair (.q0, f0); and the remarks above show that c(,) is the
rank of go/f0.

Case III. Otherwise. If ,{(m2) va +_ 1, then Lemma 6.15 of [14] shows that ct

is strongly orthogonal to all other roots of the same length. This can happen
only in type Cn. We can identify [I with FV, in which case the roots are

2__ 2_+ e -_+ . Put c -2ei. We choose all the m,, consistently, so that m,, m for
all and j. (Recall that m is defined only up to inverse.) Choose a square root
exp(crit) of (m2), with --- < < -, 4: 0. Then define 6i 0 or by

y(mo,,) (-1)’exp(rit);
then a satisfies the parity condition if and only if

Furthermore

i "+" (mod 2).

-1m +__ e, +__ e. ms,m,
so/3 _+ e +_ satisfies the parity condition if and only if 2(fl,/)/(fl, fl) is an
integer of the same parity as i + tj. Finally, if c and/3 are orthogonal but not
strongly orthogonal, and ct satisfies the parity condition, then (c, fl) is an
admissible sequence if and only if

2t + 6 + 6j (mod 2),

by 6.18(c). In particular one can check easily that in this case, one of (a, fl) and
(fi, a) is admissible if and only if one of ( fi, a 7 fl) is admissible.
Verification that c(y) is well defined is now a straightforward problem, which we
leave to the reader. (It can be formulated in terms of g0, 0 as in the other cases,
but this is not particularly necessary.)

So c(y) is well defined. The reason for introducing it is

PROPOSI,IOY 6.19. Suppose yi (i),, 1,2 are regu&r pseudocharacters
with regular infinitesimal character, q + u & a O-stable parabolic subalgebra
containing n 2, and (7) occurs in Hi’(n,(71)). Then c(7 ) c(72).

In the setting of Theorem 6.13, clearly c(y)= dimt, and c(y2) > dimt2. We
had 2 t 1, so this result will give 2 1, and as desired. This will therefore
complete the proof of Theorem 6.13.
The idea of the proof of Proposition 6.19 is to relate cohomology to Ext using

Theorem 6.14. So we begin with some formal results, which are observations of
G. Zuckerman.
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Definition 6.20. Block equivalence of irreducible Harish-Chandra modules for
is the equivalence relation generated by X Y if

Extl, r(X, Y) 4: 0.

Equivalence classes are called blocks. If B is a block and X is a Harish-Chandra
module, we say that X is of type B if every irreducible composition factor of X is
in B.

LEMMA 6.21. Suppose X is a Harish-Chandra module for g. Then

blocks B

a finite direct sum; here X is of type B.

Proof. This is obvious.

COROLLAR’ 6.22 (Zuckerman). Suppose B and B’
type B, and X’ is of type B’. Then

are distinct blocks, X is of

Exti,, 7(X, X ’) 0.

Proof. This follows from the interpretation of Ext in terms of long exact
sequences of Harish-Chandra modules (cf. [1]), and Lemma 6.21. Q.E.D.
LEMNA 6.23. Suppose ,i (i2ii), is regular, (i 1,2), and (y2) occurs in

r(/). Then c(7 ) c(y)).

Proof. We proceed by induction on /(1). The argument is very similar to
parts of section 5 of [15], to which we will often refer; so many details are left to
the reader. Suppose first that there is some root c Av+, such that is complex,
and 0a A. By [15], we may choose a to be simple. Choose a weight/x of a
finite dimensional representation so that ,+/x is regular and dominant for
s(A). Then r(y ) is obtained from r(, +/) by coherent continuation by
/({1-t-/X) /(),1)_ l, and c(yl+/) c(yl). So (2) must arise from some
constituent (,3) of r(, +/x) by coherent continuation by/. Such continuation
was analyzed in [15]. Using the inductive hypothesis, the fact that/(2) <
([ 15], Lemma 5.5), and Corollary 4.8, Lemma 4.9, and Theorem 4.12 of [15], one
deduces immediately that c(,2) c(3). (The only non-trivial fact is that if
and ,’ occur in the same character identity as in [15], Theorem 4.4, then
c(,)= c(,’); but this is almost the definition of c(,).) By induction,
c(,3) c(, +/x), proving the lemma in this case.

So we may assume that no such roots a exist. This implies that the system of
real roots is spanned by simple roots. Suppose there is a real root c satisfying the
parity condition. After a series of continuations across real walls not satisfying
the parity condition (which are handled just as the complex roots before) we
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may assume a is simple. We can now set up a character identity ([ 15], Theorem
4.4) which transfers the problem to a more compact Cartan, and smaller/(q/l).

If no such real root a exists, then r(q/l) is a standard irreducible, and q/a must
be conjugate to q/l; so c(q/l) c(q/a). Q.E.D.
COROLLARY 6.24. Suppose q/ (I i)t is regular (i 1,2), and

Extd,((q/1), rr(q/a)) 4: O.

Then (q/l)=

Proof. Since 7/’(q/E) has (q/2) as its unique irreducible subrepresentation,
Lemma 6.21 implies that it must be of type B for some block B. By Corollary
6.22, (q/x) also belongs to B. But then Corollary 6.16 and Definition 6.20 imply
that c(y 1) c(y2). Q.E.D.

Proof of Proposition 6.19. We proceed by downward induction on the
dimension of u; then for fixed n, by upward, induction on the number N of roots
of b2 in u not belonging to A; then for fixed u and N, by downward induction
on i. By Lemma 6.20, (q/z) belongs to the same i-block as some quotient
of Hi(u,(q/1)). By Corollary 6.24, c(q/)= c(q/3). Since a and 3 define the
same infinitesimal character of I, they are conjugate under the adjoint group Lc.
Since this preserves n, N(q/2) N(q/3). So we may as well replace
Arguing exactly as at the beginning of the proof of Theorem 6.13, we are
reduced to the case when is split, and Igac_ is a maximally split Cartan
subalgebra.

Define a positive root system A for b2 in g to consist of the roots of [92 in tt
together with the real roots in &v+. Then

N I Xt n
Suppose first that N 0, i.e. A- A. Then (at least after a slight translation

to "generic" q/a) q is the 0-stable parabolic subalgebra associated to q/a; and
Theorem 6.14 gives a spectral sequence

Exte f(HR-q(H,(71 p+l
t, tn )),rq(q/o2))Ext,, ((q/),r(q/2))

Consider the E2’R-i term; this is

Hom(H (1I, , (q/1)),
which is non-zero since (q/2) is assumed to be a quotient of the cohomology
group. This will "persist to E" unless either

(a) Efe’R-i+P-4: O, some p > 2, or
(b) 04: E’’n-i-+l Ext(Hi+;-l(u,(vl)), (72)), somep > 2.

Case (a) is obviously impossible. In case (b), + p- > i. By Corollary 6.24,
Hi+e- x(u, (q/1)) must have a constituent t(q/) such that c(q/3) c(q/2). Since q/3
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and ,2 have the same infinitesimal character for I, it follows as before that
N(73) N(72). By induction c(,3) c(,l); so in this case c(y l) c(,2). So we
may as well assume that the E2’R-" term persists to E, i.e. that

Ext7i((yl),(y2)) =/= 0.

By Corollary 6.24, c(7 l) c(y2).
Suppose now that N > 0, and that the result is known for smaller N. Choose a

simple root a Ai such that a A-. Necessarily a is not real. Suppose first
that a is not integral. Choose a weight 2 /_2 of a finite dimensional
representation of G, such that ,2+/z is regular and dominant for s(A.). Let
/z H be the weight of a finite dimensional representation of G corresponding
to ]l

2 under a Gc-inner automorphism taking (H 2 Av+) to (H +,Av), and let
a G A be the simple root corresponding to a under the same automorphism.
Define qo, g, using /x

2 as in section 2. We write (loosely) (7+/x) for the
representation +((71)); by Corollary 4.8 and Lemma 4.9 of [15], this notation is
precisely correct unless a is noncompact or real satisfying the parity condition.
By Proposition 4.4, (,q2+/x2) occurs as a quotient of Hi(tt,(yl+/zl)).
Furthermore

+ +

has only N- roots not in A I-; so by induction

C(.y2..[.. 2)= C(/1 . 1)
(By),1+/x, we actually mean the pseudocharacter corresponding to the
representation we are calling (3,1 + tl).) Since c(- i) c(3,i + ti), we are done
by induction.

Suppose next that a is integral. Set

n
2(a,y2)

and define q, +, etc. corresponding to the simple root a as in sections 2 and 4.
We want to use the long exact sequences of Theorem 4.2; we use the notation
there freely. Notice that we are in the case -a A(tt), with X (,l).

Suppose first that qX 0. By the first long exact sequence of 4.2(c), we have

In combination with Corollary 4.8 of [15], this implies that (02 -na) is a
quotient of H;-(tt, X). Now N(72-na)=N(y2) 1; so by induction
c(72- ha) c(7). Since c(y2- na)= c(,2), we are done in this case.
The remaining possibility is qX 4: 0. We have a short exact sequence 2.4(b)

0X q0+X- Q-)0.
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Applying Corollary 4.3(b), we find that Hi(tt, Q) contains (72- na) as a
subquotient; so some irreducible constituent Y (,4) of Q is such that
(2_ ha) occurs in Hi(It, Y). By [15], Theorem 3.9, X and Y belong to the
same block B; so by Corollary 6.24, c(3,1) c(4). Since c(3,2) c(y2 ha), it is
enough to prove the theorem with (,4,3,-na) replacing (,1,/2). But since
N(,2- ha)= N(3,2) 1, we are done by induction.
With the proof of Proposition 6.19, that of Theorem 6.13 is complete as well.

7. The cohomology of irreducibles. In this section we will make explicit the
implications of Conjecture 2.5 for cohomology. As remarked in the intro-
duction, a technical problem has made it necessary to assume henceforth that G
is linear. There is no problem in extending the proofs to the nonlinear case, but I
have been unable to formulate the parity condition in the result properly. For
linear groups, this is based on the following variant of Definition 6.9.

Definition 7.1. Suppose G is linear, and 7 ( 1), is regular. Put

+ + 12i/’((X)) =/’(X) 1/2 I{c Ar Ic is integral and 0c Ar }l + 1/2dim co,

where co is as in Definition 6.9.

THEOREM 7.2. Suppose G is linear and Conjecture 2.5 holds for G and the
various Levi factors of O-stable parabolic subalgebras of g. Suppose yi (i2ii),,

1,2, are regular pseudocharacters of O-stable Cartan subgroups Hi, with regular
infinitesimal characters. Let + tt be a O-stable parabolic subalgebra of
containing . Then

(a) Hi(tt,(7)) contains t(7)as a composition factor only if (/1(71)
/i(.2))_ (/(,2)_ i) is even.

(b) If ’(71) and (]/2) are distinct and l(),1) >/ /(y2), then Extl, r(ff’(’/1), (y2))
=/= 0 only if/l(,y1)_ /I(.)t2)is odd.

(c) Hi(u,(yl)) is completely reducible as an module.
(d) In the setting of Corollary 4.3, suppose a Av+ is a simple integral root, with

(dl) /f a A(u), then the multiplicity of ,(r) in H(n,,U(X)) is its
multiplicity in Hi+ l(u,X)plus the multiplicity of ,(y na) in H(n,X).

(d2) /f c 5(i), then the multiplicity of (2) in Hi(tt, U(X)) is zero unless
p,((,2)) 0 (i.e., lies in the r invariant with respect to I), and in that case it is
the multiplicity of- 2rt(7q) in

i+1%,x(n (u,X)) n -l(lI, X) ( n (tt, X).

(d3) If - A(n), then the multiplicity of t(y) in Hi(u, U,(X)) is its mul-
2 FlOl) in Hi(tt, X).tiplicity in Hi-l(tt, X) plus the multiplicity of (y-

(e) In the setting of (d), (V3) occurs in U,(X) only if/I(V3)-/i(yl) is odd.

Proof. By now this is quite routine. We proceed by induction on dim g, then
for fixed g on/(/1). Consider first (a). If (.l) is a standard irreducible, this is a
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rather weak version of Theorem 6.13. So suppose (),1) is not a standard
irreducible. Then we can find a simple root a Av+, such that 0a z.v+, and if a
is real, then a satisfies the parity condition. If a is not integral, Proposition 4.4
computes the desired cohomology in terms of that of some (),3), with/(),3)
/(),1)_ 1, and one easily checks that this computation preserves the parity
condition we want. So assume a is integral. By [15], Theorem 4.12, we can find
),3 with /(),3)= l(),)_ 1, such that (),1) occurs in U((),3)), and also
/I(),3) /I(),1)_ since a is integral. Since we are assuming U is completely
reducible, we may as well replace (),1) by U((),3)). Since /(),3)< /(),l), we
can apply (d) to study H’(tt, U((),3)); we deduce at once (from applying (a) to
),3 and (e) to the algebra I) that the desired parity condition holds.

Consider next (b). By Lemma 5.5 of [15], (),1) is not a constituent of
There is a short exact sequence.

0-+ 0-+0.
The long exact sequence in Ext, together with the fact that

Homn, r((),l), )=0,
implies that

Extl, t!((),l), (y2)) =/= 0.

Let (for a moment) c + tt be the 0-stable parabolic subalgebra associated to
y2; after a shift we may assume is split. By Theorem 6.14, either

(1) Ext cr(HR(n2, (),1 q.f ),2)) t(o)) :/=0, or
(2) Ho,,c(HR- 1(1.t2, ,(), 1)), ,77.i(),20)) :#: 0.
In case (2), Hg-l(u-,(),)) must contain (),,2). Since R 1,(),2), (a) implies

that ll(),l) li(),2) is odd. We claim that case (1) cannot arise. For let Y be the
direct summand of Hg(n2, (),)) with the same infinitesimal character as q(),2),
and let E be the extension of h(),,2) and Y corresponding to the element of Ext.
By Proposition 5.5, Y cannot contain t(),2). We want to apply Lemma 6.15 to
E. By a shift, we can arrange as usual for Y not to contain the lowest C) f-types
of h(),2). 9(I) acts semisimply on cohomology and hence by scalars on Y. To
apply the lemma, we need it to act by scalars on E. So suppose z (I) and z
annihilates h(),2). Then the action of z in E defines a map

The composition of this with the quotient map E- Y is just the action of z on
Y, and hence zero, so we get a map

Since Y does not contain (),2), such a map is zero, so z acts by zero. Lemma
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6.15 now provides a map

e-()
2which is nonzero on h(3’). The restriction to h(3’2) gives an interwining map

() ()
which is nonzero on (702). Since this is the unique irreducible subrepresentation
of (y), it is clear that must be equal to the scalar to which it restricts on
(y). (This uses the fact that (7) occurs exactly once in (7).) Thus some
multiple of is a splitting of the exact sequence

o,()e ro,

contradicting the assumption that E was not split. This proves (b).
For (c), suppose t() and t() both occur in H(,()). We want to show

that

Ext,, tnt(t(3’02), t(3’03)) 0;

this will suffice. Suppose not. Then 3’2 and 3’3 differ
automorphism. By (a),

(/1(3’2)_ /ci(3’2))_ (/I(3’3)_

by an Lc-inner

is even. By (b), it suffices to show that

is even, with obvious notation. We prove this whenever 3’2 and 3’3 differ by an
L-inner automorphism, and (,) holds. We proceed by induction on the number
N of roots in A in -A(u, 2). Suppose first that N 0, i.e., that A(u, 2)C_ A+.
Since 3’2 and 3’3 ,differ by an Lc-inner automorphism, this implies that

A
_

A(u, b3). In this case both l(3’) and/(3’3) are easily seen to be dim(u t).
Furthermore,

z’(=) z/(=) -I{ A(, =)I is integral, and exactly one of a and 0a

belongs to Ar+ }l
07

and similarly for 3’3. The result follows in this case.
Suppose next that N > 0. We can find a simple root a2 Ar+ such that

a2-A(u, b2). If a3 is the corresponding root for 3’3, then a3-A(u, O3).
Suppose we shift 3’2 and 3’3 across the a2 and a walls using corresponding
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weights of finite-dimensional representations. If a 9 is non-integral, nothing
changes. If it is integral, then we change ll(yi) by 0 if 0a"= a and by

___
otherwise, and l(,.i) by +_ if Oa i= a and by 0 otherwise. So in any case
ll(’g i) /o(yi) changes by +__ 1. and * remains valid. Furthermore, N decreases
by 1, and 1(,i) is unchanged, so by induction 1(2)= 1(,3). This proves (c).

Parts (1) and (3) of (d) are immediate from Corollary 4.3; we use the long
exact sequences in cohomology attached by 2.4 (c) and (d)just as in the proof of
Theorem 3.5. Consider then part 2 of (d). Recall the exact sequences 2.4 (a), (c):

0K- q@X- X 0

0- X K U-O.

From 4.2(b), we have the isomorphism

eih_ou,[Ui (li, (X )) ((ui(Lt, X )).
Applying this with X replaced by U,, we get at once the first assertion of (d2).
Now write

p_m,(Hi(li, X)) yi + yi yi.

Here Y is the direct sum of all the irreducible constituents not annihilated by
b, and Yj is the sum of those which are; this is possible by (c). The image of the
natural map

( yi )
__

ri (,)
is clearly Y. Considering the long exact sequence in cohomology for 2.4(a) and
the commutative diagram in 4.2(b), we deduce at once that there is a short exact
sequence

0--) y: .
pu(S (li, K )) __) K( Fin )-- 0;

here of course K(yi,) denotes the kernel of the natural map (,) above. The long
exact sequence in cohomology for 2.4(c) gives

Pl- P (Hi-’(II, K)) --> P p,(Hi-’(tt, U)) --)’ Yin+ Yi-- h_pu\

--> P_p,,(Hi (II, K)) -->

By the first assertion of (d2), the image of p-I is contained in Yj. By (a), U and
yj-1 have no common constituents. If Y and g(Yin) have a common
constituent, it must be in u(Yin) (the cokernel of the natural inclusion
Y, K(Y)). By (e) applied to I, this would mean that some pair of constituents
(6{),,j 1,2, of gi satisfy

l((6) l[(:) is odd.
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This is ruled out by the proof of (c). So Y and P_:ou(Hi(u,K)) have no
common constituents. So the image of O-1 is precisely Y’. This implies that the

i-1 appears in a short exact sequencecokernel Z of 01

0---) yis-2-.-)Z--) g(Yin-1)---)O.
The last assertion of (d2) is immediate.
For (e), suppose (,3) occurs in U(X). Since U(X) is assumed to be

completely reducible, Theorem 3.9 of [15] implies that Extl((73), X) 4= 0. So
this is a special case of (b). Q.E.D.
THEOREM 7.3. The formulas of 7.2(d)provide an inductive method for

computing H*(tt,’(’l)), assuming Conjecture 2.5; i.e., the multiplicity of each
() can be computed.

Proof. We must simply exhibit the required algorithm, which of course
proceeds by induction on l(,). If (,1) is a standard irreducible module, the
cohomology is computed by Theorem 6.13. Suppose then that (,1) is not a
standard irreducible. We now argue as in Section 5 of [15]. Suppose first that
there is a simple complex root a Av+, with Oa Av+,. Choose a weight/ of a
finite-dimensional representation of G such that .y1 _1_ is dominant and regular
for s(A+); if

is an integer, we take t -ha. Then l(, + t)= l(y ) 1, so H*(tt, (y +/))
is known by induction. If a is not integral, then (,)= %((, +/)) and
H*(u,(y)) is computed from H*(tt,(, + )) by Proposition 4.4. So suppose
a is integral; put X ( ha). By [15], Theorem 4.12, U(X) contains ()
exactly once, and every other constituent () of U(X) satisfies l(y) < l(y).
By 7.2(d), we know H*(, U(X)). By induction, we know H*(, (y)) for every
y with l(y) < l(y). Since U(X) is assumed to be completely reducible, we will
be done if we can compute the multiplicity of (y) in U(X). But Proposition
5.5 tells how to do that in terms of the (known) cohomology of U(X) (with
respect to some other parabolic q’).

If no such root a exists, then the set of real roots of v is spanned by simple
roots, and some real root must satisfy the parity condition; for otherwise (y) is
a standard irreducible. Let L be the connected subgroup of G containing H ,
corresponding to the real roots of H in G. The set of non-real roots in v is
0-stable and hence defines a 0-stable parabolic subalgebra q I + n of . The
algorithm to be described depends on the existence of roots with certain
properties, so we first need to get some a priori restrictions on y. Define

(7) ( ()’J7 is regular, y is a sum of roots, and

A- differs from Av+, only in real roots }.



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 845

( stands for 7, or possibly "good".) Next define

{ (3)’ H3 C_ L l, and A contains A(u, 3) }.
(Of course, stands for "fair".)
LEMMA 7.4. Suppose and 3 are O-stab& Cartan subalgebras of fl, ii

and 8 3 (3), belong to , and ,(8 3) occurs in r(d).
(a) If () occurs in r(T1), then there is a 7 (7 l) such that (8 3) occurs in

().
(b) If (8 3) occurs in r(71), then there is a 7 (71) such that (6) occurs in

().

Proof. By Corollary 4.18 and Proposition 4.19 of [13], the composition series
of r(), for any , can be computed in terms of fl; more precisely, in terms
of the composition series of h,(,,). So we can immediately reduce to the case

Consider first (a). We proceed by downward induction on l(6). Suppose first
that there is a complex simple root a A with Oa A-. Choose a sum of roots
# so that +/ is regular and dominant for s(A-); if n 2(,/(c,a is an
integer, we take/x -ha. Then l( +/) l(8)+ l, so the result is known for
//. We introduce two "translation functors" F + and F-; if a is integral,

these are both %@. If not, F + is defined to be the sum of the identity and @,
(cf. Section 2); similarly F- is the identity plus %. These are exact functors, and
on the level of characters satisfy

F / (O(a))= O(a) + O(a + ) - (O(a + ))

F + (0(71))__. 0(71) .}. 0(71.}. l)____. F--(0(7’ "}" /1)). (,)

(Of course, O(6) is the character of r(6).) Here /71 /1 is the sum of roots
corresponding to /. These formulas are essentially obvious; proofs may be
found in [13], Section 5. Finally, by Corollary 4.8 and Theorem 4.12 of [15],
(8 +/) occurs in F / ((6)).
By assumption (6) occurs in r(71), so (6 +/z) must occur in either r(7 l) or

r(, +/21) because of (,). Now (,) also implies that we can find a constituent
(8 4) of r(6 +/x) such that (63) occurs in F-((64)). By induction, we can
choose 73 (71+/21) (71) so that (64) occurs in r(73). By (,) with 73
replacing 71, (6 3) will then occur in r(7), with 7 73 or 73 +/73; in either case

(,).
So we may suppose there are no such roots c. Thus the imaginary roots of t

are spanned by simple roots for z-. If there are any such imaginary roots, there
is a noncompact simple one c (since g is split). Let 6 (/_)), be obtained from
6 and H by Cayley transform through c; this can be arranged so that
O(6 5)_D 0(8) (i.e., the difference is the character of a representation). In this
case 1(6 5) l(6)+ 1, and (8 5) occurs in %((8)). By (,), (6 5) occurs in
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r(71) or r(71- na). Also (63) occurs in r(6) and hence in r(65); so by
induction, it occurs in some r(7), with 7 (7 na l) (yl).

So we may suppose there are no imaginary roots of D, i.e., that is split. Then
the Langlands classification forces (H,6) to be conjugate to (H,71), and the
result is trivial.
The argument for (b) is similar; it also proceeds by downward induction on

l(6 3). Suppose first that there is a simple complex root a3 A-a with 0a3 A-a.
If 3 is not integral, a straightforward argument applies; we leave the details to
the reader. So suppose n 2(a3,3)/(a3,a3) is an integer. If (3_ na3) also
occurs in r(), we are done by induction; so suppose this is not the case. Let
a A be the root corresponding to a3. By say Lemma 3.11 and Theorem 4.12
of [15], (3 ha3) will occur with positive multiplicity in %(r()). (This uses
the assumption that it does not occur in r(6).) If a is compact imaginary, or real
and does not satisfy the parity condition, then %(r(6)) is a multiple of r()
and hence could not contain (3_ naa), so these possibilities do not arise.
Otherwise there is a so that

(1) %q,,(O())
_

(R)() + (R)( )
(2) (6) Occurs in (6 ) or %((6)).
(This is proved in [15], Section 4.) By (1), (- na) occurs in v(6), so by

induction () occurs in (7) for some , (yl). If (6) occurs in (), we
are done by part (a) of the lemma. Otherwise (2) implies that () occurs in
%q(( )), so (.) implies that () occurs in (,) or r(,- na).

So we may suppose that no such root exists. If b is not split, then as before
there is a noncompact simple imaginary root a, and in that case Theorem 4.12
again gives a 4 with/(4) l()+ and (4) occurring in %q((6)). So
we can repeat the argument of the last case.

So finally we may suppose is split. In this case necessarily (6)= (6),
and the result is obvious. Q.E.D.
Next we need a more complicated version of the same result.

LEMMA 7.5. Suppose q^= + u is a O-stable parabolic, b c_ A [1 is a O-stable
Caftan subalgebra, H’ belongs to , and () occurs in r(71). Suppose
63 (/3),, b3C_ i, and (3) is a constituent of rt(6,). Then (possibly after
conjugating (H3,6 3) by L) t C_ , 3 , and there is a 7 (71) so that (3)
occurs in r(7).

Proof. We proceed by induction on l(6). Suppose first that there is a simple
complex root a Z- with Oa

_
A. Since 6 oy, a is a root of b in [1. If a is

non-integral, we leave the details to the reader; so suppose n 2(a,6)/
(a,a) is an integer. Then - na I2I belongs to oy, and l(6- na)= l(6)- 1.
Since (6- na) is a constituent of r(6), Lemma 7.5 implies that (- ha)
occurs in r(y3), for some 73 (,1). Let a3 be the simple root of A;
corresponding to a. If a is not a root of b in [, then by translation t(6,3_ na3)
occurs in h(6,- na). By induction, we can conjugate (H3, 3) by L so that
D3_ [1, 3_ na3 , and there is a ,4 (,/3)= (71) so that (63_ na3)
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occurs in r(,{4). If e is compact imaginary, or real and does not satisfy the
parity condition, then 33_ nc3 is conjugate to 3 3, and we are done. Otherwise
(by Theorem 4.12 of [15]) we can find a 34 62 such that either (33) and
if(3 3_ no3) both occur in r(3 4) or (34) occurs in both r(3 3) and r(3 3 no3).
(If e is complex, 34 is either 33 or 33- no3; otherwise it is obtained by a
Cayley transform.) By Lemma 7.4, it follows that there is a 3’ (,l) such that
(3 3) occurs in r(,), as desired.

So we may assume c is a root of b in I. In that case, the formula (,) in the
proof of Lemma 7.4 implies that there is a constituent ff(304) of r(3o nc0 such
that ff(303) occurs in

By induction, we may assume that 4 c_ ][1, 4 , and (4) occurs in r(y3) for
some ]/3 (]tl). By Theorem 4.12 of [15], either (03) occurs in r(o4) (and we
are done by induction) or (after conjugating (H3, 3) by L) 3 oy, and (4)
occurs in r( 3). In that case we are done by Lemma 7.4.

So we may assume that no such simple root e exists. In that setting, Corollary
4.18 and Proposition 4.19 of [13] imply that the composition series of r(o) and
r() depend only on the real roots of b in [1, and in particular (up to
conjugacy), b3C_ N 1, 3 6, and (33) occurs in r(3). So we are done by
Lemma 7.4. Q.E.D.
LEMMA 7.6. Suppose 3 , () occurs in r(y), and-r(yo) occurs in

Hi(u,(6)). Then (after replacing (HZ,]t2) b.,V a conjugate under G) .[2 6, and
there is a y ({) such that (y2) occurs in r(y).

Proof. We proceed by induction on 1(6). Suppose first that there is a simple
complex root c A with 0c A-; since 6 oy, c is a root of . If a is not
integral, an easy argument applies. So suppose 2(c,6)/(c,c) n is an integer.
Clearly 6 nc , and l(6- n)= 1(6)- 1. Since (6 no0 occurs in r(6),
Lemma 7.4 provides a ,/3 ,(,) such that (6-nc0 occurs in r(,3).
According to Conjecture 2.5, (6) is a direct summand of U((6- na)), so
,(7,2) occurs in Hi(u, U(,(6 n)). (This invocation of the conjecture could be
eliminated with a little more work, which is why it was not mentioned in the
hypotheses of the lemma.) Now apply Theorem 7.2(d); either (,2) occurs in
H*(tt,(6- na)) (in which case we are done by induction), or there is a
constituent t(,4) which "gives rise" to t(y,2) in an obvious sense. By induction,
we can conjugate (H 4, y4) by G so that 4 o, and (y4) occurs in r(y5) for
some ,5

Let c2 A correspond to c, and suppose first that c2 A(I, t2). Then

y4= y2_ no2.

Arguing as in the first part of the proof of Lemma 7.5, we can easily complete
the proof in this case. So suppose a2 A(I, 2). Then (72) occurs in U’2(r(70)).4
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So either (‘{02) occurs in h(‘{04), or (after conjugating (H 2, ‘{2) by L) ‘{2 0y, and
(‘{4) occurs in r(‘{2) (by Theorem 4.12 of [15]). In the first case we are done by
Lemma 7.5, and in the second by Lemma 7.4.

So we may suppose there are no such roots c; thus the real roots of are
spanned by the simple roots. If (6) is a standard irreducible, we are done by
Theorem 6.13. Otherwise, after crossing some non-integral real walls, we can
find a simple real root c satisfying the parity condition. Passing to a more
compact Cartan H by a Cayley transform through c, we get
1(6 3) 1(6)- 1, and 6 of, such that (6) occurs in U((63)). Now we argue
exactly as in the previous case. Q.E.D.

Recall that we are trying to compute the multiplicity of (‘{02) in Hi(u,(‘{l)).
By Lemma 7.6, we can and do assume that H 2 C_ L 1, and ‘{2
LEMMA 7.7. Suppose the multiplicity of (‘{) in Hi(II,’(‘{I)) is known

whenever ‘{3 (/_)2),, ,{3_ ‘{2 is a sum of roots, and Av+ differs from A only in
non-integral roots of t)2 in . Then the multiplicity of all such ,(‘{30) in Hi(u, (y))
can be computed for all ‘{ (‘{1), assuming Conjecture 2.5.

Proof. Clearly we can reduce to the case when ‘{ is dominant for s(Av+,), with
c A real and simple. A simple translation argument then reduces us to the
case when n 2(a,‘{1)/(oz, o) is an integer, and ‘{ ‘{1__ ha.

If a does not satisfy the parity condition, then ‘{1 is conjugate to ‘{ and there is
nothing to prove. So suppose a satisfies the parity condition. Let H 3 be the
Cartan obtained from H by Cayley transform through c, and ‘{3 (/_3), such
that

/(‘{3) /(‘{1)_

U((‘{3)) contains (‘{’)and
By Theorem 7.2, we know H*(u, U((‘{3)), and the components of U((‘{3))
are computed by Proposition 5.5. Except for (‘{1) and (‘{), their cohomology is
known by inductive hypothesis (as they occur in r(‘{3)), so we can compute

This proves the lemma. Q.E.D. (We do not rule out the rather unlikely event
that ‘{ is conjugate to ‘{1, by the way.)
At this point we should list some information which is available. The main

point is that we need to know the composition series of r(‘{1), and therefore the
character of (‘{1), in order to complete the computation of H*(u,(‘{)).
Unfortunately, the algorithm given in Section 5 of [15] for computing this
composition series relies on a knowledge of certain U((‘{)), and the inductive
hypotheses here do not provide us with that information. So we will refine the
argument of [15] slightly.

Let R be the set of integral real roots of hi, R + (or R + (‘{1)) the positive
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system defined by )tl, and H (or H(y)) the set of simple roots of R +. Write
R R Rr, a product of simple root systems; we use similar notation
for R + and H. As is pointed out before Definition 5.1 of [15], H contains a root
satisfying the parity condition (for y l) if and only if R does. (This is also
obvious from the proof given in Section 6 that c(y) is well defined.) Let R be
the direct factor of R consisting of those R containing a root satisfying the
parity condition; similarly, define (R)+,H. In [15], a certain subset Dr, of H
is defined. It is clear that R(7)= R(y 1) for all y (yl), SO I-I(y l) can be
naturally identified with II(,); this identification is accomplished by an element
of W(R), the Weyl group of R. In our present notation,

{a H(7) a satisfies the parity condition}

{ a l-I for some w W(R 0), wa satisfies the parity condition }.
By Lemma 5.3 of [15], II- Dr, consists of the short simple roots in certain
R c_ R o of type B,, C,, or F4.

LEMMA 7.8. Su]gl)ose H2_C_ L 1, y2 (/}2), is in , and either rq(- )2 occurs in
Hi(tt,’(yl)), or ’[1(7021) occurs in r:,,(),,). Let a A be an integral root of [}2 in
[1. Then either is real and does not satisfy the parity condition, or the root 8 in R
corresponding to lies in R o.

Proof. By Lemma 7.6, we may as well assume ,(),,21) occurs in rq,(,l). If
is complex, we may as well replace it by an adjacent imaginary root (which
exists since is split). So is either real or imaginary. The result now follows
from Lemma 5.4 of [15]. Q.E.D.
We turn now to the computation of the composition series of the various, (,1). For this purpose, as was pointed out in Section 5 of [15], we may

assume that g , and of course that g is simple. There is an obvious analogue
of Lemma 7.7 for this problemmat each stage of the argument, in trying to
compute a certain multiplicity in r(3,1), we are free to replace 3,1 by any
3’ (3’1). The algorithm in [15] proceeds nicely (since we know all U((,2))
whenever H2 is not split by induction) until the following situation arises"

+a A2 is complex, integral, and simple, 0c At2, and the root c II(, l)
corresponding to c does not satisfy the parity condition. In that case the
algorithm given requires knowing the multiplicity of (y2_ nc0 in U((yl)).
Now if 8 Dr,, we can simply replace ), by some y (yl) with the
corresponding simple root I-I(7) satisfying t_he parity condition. So we may
suppose Dr,. This means that the corresponding simple factor R is of type
B, C, or F4, and thus that g is of type B, C, or F4. We treat these cases
separately.

Case I. Type Cn.
II(,) satisfies

We know that Dr, contains a long simple root; say
the parity condition, with ,(,l), fl long, and
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2( fi, 3’)/( B, fi)= m. Since all the long roots are othorthogonal to each other,
one can check that 3’- mfl is conjugate to 7, and therefore (by the proof of
Lemma 7.7) the composition series of r(3’) is computable.

Case II. Type Bn. Since Dr,, a must be short. Since H2 is not split, we
can find a root fi, simple among the integral roots in A.+_n, such that
Off A_,; and if fi is imaginary, we may assume it is noncompact. Obviously
flye-a. Let a 1,ill be the roots in 1I(3’ l) corresponding to -a and fi in
A_. We claim that fil Dr,. Suppose not; then fil is short. Hence it cannot
lie in the simple factor R containing a (since this is of type B), so the long root
al + l is not integral. This means that 2(a 1, y1)/(al, al) and 2( fi 1, yl)/( l,
fl ) have opposite parity. By Lemma 6.15 of [14], m, mBl, so since t does not
satisfy the parity condition, fl does. So fll Dvl. Replace y by some 3’ with the
corresponding root fl2H(y) satisfying the parity condition. Then

.((y2 na)), but fi "r((3’)); so by Theorem 4.14 of [15], the multiplicity
of (3’2 ha) in U((3’)) is known. This allows the algorithm to proceed.

Case III. Type F4. We begin as in Case II by choosing fl and defining Ct

and fll as in that case. If fll Dr,, we can repeat the argument given there, so
suppose we cannot arrange that. Then fll is short; both 1 and fll are short
roots in simple factors of R of type B, C, or F4. The existence of two such roots
and the fact that R has rank at most four means that R must be Ca, BE + B2,
C + A 1, C4, or F4. Realize F4 in R4 as the elements +_ e

_ ., _+ e +_ e2 _+ e3
+ e4 in the standard basis. Two orthogonal long roots in F4 are clearly conjugate
under W to (2e1,2e2). If 3’ (R4), [4 is integral for both of them, then 3’1 and
3’2 (the first two coordinates of 3’) are integers, so 3’ is integral for e 4- e2. So tWO
long roots in R must belong to the same simple factor. So R cannot be of type
B2 + B2, and if it is of type C 4- A l, then the A is short. This last possibility
would give four orthogonal roots, exactly one of which is short, and this is
impossible in F4. So R is C3, C4, or F4.

Suppose first R is of type C4; after conjugating by W, we may assume R
consists of the roots +_ e +_ ej. Thus the coordinates of 3’1 are integers. Since
e 4-e2 4- e 4- e4 R, their sum is odd. Shift 3’1 by a weight of a finite-
dimensional representation so that all m act trivially (as we may, since G is
linear). Choose andj so that 3’i 4-,, 3’) is odd; this is possible since the sum of the
3’i is odd. Then e + ej. satisfies me parity condition, so Dr2 H, and we are
done.

Suppose next that R is of type C or F4. Let p2= M2A2N2 be a cuspidal
^2parabolic subgroup corresponding to H 2. Let 6 2 M u2 2 be the discrete

series and character associated to 3,2; thus

r(3’2) IndeX28 2 (R) t, 2 (R) 1,

at least after changing N2. Choose 3’3 (/_ 1), SO that 6 2 ( /,,2 occurs in

.M2A 3’3ndp M2A ()
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here P H 1N is a Borel subgroup. (This is possible by the subquotient theorem
for M2.) Then (y2) occurs in r(,3), so by the "converse" part of Lemma 7.4, if
(,2) occurs in r(yl), then (3) occurs in r(,) for some , (,I). By the
Langlands classification theorem, , is conjugate to 3. We claim that the simple
roots of l) in IIt2 all belong to Dr3. Since ,3 is essentially defined in terms of M2,
this is really a question only about M2. So it is enough to show that if G is an
arbitrary split group and r(7) contains a discrete series representation, then Dr
consists of all the simple roots. By the argument just given, it is enough to prove
this for one particular , containing a discrete series. Such , are known explicitly
by Schmid’s character identities, so the result is easily checkedl (It is also
contained in Lemma 7.9.) So Dr3 contains all the simple roots of M2. But 3 is
conjugate to ,, and Dr, Dr contains only long roots by hypothesis. So the
simple roots of M 2 are a subset of the long simple roots of F4, so M2 is of type
A or A2. Since SL(3, FI) is not equal rank, in fact M2 must correspond to a
single long root. The Cartan involution 0 on )2 is given by

Ox

where 6 is the imaginary root. We may assume 6 is positive for Ai_n.
We now think of our previous realization of F4 as the root system of 2. We

may take

A_., (e +_ ejli < j) U {e +_ e2_+ e_+ e),
which has simple roots

El 1 2 3 6’4

r2 2e4

?’3 c3 c4

?’4"- e2 c3"

The integral roots may be taken to be spanned by r2, r3, and ?’4 in case R is of
type C3. Our old simple roots -a and fl are r and r4 (not necessarily in that
order). We want to examine all the possibilities for the imaginary root . It is
long and has nonzero inner product with r and r4. The possibilities are

2e3
e e2 + e3 e4
e + e2 e + e4.

In the first case, SF4(6)’--2e4 is simple. It follows that a principal series
representation can be gotten from r(72) by crossing two integral walls, so
li(72- na)- l(7 ) is even. By Theorem 7.2(e), (72- na) occurs in U,((7))
with multiplicity zero, and the algorithm for computing the multiplicity of (72)
in r(71) can proceed.
The remaining cases cannot arise if R is of type C3, since must be integral;

so we may suppose R is of type F4, i.e., that 71 is integral. In case
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e e2 + e e4, we have
Or se (r)

2e3,

which is positive. So we could have chosen /3 rl, which is long, so then
/31 Dye. Similarly, if 6 e + e2 e3 + e4, then

Or2 1 + 2- 3- 4,

so in this case we could have chosen/ r2. This completes Case III.
So we may assume that the composition series of r(y l) is known. By inverting

the argument which has just been giving us so much trouble, this immediately
allows us to compute U,((),l)) whenever a is a simple real root of I) not
satisfying the parity condition.
We turn now to the algorithm for computing the multiplicity of (72) in

Hi(u, (7)); recall that we are assuming )2 C [1, and 2 6 by Lemma 7.6. We
proceed by downward induction on/(.g2), then by downward induction on dim u,
and finally by downward induction on i. By the argument used at the beginning
of the proof of Theorem 6.13, we are reduced to the case when is split, with
maximally split .Cartan subalgebra b2. (The spectral sequence appearing there
collapses by the parity result in Theorem 7.2(a).)

Suppose first that there is a complex root a of b2 in , simple with respect to
A2, such that Oa A. If a is non-integral, a routine argument applies. So
suppose 2(a, 72)/(a,a) n is an integer. Since the roots of D in are real, a
is in A(tt, b). Suppose for definiteness that a A(u); the other case is similar. Let
a be the root of b in corresponding to a. Suppose first that a satisfies the
parity condition, so that +((7))= 0. By the first exact sequence of 4.2(a), the
multiplicity of r(702) in Hi(u,(7)) is equal to that of (702- na) in
Hi+ l(u,(7)). Since l(/-- na)=/(72) + 1, this is known by induction.

Next, suppose a does not satisfy the parity condition, so that U((3,1)) is
defined. As remarked earlier, we know the constituents of U((7)); all occur
in r(7 l) but are not equal to (7), so their cohomology is known by inductive

2 na) in Hi(u,hypothesis. On the other hand, the multiplicity of (0-
U((),))) must also be equal to its multiplicity in H;-(a,(y)) (which we
know by induction), plus the multiplicity of () in H(u,(7)). So we can
solve for the multiplicity we want.

So we may assume that no such root a exists. This means that the positive
imaginary roots of A- of 1 in are spanned by simple imaginary roots of Av+.
Define

N [{ a A(tt, [’)2) a is not a root of fl2 in [1, 0a a, and either

a is compact and a Av+, or a is noncompact and a Av+ }l



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 853

By Lemma 7.5, we can find some 7 in (.y1) SO that (]/2) occurs in r(y). Let
R(’y,’/2) be the roots of b in corresponding to A[ under the inner
automorphism taking Av+ to A, and let

W(y, y2) W(R(y, y2))

(’)t, /2) ( ]13 e (/- 1), ].y .y3 is a sum of roots, and

7 is conjugate to 73 under W(y, ]12)}.

LEMMA 7.9. With assumptions as above, suppose ]I4 (/_2)t, ]14__ ]12 is a sum
roots, and A.+., differs from A g onlv in non-inteeral and ima,inarv roots of 2 in"y JJ" J," y 0 0 M

4 3 2If r(y,)occurs in H (u, (y ))for some V (V, Y ), then
4 2 4 2(a) y y is a sum of imaginary roots, and is conjugate to under W(AI).

(b) N < < N + M, at least if Conjecture 2.5 holds. Finally, we may choose
y3 (, 2) so that every simple root of R + (y3, y2) satisfies the parity condition.

This will be proved in a moment. Assuming it, we complete the algorithm for
computing the multiplicity of (]12) in Hi(u, (]11)). By Lemma 7.7, is suffices to
compute the multiplicity of (]14) in Hi(u, (]13)) when ]13 is chosen as in the last
assertion of Lemma 7.9, ]14_ ]12 is a sum of imaginary roots, and 4 is conjugate
to 2 under W(AI). Suppose a A is simple and imaginary; let a be the
corresponding root of A. Since a satisfies the parity condition, +((]13)) 0.
Put n=2(ot,’y4)/(a, ot; then by the argument given a moment ago, the
multiplicity of t(]14) in Hi(H,’(]13)) is that of (]14_ na) in HiXl(u,(]11));’the
+ occurs if a A(u), and the if a A(u). Now apply 7.9(b); by a simple
argument, (]14) can occur in HN+J(tt,(]13)) only if

j I- A) (]14) I’-] ()l.
So it is enough to know the multiplicity of t(]14) in the Euler characteristic of
H*(u, (3)). But this is computable from the results of Section 8, since we know
the character of (]13). This completes the algorithm, proving Theorem 7.3.
Q.E.D.

Proof of Lemma 7.9. We will be a little sketchy from time to time, since the
proof given here seems to be unnecessarily complicated. For (a), we use the fact
that ]14 and ]12 must define the same infinitesimal character; so 4 and are
conjugate under W(g, b2). Since they differ by a sum of roots, they must
therefore be conjugate under the Weyl group of the integral roots. Since the
integral positive roots they define differ only in imaginary roots, and these are
spanned by simple roots, (a) follows.

For the last two statements, we try to reduce to the case when H2 is compact.
First, modify ]1 by a translation so that (a, ]1) is fairly small when a R(]1, y2),

+and (fi, y) has very large real part whenever /3 Av does not belong to
R(y,]1). For notational convenience, we will assume G L l; a formally
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identical argument applies to the general case. Let p l= H1N be the Borel
+subgroup defined by Ar and

p2__ M2A2N 2

the cuspidal parabolic corresponding to R(y, y2); thus if H 2-- T2A 2, T2 is a
compact Cartan subgroup of M2.
LEMMA 7.10. With notation and hypotheses as above, suppose 6 (1213)’, and

(6) occurs in r(y3), some 3/3 (y, .y2). Then either
(a) the lowest K-type of (6) is large, so that H*(tt, (6)) cannot contain t(Vo4)

when .y4 is as in 7.9(a); or
M2A(b) after conjugation, H 3

_
M2A 2, and() occurs in O IndeM( (R)

1) exactly as often as () occurs in (y3).
We only sketch the proof of this fact. Suppose _(6) is a constituent of O.

Then there is an intertwining operator

I" Inde:() (R) --> IndeX::() (R) 1;

here P is the parabolic opposite to p2, and I is just an integral operator. Its
image is irreducible and equal to () by the Langlands theory. Its kernel can be
estimated by replacing :a() by the full induced representation 0. In that case
I factors into a product involving the various roots of H not in R(,,,/2). The
kernel of each factor is induced from a discrete series representation of an
SL(2, [q) Levi factor, and this will have a large lowest K-type by our hypotheses
on .3. (For details see [13], Section 3; such arguments were first used by B. Speh
in her thesis.) In particular, the kernel of I consists of representations with large
lowest K-type. So induction fromP to G in our setting takes irreducibles to
irreducibles plus terms we don’t care about, and the lemmafollows. Q.E.D.

Define

(]t, /2) { 1 (/_) 3), H3 M2A 2, and M() occurs in

M2A 73 3 (yInde,cM2A2 @ for some y y2)).

LEMMA 7.11. Suppose Conjecture 2.5 holds. Let O 2 + t be the intersection

of q with m2 + a2. Suppose 6 (/3), belongs to (/, V2). Let /4 (2), be as in
Lemma 7.9(a). If H is not split, then the multiplicity of (y4o) in HU+J(tt,(6)) is

4 (as a weight of H2) in HJ(fi,M2,2(6)).equal to the multiplicity of
Proof. We assume that the reader can extend the theory of this paper to the

disconnected group M2A 2. (Helpful hints can be found in [13]; Conjecture 2.5
can be reduced to the connected case.) We proceed by induction on l(6). If
H 3-- H2, the result can be read off from our computation of special coho-
mology groups in section 6. Suppose a is a simple root of 3 in m2+ c2. By
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Theorem 4.12 of [15],

)) + o.
In this case, the argument given for Lemma 7.10 and the relation of U to
coherent continuation show that if 8’ g(7,72), then =(8’) occurs in U((8))

M2Aexactly as often as MA2(6 ’) occurs in U (M2n()). An inspection of the
arguments of this section now shows that the two multiplicities in question can
be computed by precisely the same algorithm; so they coincide. Q.E.D.
The only reason for the restriction that Ha should not be split in the preceding

lemma is that we have not yet completed the algorithm for computing
H*(it,(73)) when 73 (7, 72) We have seen how to compute things of the
form H*(it, ’(73) t) ’(75)) when 7 7

3 na (a R(73, 72) simple, 2(a, 73>/
(c,a) n). (Such a root ct always exists, by the argument before Definition 5.1
in [15].) So we have

4 Hj( ,M=A(3)m(’-(74),HU+J(it, ’(73) + +(75))) m(7, 7 + ’M=A=(75)))
Now dim fi M, so the right side is zero unless 0 < j < M. This proves 7.9(b).

For the last assertion, Lemma 7.10 again reduces us to the case G M2. Let
73 (/_)l), correspond to the finite-dimensional representation of extremal
weight 72 Trivially every simple root satisfies the parity condition for 73 On the

2other hand, 7 occurs in H*(lI,(y3)), so by Lemma 7.5, 73 (7)= (7, 72)
Q.E.D.

8. Euler-Poincar6 character formulas. Let cl + u be a 0-stable parabolic
subalgebra of fi, and X a (q,f) module of finite length. Let (R) O(X) be the
global character of X, which we can regard as a locally L function on G. For
x L, define

u(Y) (-- 1) tr( adxl/,.).

THEOREM 8.1. With hypotheses as above,

o(x)l (--1)iO(Hi(,X))

Here O(Hi(u,X)) is the global character of the (, fq ) module Hi(It, X) (which
exists by Corollary 4.3).
The proof will be substantially copied from the proof of the Osborne

conjecture (an analogous formula where the parabolic is real) given by Hecht
and Schmid. We will assume some familiarity with the kind of arguments in [5]
or [6]. The main technical lemma peculiar to this case is

LEMMA 8.2. Let fi C q be a Cartan subalgebra, and A C_ the lattice of weights
of finite-dimensional representations of . Let X and X2 be two (.q, f) modules of
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finite length, of regular infinitesimal character Xo )*. Let (9") + be the positive
Weyl chamber defined by A+ and)o

{x;(x) ix (A +Xo) + }
the coherent families of (g,t) modules attached to X and X2 (cf. [13], Section 5).
Suppose that for every , Xl(X) and X2(X) have the same multiplicities. Then X
and X2 have the same composition factors and multiplicities.

Proof. We proceed by induction on the length of X and argue as in the last
part of the proof of Theorem 6.10. Clearly, it is enough to show that X, and X2
have a common composition factor. Let (F(,)I < < r, , (/)i),} be the
composition factors of X with multiplicities. Let be the centralizer of t in g.
For w W(/3;), but w not in W(I/3i), the set of solutions of

w’y-- yCl

in (3i)* is a proper subspace. So by a coherent translation, we may assume that
in this setting,

w’y i- ,y

is very large. This hypothesis is stable under small coherent translations.
Similarly, we may assume that the only roots annihilated by "gilt, are real, so the
parabolic associated to .yi is of the form cti= i ..[_ Hi, with i as above. We may
also assume (by coherent translation) that

is large unless (i,i) and (TJ, j) are conjugate by an automorphism from Gc
preserving 0.

Order the i SO that [’lltl is minimal; this will be preserved by small
translations by our hypotheses. Make such a translation so that the stabilizer of
rlr, in W(I/b) is all of W(I/D) (cf. [15], proof of 6.1). Let/z be a lowest
tMype of X. By our hypotheses and the results of [14] (for example, Lemma
8.8), it is easy to check that/z must be u1-minimal in X ([14], Definition 3.11).
So it is u1-minimal in X 2 as well. By [14], Theorem 5.2, X z has a constituent
,(( 1), I (/_) 1)t, such that 8 differs from 1 only on A . Since X and X2 have
the same infinitesimal character, gl and 7l are conjugate by some w W(g/31).
Thus

w7 y ct.
By hypothesis this forces w W([1/D1), and since W([I/[ 1) stabilizes yllr, it
follows that (61) (,1). As remarked at the beginning of the proof, we are
done by induction. Q.E.D.
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COROLLARY 8.3. Let q + tt be a O-stable parabolic, and y 121 a regular
pseudocharacter with regular infinitesimal character. Then

2 (-- 1)io(gi(H’ 7/’(y))) 2 (-1)/"()O(Yo2)
y2/Q,

7 conjugate to 3’

if H c_ L; and the left side is zero if H is not conjugate under G to a Cartan in L.

Proof. Assume first that H c_ L. Since both sides behave well under coherent
continuation across walls (which is obvious from the definition of such
continuation and Theorem 4.1), we may assume that the set of nonreal roots in

A- is invariant under 0. Let o be the compact part of the center of i. After a
slight shift of ,, we may assume that if w and w2 are in W(/) and

(w,v)l o (w v)l 0, (,)
then WflWl belongs to W(I,/b). It follows now from Theorem 4.1 that two
representations of occurring on the left in the expression in the corollary either
have the same infinitesimal character, or have different restrictions to o

Suppose then that we can prove the desired equality after restriction to ( f. By
the preceding remark, it would persist after projection on a fixed infinitesimal
character on both sides. Since both sides behave well under coherent
continuation, we would have (for each infinitesimal character of I) two coherent
families of virtual (, N f) modules with the same (3 -multiplicities at "most"
points. By the proof of Lemma 8.2, they would have to coincide.

So we are reduced to proving that the N multiplicities on the two sides are
equal. They depend only on vlr; this is clear on the right, and on the left it
follows from the spectral sequence appearing in the proof of Proposition 5.5. So
we may assume that no real roots satisfy the parity condition. In light of our
previous assumptions on 3’, this makes r(,) a standard irreducible. The result is
then immediate from Theorem 6.13.

So finally suppose that H is not conjugate under G to a Cartan in L. Let
)1 be some Cartan, and ")tl ()1), a Gc conjugate of ,. We shift , so that ]t
satisfies the condition (,) imposed on in the previous case and argue in
precisely the same way. Q.E.D.

Proof of Theorem 8.1. It is enough to verify the formula on each Cartan
subgroup H of L. Both sides are exact functors of X, so it is enough to check the
result on generators of the Grothendieck group. Both sides behave well under
coherent continuation, so (using the results of [13], Section 5) we may assume X
has regular infinitesimal character. By downward induction on dim tt and
induction on dim g, the argument from the beginning of the proof of Theorem
6.13 reduces us to the case when L is split and H is a maximally split Cartan
subalgebra in L. We take for generators of the Grothendieck group the
representations r(y). So assume X 7r(]/1) with ,)/1 (/_rl)t. By Corollary 8.3,
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both sides of the formula are zero unless H is conjugate to a Cartan in L; so we
assume H c_ L. Fix x0 in the regular set in H; then both sides of the formula in
question are of the form

f(xoexp(Y))= awexp(wX, Y)l/dwW(/)

for Y small; here d is a denominator, and ) 3" is some Gc conjugate of 3’. By a
coherent continuation across walls argument, it is enough to verify the equality
of the coefficients aw, when w) lies in a set of Weyl chambers depending on xo
in a natural way. We may as well assume that la(x0)l 4 when a is not
imaginary; let

We confine our attention to those wX such that for all a S +

Re(a, wX) > 0, or

Re(a, wX)=0 and Im(a, wX)>0.

These are the terms which grow most rapidly at m in the component of the
regular set containing x0. It follows from the temperedness of discrete series
characters and Corollary 8.3 that there are no such terms on either side in 8.1
unless H is conjugate to H. In fhat case the formula is easily verified by
computing both sides (using Corollary 8.3). Q.E.D.
Theorem 8.1 tells us nothing about characters on split Cartan subgroups, even

when all Hi(it, X) are known. These can be computed as follows: The terms
with largest growth appear only if X has constituents of the form (,{), for
/ (H’) and H split. Then they are the same as if X were the sum of the
corresponding principal series representations. The terms of lower growth can be
computed using Harish-Chandra’s matching conditions and the formulae on
more compact Cartan subgroups.
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