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IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE
GROUPS 1

DAVID A. VOGAN, JR.

1. Introduction. Let G be a connected semisimple Lie group. In [16], a
collection of problems in the representation theory of G was set forth; one of the
major ones was the determination of the irreducible characters of G. (This
problem is not solved in the present paper.) The main theorem of [16] (Theorem
3.7 and Lemma 3.11 below) is a simple description of how these characters
behave under “coherent continuation” (defined by 2.6 below). From this
theorem, reducibility conditions for some standard induced representations were
obtained. Unfortunately, the proof given in [16] for Theorem 3.7 is extremely
complicated, and not very enlightening. The first purpose of this paper is to
present a greatly simplified proof of this theorem, using Duflo’s realization of
the primitive ideals in the enveloping algebra of the complexified Lie algebra &
of G (cf. [4)]).

Our study of irreducible characters is along the lines sketched in [16]. As
indicated there (in Theorem 6.18) it suffices to determine the irreducible
characters with a given nonsingular infinitesimal character. These form a finite
set A, which has been parametrized by Langlands in [11]. Thus we may write
A={0,,...,0,}; here each O, is characterized in a certain way, but not
explicitly known. To each ©® & A4, a finite set {U,(®)} of invariant
eigendistributions was associated in [16]; this will be described in section 3
(Definition 3.8). Each U,(®) is a sum of elements of A, with non-negative
integral multiplicities. Once these multiplicities are known (for all « and ®) the
©, can be computed explicitly by a finite algorithm. (This algorithm will be
given in Section 5.) So the problem we consider is the determination of these
multiplicities. (For reasons discussed in Section 2, this seems to be the simplest
way of describing the irreducible characters.) Some of the multiplicities were
found in [16]. Here we determine some more of them (Theorems 4.12 and 4.14).
More importantly, we give a result relating the multiplicities to the dimensions
of certain Ext groups (Theorem 3.9). This turns out to be an extremely powerful
computational tool. In Section 6 we illustrate these results with a computation in
SP(3, 1).

The results of this paper were formulated in the course of discussions with B.
Speh, J. C. Jantzen, and G. Zuckerman. I would like to thank them for many
helpful suggestions.

Received June 30, 1978. Supported by an AMS Research Fellowship.
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2. Notation and preliminary results. Throughout this paper, G will be a
connected semisimple Lie group. The arguments of [16] relied heavily on the
theory of parabolic induction, so it was convenient there to work in
Harish-Chandra’s category of reductive groups. Certain technical problems
arose in that category, however, which were avoided by assuming that the
Cartan subgroups of G were abelian; and for simplicity G was assumed to be
linear. These assumptions eliminate many extremely interesting phenomena
associated with the double covers of split linear groups; and since the arguments
used here do not require the assumptions, it seems worthwhile to drop them.
Allowing disconnected groups, on the other hand, does not seem to be worth the
complications involved (notably in the theory of finite dimensional representa-
tions). We will tacitly assume that G has finite center; but the results all hold for
the general case, with occasional trivial modifications of the proofs.

Fix a maximal compact subgroup K of G, and let 8 be the associated Cartan
involution. We write &, fo for the Lie algebras of G and K, @, f for their
complexifications, and U(®), U(f) for the enveloping algebras; analogous
notation is used for other subgroups. The Killing form and its various
restrictions and dualizations are all written {( , ). The —1 eigenspace of & in &,
is written p,,.

We will make heavy use of the category I (S, K) of compatible (&, K)
modules introduced by Lepowsky in [12]. An object X of 9N (&, K) is a module
for ® and K simultaneously; if x € X, then (K- x) (the span of the vectors k- x
for k € K) is finite dimensional, and the differential of the action of K is the
action of £. If § € K (the set of equivalence classes of irreducible representations
of K) then the 4-primary subspace X(§)C X is well defined, and
X =@ i X(8). If V is a locally finite representation of K (i.e., (K- v) is finite
dimensional for every v € V), then U(®)®f V' can be given the structure of a
compatible (&, K) module; and it is projective in I (G, K). It follows easily
that every compatible (&, K) module has a projective resolution, and therefore
that the functor Homg, , has derived functors Ext{y .. The basic theory of these
functors is developed in [1]. We will often omit the subscript
(®, K), since we will not consider any other kind of Ext group.

Let %(®, K) denote the subcategory of I (®, K) consisting of compatible
(®, K) modules with finite composition series. Such a module X has a global
character ©(X), which is a distribution on G; this is most easily defined as the
sum of the characters of the irreducible composition factors of X. (By a theorem
of Casselman, X is the Harish-Chandra module of a certain representation of G
on a Hilbert space; and ©(X) is the character of this representation. We will
make no use of this fact, however.) The characters of inequivalent irreducible
(®, K) modules are linearly independent. It follows that the lattice “V(®, K) of
virtual (®, K) modules (i.e., formal finite combinations of irreducible (®, K)
modules with integer coefficients) may be identified with a lattice of
distributions on G, which has as a basis the set of irreducible characters. This
lattice of distributions is called the lattice of virtual characters. In particular
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every virtual (®, K) module V" has a character @(7). We may of course identify
V(®, K) with the Grothendieck group of ¥ (&, K).

Write G for the set of equlvalence classes of irreducible (®, K) modules.
Langlands has parametrized G in the following way. Let P be a parabolic
subgroup of G, with Langlands decomposition P = MAN. (Thus M is §-stable,
and ay CP,.) Fix a tempered representation § of M, and a character » € A=a*.
We say that » is positive (respectively strictly positive) with respect to P if
(Re », a) > 0 (respectively (Re », a) > 0) for every root a of a in N. Since N is
normal in P, § and v define a representation of P which is trivial on N; we write
thisas 0 ® v ® 1 or § ® ». Put

Ify, = I e, =1ndS 8 ®r® 1.

Here induction means normalized induction. The K-finite vectors in I; g, form a
(®, K) module with a finite composition series, which we may also write as I5g, .
If » is strictly positive with respect to P, then Langlands has constructed in [11] a
canonical irreducible quotient Jsg, of I;g,. (D. Mili¢ic has observed that the
proof of Lemma 3.13 of [11] actually shows that Jyg, is the unique irreducible
quotient of I;g,.) Again we will often consider J;g, as a (&, K) module.

THEOREM 2.1 (Langlands [11]). Let X be an irreducible (&, K) module. Then
there is a parabolic subgroup P = MAN of G, a tempered representation § € M,
and a character v € A strzctly positive with respect to P, such that X is equivalent
to Jg,. Furthermore the pair (P, 8 ® v) is unique up to conjugation in G.

We call a pair (P, ®») as in the theorem a set of Langlands data. The
tempered representations of the groups M arising in this theorem have been
completely determined. (This depends on the connectedness of G or something
similar; at any rate the tempered representations of arbitrary reductive groups
are not known.) For G linear this is announced in [9]; the general case is treated
in [17]. In particular the characters ©(8 ® v) = O(Jsg,) occurring in the
theorem, which we will call standard, can in principle be computed: the problem
comes down to computing the characters of discrete series representations,
which can be done ustng Harish-Chandra’s proof of their uniqueness. This is
certainly not a completely satisfactory description of the standard characters;
but it is nonetheless reasonable to try to describe the irreducible characters by
expressing them in terms of standard characters. This will be our goal. First we
show that this is possible in principle.

PROPOSITION 2.2. J;g, occurs exactly once as a composition factor of Ifg, .
Suppose Jig, is a composition factor of Ifg,. (Here (P, 8 ® v) and (P', 8’ ® v")
are sets of Langlands data.)) Then either J{g, =Jfs,, or (Rev’,Rer’)
<{(Revr, Rer).

This result was discovered independently by several people. A proof may be
found in [16] (Proposition 2.10).
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COROLLARY 2.3. The standard characters form a basis for the lattice of virtual
characters of G. More precisely, there is an equation

N
0(Jsp,) =O(8 Q») + gl n0(3; @ »), (*)

for some integers n;; and n; # 0 implies (Re v;, Re v;) <(Re », Re v).

This follows from Proposition 2.2 by an obvious induction. The first statement
of the Corollary was first proved by Zuckerman (unpublished); the rest is again
due to several people independently. One might at first suspect that (x) is as bad
as possible when J;g, is finite dimensional. In that case Zuckerman has
computed it explicitly. It has several nice features, notably that the n, are all +1
(or zero). Unfortunately this is not true in general, and it seems unlikely that one
can compute (*) in a nice closed form. Our goal will be to construct a nice
algorithm for computing (x), with the hope that the complications in the result
arise only from the fact that the algorithm has many steps. (As indicated in the
introduction, even this program is not completely carried out here.) There is an
obvious analogy with the algorithm mentioned above for computing discrete
series characters. That algorithm is based on Harish-Chandra’s “matching
conditions” relating the behavior of a character on two Cartan subgroups, which
are extremely simple in form; but the discrete series characters themselves are
quite complicated.

Let 3(®) denote the center of U(®), and let ) C® be a Cartan subalgebra.
Write W = W(®/}) for the Weyl group of b in ®. If S() is the symmetric
algebra of §, then Harish-Chandra has defined an algebra isomorphism &, : 3 -
(®)— S(H)”. (¢ is constructed using a system of positive roots, but is
independent of the choice of that system.) If A € h*, we define x, : 3(®)— C by
xx(2) = &2)(N). In this way Spec B(®) is identified with the set of W orbits in h*.
If X is an irreducible (®, K) module, then 8(®) acts by scalars on X; if it acts
through the homomorphism ¥, , we say X has infinitesimal character \. If X is a
(®, K) module of finite length, we define

Py(X) = {x € X | for all z € 3(®) there is a positive
integer n such that (z — x,(2))"x = 0}.
Then

X= 2 Py(X),
Aeph*/w

a finite direct sum; this is obvious. The functor P, on ¥ (®, K) lifts to a
homomorphism of V(®, K) to itself. In particular, if ® is a virtual character,
then P,(®) is well defined. In fact if ® is known explicitly (as a function) then it
is trivial to compute P,(®) explicitly.
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Finally, suppose F is a finite dimensional (&, K) module. If X is a (&, K)
module, so is X ® F; and if X has finite composition series, so does X ® F. In
that case @(X ® F) = O(X) - O(F), which is explicitly computable if O(X) is
known and F is specified. (Notice that ®(F) is a smooth function, so that the
product is well defined.) There is a natural isomorphism

Homg (X ® F, Y)=Homg (X, Y ® F*),
which easily implies a natural isomorphism
Ext/(X ® F, Y)=Ext'(X, Y ® F*). (2.4)
If X and Y have finite composition series, then

Homg, )(PA\(X), Y)=Homg, x)(X, P,(Y)).

Since Ext is defined in the larger category N (@, K), it is not obvious that the
corresponding result holds for Ext, but in fact it is proved in [1]:

Exti(Py\(X ), Y)=Ext(X, P\(Y)). 2.5)

Write A = A(®, b) for the set of roots of ) in &. The infinitesimal character A
is called nonsingular if (o, \) # O for all « € A(®, H). (Clearly this depends only
on the W orbit of A in h*.) Fix a system A* C A of positive roots. We associate
to A* a positive Weyl chamber C C h*:

C={AEbh*|Re{a,A\) >0 or Re(a,A)=0
and Im{a,A) >0, forall a €A™}

Then C is a fundamental domain for the action of W on h*. An element of C is
called dominant; an element of C is called strictly dominant.

Recall from [16], section 5 Schmid’s theory of coherent continuation of
characters. If ® is a virtual character with strictly dominant infinitesimal
character A, and p € b* is a weight of a finite dimensional representation of G,
then S,(©) is a virtual character with infinitesimal character A + p. (In [16] we
had to consider p as a character of a special Cartan subgroup of G; the
connectedness of G allows us to be more careless here.) If F is a finite
dimensional representation of G, and A(F) Ch* is the set of weights of F with
multiplicities, then

0-6(F)= 3 5,0); (26)
BEA(F)
this fact and Py, ,(S,(0)) = S,(0) determine S,(®) uniquely, and the only
problem is to define it. This is done in [16], using Harish-Chandra’s theorem that
a character is a locally L' function; it is perhaps worth remarking that use of
that theorem can be avoided by combining recent work on Zuckerman on
constructing the discrete series algebraically with the results of [17].
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If X is a ® module, we write Ann X C U(®) for the annihilator of X. We
need some information about the relationship of Ann to P, and ® F;; the precise
form of the result is not very important, but the fact that a result exists will be
crucial. Let h : U(®)— U(®) ® U(®) be the Hopf map: 4 is an algebra map,
and forx €&, h(x)=x® 1+ 1 ® x. If X and Y are U(®) modules, then X ® Y
is a U(®) ® U(®) module in an obvious way. The usual U(®) module structure
of X®Y is obtained via the map h: if vEX ®Y and u € U(®), then
u-v = h(u) - v. The kernel of the map

U®)® U®)—>(U(®)/Ann X )® (U(®)/Ann Y)
is easily seen to be Ann X ® U(®) + U(®) ® Ann Y. We deduce
LemMA 2.7. If X and Y are U(®) modules, then the annihilator of X ® Y as a
U(®) module is
h~'(Ann X ® U(®) + U(®)® Ann Y).

LEMMA 2.8. Let X be a (®, K) module of finite length, say with at most n
irreducible composition factors. Suppose that these factors have infinitesimal
characters contained in

Ao An.-- Ay} CC.
Then
Ann(P, (X)) = {u € U(®) | for all z € B(®),
N
[u- JI;[I(Z - x,y(z)) € Ann X }
Proof. Choose a filtration {0} =F°CF'C--- CF"=X, such that

F'/F'~!is irreducible or zero for 1 < i < n. Put X P (X ). Since the A, lie in
C, they are distinct modulo W; so X = @N oX; - Each X may be regarded as a
quotient of X, and hence inherits a flltratlon {X "} with the same properties as
{F'}. Of course X// Xj’ ! has infinitesimal character A;; so if z € 3(®), one sees
by induction that (z — )y(z))" annihilates X/. In particular (z — Xy, (2))"
annihilates X;. If we write 4 for the subalgebra of U(®) defined in the lemma
then it follows that Ann(P) (X)) C 4.

Conversely, suppose u € 4; we must show u annihilates P, (X). Choose
z €3(®) such that x, (z) # x,y(z) for all j>0. Now z—x,(z) defines a
nilpotent operator 7 on Py (X): T"=0. So (computing in End P, (X)),
zZ =Xy, @) =T+ ()~ X (2)), which is invertible for j > 0. So

N
11 (z- x&(z))"= S
j=1
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is invertible as an operator on P, (X). Since S-u annihilates all of X, it
annihilates Py (X); so u itself must annihilate P, (X). Q.E.D.

The main idea of the proofs given in section 3 for the results of [16] can now
be described very simply. By a theorem of Duflo, the annihilator of any
irreducible U(®) module is the annihilator of some irreducible highest weight
module. (This will be described more carefully in the next section.) We will
translate statements about irreducible (&, K) modules into statements about
their annihilators, and then back into statements about highest weight modules.
In this last form they are often much easier to prove.

3. Coherent continuation across walls. Recall our fixed choice of a Cartan
subalgebra §h C®, positive root system A* C A(®,H), and Weyl chamber
C C b*. Throughout most of this paper we will be concerned with (&, K)
modules X of finite length having a fixed (generalized) infinitesimal character A.
This means that P,(X)= X, and thus that for all z €3(®), z — x,(2) acts
nilpotently (not necessarily trivially) on X. Generally A will be nonsingular, so
we can and do assume A € C. We define

2(a, A
A}\= [(x EA(@, h)‘m EZ}
AY =ANA*

Wy= W(A) C W.

It is a standard result that A, is a root system, so that the Weyl group W, is well
defined. It should be emphasized that A, need not correspond to a subalgebra of
®. Let II, denote the set of simple roots of Ay .

LemMMA 3.1.  For each a €1, there exists a positive root system ¥, C A(®, )
such that ¥, D A}, and o is simple for ¥ .

This generalizes the standard result that every root is conjugate under W to a
simple root, and can be proved in the same way; details are left to the reader.

Fix a €1II,, and a positive system ¥, as in Lemma 3.1. Choose an integral
weight p!, dominant for ¥, and so large that A+ . is dominant and
nonsingular for ¥,. (If A is already dominant for ¥, —for example if A is
integral—we could take p! = 0.) Put m = 2(a, A + )y /(a, a), and define p2 to
be m times the fundamental weight of ¥, corresponding to a: thus if 8 is a
simple root of ¥, (B, p2) =0if a # B, and 2(a, p2)/{a, &) = m. It follows
that if § € I1,, then (8, A + p! — p2) > 0, with equality if and only if § = a.

Following Zuckerman [19], we now introduce several functors on ¥ (@, K).
Let F! denote the finite dimensional irreducible ® module of highest weight p’
with respect to ¥, and (F)* its contragredient (which has lowest weight — p?).
Possibly passing to a finite covering group, we may assume that F!
exponentiates to a representation of G. (We may often do this without further
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comment; the F! appear only as a technical device for constructing certain
representations which will be defined on our original group.) If X is a (@, K)
module of finite length, we define

Yal(X) = Prya((P(X)) ® F,)
Ya(X) = Pyypua((Pren (X)) ® (F2)¥)
Q2(X) = Py ((Prsp—a(X))® F2)

Pa(X) = Py((Prra (X)) @ (F)¥).

Put y, = y2 o Y}, @, = ¢! o @2. The functors ¢? and y? are precisely of the type
considered in Definition 1.1 of [19]. Since A may not be dominant with respect
to ¥, , the other two are not precisely of this kind; but since only the integral
roots really matter, the proofs of [19] go over almost without change. (Compare
[8), and Theorem 5.20(a) of [16].) For y €b*, we write ¥ (&, K) for the
subcategory of % (®, K) consisting of modules with generalized infinitesimal
character y. Then we have

ProrosiTION 3.2 (cf. [19], Theorem 1.2 and 1.3, and section 3). The functor
V. restricts to an isomorphism of F,(®, K) with F, , w (8, K), with natural inverse
Q. If n=2{a, \y/{a, a), p,=p—pl, and X has generalized infinitesimal
character A, then

(@ O(¥, (X)) = S_, (O(X))

(®) O, (X)) = 6(X) + 5_,,(B(X)).

If X is irreducible, then ,(X) is primary, of length at most two.

Proof. The first statement is proved in the same way as Theorem 1.2 of [19].
Formulas (a) and (b) follow from the definition of S, and the computations of
section 3 of [19] (compare also the proof of Theorem 5.20 of [16]). The last
statement follows from Zuckerman’s proof of Theorem 1.3 of [19]; the number 2
is the order of the stabilizer of A — p, in W. Q.E.D.

The first thing to notice about this result is that (at least on the level of
characters) ¢,y, is independent of all choices. By Theorem 1.2 of [19],
P, ¥, (X) = 0 if and only if ¥,(X) = 0. Accordingly we make

Definition 3.3. Suppose X is a (@, K) module of finite length with
nonsingular infinitesimal character A. The Borho-Jantzen-Duflo t-invariant 7(X)
is the subset of II, defined by a € 7(X) if and only if y,(X)=0 (which is
equivalent to S_, (O(X))= —0(X) by the remarks above and Proposition

3.2(b)).

The 7 invariant of Borho-Jantzen and Duflo (cf. [2], [4]) is defined for certain
ideals in U(®); in case X is irreducible, what is defined above is their 7(Ann X).
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Now fix an irreducible (@, K) module X with nonsingular infinitesimal
character A. For each a €II, — 7(X), we will define a new (&, K) module
U,(X). The existence of U, (X) is the main theorem of [16]; we give now a new
proof.

LemMA 3.4. Suppose A and B are (&, K) modules of finite length. Then there
are natural isomorphisms

Ext*(¢,4, B)=Ext*(4, ¢, B)
Ext*(d, ¢, B)=Ext*(y,4, B).

Proof. These follow immediately from (2.4) and (2.5). Q.E.D.

The preceding result was first proved by G. Zuckerman (unpublished).
Suppose now that X is irreducible as above, and that a €II, — 7(X). By
Definition 3.3 and Proposition 3.2, y, X is non-zero and primary, say with
unique irreducible constituent Z. By Lemma 3.4,

Hom@i, K(X’ (pa‘l/aX) EHOIII@, K(‘PaX’ ¢aX)
=Homy, (gu¥uX, X). (3.5)

The middle term here has a canonical non-zero element, namely the identity.
This gives rise to two maps

0-X->qy,X—>X-0. (3.6)

The first map is injective and the second surjective, since X is irreducible.

THEOREM 3.7 ([16], Theorem 5.15 and Corollary 6.17). Let X be an
irreducible (®, K) module with non-singular infinitesimal character \. With
notation as above, fix a root a € I, — 7(X). Then

(a) (3.6) is a chain complex, i.e., the composition of the maps is zero.

(b) Y, X is irreducible.

Proof. We will show that if (a) or (b) fails, then ¢y, X=X @ Y, with ¥
irreducible and y, Y =y, X. Thus 3(®) acts by scalars on ¢y, X. By a separate
argument, we will show that the Casimir operator of & cannot act by scalars on
@,V X. This contradiction will prove the theorem.

Notice first of all that O(y, ¢, ¥, X) = 20(y,X); this is essentially Lemma 3.3
of [19]. (As remarked earlier, the functors ¢, and ¢, are not precisely those
considered by Zuckerman, but the same argument works.) Suppose first that (b)
fails. In this case Proposition 3.2 implies that y,, X has exactly two irreducible,
isomorphic composition factors (which we call Z). It follows trivially that
Homg x(¢,X, y,X) has dimension two or four, depending on whether ¢, X is
completely reducible or not. In either case we have from 3.5 an injection

0-X DX X.
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Let Q be the quotient module ¢y, X /X @® X. To prove the first claim in this
case it suffices to show that Q = 0, or equivalently that Homg (¢,¥,X, Q) =0.
By Lemma 3.4, this is Homg (¢, X, ¥, Q). But

O Q) = O(YoPu¥uX) = 20(¥ X ) =0

by the remark above; so y, Q = 0, proving the claim.

Suppose next that (b) holds but (a) fails. Let Y, be the kernel of ¢y, X — X.
Then (since (a) fails) 3.6 provides an isomorphism ¢, X=X @ Y,. Let Y be an
irreducible subrepresentation of Y,,. Then

0 ?é Hom@, K( Y’ (pa‘PaX)';Hom@, K(¢a Y’ ‘lbaX)'

Since y, X is assumed irreducible, it follows that ©(y, Y) = O(y,X) + ©,, with
®, the character of a representation. Hence

O(¥a(Yo/ Y)) = O(YePuteX) — O X ) — O(¥,Y) = ~ 6,

since O, ¥, X) =20(y,X). Now the left side is the character of a
representation, and the right side is minus the character of a representation.
Hence ©, =0, and v, (Y,/Y) = 0. It follows that

Hom@S, K((pa¢aX’ YO/ Y) EHomﬁ, K(lan’ lI/o(( YO/ Y)) = 0’

and hence that Y,/ Y =0, i.e., Y, = Y. This proves the claim in general.

Let § be the Casimir operator of . We want to show that  does not act by
scalars on ¢ y, X, or equivalently that @ — x,(2) & Ann(¢, ¥, X). By Proposition
3.2, it is enough to show that © does not act by scalars on @2(y,(X)); in other
words we may replace X by y}(X), A by A + p!, and p, by p2. Thus we may
assume that y, is dominant for ¥ . (Similar reductions will be made hereafter
without much comment.) Put F, = F?. Let Z be the unique irreducible
composition factor of Y, X. Since Z is a subrepresentation of y, X,
Ann(Z) D Ann(y,X). Let L be an irreducible &-module (not necessarily a
(®, K) module), and suppose Ann(L) D Ann(Z). By Lemmas 2.7 and 2.8,

Ann((paL) ;) Ann((pa\lbaX)'

(Here ¢,L = P\(L® F,). The functor P, makes sense because L® F, is
annihilated by an ideal of finite codimension in 8(®). This will be obvious for
the L we consider; or one could appeal to a general theorem of Kostant ([10].)
So it suffices to construct an L with Ann(L) D Ann(Z), and show that Q does
not act by scalars on Py(L ® F,). As the annihilator of an irreducible 8-module,
Ann(Z) is by definition a primitive ideal in U(®). The set of primitive ideals
containing ker(x,_, ) C 8(®) has a unique maximal element (as was proved by
Dixmier); and by a deep theorem of Duflo, this element is precisely the
annihilator of the irreducible ¥ -highest weight module L, with highest weight
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A—p, —p(¥,). (For all this see [4]; the theory of highest weight modules is
described in [3].) Here p(¥,) is just half the sum of the roots of ¥ ; we will write
this simply as p below. Recall that the &-module L is completely reducible for §;
and every weight occurring is of the form A — p, — p — Q, with Q a sum of roots
of ¥, . The highest weight A — p, — p occurs with multiplicity one, as do all the
weights of the form A — p, — p — ma, for m a non-negative integer.

Since Ann(L) D Ann(Z), it remains to show that Q does not act by scalars on
P,(L ® F,). This we prove by a reduction to 8[(2). Sirice every weight of F, is of
the form yu, — Q, with Q a sum of roots of ¥, we see that every weight of
L® F, is of the form A — p — Q. Let V" denote the subspace of weights of the
form A — p — ma, and let &, =38[(2, C) be the subalgebra of & generated by the
root vectors for the roots *a. Then V is invariant under f) and &,, and is
annihilated by the root vectors for roots 8 € ¥, — {a}. By a standard com-
putation, we can write

Q=0+ X X_gXg+r(h).
BEY,— {a}

Here X is a root vector for the root 8; r(h) is a polynomial of degree two in b,
invariant under translation by «; and &, is the Casimir operator for &,. Hence
the second term annihilates ¥, and r(k) acts by a fixed scalar ¢, on V. In
particular § preserves V, and acts by @, + ¢, there.

Let 0 # vy € V be a vector of weight A —p. By the definition of x,,
Q- vy = x\()v,. Let Q,(V) denote the generalized eigenspace of € in ¥V with
eigenvalue x,(f2). By the preceding paragraph, this is just the generalized
eigenspace of §, in V' with eigenvalue x,(2) — ¢,. Let F, denote the subspace of
E, corresponding to weights of the form p, — ma, and L, the subspace of L
corresponding to weights of the form A — p, — p — ma. It is standard that F, is
the irreducible ®, module of dimension 2{a, A)/{a, a) = n; and it follows from
an earlier remark on the weights of L, that the weights of L, as a &, module are
0, — a, — 2a, .. ., each occurring with multiplicity one. Finally observe that, as
a &, module, V=L, ® F,. With all of this explicit information, it is
straightforward to compute that ©, does not act by scalars on Q,(¥): one writes
down the action of &, on bases of weight vectors in F, and L,. The rather
tedious details are left to the reader (compare for example section 7.2 of [7]).
Hence @ does not act by scalars on Q,(¥). To complete the proof of Theorem
3.7, it remains to show that Q,(V) C P\(L ® F,). Let b, be the kernel of « in b,
and suppose z € 3(®). By the Harish-Chandra homomorphism, we can write

r=p @)+ D TX,. (+)
BE\I’,,—((X}

Here p, is a polynomial in &, and Y, and T € U(®). Just as in the case z = £,
the second term annihilates ¥V, and b, acts by evaluation at A — p. Now by
definition of x,, z-vy= x\(z) ‘v,. Then (x) implies that z has generalized
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eigenvalue x,(z) on the entire generalized eigenspace of &, in V' containing v,.
But this says precisely that Q,(V) C P\(L® F,). Q.E.D.

Definition 3.8. Let X be an irreducible (&, K) module with infinitesimal
character A, and suppose « €I, — 7(X). In the chain complex 3.6, let
K, = K, (X) be the kernel of ¢y, X —> X, Q, = Q,(X) the quotient ¢,y X/ X,
and U, = U,(X) the cohomology K,/ X =ker(Q, — X).

By Proposition 3.2, ©(Q,) = O(K,) = S_,.(0©).

THEOREM 3.9. Let X be an irreducible (&, K) module with nonsingular
infinitesimal character A, and suppose a € I, — 7(X). Then

(a) @Y, X has X as its unique irreducible subrepresentation and as its unique
irreducible quotient.

() a € 7(U,(X)), and B(®) acts by scalars on U,(X).

(c) Suppose B is a (8, K) module of finite length with ( generalized) infinitesimal
character A, and a € 7(B). Then

Homg, (B, U,(X))=Ext!(B, X).
More generally, if Ext'(B, X) = 0, then
Ext(B, U (X ))=Ext~!(B, X) ® Ext*1(B, X).
Dually, if Ext'(X, B) = 0, then
Ext{(U,(X), B)=Ext~(X, B) ® Ext"*1(X, B).

(This theorem was essentially proved in the course of joint work with B. Speh,
except for the higher Ext formulas which are joint work with G. Zuckerman.)

Proof. We begin with the first part of (b). As we saw in the proof of
Theorem 3.7, O, ¥, X) = 20(y,X); so

®(‘Pa Ua) = ®(¢a(pa¢aX) - 2®(¢aX) = O
This proves the first part of (b). By Lemma 3.4 and Theorem 3.7(b),
H0m©, K(X’ q)alan ) = Hom@, K(‘PaX’ ¢aX) = C;

s0 X occurs only once as a subrepresentation of ¢,,X. Similarly it occurs once
as a quotient. To prove (a), suppose Y # X is an irreducible subrepresentation
of ¢y, X. Then Y occurs in U,, so ¢, Y = 0 (since a € 7(U,)); so

0 # Homg (Y, ¢,¥,X)=Homg x(¥,7Y, ¥, X) =0,

a contradiction. For the second part of (b), suppose z € 8(®). Then z — x,(2)
defines a self intertwining operator I : K, — K, . Since z — x,(z) annihilates X, /
annihilates X. Since X occurs only once in K, I(X,) C K, is a subrepresentation
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not containing X. By (a), I(K,) = 0. In particular, z — x,(z) annihilates U,(X).
For (c), notice that a € 7(B) but a&r(X); so X does not occur in B, so
Homg , (B, X) = Ext%B, X) =0, so the second formula really generalizes the
first; so we consider the second. We have two short exact sequences
0>X->oy X—>0, -0 (*)

0-U,»Q,—»X-0. (*%)
Now v, B = 0 since a € 7(B); so
Ext/(B, ¢y, X ) =Ext/(¥,B, Y X ) = 0
by Lemma 3.4. The long exact sequence for Ext/(B, *) attached to (x) gives
Ext/(B, X)=Ext"!(B, Q,).
By the long exact sequence for (xx),

-« >Ext"Y(B, 0,)—>Ext'""!(B, X)>Ext(B, U,)
—Ext(B, Q,)>Ext(B, X)—> - - - .

Now replacing Ext'~!(B, Q,)=Ext/(B, X) by zero, and Ext'(B, Q,) by Ext'*!
(B, X), we find a short exact sequence

0—Ext"'(B, X ) - Ext(B, U,) > Ext'"*'(B, X ) 0.

The dual assertion is proved similarly. Q.E.D.

THEOREM 3.10. Let X be an irreducible (®, K) module with nonsingular
infinitesimal character A, and suppose a € I1, — 7(X), B € 7(X).

(a) If B is orthogonal to a, then B € 7(U,).

(b) If a and B span a root system of type A,, then U, has exactly one irreducible
constituent Y with B& 1(Y).

(¢) If a and B span a root system of type B,, then U, has one or two irreducible
constituents Y; with B&1(Y)).

Proof. We will make repeated use of

LemMMA 3.11. Let X be an irreducible (&, K) module with nonsingular
infinitesimal character A, and suppose o € I1,. Let © be the character of X.

@) If a € 7(X), then S_,,(0) = — 0.

®) If agr(X), then S_,,(©) =0+ 0,, with ©, the character of a repre-
sentation, and o € 7(Y) for every irreducible constituent Y of ©,.

(c) If a¢7(X), and ©' is an arbitrary virtual character with infinitesimal
character A, then the multiplicity of X in ©' is the same as the multiplicity of X in
S al®).

(These results were all formulated in [16]).
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Proof. (a) is contained in Definition 3.3; (b) is a reformulation of 3.9(b). For
(c), (a) and (b) imply that every irreducible constituent ¥ of ® — S_, (") has
a€r(Y). Q.E.D.

Definition 3.12. A virtual character ® with nonsingular infinitesimal char-
acter A is called a-singular (a €11,) if §_,,(®)= —0, or equivalently (by
3.11(c)) if every irreducible constituent Y of ® has o« € 7(Y). A (&, K) module
of finite length is called a-singular if its character is (equivalently if « is in its
T-invariant).

Finally we need a simple composition law for coherent continuation.

LeMMA 3.13. Let © be a virtual character with nonsingular infinitesimal
character N € C, and let p, and p, be weights of finite dimensional representations.
If A+ p, € w- C for some w € W (the Weyl group of ) in &) then

SI"Z( SM1(®)) = SMI"’ W'Hz(e)'

Proof. This is an immediate consequence of the definition of S,(®) (cf. [16],
section 5). Q.E.D.

We proceed now with the proof of Theorem 3.10. Let © be the character of X.
For w € W,, wA — A is a sum of roots with integral coefficients, and is therefore
a weight of a finite dimensional representation. Accordingly we can define
w-0@=S5,,_,(0). This of course makes sense for any character ® with
infinitesimal character A; and by Lemma 3.13 one finds immediately that for
wy, wy, E W,

wys(wyr 0) = (ww,) 0.
Let 55 denote reflection about the root B. With this notation, ©" is a-singular if

and only if s,- ® = —©'. For 3.10(a), we have ©(U,) = 5,(0) — ©. By hypoth-
esis © is B-singular, and s, and s; commute. Hence

g O(U, ) = 555,(0) — 540
= 5,(550) — 5,0
== a(®) +0= _(G)(Ua))

Consider now 3.10(b). By hypothesis s,s55, = 555,55, and sz- ® = —©. Hence
ot a’pa = Spla’p 5

5,8p5,® = — 35,0, which means that sg5,0 is a-singular. Using Lemma 3.11(b),

we write

sa®=®+®°‘+®""3;

here ©* and ©*f are characters of representations, ®*® is a-singular and
B-singular, and no constituent of ®* is B-singular. Hence, by Lemma 3.11 again

555,80 = — 0@ + (0 + 8} + 67F) — O,



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS I 75

here ©f and ©%f are characters of representations, ©}® is a-singular and
B-singular, and no constituent of ©f is a-singular. Since 55,0 is a-singular, this
implies that ©f= 0. In particular ©* # 0. Suppose ©% is reducible; say

* = (0%) + (0*)”’, with both terms non-zero characters of representations.
Then ©F = (©F) + (©F)” with obvious notation; and both terms are characters
of representations. Furthermore, applying the previous observation that @ # 0
to (©*) and (@*)” with a replaced by B implies that (©F) and (©f)” are both
non-zero. This contradicts the irreducibility of @ = @F. So ©* is in fact
irreducible, proving 3.10(b).

3.10(c) requires a little more effort. We can begin in the same way: by
hypothesis 5,0 = —© and ss,545, = 5,555,53, s0 we deduce that s,545,0 is
B-singular. We can use the notation of the preceding case for s, © and sgs, - ©.
By Lemma 3.11,

54555, O = — (0 + 0 + %) — (0%) + (0f + O5 + 03°) — 0% + 4.

Here 05 and 0% are characters of representations; 5” is a- and B-singular, and
no constituent of O3 is B-singular. Since s,sps,- © is B-singular, it follows that
0% =20 It is no longer obvious that ®* # 0 (i.e., that B & r(U,)). This will be
proved later; but assume it for a moment. To prove (c), it is enough to show that
©* cannot have as many as three irreducible constituents. Suppose that it does.
Choose a chain 0= F,C F; C + - - C Fy = U, of submodules of U,, such that
F,/F,_,=Y, is an irreducible (8, K) module; then O(U,) =3Y ,0(Y,). Since
©* # 0, we can define integers i, and i, so that 8 € 7(Y,) if i < i, or i > i,, but
B&(Y;) and B&1(Y,). Since ©* has at least three irreducible constituents,
there is an integer i; with i; < iy < i,, and B&7(Y;). We will show that X is a
constituent of Up(Y;) and of Up(Y,), and hence that X occurs at least twice in
©Ff. Assume this for a moment. Then ®Ff =20 + ©’; here @’ is the character of
an a-singular representation with no p-singular constituents, and ©" # 0
because of the contribution of Y, . (Here we are using our earlier assertion that
0% # 0, applied to Y, instead of X, with a and B reversed) Thus
05 =20 + (0)% and (0)* # 0 by our earlier assertion again. This contradicts
0% = 20, proving that in fact ®* cannot have as many as three constituents. It
remains to establish the two assertions made in the course of the proof.

First we show that X is a constituent of Ug(Y;). Let G, be the preimage of F;
in K, under the natural projection U,=K, /X, and let G, be the preimage of
F;_,. We have an exact sequence

il

0> G,—>G,> Y, —>0.
By Theorem 3.9(a), Y; is not a submodule of G, C ¢,¥,X. So the sequence does

not split, and Ext!( Y, Go) # 0. (The description of Ext in terms of exact
sequences in this category may be found in [1].) By Theorem 3.9(c),

Homg ,(Ug(Y;), G,) # 0.
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As a submodule of ¢y, X, G, has X as its unique irreducible submodule
(Theorem 3.9(a)). It follows that X is a constituent of Uy(Y;). In exactly the
same way one shows that X is a constituent of Ug(Y,).

Finally, we must show that ®* # 0. Since X is B-singular, this is equivalent to
showing that ¢y, X is not B-singular, or equivalently that Ann(y,e,¥,X) #
U(®). By Lemmas 2.7 and 2.8, it is enough to replace y,X by some other
module L with Ann(L) D Ann(y, X), and show that ¢ L is not B-singular. Just
as in the proof of Theorem 3.7, we will let L be an irreducible highest weight
module. This time we will argue by a reduction to 8p(2), however; so we need

LeMMA 3.14.  With notation as at the beginning of this section, suppose that
{a, B} CII, are adjacent simple roots whose span in MA@, B) is not of type G,.
Then we can choose ¥ =¥ Y that is, there is a positive root system ¥ for Yy in ®,
containing AY , such that o and B are simple for V.

Proof. Choose an element y € h* such that

@) (v, @)= (v, By =0;

(b) if § € A(G, b), then (v, §) is real and non-zero unless § is in the span of «
and S;

(c) v is dominant for Ay .
Such v clearly exist. Let A, be the span of « and 8 in A(®, h). Then A, is a root
system of rank two, containing two adjacent roots, and not of type G,; so A, is
of type 4, or B,. On the other hand, A, N A, has the same properties, and so is
also of type 4, or B,. Since there is no containment B, D 4,, it follows that
Ay N A, =A,. Hence a and B are the simple roots of a positive system A} for
A,. Set

V={0€AGD)|(5y)>0 or dEA}};

then one easily checks that ¥ has the required properties. Q.E.D.

We turn now to the construction of L. Choose ¥ =¥ = ‘I’B as in Lemma
3.14, and assume that this choice has been used to construct y; : g and SO on as
at the beginning of this section. Obviously we may assume p! = u Just as in
the proof of Theorem 3.7, this allows us to reduce to the case p! = ,uﬂ =0, so
that y, and g are dominant for ¥. Put F, = F, 2, and let L be the irreducible
highest Weight module of highest weight )x #, — p with respect to ¥. By the
theorem of Duflo already mentioned ([4]), Ann(L) D Ann(y, X ). Let &, C & be
the subalgebra generated by ) and the root vectors for the roots = a and * S:
&, =8p(2) + center. Let L, be the submodule of L spanned by weight vectors for
weights A — p, — p — ma — nf. It is easy to see that L, is the irreducible highest
weight module for ®, of highest weight A — p. Similarly, we let F, be the
submodule of F, consisting of the weights u, — ma — nf; then F, is irreducible,
with highest weight yu,. Let V' C L ® F, be the subspace of weights of the form
A—p—ma—nfB; then V=L ®F, as a & module. Furthermore, V is
annihilated by the root vectors Xy for y € ¥ but y not in the span of a and S.
Let p, be half the sum of the positive roots spanned by « and S. It follows from
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known results that 7 contains as a composition factor the irreducible highest
weight module for &, of highest weight s,55(A — p + p;) — p; = 5,552 — p. (We
will say more about this in a moment.) It is easy to deduce that L ® F, contains
as a composition factor the irreducible highest weight module for & of highest
weight 5,55\ — p, which we call L,. By definition of x,, L, has infinitesimal
character x,,\ =Xy, and hence occurs in @,L. Our goal is to prove that
Y9, L # 0; it suffices to show that y,L, # 0. This is essentially obvious, since
5.5 B € —¥; a proof may be found in [8], Theorem 2.11.

We have now proved Theorem 3.10, except for the assertion made above that
L, ® F, contains as a composition factor the irreducible highest weight module
(for @) of highest weight s,s5A — p. There are many ways to see this. The
simplest to explain (although certainly not the simplest to carry out) is the
following. There is a nice theory of formal characters for highest weight modules
(cf. [3]); and the assertion could certainly be verified if one knew the characters
of all irreducible highest weight modules for 8p(2). This is equivalent to knowing
the composition series of the Verma modules for 8p(2), and these are known: all
composition factors occur with multiplicity one, and they are precisely those
given by Verma’s theorem. For details see [8). The required computation is left
to the reader: as hinted above, we would actually suggest that the reader look
for one of the subtler but easier proofs. Q.E.D.

Theorem 3.9 suggests that it would be very nice if U, (X) were completely
reducible. This is true in many examples; so we make

CoNsectURE 3.15. If X is an irreducible (®, K) module with nonsingular
infinitesimal character \, and o € I, — 7(X), then U,(X) is completely reducible.

We can at least prove a related result. By [1], Corollary 7.5, there is a unique
automorphism p : G— G, preserving K, such that if X is an irreducible (®, K)
module, then X*= X*; here X* is the obvious twisting of X by p, and X* is the
(K-finite) contragredient module to X. The functors ( )* and ()* are well defined
on all of ¥ (®, K).

LEMMA 3.16. If X and Y are (&, K) modules of finite length, then
Ext*(X, Y)=Ext*(X*, Y*)

Ext*(X, Y)=Ext*(Y*, X*).

Proof. 'This is obvious if we interprét Ext in terms of long exact sequences
(cf. [1). Q.E.D.

If X is a (® K) module of finite length, define X =XM% X —>Xis a
contravariant functor, and if X is irreducible then X =X. It is clear that this
functor commutes with ¢, and ¢,; so we deduce

ProposiTION 3.17. If X is an irreducible (®, K) module with nonsingular
infinitesimal character A, and o € 11, — 1(X), then U, (X)= U,(X).
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LemMA 3.18. If X and Y are (&, K) modules of finite length, then
Ext*(X, Y)=Ext*(¥, X).

CoRrOLLARY 3.19. Conjecture 6.21 of [16] (namely that the irreducible
constituents of U,(X) occur with multiplicity one) implies Conjecture 3.15. More
precisely, suppose Y is an irreducible subrepresentation of U,(X) which occurs
exactly once as a composition factor. Then Y is a direct summand of U,(X).

Proof. Clearly it suffices to establish the last statement. So suppose
Homg x(Y, U,(X)) # 0. By Lemma 3.18, Homg (U, (X), Y) # 0. Choose a
nontrivial map U,(X)— Y, and let W be its kernel. Since Y occurs only once as
a composition factor of U (X), Y does not occur in W; so if we regard Y as a
submodule of U, (X), Y N W = 0. Hence we have an injection ¥ @ WS U, (X).
Since these modules have the same character, the map is an isomorphism.
Q.E.D.

This completes our “general” results on U, . In the next section we will collect
more “specific” results, describing U, in terms of the Langlands classification of
G; these are to some extent taken from [16]. There is one more result which we
will state here, however.

THEOREM 3.20. Let X be an irreducible (&, K) module with nonsingular
infinitesimal character \. Suppose . is a weight of a finite dimensional rep-
resentation of G, and X\ + p. is dominant with respect to Ay .

(@) If N + p is nonsingular, then S, - ©(X) is an irreducible character.

(b) In general, S, - O(X) is ifreducible or zero.

Proof. These results are essentially proved in [16], Theorem 5.15 and
Theorem 5.20(a). The hypotheses on G are different, but this is irrelevant for the
proofs. Q.E.D.

3.20(a) is a fairly harmless perturbation of Zuckerman’s results in [19], and the
proof is formal. The proof given for (b) in [16] is rather complicated, and uses
the Langlands classification. If A + p is singular with respect to exactly one root
a, then (b) is easily deduced from Theorem 3.7(b), which of course was proved
without using the Langlands classification. It would be interesting to generalize
that argument to obtain 3.20(b).

4. Partial computation of U,(X). Fix a nonsingular infinitesimal character
A. The set G, of equivalence classes of irreducible (&, K) modules with
infinitesimal character A is finite. Suppose that X is an irreducible (&, K)
module with infinitesimal character A; say X = J;,. Our first goal in the present
section is to compute 7(X) in terms of § ® »; this has essentially been done in
[16]. At the same time, if a € I, — 7(X), we will determine certain special
composition factors Y of U,(X). There are zero, one, or two such composition
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factors, and they occur with multiplicity one; essentially they are the ones given
by Theorem 6.16 of [16]. (“Essentially” here and above refers to problems
arising from the non-linearity of G.) With these results in hand, we can prove a
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