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IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE
GROUPS II. THE KAZHDAN-LUSZTIG
CONJECTURES

DAVID A. VOGAN, JR.

1. Introduction. Let G be a connected semisimple Lie group. In [15], a
study of the irreducible characters of G was begun, using the ideas developed by
Jantzen for Verma modules and extended to group representations in [13]. In
particular, the explicit determination of these characters was reduced to the
problem of decomposing certain representations {U,(X)} attached to an
irreducible representation X; by this was meant the determination of the
irreducible composition factors of each U,(X), and their multiplicities, in terms
of the Langlands classification of irreducible representations. It was conjectured
([15], Conjecture 3.15) that each U,(X) is completely reducible.

Since [15] was written, Kazhdan and Lusztig have given in [9] a conjecture for
the characters of irreducible quotients of Verma modules. (By [4] or [8], this is
equivalent to finding the irreducible characters of a complex semisimple Lie
group G). The present paper generalizes this conjecture to representations of
real linear groups, and reduces its proof to the complete reducibility conjecture
mentioned above; in fact, the conjectured formulas are equivalent to the
complete reducibility conjecture. (The assumption of linearity is invoked only in
section 7 below, for minor technical reasons; it can almost certainly be
eliminated with a little cleverness.)

The idea of the argument is very simple. Let g be the complexified Lie algebra
of G, § a Cartan involution, and g =1+ u a f-stable Levi decomposition of a
#-stable parabolic subalgebra q C g. The idea is to try to compute H'(11,X) as an
[ module whenever X is an irreducible Harish-Chandra module. This is done
first when X is an irreducible representation induced from a discrete series on a
cuspidal parabolic subgroup of G (Theorem 6.13). Once the answer is known for
some X, one can compute H'(u, U (X)) (Theorem 7.2). If U,(X) is completely
reducible, this information (via [14]) allows one to determine the irreducible
constituents of U,(X) and their multiplicities (Proposition 5.5); and induction
can proceed. The (conjectured) character formulas can be computed from the
multiplicities in the various U, (X), as in [15], or can be written in terms of the
H'(u,X) by an Euler-Poincaré principle (Theorem 8.1—see also the remarks at
the end of section 8).

Because the computations in general are quite complicated, we will first treat
the Verma module case, assuming the infinitesimal character to be integral.
Most of the ideas are already apparent there.
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2. Definition of U,(X). We recall here some definitions from [15].

Let g be a complex semisimple Lie algebra, and §) a Cartan subalgebra. (From
section 4 on, g will be the complexified Lie algebra of our real semisimple Lie
group G.) Let U(g) denote the universal enveloping algebra of g, 3(g) its center,
and

¢:3(a)~> SH)"”

the Harish-Chandra isomorphism; here. W:= W(g/b) is the Weyl group, and
S(h) is the symmetric algebra of §. If A €bh* (the dual of h), we define
X 38— C by x\(2) = &2)(N). If X is a g module annihilated by an ideal of
finite codimension in 3(g), we say that X is 3(g)-finite; the category of such
modules is closed under extensions and tensor products with finite dimensional
modules, and contains the irreducible g modules. If X is 3(g)-finite, and A € h*,
we define

Py\(X) = {x € X|for all z € 3(g) there is a positive
integer n such that (z — x,(2))"x = 0}.
Then

X= 2 P(X)
AEY /W

a finite direct sum. We say X has generalized infinitesimal character \ or x, if
X = P,(X).

Write A = A(g, ) for the set of roots of §) in g. Recall that h* is endowed with
a natural bilinear form <,» coming from the Killing form on g. The weight
A €bh* and its associated infinitesimal character x, are called nonsingular if
{a,A) 50 for all a € A(g, D).

Fix now a nonsingular weight A € )*. Define

2A) EZ}

R, = {a € AGs, b)) <<a°fa>

Ry = {a € Ry|<a, \) > 0}
Wy=W(Ry) C W(a/b)

IT, = {simple roots of R," };
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recall the well-known fact that R, is a root system. For each « €II,, we choose
(by Lemma 3.1 of [15]) a positive root system ¥, for A(g, ), containing R,", so
that « is simple for ¥_. Next we choose an integral weight p}, dominant for ¥,
so large that for every B € ¥, either

Re{ B+ ply >0, or
Re( B,A+ p)>=0, and
Im{ B,A + p}> > 0.
(When these conditions hold, we say A + p! is strictly positive on .)

2{a, N+ pb>

T T aw)

and define p? to be m times the fundamental weight of ¥, corresponding to the
simple root a. It follows that if § € R,",

BN+ py — 42> >0,
with equality if and only if 8 =a. Let F! denote the finite dimensional

irreducible g module of highest weight u/ with respect to ¥_. If X is a 3(g)-finite
g module, we define (cf. [15], section 3)

‘P;(X):PM,:;(P}\(X)@F;)
Ya(X) = Py a(Prs (X)) © (F2)¥)
Pa(X) = Py Propg- (X)) ® F7)
Pa(X) = P)\(PA+HJ(X) ® (F, )*)
Yo(X) = 42 (¥a(X))
Pu(X) = Pa(P2(X))
7(X) = {a EIL[¢,(X) = 0}.
THEOREM 2.1. Let X be an irreducible g module with infinitesimal character A.
Suppose X is either a highest weight module, or a Harish-Chandra module for some

real form of g. Then if a & 7(X), o, X has X as its unique irreducible submodule
and irreducible quotient. The sequence

d, d,
0> X->q4,X>X—>0 (2.2)
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is a chain complex, and U,(X) is defined to be its cohomology, (kerd,/Imd,).
U,(X) has finite composition series, and o € (U, (X)).

Proof. For highest weight modules this is due to Jantzen [7], although he
does not state his results in this way. For Harish-Chandra modules of linear
groups it was first proved in [13]. The proof given for Harish-Chandra modules
in [15], Theorem 3.9, applies to all cases. Q.E.D.

Definition 2.3. In the complex (2.2), put

Puta(X)

K, = K, (X) =kerd,, 0= Qu(X) = d, X

Thus we have short exact sequences

(a) 0->K,—»oy X>X—>0

(b) 0>X->e iy X>Q,—0 (2.4)
(<) 0->X—->K —>U,—~0 '
(d) 0->U,»Q,~>X—>0.

These will play a crucial role in our calculations.
Finally, we restate Conjecture 3.15 of [15].

CONJECTURE 2.5. In the setting of Theorem 2.1, U,(X) is a completely
reducible g module.

Although the preceding formalism is the appropriate one for defining the
T-invariant, and works well for linear groups, certain technical problems (cf. [15],
Lemma 4.9) make it convenient to consider non-integral roots as well. If A € h*
is regular, we define A to be the set of roots which are strictly positive on A;
recall that this means

AY = {a € A(g,h)|Re{a, A) >0, or Rea, Ay = 0 and Im<a, A) > 0}. (2.6)

Let a be a simple root of Aj. If « is integral, we can and do assume ! = 0; thus
¥, = 2, etc. In this situation we may write p, = p2. If a is not integral, choose a
sum of roots u, € h* so that A + y, is regular and dominant for s, (AY); here s, is
the simple reflection in W(g/}h) corresponding to a. If X is a 3(g)-finite g
module, define ([13], Section 5)

Yo(X) = Pryf (PA(X) ® F,)
(pa(X) = P)\(P}\-Hlu(x) ® Fa*)'

Here of course F, is the finite dimensional irreducible g module of extremal
weight p,.

THEOREM 2.7. Let X be an irreducible g module with infinitesimal character X,
and suppose o € AY is simple but not integral. If X is either a highest weight
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module or a Harish-Chandra module for some real form of g, then Y, (X) is
irreducible, and

(plel}a(X) = X‘

Proof. For highest weight modules this is due to Jantzen [7]. For
Harish-Chandra modules it is essentially Theorem 5.20(a) of [13]. Q.E.D.

In both cases the result follows formally from the existence of some kind of
character theory for the categories in question.

3. Case of Verma modules. Retaining the notation of section 2, we assume
in this section that A is regular and integral; thus R, = A(g,b). Put A* = R,". Let
b =1h + u be the Borel subalgebra of g corresponding to —A™*. For w € W(g,)),
define

Mw = U(g) ® Cw)\+p;
b

here p = 3>, A+ a. Let L, be the unique irreducible quotient of M,,.

If X is any g module on which ) acts semisimply, then the cohomology groups
H'(u, X) are semisimple ) modules. For u € h*, we let H (1, X)* denote the u
weight space. An easy application of the Euler-Poincaré principle gives the
following well-known result.

PRrOPOSITION 3.1, The formal character ch L, as an Y) module satisfies
dimu ) )
chr, = > ( > (—1)'dim H'(u, Lwy“")ch M,.
yEWN\ i=0

Now Kazhdan and Lusztig (cf. [9]) define a family of polynomials {p, | »,
w € W) in a variable ¢. If < denotes the Bruhat ordering on W, these satisfy

@ p,,w=0Ounlessy<w

® Ppuw=1 (32)

(¢) If y<w,degp,, <1/2(/(w)—I(y)—1). (Here / is the length function
on W.)

Next they define a new relation < on W by
y<wifandonlyif y <wanddegp,, =1/2(/(w)— I(y) — 1).

If y <w, p(p,w) denotes the leading coefficient of p, ,,. The p, , also have the
following property:
Suppose y < w, s is a simple reflection in W, and ws < w. Then

O LI > w(z,ws)g' /W=Dy (32)

y<z<ws
<z
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where a =1 if ys <y and a =0 if ys > y. Clearly these relations allow one to
compute p, |, by induction on /(w). The Kazhdan-Lusztig conjecture reads
(setting €, = (— 1)'™):

Consecture  3.3. ([9], Conjecture 1.5) chL, =3, .,¢¢,P, (1)chM,.

Comparing this with Proposition 3.1, we see that it would be enough to prove

CONJECTURE 3.4. The dimension of H'(u,L,)*** is the coefficient of
172000~ 1) =)
q P%w

(In fact, the two conjectures can be shown to be equivalent.)

THEOREM 3.5. Conjecture 2.5 implies Conjecture 3.4.

Proof. We proceed by induction on /(w). If w=1, L, = M, is an irreducible
Verma module. If H'(u,L,)***? 0, then clearly L, has a weight of the form

p=yA+p—2> B,

with { B} a set of i positive roots. Also

JA=A— > na
a€AY

with n, > 0, since A is dominant; and some n, is positive unless y = 1. On the
other hand, every weight of L, = M, is of the form

Ap+ > mua

aEAY

with m; > 0. This forces { 5;} =@, n, = 0 for all @; so i =0 and y = 1. Obviously
dim Hu, M,***=1,

so Conjecture 3.4 is true when w = 1 (as is well known).

Suppose then that Conjecture 3.4 holds for /(w") < I(w), and /(w) > 0. Then
we can find a simple root « € IT such that the corresponding simple reflection s
satisfies /(ws) = [(w) — 1. Put X = L, ; then by [7] a & 7(X). The first step is to
compute H'(u, U, (X)). For simplicity we write ¢ = ¢,, U = U,(X), Q = Q,(X),
etc. with definitions as in section 2. To define U, we can and do choose ”"olz =0;
write F = F2, the representation of extremal weight p?; we write p = p2. Fix
y € W, and suppose for definiteness that ys < y. Choose a b-stable filtration
0=F,CF,C...F,=F, with dim(F;/F,_,)=1 for 1 <i < n. This gives rise
to a b-stable filtration of X = P,(¢X ® F), and hence to a spectral sequence
for H'(u, ¢ X Y***. A typical E, term is

[Hi(wyx)® F/F_ ™.
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Now every weight of H'(u,yX) is of the form
YA=mto=yA-pto+ 2 mao
<a,ay§\> <0
with m, > 0, and the weight of F;/F,_, is of the form

et X mgB
BEA
(B, yA><0
with mg > 0. So this E, term is zero unless
YAtp=yA—p)+po+Imua+yp+Xmgp
=yA+p+ Ima+ SmpP.

Clearly this forces y’ = y, and the weight of F;/F;_, must be yu. So the spectral
sequence collapses, giving

Hi(u, X )M P= H (14X ) YA~ W+*®C,. (3:6)

Now we use the dual filtration of F* to compute H'(u,yX)”®~#*°; the spectral
sequence collapses to the long exact sequence

S HIWX)PMPRC L > Hi(nyx ) AT

—syp
H(,X)"*""*QC_,—> ... (3.7)

On the other hand, we have a long exact sequence from 2.4(a):

C D HI(W KM B, guX )M P Hi(n, X )M P> L

lg =

L O H(X)MPRC_, ®C, > Hi(wyX ) *WPQC,, > Hi(u, X )M
®C_,,®C,—>... (3.8)

Here the second row is just (3.7); the first isomorphism is (3.6); and the second
is the identity map. As will see in section 4 (Theorem 4.2) this diagram is
commutative up to a nonzero scalar. By a simple diagram chase, we deduce

H'(w,K)"™MP= Hi(1,X)""*®C,, ..

(3.9)

(The ismophism is not canonical, but we will not need that.) Now look at the
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long exact sequence from 2.4(c). Combining it with (3.9) we get

D HI(WX )M H (X Y PRC gy Hi(w, U)o

(3.10)
By inductive hypothesis,
dim H'(u, X Y *° = coefficient of ¢'/2/™) =10 =D in p
= zero unless i has the same parity as /(y) — I(ws).
Furthermore
dim H'(u, X Y**° = coefficient of ¢'/2/) =100~ in p
= zero unless i has the opposite parity from /( y) — /(ws).

This shows that the long exact sequence (3.10) collapses into a family of short
exact sequences; and if we define a polynomial 7 in ¢ so that the coefficient of
q"/2H=IN=D §g dim H'(u, U **, then

7(9) = Pys,ws + 4Py, ws- (3.11)

Suppose now that U is completely reducible (i.e. that Conjecture 2.5 holds). We
will compute the constituents of U and their multiplicities. So let z € W. If L, is
to occur in U, we must have a € 7(J,),1.e. zs < z. In that case the multiplicity of
L, in U is just

dim H(u, U)™**= dim H(u, X )****+ dim H '(u, X ) **.

The first term is zero unless z = w, in which case it is 1; in that case the second
term is zero (since it is a coefficient of p,, . = 0). If z # w, the second term is the
coefficient of '/ ~!&=Din p - 50 we have

U=L,® > p(z,ws)L, (3.12)
y< zz <ws
zs<z
Combining (3.12) and (3.11), we get the statement of Conjecture 3.4 for L,.
(Here we use the identity 3.2(d).) Q.E.D.

In addition to Conjecture 2.5, there were four important parts to this
argument. The first was the computation of H'(u,X) when X is a “nice
irreducible.” Next, we needed the commutativity of a certain diagram. Keeping
track of various parities was necessary to make long exact sequences collapse.
Finally, we needed a way to determine the irreducible constituents of U from
the groups H'(u, U); in this case H° sufficed. These steps can all be carried out,
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with varying degrees of difficulty, for Harish-Chandra modules: they are given
by Theorem 6.13, Theorem 4.2, Definition 7.1, and Proposition 5.5 respectively.
(The only one of these requiring linearity of G is Definition 7.1.)

4. Homological algebra. Let g=1[+ u be a parabolic subalgebra of g; we
assume that ) C [. We do not assume any longer that A is integral (although it is
still assumed regular), and we assume no relation between Ay and the roots of §
in u. We fix throughout this section a simple root a of Ay. Notation is as in
section 2, although we may again drop the subscript «; in particular s =5, € W
corresponds to a. We will be interested in the functors ¢' and y' which are the
analogues for [ of ¢ and ¢. More precisely, let

p=1/2 > B
B €&(u,b)

let F) be the finite dimensional representation of [ of extremal weight u_; and
define

W) =P, (P, (Y)®F)
etc., whenever Y is a 3(!)-finite [-module. The extra p, is included because of

THEOREM 4.1. ([2]) Let X be a 3(g)-finite g module with generalized
infinitesimal character \ (i.e. X = P\(X)). Then Y = H'(u,X) is a 3()-finite |
module, and

Y= @ PMI)?\—pu(Y);
we Wh\w

here W'= W (l/b), the Weyl group of 1 in L.

Since wyp, = p, for wo€ W', PL,_ =P}

1 wr—p, = Pugr—p,s S0 Par_, is well defined for
we WA\W.

Py

THEOREM 4.2. Let X be a 3(g)-finite ¢ module with generalized infinitesimal
character N. With notation as above, suppose 6 = [+ u, [ D 0, and a € AY is simple
and integral.

(@) Suppose o € A(u1). There is a natural isomorphism

Py_, (H'(w,oyX)) = @\(H'(1,9X))
of 1 modules, and a natural long exact sequence
YN H X)) Py, (H (X)) > U(H (1, X)) > . .

of | modules. Suppose 3(g) actually acts by scalars on X. Let oYX —> X Le the
natural map corresponding to the identity under Hom g(¢yX, X)) = Hom g(.X, yX)
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(cf- [17)). If we consider the induced map on cohomology, then the following
diagram commutes up to a non-zero scalar:

Py, (H (X)) =" Pi_, (H'(1,X))
fll"l sz

PA(H (1,9)) ——> AUA(H' (1. )

Here the map on the right is induced by the natural isomorphism
Hom,(@y3 Y, Px_, Z) = Hom(y3 Y, 41 Z)

and the identity.
(b) Suppose a € A(1). Then there is a natural isomorphism

Py (H (1, 9X)) = gidn(H' (1, X)).
Defining maps @yX —> X, gsys Y = Y as in (a), we get a commutative diagram
Pi_, (H'(u,qgyX)) — Py_, (H'(1,X))
i I
eava(H' (1 X)) ———> P{_, (H'(u,X));

and similarly for the natural maps X —> @yX.
(¢) Suppose —a € A(u). Then the formulae of (a) hold, with all arrows reversed.

Proof. We consider only (a); (b) and (c) are quite similar. We first construct
the long exact sequence. To do this, choose a g-stable filtration

0=F,CF,C...CF,=(F)*
such that F;/F,_, is an irreducible [ module. By Theorem 4.1,
Py o (H' (X)) =P\, , (H'(1,X ®(F,)*).

We compute the left side using the spectral sequence of the filtration. A typical
E, term is

P (H' (LX) ® F/F,_,).

By a theorem of Kostant ([10], Theorem 5.1), and Theorem 4.1, this is zero
unless there is a weight y of F;/F,_,, and some w € W, such that for some
wo € W1,

}\—,u—pu=w0(w7\—pu+y).
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Since the set of weights of F,/F,_, is W' stable, we may assume w, = 1. We can
write

Y=W(—H+ > nﬁﬁ),

Beay

with ng > 0. Thus
w A=) =X —p+ IngB.
Since A — p is also dominant (but singular) for A}, this forces
WA= p)=A—p,

and thus w™" = 1 or s. Furthermore we must have y = —pu or —su. Since these
weights are extremal in F¥, this gives

1

F,/ F_y = (F})*or (F})*

respectively. Thus the spectral sequence does collapse to the desired long exact
sequence. (Since

—p= —su— ma, m>0,

and a is a root of §) in u, the (F))* term of the filtration may be chosen to
precede the (F})* term. This accounts for the direction of the arrows.)

We only sketch the proof that the last diagram in (a) commutes. This proceeds
by induction on i. Suppose first that i = 0. Then

H(u1,Z)=2Z",
the space of u-invariant vectors in Z. Let w be an element of
P, (X)),

and put F = F,. We can regard ¢y.X as contained in (X ® F*)® F, and hence
write

w=3(x,®v") B
Filter F* as in (a) and define k so that
F/F_, ;(F;)*'

Let F' be the dual filtration of F. The argument for the first part of (a) shows
that the natural inclusion

P [(F< @yx) ] - P, (#9X)")
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is an isomorphism; so we may assume that all v; occuring in the expression for
lie in F¥~ 1, More precisely, we may assume that the v; and v} are dual bases of
F and F* obtained from bases of the [-primary subspaces, consistent with the
filtrations; in particular suppose {v;};_, is a basis for the [ type of extremal
weight p. Then the map

P, ((9hX)") = oa(¥X)")
takes w to

6= 2 (x; ®v*)®v,.

I<j<t

N

Again the argument for the first part of (a) shows that we may assume v} € F},
whenever x; 7 0. Since {v}}_ is a basis for the [ type of F* of extremal weight
— u, the map

hy
Px(¥X)"), = prda(XY)
under consideration takes @ to
= > (x,»j®v,?';)®vj;
1<i, j<t

The two remaining maps

w
Py, ((¢X)") > X
and
I g1 u f2 u
(PA‘PA(X )*)X

are just contractions: they take w and & to

> Xis > Xy

i 1<i<t
respectively. Unfortunately it is far from obvious that these differ by a scalar. To
see this, we need to construct an explicit inverse for the isomorphism f; from
Py _, (99 X™) to pr((¥X)"). To do this regard )((¥X)*) as contained in F ® X
via the natural inclusion Fy C F. Let A = AgsAps - .., Ay be representatives of the
distinct W orbits of the form A — p + y, with y a weight of F. For each i,
1 < i< N, choose z; € 3(g) so that A,(z;) =0, but A(z,) = 1. Choose n, >0 so
large that (z;)" annihilates the A; generalized eigenspace of 3(g) in F®Y
whenever Y has infinitesimal character A — u, and 3(g) acts by scalars in Y.
(This is possible by [10].) For & € y((yX)"), define

N
g(&) = ( 1 z,."f) -3 EF®yX.



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 817

We will prove three things about g: first that it actually maps @((¢X)") into
P{_pn(qn[/X )"; next that f, o g is a scalar (possibly zero, but depending only on
a, A, and p); and finally that h; o g = f, o h,. At that point we will only need to
show that the scalar is non-zero. Suppose not; since f; is an isomorphism, this
forces g = 0. If we take X for example in category O of Bernstein, Gelfand, and
Gelfand, then the [ module H %, X) lies in category O for L. It follows easily (cf.
[7]) that f, is necessarily an isomorphism. Since 0=k, o g= f, o h,, it follows
that h, is necessarily zero. But by taking X to be the b-finite dual of an
appropriate Verma module, we can easily arrange

Ya(H (1, X)) =0
Py, (H(u,yX))#0,

forcing h, # 0; details are left to the reader. So it remains only to prove the
stated properties of g.
First, we want

g(va(¥X)") C P, (9X)".

Evidently g commutes with the action of [, so it suffices to show that g(&) is
annihilated by u. Suppose not. Write

&= > y®u,withy, € (¥X)"

I<i<t

If x €u, then
x(g(@) = x(Tz") - &
= (II2")(x®)
= 8(x%)
with an obvious extension of the domain of definition of g. Now
X @=%x-y,00v,+y & xv,
=3y, ®x € (YX)'® Fk;

for the action of u takes F/ to F/*!. Choose a maximal set {x,, ..., x,} Cu so
that

0% g((x; . ..x)- &)

Clearly such a maximal set exists, since
(X1.--%) 3=3p,®(x;...x), € (YX)'® Fktr!

and F¥*7~1 =0 for large r. We want to show that the set is empty, i.e. » = 0. Put
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w = g((x,...x)®). Now if x5 € u,
X @ =X g((xy -+ %) @) =g((xo - .. x)&) =0

by the maximality of r. Also w, lies in gyX C F @YX, since g is just the
projection on this space. So

w; € (pgX )"

If we decompose w, according to the action of 3(l), it is easy to see that the
characters occurring are of the form A — p —p, + vy, with y a weight of § in
F**r=1: for this holds already for (x, . .. x,)&. So we get

Py e (P0X)'#0.
By Theorem 4.1, there is a w € W such that
WA=A—pu+y.
In particular
A-—ptpr—p+p=Q-p+y.A-p+y).

Since vy is a weight of F, which has extremal weight u, this implies that y = w, u,
and

A= pp)=AN—pw p.

Since A — p and p are dominant for Ay, and A — p is singular only with respect
to the simple root a, we get

Y=p O y=Su=p— ma

Since y is a weight of F¥*"~1 the second case is impossible and the first forces
r=0.

We turn now to the proof that f; o g is a scalar. So we continue to fix
&= Dcici ® v, with y; € (YX)". Choose a basis {X,, Y, L} of g, with x, € u,

y, €1, L, €1; here § = [ + 1l is the parabolic opposite to q. Write

N
I 2= 2 apy Yol Xy,

i=1
using multi-index notation. Then g(&) can be written as a sum of terms of the
form

Y Lpy; ® Yo Lg, X, v;

in a computable way. Keeping track of the weights of the center of I, we see that
fi ° g(&) depends only on the terms of the form Lgy, ® Y, Lg X, v;. More
precisely, there are elements u; € U(l), 1 <, j < 1, depending only on g, A, and



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 819

p, such that if y € (YX)",

(fie g)(P;—pu()’ ® Ui)) = Zl (uyy) ® v;.
j=

Here we must bear in mind that P, _ ou €an be written as an element of 3(1), just
as we used g as a projection for g earlier; so we can also find u;; € U(D) such that

t

Py_ o (VB V) = E ij®vi
J=

whenever y € Py _ w—p ((¥X)). We want to show that there is a constant ¢ such
that

u; — cul;- euvul)- IA—#—pu’
where 1, _,_, C 3(I) is just the kernel of the infinitesimal character A — p — p,;
clearly th1s will prove that f, o g = c - id. To see this, we choose X so that (¢X)*
is an irreducible [ module whose annihilator is precisely U(l) - I _,_, . This can
be achieved using an appropriate highest weight module for X, so that X)) is
an irreducible Verma module for [ (cf. [3]). In that case (¢X )" ® F) has a unique
irreducible composition factor of infinitesimal character A — p,; as f; o g is an
intertwining operator for I, this implies that

[ _ [
fl °g° P)\—pu_CP)\—p“'

Hence u; — cu';; € Ann((yX)") = U()"I_,_, , as desired.
Last, we must show that h; o g=f, o h,. So suppose

6= 3 (%®0")Qu, € Pi_, (¥X)' ® Fy).

I<i<t

On the one hand

(hy © g)(@) = l(I12" &)

)
= Hzi"i( > xii) = > X
1<i<t 1<i<t

if we extend A, to all of F ® F*® X in the obvious way; the last equality is
because X has infinitesimal character A. We have essentially already seen that

fro @)= 2> x
1<i<t
completing the proof of commutativity for H°.
To extend to higher cohomology, we use a standard dimension shifting
argument (cf. [2], [14]). Suppose the result known for H'~! with i > 0. One
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knows that U(l) is free over the image of the Harish-Chandra homomorphism
from B3(g) to 8(I); choose a free basis {qg;}, and let 4 be its linear span. By
induction on degree, one verifies an isomorphism

U@@=Uu)®4Q Um)® 3(a)

as a left u module and right 3(g) module. It follows that if X is a U(g) module
with infinitesimal character A, then

I'=Homy,,(U(9), X)

is a U(g) module with infinitesimal character A, containing X, which is injective
as a U(u) module. The short exact sequence

0>X->1->0->0
gives rise to
0> YyX > YI—>yQ—>0

0> gy X = Pl = pyQ — 0.

Since F* ® [ is injective as a U(u) module for formal reasons, and y[ is a direct
factor of F* ® I, Yl is injective; and similarly gyl is. Thus in the associated long
exact sequences, the maps such as

H ™ '(u,Q)—> H'(1,X)

are surjective. With some straightforward verifications, the commutativity of the
diagram for H'~'(u, Q) gives that for H'(u,X). Q.E.D.

CoOROLLARY 4.3. Suppose X is an irreducible Harish-Chandra module for g
(Definition 5.2) with respect to a subalgebra ¥ C g and Cartan involution 8. Suppose
q and 1 are @-stable. Then H'(u,X) is a (possibly reducible) Harish-Chandra
module for 1. In the setting of Theorem 4.2 and (2.4), we have

(@) Py_, (H'(u,K (X)) and @y (H' (1, X)) have the same composition factors
and multiplicities whenever o € A(u); and

() Py, (H'W,Q,(X)) and @yyp(H'(W,X)) have the same composition
factors and multiplicities whenever — o € A(u).

Proof. The first assertion is [14], Corollary 3.10. For (a), for example, we
compare the long exact sequence of 4.2(a) with the long exact sequence in
cohomology coming from 2.4(a), and use the commutativity of the last diagram
in 4.2(a). By [17], Theorem 1.2, the map f, in that diagram is an isomorphism. A
simple diagram chase gives the result; and (b) is identical. Q.E.D.

The corresponding result for non-integral walls is quite trivial, but we state it
for reference.

PropoSITION 4.4. Let X be a 3(g)-finite g module with generalized
infinitesimal character \. With other notation as at the beginning of this section,
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suppose o € A is simple and non-integral. Then (with the notation established for
Theorem 2.7)

P, o (H (u9X)) = Y3(H' (1, X)).

Proof. This is obtained from the collapse of the spectral sequence in exactly
the same way as the first assertion of 4.2(a). Details are left to the reader.
Q.E.D.

5. The special cohomology class of a Harish-Chandra module. In this section
we consider the problem of recognizing a Harish-Chandra module on the basis
of knowledge of some of its cohomology. To indicate what we need, we first
state a result for highest weight modules, which was used implicitly in section 3.

PROPOSITION 5.1.  In the setting of section 3, suppose X is a g module of finite
length. Then the multiplicity m(L,,,X) of L,, as a composition factor of X satisfies

m(L,,X) < dim H(u, X )" **.
If X is completely reducible, equality holds.

This is obvious. The version we need for real groups will be based on the
results of [14].

Henceforth we suppose, as in the introduction, that g is the complexified Lie
algebra of a real semisimple Lie group G; K is a maximal compact subgroup of
G, with complexified Lie algebra f, and the Cartan involution is written 6.

Definition 5.2. A Harish-Chandra module for G is a ¢ module of finite length
which is a direct sum of finite dimensional semisimple f modules. We may
sometimes implicitly assume that G has finite center, and that the f modules lift
to representations of the group K; but this is not particularly important.

We define a “norm” || || on the set f of irreducible f-modules as in [14],
Definition 5.1; and define the lowest f-types of a Harish-Chandra module X to
be the smallest f-types (with respect to || ||) occurring in X.

Fix an irreducible Harish-Chandra module Y, and let pu be a lowest f-type of
Y. Let g =1+ u be the f#-stable parabolic subalgebra of g associated to p by
Proposition 4.1 of [14]. By Theorem 7.16 of [14], the conjugacy class of g
depends only on Y. Let i’ be the highest [ N f-type of u with respect to 1t N £ (i.e.
the representation on u N f invariant vectors in p), and put

pt= ﬁ[®(/\R(u Np))*;
here R = dim(u N p).

THEOREM 5.3. ([14], Theorem 10.1, [13], Theorem 4.5). With notation as above,
p occurs exactly once in Y, and p' occurs exactly once in H®(u,Y). Let Y" denote
the unique irreducible subquotient of H®(u,Y) containing the L N t-type p'. Then
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Y' is independent of w; and the position of Y' in the Langlands classification of
irreducible Harish-Chandra modules can be computed from that of Y.

The specification of Y'in terms of Y is made explicit in Theorem 4.5 of [13].
The Langlands classification will be discused in more detail in section 6.

Definition 5.4. With notation as above, the representation Y' is called the
special cohomology class of Y.

PROPOSITION 5.5. Suppose X is a Harish-Chandra module for g, and Y is an
irreducible Harish-Chandra module for g of non-singular infinitesimal character .
Let q=1+u be the O-stable parabolic subalgebra associated to Y. Then the
multiplicity m(Y,X) of Y as a composition factor of X satisfies

m(Y,X) < m(Y,H?(u,X)).
If X is semisimple, equality holds.

Proof. Let h' be a maximally split f-stable Cartan subalgebra of [; write
fl=t'+a!, with t' = ' N £,a' = ' N p. (Here p is the — 1 eigenspace of 6 in g.)
Extend t' to a Cartan subalgebra t of [ N f (and hence of ). We may write p € t*
for the highest weight of the f-type u. In that case the element A € t* associated
to u by Proposition 4.1 of [14] has the following properties: first, A actually lies
in (t")*, and (by definition) the roots of t in [ are precisely the roots of t in g
orthogonal to A, i.e.

A(LY) = {a € A(g, 1)|<a, AY = 0). (5.6)
Next, A is close to p, i.e. there is a constant 4, depending only on g, such that
X —pl <4, (5.7

(This is immediate from Proposition 4.1 of [14].) Finally, in the Langlands
classification, Y is associated to the Cartan subalgebra ' and a weight of the
form

K.v) € () + (a")* = (p")*

({14], Theorems 1.2 and 7.16).

We want to study H®(u,X) using the spectral sequence of Theorem 3.9 in
[14]; in particular we are interested in the [ N f-type p'. The E, terms of this
spectral sequence look essentially like

HP(uNEX) ® (A9 N p))*.

(Actually this is a sum of several E, terms; but this point is unimportant.) Since
we are interested in

HR(u, X))
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(i.e. the p' [ N f-type), it would be convenient to know that
HP(uNEX)® (A9(uNp)*)*=0 (5.8)

whenever p > 1. Because of (5.7) above, this will be the case if X is very regular
with respect to u N, i.e. if

{a,Ay islarge when o € A(u N E,t).

So the first step is to arrange that, using Zukerman’s translation principle ([17}).
So we choose an integral weight y € (h")* with the following properties:

(a) {a,v|p) is large when a € A(u, 1)
(b) v is dominant for Af; ,(a,b") (5.9)
(© <a,v|py = 0 when a € A(L, 1)

We leave to the reader the easy verification that this is possible; one can take
for y a rational approximation of Re(}, v), multiplied by a large integer. Now
apply the translation functor from infinitesimal character (\,») to (A, ») + v. The
spectral sequence technique used in section 4 shows that, on the level of
cohomology, this amounts to applying the corresponding translation functor for
[. Furthermore the effect of this translation on Langlands parameters is
computed in [13], Corollary 5.17 (see also [15], Corollary 4.8); the conclusion is
that the translation affects neither hypotheses nor conclusion in our theorem.
(We needed 5.9(c) to insure that the §-stable parabolic associated to the translate
of Y is still g.) So we may assume (5.8). One concludes immediately that the
“edge homomorphism”

g s (HOu N EX) ® (AR N p))*) > HR(u, X )™

is surjective. By Theorem 3.5 of [14], this computes the action of U(g)' on
H%u N £, X)* modulo the kernel of #{; and in particular, the U(g)" module
H°uNt Y)* occurs at least m(Y', H®(1,X)) times in the U(g)' module
H°u Nt X)*. By a theorem of Harish-Chandra, the U(g) action on one f-type
of an irreducible Harish-Chandra module is irreducible and determines the
whole module uniquely. Hence Y occurs at least m(Y"', H®(u, X)) times in X.
The last assertion of the theorem follows trivially. Q.E.D.

6. The cohomology of irreducible induced modules. The next step in our
program of generalizing the Verma module arguments is to compute H'(u, X) as
an [ module whenever X is a “standard irreducible,” i.e. an analogue of the
irreducible Verma modules (cf. Definition 6.7 below). The main case to bear in
mind is when X is a discrete series representation. From here on, we will be
making constant use of the Langlands classification of irreducible Harish-
Chandra modules, in the form described in [13] and section 4 of [15]. We recall
briefly the definitions. The real Lie algebra of a Lie group is denoted by the
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corresponding lower case German letter, with a subscript zero; complexification
is indicated by dropping the zero as before.

Let H' C G be a #-stable Cartan subgroup; put 7'=H'N K, A'=H'N
exp (bp)- Then H'!=T"'- 4!, a direct product. (One should remember that 7'
need not be abelian.) Let M'4" be the Langlands decomposition of G*', the
centralizer of 4! in G. T is a Cartan subgroup of M.

Definition 6.1. An M '-regular pseudocharacter, or simply pseudocharacter of
H, is an ordered pair y = (T,7), with I" an irreducible representation of H', and
¥ € b*. Further, we require the following compatibility: 7|, should be purely
imaginary, and regular with respect to A(m',t"). Let A* (m',t") be the positive
system defined by ¥, and write p,1, p,.1~¢ for the obvious half sums of positive
roots. Then we want

dl' = 7 + Pt — 2pm|m.

We write (ﬁ 1y for the set of pseudocharacters of H'. The pair (T, ¥) defines in a
natural way a discrete series representation 8 = 8(y) of M, and a character

=Tl = exp(7l.)
of A'.
Definition 6.2. Let y € (H'Y. Choose a parabolic subgroup P'= M'4'N'
associated to H' in such a way that if » = ¥|,1, then
Reda, ) <0

for every root a of a' in n'. The Langlands principal series with parameter v, w(y),
is defined by

O(y) = IndfnS('y) RXrR 1.

Its irreducible subrepresentations 7(y) are called the Langlands subrepresenta-
tions of 7 (¥y). :

THEOREM 6.3. ([11]; [15], Theorem 4.2; [13], Theorem 2.9). Every irreducible
Harish-Chandra module X for g is infinitesimally equivalent to some %'(y); and
(H',y) is unique up to conjugation. If w(y) has nonsingular infinitesimal character,
then it has exactly one irreducible subrepresentation, which we call 7(Y).

One should bear in mind that the infinitesimal character of 7(y) corresponds
to ¥ € (h")* via the Harish-Chandra homomorphism. The next definition is just
(2.6); we repeat it for emphasis.

Definition 6.4. Suppose vy E(ﬁ Y is regular (i.e. w(y) has nonsingular
infinitesimal character). Set

Ay ={a€A(g,b")|Re{a,y) <0, 0rRea,y) =0, and Im{a,y) >0}.
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Recall from [13], Proposition 6.1 or [15], Proposition 4.5, the element m, € H'
associated to every real root a of §! in g; if G = SL(2,R), m, is the element of
order two, and m, is defined in general by embedding a covering group of
SL(2,R) in G using a.

Definition 6.5. The real root a € A(g, ") is said to satisfy the parity condition
if the eigenvalues of y(m,) are of the form

€, exp( =27y, o) /{a, a));
here ¢, = *1 is defined as in the remarks after Proposition 5.14 of [13].

PROPOSITION 6.6 (cf. [13], Proposition 6.1). Suppose y € (ﬁ Yy is regular, and
satisfies

(@) For all « € AT, either o is real, or fa € AT

(b) If a €AY is real, then « does not satisfy the parity condition
Then w(y) = @(y) is irreducible.

Definition 6.7. The representations «(y) arising in Proposition 6.6 are called
standard irreducible modules.

To describe the cohomology of the standard irreducible modules, another
definition is convenient.

Definition 6.8. Let g=1[+u be a f#-stable parabolic subalgebra of g, with
25" Suppose y € (H'Y. Let v, be the regular character of H' with respect to [
such that

@ v,= T, 7,)

(®) ¥,=7 —pw) =7 = 1/23 4 caq, ;™

(©) T|;1 and T' | 1+ differ by a “sum of roots,” i.e. a tensor product of several
one-dimensional representations of 7' on root subspaces of g.

Clearly v, is unique if it exists, because of the compatibility required between
I, and y,. We leave to the reader the easy verification that y, does indeed exist.

Finally, we need a way to keep track of induction arguments, substituting for
the length function on W in the Verma module case. The first part of the next
definition is a slight modification (by a constant) of the one in [15], Section 5.

Definition 6.9. Suppose y € (1-7 ) is regular. Set (7(y))=Wy)=1/2|{«
€A |0a & A Y| +1/2dima’ — ¢,, with ¢, equal to half the dimension of the
split part of the fundamental Cartan subalgebra of g. If g =1+ u is a #-stable
parabolic subalgebra, and h' C [, define

L(v)=| {a € Ay, f)') |#a = «, and either « is compact and {a,y) <0,
or a is noncompact and <{a,y) >0} |
+1/2| {a € A(u,b") | fa # a} |

It is fairly easy to verify that both /(y) and /(y) are integers; for /(y) one has
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to remember that if ' is identified with the fundamental Cartan subalgebra by a

Cayley transform, then § is modified by a Weyl group element of determinant
(_ l)dlm 01—2(’0‘

THEOREM 6.10. Suppose y € (ﬁ Yy s regular, and q=1+u is a @-stable
parabolic subalgebra, with b' C 1. Then the representation 7 (y,) of | occurs exactly
once in H*(u,7(Y)), in degree [ ().

Proof. Since both the Langlands classification and the cohomology groups
behave well with respect to Zuckerman’s translation functors (cf. [15], Corollary
4.8), it suffices to prove the result with y replaced by y + p, for some weight u of
a finite dimensional representation, such that y + p is regular and

AY, =47
So we may clearly assume that

|Re (a, yp)| is large for « € A(g,h') non-real.

Under this hypothesis, the #-stable parabolic subalgebra q'=1'+u' of g
associated to 7(y) as described in section 5, is just the one defined by v|,; in
particular ! is the centralizer of t! in g, and [' C I. Choose a Cartan subalgebra t
of £ contained in [!, and a Borel subalgebra of f contained in gNf and
q'NINE; let A*(£t) be the corresponding positive system, which we use to
identify representations of f with their highest weights.

We first calculate the lowest [ N f-types of #(y,). This is done in Theorem 7.16
of [14], in terms of the lowest (I, N f)-types of a certain representation of [;.
Using Lemma 6.33 of [14], it is easy to express that representation in our present
notation; and Theorem 7.16 of [14] becomes

LemMMA 6.11. Let {[i;} be the lowest [ N t-types of T(Y)ing)- Then
{ B+ 2p(u' N TN D)} is the set of lowest 1N t-types of T(y,); here 2p(u' N 1N p)

zaeA(u'nmp,r)“-

The same result calculates the lowest f-types of #(y), but in a positive root
system respecting g'. So we choose w € W(t,t) which takes the positive root
system defined by ' Nt and A* (£,£) N A(' N §,t) into A* (£,t). Then we get
(since v, = (Y)ng + p(1) = p(u') + p(L N 1)),

LEMMA 6.12. In the notation of Lemma 6.11, set a = p(u) — p(u') + p(L N u').
Then the lowest ¥-types of @(y) are

{w(ii; +20(u' Np) + a)};
and every t-type of @(y) is of the form
w(f +20p(u' Np)+a+ Q)

with Q a sum of roots of t in g'.
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Proof. The first statement is just Theorem 7.16 of [14]; and the second is
established in the proof of Lemma 8.8 of [14]. Q.E.D.

We now use the spectral sequence in Theorem 3.9 of [14] (cf. also section 5) to
compute

H*(u, 7 (y)) 2 0ininm,

i.e. the indicated [ N f-primary subspace. The E, terms of this spectral sequence
were written down after (5.7). Suppose one of them contains the [ N f-type in
question. Then there are an [ N f-type § occurring in H?(u N £,7(y)), and q roots
By ... B, of tinuNp,such that

g +2p(u'NiNp)=6-3 8.

By Kostant’s version of the Bott-Borel-Weil theorem, there is a f-type u, of 7(y),
and a Weyl group element w, (having a certain property with respect to
A* (LN 1)) such that /(wy) = p, and

8= wo( o+ 0.) — Pcs

here of course

p.=1/2 > a
aEAT(L 1)

Since y|,: is close to fi;, and is assumed to be very regular, fi; and § lie in the same
Weyl chamber for f; so w = wy !. Our equation now looks like

w( i+ 20" N LN D)+, + D B) = o+ e
Inserting the information from Lemma 6.12, we get
i+ 20N INP)+p, + > B=f+20('NP)+ O +a+wlp,
with Q a sum of roots in g'. Clearly

a= > a= -> o

aEA(L) agA)-Au'NI)

agA(ul) agA(n)

wo lpc P = _z «.
a€A(unt)
agA(ulnt)

So we can rewrite the above equation as

2 Bi= 2 a+ Q.

aeA(unulnyp)
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Clearly this is impossible unless

{B}=Aunu'np),Q=0.

So the [Nt type fi, + 2p(u' N1 Np) occurs exactly once in E!, and hence
exactly once in H*(u,7(v)); the degree in which it occurs is

l{a € A(u,t")| a is compact, and {a, y|s) <0,

or a is noncompact, and <a, y|;» > 0}.|

It is an easy exercise to check that this is precisely / (y).

It remains only to check that the irreducible representation of [ w[(yq)
occurring in H*(u,7(y)) and containing the lowest [ N f-types of 7(y,), actually
coincides with 7(vy,). By the Langlands classification, we can write

7 (va) = (vl 7157 (1)));

where »(y) € (a')*. (This assume the easily verified fact that the [ N f-type we
have been dealing with is [ N u'-minimal in the cohomology ([14], Definition
3.11).) By Theorem 4.1, there is an element w € W(g/}") such that

(¥l v () = w(¥)-

Since H*(u, X) behaves well under translation, we may assume this holds for all
v in some Weyl chamber. Hence

Yo = (WY)lp

for all ¥ € (9")*; clearly this forces w € W(l'/§"). By shifting y again, we can
arrange for the stabilizer of T |, in W(l'/h") to be all of W(I'/p") (cf. [15],
proof of 6.1). For such y, we deduce

Ti(Yol 7157 (1)) = T((¥a)

(since 7(y,) depends only on the conjugacy class of y,). This equality persists to
all y by translation, as desired. Q.E.D.

Up to this point, our arguments have been fairly routine extensions of those of
[14]. The next result seems to be fundamentally deeper, however. (Even if a
more elementary proof exists, the ideas used below are interesting in their own
right.)

THEOREM 6.13.  Suppose y € (ﬁ Y is regular, and %(y) = w(y) is a standard
irreducible (Definition 6.7). Then w(Y) has no cohomology other than that specified
in Theorem 6.10. More precisely, let ¢ = [ + u be a §-stable parabolic subalgebra of
g, h2cl a §-stable Cartan subalgebra, and (72) € (H?); a regular character for |
(so that y* € (H %Y is a regular character for g). Then 7(y2) occurs in H*(u,7(y))
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if and only if (H',y) is conjugate to (H? v%); and in that case it occurs exactly
once, in degree 1,(v?).

The proof requires some preparation. We will need to study extensions in the
category of (g,f) modules (cf. [1]). This problem is related to cohomology by

THEOREM 6.14 (Zuckerman). Suppose y € (ﬁ Y is regular. Let q =1+ u be
the parabolic associated to vy (as in section 5). Then there is a spectral sequence
Extf (H®~(u, X), m(Y,)) = EXt2 7 X, 7(y)). Here R = dim(u N p), and X is
any (g,t) module; the E§9 term is zero unless p and q are both non-negative.

The proof of this result relies on Zuckerman’s “derived functor” construction
of representations, which has not yet been published. So we leave the result
unproved; since our goal is simply to formulate a conjecture, this is not very
serious.

LEMMA 6.15. Suppose g is split, and p efisa fine t-type ([14], Definition
6.11). Suppose X is a (g,f) module of finite length, containing the t-type p exactly
once; and suppose 3(g) acts by scalars in X, according to a regular infinitesimal
character. Let w(Yy) be the principal series representation of g containing ., such
that U(g)" acts by the same scalars in the p t-types of X and (). Then there is a
g-module map from X to w(y) which is non-zero on the t-type u.

Proof. Recall that =(y) is defined in such a way that 7(y) is its unique
irreducible subrepresentation. By the assumptions of the lemma, #(y) must be
equivalent to the unique irreducible constituent of X containing p. By
Casselman’s (apparently unpublished) realizability theorem, we can find a
representation £ of G on a Hilbert space of which X is the space of K-finite
vectors. Let G = KAN be an Iwasawa decomposition; suppose A €a* is
dominant and gives the infinitesimal character of X. Let N be the unipotent
group “opposite” to N, and let p be half the sum of the roots of a in n. Consider
the asymptotic expansions of matrix coefficients of £ along the positive Weyl
chamber 4% (cf. [16], Theorem 9.1.1.1). Every exponent occurring in such an
expansion is of the form wA— Q —p, with Q a non-negative integral
combination of roots of a in n; in particular, the weights A + a — p, for « a root
of a in n, do not occur.

For fixed w € X, consider the map

v—>p, ., € S(a*)

taking v to the (polynomial) coefficient of e*~* in the expansion of ({(a)v, w). It
follows easily (just as in the proof of Casselman’s subrepresentation theorem)
thatif Y, €1, Y, € q, then

lev,w =

psz,w = [(}\ - p)(YZ) + a(YZ)]Pv,w'
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Since 3(g) acts by scalars on X according to a regular infinitesimal character, a
standard argument now shows that we must in fact have Y, acting semisimply
on the p, ., ; so 9(Y,) always acts trivially, and therefore p, ,, is constant. Thus we
have maps

9, X/AX—>C
P (Y-0)=@A=p)(Y)o (Y Ea);

of course ¢, (v) is just p,, .

By the definitions in Langlands’ classification (cf. [11]), the exponent A — p
occurs in the expansion of the matrix coefficients of the p f-type in 7(y), and
hence also in X. So we can find a w € X so that ¢, is non-trivial on the u f-type.
By Frobenius reciprocity, this gives a map (for some §, € M )

X—>1IndS,x0, ®A® 1

which is non-trivial on the p f-type. Since A is negative for N, the left side is of
the form = (y"). Clearly #(7y’) is equivalent to the unique irreducible constituent
of X containing y, and hence to 7(y); so #(y) is equivalent to 7(y’), proving the
lemma. Q.E.D.

COROLLARY 6.16.  Suppose Xy~ 7(y°) and X, = 7(y") are distinct irreducible
(8, ) modules with regular infinitesimal character, and Ext}" Xy, X ) # 0. Then for
some i €{0,1}, X, is a subquotient of w(y'~%).

Proof. By translation, we may assume that X, and X, have distinct lowest
f-types (argue as at the end of the proof of Theorem 6.10). Let ( ;,q’) be lowest
f-types of X, and associated @-stable parabolic subalgebras; by a further
translation we may assume [ is split. Suppose for definiteness that || u|| < || goll;
since

Ext] (Xo, X)) = Ext, (X;,Xo)

([15], Lemma 3.16), this causes no loss of generality. Let E be a proper extension
of X, and X,; thus

0->X,>E->X,—>0

is exact, and X, is the unique irreducible submodule of E. Obviously E has no
self-intertwining operators other than scalars, so 3(g) acts by scalars on E. By
the proof of Theorem 5.2 of [14],

HRWE)

contains the ['N¥ type ,u{l exactly once; and this is accounted for by the
occurrence of T(y,i) as a composition factor. Furthermore Theorem 2.6 of [2]
(cf. [14], Theorem 3.3) implies that 3(l) acts semisimply in H®(u!, E). Since [! is
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split and u}' is fine (by [14]) we can apply Lemma 6.15. The conclusion is
Hom, mf(HR(ul’ E),m(Yq)) # 0.
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