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1. Introduction 

Let IF denote one of  the three fields IR, ~,  or IH. Write 

(1.1) a = GL (n, IF) 

for the group ofinvertible n by n matrices with entries in IF. We determine explicitly 
the set G, of  equivalence classes of  irreducible unitary representations of  G. For  
IF = ~,  the answer has been expected for thirty years: each element of du is unitarily 
induced from (one dimensional) unitary characters and certain very simple 
complementary series. (A precise statement is in Theorem6.18. Gelfand and 
Naimark in [14] overlooked some of  the complementary series. This was pointed 
out by Stein in [31], and that paper may have created the impression that Gelfand 
and Naimark missed a great many representations. However, our result shows that 
Stein actually found everything that they missed.) For  IF = IR or IH, it is still true 
that the "building blocks" for constructing all unitary representations are one 
dimensional unitary characters, and the analogues of Stein's complementary series. 
However, one must use not only ordinary induction, but also Zuckerman's derived 
functors [11, 36]. This does not seem to bode well for a generalization to non- 
archimedean IF, where no analogue of  Zuckerman's functors is known. However, 
one can view them as implementing certain very special cases of Langlands 
functoriality; from this point of view, the results make some conjectural sense for 
any division algebra IF over a local field. (They may however be too naive, at least in 
residual characteristic less than or equal to n. Since this work was completed, M. 
Tadic in [32] has announced a classification of the unitary representations of  
GL (n, IF) for commutative p-adic IF. His results describe everything else in terms of 
the discrete series, and so avoid such pitfalls.) 

If  one wishes to use only unitary induction, the set of  building blocks must be 
enlarged when IF is IR or IH. Suppose first that IF = IR. Then whenever n is even, 
Speh [29] has described a family of unitary representations of GL(n,  IR) 
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parametrized by 

O N  - (0))  • ~ .  

(The last factor is just the central character.) For  n = 2, they are the discrete series; 
for n > 2, they are not tempered. When n is a multiple of  4, there are complementary 
series attached to the series induced from a product of  two copies of  one of Speh's 
representations on GL (n/2, IR) x GL (n/2, IR). 

Next, suppose IF = HI. In this case there is a family of unitary representations 
parametrized by (IN - (0)) x IR for every n. When n is 1, it is the discrete series of 
GL (1, IH). (Recall that this group is isomorphic to SU (2) x IR.) For  even n, there 
are complementary series attached to these representations on GL(n/2,1H) 
x GL(n/2, g-I). Using these extra building blocks, one can obtain all unitary 
representations by unitary induction. 

For  other real reductive groups, one expects the unipotent representations to 
complicate the picture substantially [1, 2]. A representation of  GL (n, IF) is special 
unipotent if and only if it is of the form 

Ind(P $ G)(Z). 

Here Z is a character of P which is trivial on the identity component of P. (Non- 
special unipotent representations have yet to be defined.) This paper may therefore 
(with a little twisted logic) be regarded as evidence that most of the difficulties in 
treating general reductive groups involve unipotent representations. At any rate, it 
is intended as such evidence. 

Here is an incomplete outline of some previous results about this problem. 
When n = 2, GL (n, IF) is (up to center) locally isomorphic to SO (d +  1,1), with d 
equal to the dimension of  IF over IR. The unitary duals were determined by 
Bargmann [3] for IR, Gelfand-Naimark [13] for fiT, and Hirai [18] for IH. For  n = 3, 
the case of  IE was treated by Tsuchikawa [33], and IR by Vakhutinski [34]. The case 
of IH is a little easier than IR, but I know of no published treatment of  it for n > 3. 
For  n = 4, IR was treated by Speh [30]. For  n = 4 and 5, IE was treated by Duflo [9]. 
Partial results are too numerous to discuss completely, but those of Enright [10] are 
among the most powerful. In unpublished joint work, Enright and Parthasarathy 
determined completely the spherical unitary representations of GL(n, r with 
regular infinitesimal character. The Yale dissertation of S. Sahi determines the 
spherical unitary representations which are induced from a character (which, by the 
results of this paper, is all of them). The work of Guillemonat [15] is of a similar 
nature. 

To understand the organization of the paper, keep in mind that we have four 
tasks: to produce a list of  representations (construction); to prove that they are all 
unitary (unitarity); to prove that they are all irreducible (irreducibility); and to 
prove that any representation not on the list is not unitary (exhaustion). Crudely 
put, the main idea is to reduce matters to the case of spherical representations (those 
which have a vector fixed by a maximal compact subgroup). Each tak therefore has 
a "spherical" part, and a "reduction" part. 

Even to state the result requires carrying out the construction step. The 
"spherical construction" (that is, construction of all spherical unitary repre- 
sentations) contains no surprises. We recall the least familiar aspect of it (Stein's 



The unitary dual of GL(n) over an archimedean field 451 

complementary series) in Sect. 2, and complete it in Sect. 3. The reduction part of 
the construction (in which general unitary representations are constructed from 
spherical ones) is parametrized by g', via the theory of lowest K-types. gTis discussed 
in general terms in Sect. 4, and computed very explicitly for each of the fields in 
question in Sect. 5. Section 6 completes the reduction construction, and states the 
main theorem (Theorem 6.18). 

The exhaustion argument depends on some complicated but formal properties 
of/~, which are discussed in Sect. 7 through 9. With these in hand, we can actually 
carry out the reduction part of exhaustion; this is done in Sect. 10. 

The spherical case (exhaustion, irreducibility, and unitarity) is treated next, with 
generalities in Sect. 11, and a detailed discussion of each field in Sect. 12 through 14. 
This is certainly the heart of  the paper; the reader wishing to find more than bells 
and whistles must look for it here. Sections 15 and 16 are devoted to the reduction 
arguments for unitarity and irreducibility, respectively. Section 17 discusses 
alternative constructions of the representations. 

It is a pleasure to thank a few of the mathematicians who have helped in this 
work. Birgit Speh taught me the foundations of  the subject as she was helping to 
build them. Over C, the critical Proposition 12.2 was suggested by Thomas 
Enright; I have benefitted from many conversations with him. The fundamental 
idea of  controlling the signature of  a Hermitian form on very special K-types I 
learned from Enright (although it could be attributed to many people). I have come 
to understand it better through its appearance in the thesis of Susana Salamanca, 
and in conversations with her. Most importantly, the entire treatment of the 
complex case here is an extension of unpublished joint work with Dan Barbasch 
(including the proof  of Proposition 12.2); this made everything else possible. 

2. Stein's complementary series 

We continue to write IF for IR, ~,  or IH. (For most of the next two sections, it would 
suffice to require IF to be a finite dimensional division algebra over a local field.) 
Assume n = 2 m, with m a positive integer. Write 

(2.1)(a) P=LN={(A B)]A,D~GL(m, IF),B~M(m, IF)} 

for the indicated maximal parabolic subgroup of  G = GL (2 m, IF). (Here M (m, IF) 
denotes the algebra of all m by m matrices over IF.) The indicated (Levi) 
decomposition of P is as a semidirect product, with N normal. More precisely, 

(2.1)(b) L ~ GL (m, IF) x GL (m, IF), 

realized as block diagonal matrices, and 

(2.1)(c) N ~- M (m, IF) 
is the unipotent radical of P. 

The representations to be constructed are induced from certain characters of  P. 
To describe these characters, first write 

(2.2) 6,,, : GL (m, IF) ~ (IR") + 
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for the modular function: 6,, (g) is the Jacobian of the change of variable v ~ g. v on 
IF", with respect to Lebesgue measure on IF'. (If IF has dimension d over IR, then 
IF" may be identified with IR d'. In that case, 6" (g) is the determinant of the dm by 
dm real matrix representing g. If  IF = •, then 

6,,(g) = I detr 2 .) 

Definition 2.3. Fix a one dimensional unitary character j of GL (m, IF), and a 
complex number t. Let P = LN be the group defined in (2.1). Consider the (possibly 
non-unitary) character 

~b2m(j, t) :P-~ �9 x , 

defined by 
[q52" (j, t)] ((g, h) n) = [j (gh)] [3m(gh- 1)], 

(for g and h in GL (m, IF), and n in N). Put 

a2m (j, t ) =  Ind (P$ G) (~bz'(j, t)). 

The characters of GL (m, IF) may be identified in a natural way with the characters 
of GL(1, IF); so j extends to a character (still denoted j) of GL (2m, IF). Clearly 

O'2m(J, t) ~t r2"(1, t  ) |  

so we could consider only the case j = 1 for the study of these representations. 

Lemma 2.4. (cf. Stein [31]). In the setting of Definition 2.3, 
a) trz,,(j, t) is unitary and irreducible for t in ilR. 
b) There is a nondegenerate Hermitian pairing between tr2"(j, t) and azm(j, - i). 
c) tr2,,( j ,  t) and tr2"(j, - t) have the same distribution character. 
d) When t is �89 tr2"O', t) is reducible. It contains as a subquotient a representation 

a' induced from a one dimensional unitary character of  the parabolic subgroup with 
Levi factor GL (m+ 1, IF) x GL(m - 1, IF). 

e) az,,(j, t) is irreducible for Itl <�89 

Proof. By the remark before the lemma, we may assume that j is trivial. 
Irreducibility follows by investigating the restriction of az'(1,  t) to P (see [31]). 
Another proof is in Sect. 10 through 14 (particularly Propositions 12.2, 13.4, and 
14.2). For (b), let K be a maximal compact subgroup of G. Then we can realize the 
non-unitarily induced representations as functions in L 2 (K), satisfying certain 
transformation properties under K c~ P. The same calculation proving that a2 m (1, t) 
is unitary for t in ilR, shows that the inner product on L 2 (K) gives the pairing 
needed in (b). For (c), one computes the character as usual. 

For (d), embed a = a (1, �89 in a principal series representation I (as can easily be 
done explicitly - cf. (11.12)). Then by inspection, a'  occurs in a principal series 
representation I '  with the same character. Since L I', a, and a'  all have unique 
K-fixed vectors, and a '  is irreducible (Sect. 11-14 again), it follows that a'  is a sub- 
quotient of a. That a'  is not equal to a follows by inspection of characters. 

The validity of (e) with some positive constant e in place of �89 follows from the 
irreducibility of tr 2., (1,0) (cf. (a)). That e is at most �89 follows from (d). For IR and C, 
we will prove the irreducibility of a2"(1, t) for It[ <�89 in Sect. 11, by general 
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nonsense about intertwining operators and the Langlands classification; this can be 
carried over to any commutative local field IF. For  IH, the argument is more subtle 
(Sect. 14), a n d / d o  not know how to do it for general division algebras. (For IH, the 
general nonsense argument gives e > �88 Q.E.D. 

Proposition 2.5 (cf. Stein [31]). For all real t such that Lt[ <�89 and all unitary 
charactersj of  GL (m, IF), the representation azm(J, t) is infinitesimally equivalent to 
a unitary representation. 

Proof We apply Lemma 2.4 and a standard deformation argument. Lemma 2.4(b) 
and (c) provide a Hermitian form on each of the representations in question. The 
form is non-degenerate for I tl < �89 by Lemma 2.4(e), and positive definite for t = 0 
by Lemma 2.4(a). It is known (and not hard to prove) that the forms may be chosen 
to depend continuously on t. They are therefore positive definite in the whole 
interval. Q.E.D. 

Definition 2.6. The Stein complementary series of GL (2m, IF) consists of the 
representations az,,(J', t), for 0 < t < �89 

Notice that these representations are induced (but not unitarily) from one- 
dimensional representations. 

3. The almost spherical principal series 

Fix a unitary character 

(3.1)(a) Jl :IF• ~ ~• ; 

as in the remark after Definition 2.3, this corresponds naturally to a family of 
characters 

(3.1)(b) Jm: GL (m, IF) ~ q2 • , 

characterized by the property that for m =< m', 

(3.1)  (C) Jm' I GL(m,F) : Jm" 

We refer to the collection (j,,) loosely as j. Define 

(3.2) K(m, IF)= standard maximal compact subgroup of  GL(m,  IF) 

We will discuss these groups in some detail in Sect. 5, but for now their precise 
nature is not important. Recall that a representation of GL (m, IF) is called spherical 
if it contains the trivial representation of  K(m, IF). 

Definition 3.3. L e t j  be a family of characters as in (3.1). Define one dimensional 
representations/z m of K(m, IF) by 

I~m : Jm [ K(m,V)" 

Write # for the collection {/z,,}. We call/z m a special one dimensional representation 
of K(m, IF). A representation a of GL  (m, IF) is called almost spherical of  type tz if/t,. 
occurs in the restriction of a to K(m, IF); or, equivalently, ifj~, 1 | a is spherical. 
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We will often write 

(3.4) G = G L  (n, IF); K =  K(n, IF). 

We will also need to consider the Borel subgroup  

(3.5) B = B (n, IF) 

consisting of  upper  t r iangular  matrices.  

Definition 3.6. An (ordered) partition of  n is a sequence 

rt=(pl  . . . . .  Pr) 

of  positive integers, such that  Spl = n. (We may  occasionally write this condit ion as 
17t I = n.) Define 

G L  (n, IF) = G L  (Pl ,  IF) • . . .  • G L  (Pr, IF) c G,  

K(n ,  IF) = K ( p l ,  IF) • . . .  x K(pr ,  IF) = Kc~ G(rt) 

to be the obvious  groups of  block-diagonal  matrices.  Next,  put  

P (~, I F ) =  parabol ic  subgroup  generated by G L  (re, IF) and B 

(cf. (3.5)), and 
N(n )  = unipotent  radical of  P (n).  

Definition 3.7. Fix p = {/z,,} as in Defini t ion 3.3. We wish to define a special class of  
a lmost  spherical representat ions  o f  type ~. The da ta  are a par t i t ion rt = (pi) o f  n, and 
a collection 

= (zi), ri eGL(p i ,  IF) ^ ,  

such that  
a) ~i is a lmost  spherical o f  type/z~, and 
b) ~ is either a uni tary  character  or  a Stein complementa ry  series (Definit ion 

2.6). 
In  terms of  the family o f  uni tary  characters  (j,,) o f  (3.1), this m a y  be made  more  

explicit as follows. Fo r  each i, either 
b l )  there is a v~ e i lR  such that  

~, = L ,  | (6p,) v' 

(cf. (2.2)); or  
b2) Pi = 2 m, and there are a v i e ilR and tl e (0, �89 such that  

zi = a2,. (j,. | (6,.)", 6) 

(Definit ion 2.3). 
Finally, define 

a~(r) = Ind  (P(n)  1" G) ( |  

a basic almost spherical representation of type #. 

Theorem 3.8. Use the notation of  Definitions 3.3 and 3.7. 
a) The basic almost spherical representations a, (z) and a s, (~') are equivalent if  

and only i f  (re', z') is a permutation of (r~, z). 
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b) The basic almost spherical representations are unitary. 
c) The basic almost spherical representations are irreducible. 
d) Any unitary almost spherical representation of GL (n, IF) is basic. 

Outline of proof Part (a) is an easy calculation of  distribution characters. Part (b) 
follows from Proposition 2.5. Parts (c) and (d) are of course the main points, and 
will occupy much of the rest of this paper (particularly Sect. 11-14). An interesting 
aspect of  the argument is that the proof  of (d) is not independent of  the general 
theorem on the unitary dual: the analysis of the almost spherical representations 
uses a small but important part of  the analysis of the general case (see the proof of  
Lemma 12.12). 

Of course it seems natural to conjecture that Theorem 3.8 is true for all local 
division algebras IF. This has been proved for commutative p-adic IF by S. Sahi and 
M. Tadic independently. 

4. Maximal compact subgroups 

Up to this point, we have described those unitary representations of  G containing a 
vector transforming in a special way under a maximal compact subgroup K. The 
general classification will be reduced to that case. To describe this a little more 
precisely, let us recall the Langlands classification of (not necessarily unitary) 
representations of a general reductive Lie group, as formulated in [35] and [36]. To 
each representation ~ of G is assigned a small finite set of "lowest K-types." These 
are representations of  K occuring in re. In case G is GL (n, IF), the lowest K-type is 
unique. One therefore obtains an approximate partition of  the representations of  G, 
into parts parametrized by representations of K; this is precise for GL (n, IF). 

The classification treats each piece of this partition separately. To each 
representation/x of K, it associates a subgroup L of G, and a representation/~L of 
L r~ K. The main reduction step in the classification theorem (Theorem 6.5 below) 
gives a bijection between representations of G with lowest K-type/x, and repre- 
sentations of  L containing the L r~ K-type ~L" TO obtain an explicit classification, 
one must then treat the cases when L = G; but these are relatively easy. 

Our analysis of the unitary dual will proceed along similar lines (cf. [23]). As 
noted above, a representation of  GL (n, IF) has a unique lowest K-type. To each 
representation/t of K, we will associate a subgroup L of G, and a representation/~L 
o f L  c~ K. L will be a product of  various GL (ml, IFi), and ~L will be almost spherical 
for L. (Except when IF is C, this L is different from the one in the Langlands 
classification; it is larger in the case of  IH, and smaller in the case of  IR.) The main 
reduction step provides a constructive bijection between unitary representations of 
G with lowest K-type/~, and unitary representations of L containing the L r~ K-type 
/t L. Because the latter are determined by Theorem 3.8, this determines G,. 

To state this reduction step more precisely, we need to describe K and its 
representations. In this section, we will give some general results; in the next, we will 
consider ~2, IR, and lI-I in detail. 

The space IF" will be regarded as a right vector space of  column vectors over IF; 
then G acts (linearly) by matrix multiplication on the left. The standard anti- 
automorphism of IF will be denoted by a bar. It is trivial for IR; complex 
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conjugation for r  and 

(xi + y j  + zk  + w) -  = - x i -  y j -  z k  + w. 

In all cases, we have 
(ab) - = (b- )  ( a - ) .  

Write (,) for the sesquilinear form 

(v, w) = z (vl)- (w,) 

on IF". It satisfies 

(va, w) = a -  (v, w) 

(v, wb) = (v, w) b 

(v, w) = (w, v)- 

for v and w in IF" and a and b in IF. The real part of  (,) gives a real Euclidean 
structure to IF", corresponding to its standard identification with IR a" (mentioned 
after (2.2)). In particular, we have a norm 

Ivl=(v,v) m .  

If A is any m by n matrix over IF, we define A* to be the n by m conjugate 
transpose matrix; it is obtained by applying bar to each matrix entry, then 
transposing. If A is n by n, we have 

(av, w) = (v, A'w) .  

Finally, for g in G, we define 

(4.1) Og = (g*)-  ' .  

This is an involutive (that is, of  order two) automorphism of  G. It is also a Cartan 
involution, meaning that its fixed point set is a maximal compact subgroup of  G. 

Definition 4.2. The standard max imal  compact subgroup K of GL (n, IF) consists of 
all elements satisfying any of  the following equivalent conditions. 

a) Ok = k .  
b) (kv, k w ) =  (v, w), for all v and w in IFn. 
c) I k v t =  Iv I, for all v in IF". 

IflF is IR, Kis denoted O (n), and called the orthogonalgroup. IflF is r  Kis denoted 
U (n), and called the unitary group. If IF is IH, K is denoted Sp (n), and called the 
compact symplectic group. 

The identification of  IF" with IR a" allows us to regard GL (n, IF) as a subgroup of 
GL (dn, IR). In this identification, we have 

K = 0 (dn) ~ GL (n, IF). 

Recall that a (g,K)-module is a complex vector space endowed with 
representations of ~ and of  K, satisfying some compatibility and finiteness 
conditions (cf. [36]). The Harish-Chandra module of  a representation of G is the 
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(9, K)-module of  its smooth K-finite vectors. F rom Harish-Chandra 's  collection of 
results relating group representations and Harish-Chandra modules, we want 
mainly the following one. 

Theorem 4.3 (Harish-Chandra [16]). Suppose G is a reduetive Lie group, and K a 
maximal compact subgroup. Passage to K-finite vectors defines a bijection from the 
set of equivalence classes of irreducible unitary representations of G, onto the set of 
equivalence classes of irreducible (g, K)-modules admitting a positive definite 
invariant Hermitian form. 

We turn now to the parametrization of  representations of  compact Lie groups. 

Definition 4.4. Suppose H is a compact Lie group (possibly disconnected). Let T O 
be a maximal torus in the identity component  H o. The complexified Lie algebra 
then has a root space decomposition 

Fix a set A + (b, t) of  positive roots, and write 

b=te ~ b , = t + n  
O(EA + 

for the corresponding Borel subalgebra. 
Let ( , )  be an H-invariant positive definite inner product on b0. A weight Jt in t* 

is called dominant (with respect to b or A +) if 

(2,~)>__0, a l l ~ A  + 

Write T for the normalizer of  b in H;  we call T a Cartan subgroup of H. The 
identity component T O is then a maximal torus in H o . A dominant representation of 
T is one whose differential is a sum of dominant (with respect to the given Borel 
subalgebra) weights. Since we will often consider the same Cartan subgroup T in 
various compact groups, we may say H-dominant for definiteness. 

Proposition 4.5 (Cartan-Weyl). Suppose H is a compact Lie group, and T is the 
Cartan subgroup associated to the Borel subalgebra b ofb. Write n for the nilradical 
of b. Then passage to n-invariant vectors defines a bijection from the set of irre- 
ducible representations of H, onto the set of irreducible dominant representations ofT. 

If/~ in [ / cor responds  to 7 in IV, we will say that/~ has highest weight 7, even 
though 7 may not be a one dimensional character of  T. 

We will sketch a construction of the inverse map from T to  [L It  is by no means 
the easiest one, but it is the one we will need later. It is convenient to generalize 
things a little. 

Definition 4.6. Suppose H is a compact Lie group, and q is a parabolic subalgebra 
ofb.  Write u for the unipotent radical ofq. Write L for the normalizer ofq in H, the 
Levi subgroup of q. (The complexified Lie algebra 1 is easily seen to be a Levi 
subalgebra of  q.) Recall from [36], Definition 6.3.1, the cohomological parabolic 
induction functors, taking locally finite representations of  L to locally finite 
representations of H. They are defined by twisting by a fixed one dimensional 
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representation ~ of L; extending to a representation of 0 trivial on u; algebraically 
producing to an L-finite representation of b; and applying Zuckerman's derived 
functors to get a representation of H. Briefly, 

(~n)i = F~((b, L) 1" (b, H)) o pro ((q, L) t (b, L)) (* |162  

The notation is explained in [36]. The twist z" is introduced for later convenience 
only. For  not-so-distant convenience, we write it as 

-c" = z | (ASu) ; 

here S is the dimension of u. 

We will also need the dual construction. Write qOp for the complex conjugate of  
q (which still has Levi subgroup L). Define 

(Ga n)J = F j o ind ((qop, L) t (b, L)) (* | 1 6 2  

This has formal properties closely related to those of ~fH (cf. [38], Sect. 5). 

Proposition 4.7. (see [11]) In the setting of Definition 4.6, the functors (~n)~ and 
(~n)y are zero for i greater than S, andj less than S. In degree S the functors are 
isomorphic, and may be computed as follows. Fix a Borel subalgebra b of H, 
contained in q. Write T for its normalizer in H, and TLfor its normalizer in L. Let 
(ItL, V) be an irreducible representation of L, corresponding to the irreducible L- 
dominant representation 7L of T L (Proposition4.5). Set 

7 = Ind (TLi" T) (?L | z) 

(with z as in Definition 4.6). If7 is H-dominant, then (~<r is the sum of the 
irreducible representations of H corresponding to the constituents of 7 (Pro- 
position 4.5). If7 is not H-dominant, then (~n)s (v )  is zero. 

In the setting of  the proposition, it is easy to check that if? is not H-dominant, then 
no constituent of  it is either. 

Taking q to be a Borel subalgebra, and z trivial, we get a construction of the 
inverse of  the bijection of  Proposition 4.5. 

We conclude this section by recalling the definition of lowest K-type. We will 
confine ourselves to the simple definition in [35], despite the technical merits of the 
more complicated (but equivalent) version in [36]. 

Definition 4.8. Suppose G is a reductive Lie group, and K is a maximal compact 
subgroup. Let b be a Borel subalgebra of  t, and T the corresponding Cartan 
subgroup. Write 2pc for the sum of the roots of t in b. Fix an irreducible 
representation/~ of K, of  highest weight 7 in T. Let 70 in t* be a weight of 7. Define 
the norm of  ~ to be 

II~ll = </1 + 2Pc,/~ + 2Pc> �9 

If  X is any (O, K)-module, we say that/~ is a lowest K-type of X if 
a) /~ occurs in the restriction of X to K; and 
b) IIFtll is minimal subject to (a). 

As was remarked earlier, representations of  general reductive groups may have 
several lowest K-types. The situation is completely described in 6.5 of [36], however. 
Specializing those results appropriately, we find 
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Theorem 4.9. Suppose G = GL (n, IF), and X is an irreducible (g, K)-module. Then X 
has a unique lowest K-type. It occurs with multiplicity one in X. 

5. Parametrization of k 

The program outlined at the beginning of Sect. 4 requires us to associate to each r in 
k a subgroup L of  G, and a representation/t L of  L c~ K. We will do this on a case by 
case basis. Always we proceed in two steps. First, we assign to/~ a weight 2 = 2 (/z) in 
the dual t* of  a Cartan in f. We will define 

(5.1) L o = L o (12) 

= centralizer of  2 in G. 

(Except for the case of  IH, the weight 2 will be the one constructed in Sect. 5.3 of  
[36].) We will also define/~L0. Next, we will define L to be the Levi subgroup of  a real 
parabolic subgroup o f L  o . (Except for the case oflR, L will be all of  Lo .) Finally, we 
will define/z L to be a certain almost spherical representation of L c~ K. 

Suppose first that G is GL (n, I~). Recall that K is the group U (n). Define 

(5.2)(a) T---- group of diagonal unitary matrices 

= U ( I )  x . . .  x U ( 1 )  (ncopies) .  

As usual, we identify 

(5.2)(b) ~ = 7/". 

Write ei for the usual basis elements of  7/". Thas  the same weights on f as on p; the 
non-zero ones are the weights of  the form e i - ej, for i different fromj.  We choose a 
Borel subalgebra b of  L corresponding to the positive roots 

(5.3) A + ( L t ) =  {e i - e j l i < j } .  

The dominant weights (and therefore the representations of  K) correspond to 
decreasing sequences of  integers: 

(5.4) J~--{~'=(7~ . . . .  ,7,)171 > . . .  >=7,}. 

The one dimensional representations of  K are all special (Definition3.3); they 
correspond to the constant sequences. (In particular, they are naturally 
parametrized by 7 / for  any n.) 

Fix an irreducible representation/z of  K, of highest weight 7. Define 

(5.5) '~ (/1) = 7. 

Write rc = rt (/z) for the coarsest ordered partition of n such that y is constant on the 
parts. Then 

(5.6) L o = GL (n, ~ )  

(Definition 3.6), a product of  copies of  GL (p~, ~).  We take L = Lo, and let PL be 
the representation of  L c~ K of  highest weight 7. I f  we write V (j) for the constant 
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value o f  ~ on the j t h  block o f  re, then 

(5.7) PL = | (det) ~(j). 

Clearly this is an a lmost  spherical representat ion of  L c~ K. 
Next,  suppose G is G L  (n, IR). Recall that  K is O (n). Define m = [n/2], and  

e = n - 2 m; thus 

(5.8) n =  2 m +  ~. 

Recall that  the group SO(2)  (the identity componen t  of  0 ( 2 ) )  is natural ly 
i somorphic  to the circle, by the identification o f l R  2 (on which SO (2) acts) with 
(on which the circle acts). Explicitly, the matr ix  

(5.9) r ( 0 ) = (  cos0  sin0 
\ - s i n 0  c o s 0 ]  

corresponds to exp (iO). Set 

(5.10) T o = SO (2) x . . .  x SO (2) (m copies) ,  

embedded  in O (n) in the obvious  way. Using the coordinates  (7.2) to identify T o 
with the produc t  of  m circles, we get 

(5.11) (To) ^ ~ 7 ~ ' .  

Consider  the following three sets o f  weights in (To) ^ : 

A = {el++_ e i l i < j }  

(5.12) B = {2e,} 

c = {e,} 

We choose as positive roots  o f  T o in f 

(5.13) A + (~, t) = A w ~ c ;  

this ra ther  loose nota t ion  is intended to mean  A alone if n is even, and the union of  A 
and C if n is odd.  The roots  o f  To in 0 are 

(5.14) A (p, t) = + (A w B u ~ C ) .  

Let r ,  denote  the matr ix  

(5.15) r,  = diag (1 . . . . .  1, - 1). 

Then r,  normalizes  To, and permutes  the positive roots  o f  T o in f. It  acts trivially on 
the first m - 1  SO(2)  factors of  To, and acts on the last by ( - 1 )  (1+~) - that  is, 
trivially i fn  is odd  and by inversion i fn  is even. In any case, the Car tan  subgroup  of  
K (Definit ion 4.4) is 

(5.16) T =  T O ~ (1, r.} 

I f  n is odd,  then T is a direct product ,  and its irreducible representat ions are one 
dimensional.  They are paramet r ized  by pairs (7, r/), with 7 (the weight o f  To) a 
sequence of  m integers, and r / ( the  weight o f  r.) equal to 0 or  1. I f  n is even, the 
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irreducible representat ions o f  T are of  two types. First, there are the representat ions 
induced f rom T O . These are two dimensional,  and are parametr ized  by the inducing 
weight 7, a sequence of  m integers with 7,, positive. Second, there are the one 
dimensional  representations.  They are parametr ized  by pairs (7, q), with 7 (the 
weight o f  To) a sequence of  m integers ending in zero, and t /( the weight o f r , )  equal 
to 0 or 1. 

Taking  into account  Proposi t ion 4.5, we obtain  a description of  the represen- 
tat ions of  O (n). 

Proposition 5.17. The representations o f  0 (n) are parametr ized by pairs (~', it), 
subject to the following conditions. Write n = 2 m  + ~ as in (5.8). 

a) 7 is a decreasing sequence o f  m non-negat ive integers. 
b) l f  n is even and Tm is not zero, then ~ is �89 otherwise r 1 is 0 or 1. 

Let  lz be the representation o f  highest weight (7, t/). I f  ll is 0 or 1, the restriction o f  ll 
to S 0 (n) is the irreducible representation o f  highest weight 7. I f  tl is �89 the restriction is 
the sum o f  the representations o f  highest weights 7 and (71 . . . .  , -7 , . ) .  

The two one dimensional  representat ions of  O(n) are those parametr ized  by 
((0 . . . . .  0), 0) and ((0 . . . . .  0), 1). They are both special (Definit ion 3.3); they are the 
restrictions to K of  the trivial and determinant  characters  o f  G, respectively. 

Let  Ft be an irreducible representat ion o f  O (n), o f  highest weight (7, ~/) as in 
Proposi t ion 5.17. Let p be the largest integer such that  7p is at least 2. Define 

(5.18) 2 (/t) = (max ( 7 / -  1,0)) 

= ( 7 1 -  1 . . . . .  7 o -  1, 0 . . . . .  0).  

Let zc be the coarsest  ordered part i t ion o f p  such that  7 is constant  on the parts  o f  Tr. 
Then an easy calculation shows that  

(5.19) L o =  G L ( n ,  r • G L ( n - 2 p ,  IR). 

(Here G L  (zr, r denotes the obvious product  o f  copies of  G L  (p j ,  I~). We let/~L0 be 
the representat ion of  Lo ~ K of  highest weight 

( ( 7 1 - 1  . . . . .  7 p - 1 ,  7p+1, . . . ,  7m), ~). 

Write /t~ for the representat ion o f  O ( n - 2 p )  parametr ized  by the last m - p  
coordinates  ofT, and ~/. Let  7 (J) denote  the constant  value of  7 on the j - th  par t  ofr~. 
Then 

(5.20) r = [ |  det ~) -1]  |  

Next,  we turn to the description of  L itself. Write q = n - 2p. The last [n/2] - p 
terms o f  7 are zeros and  ones; say there are q' ones. Define qo and ql as follows: 

(5.21)(a) 

and 

(5.21)(b) 

Let 

if t I is 0 or  �89 then ql = q', and qo = q - ql ; 

if r/ is 1 or �89 then qo = q', and q~ = q - qo. 

(5.22) L = G L  (re, q?) x G L  (qo, IR) x G L  (ql ,  IR).  
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Set 

(5.23) r [ |  deter) -1] | 1 | det. 

Obviously this is an almost spherical representation of L c~ K, but it may appear to 
have been pulled from a hat. To allay the reader's fears on this point, we include 
here a lemma which will not be needed (or proved) until section 8. 

Lemma 5.24. Suppose qo and ql are non-negative integers, and q = qo + ql �9 Write 
q = 2r  + ~, in analogy with (5.8). Then there is a unique decreasing sequence 7 o fr  ones 
and zeros: and an 17 equal to O, �89 or 1, with the following properties. Write q' for  the 
number o f  ones in 7. First, q is�89 i f  and only i f  q is even and b is 1. Second, (5.21) (a) and 
(b) hold. 

Write ~ I = It y ( qo, ql)  for  the irreducible representation o f  O ( q) o f  highest weight 
(7, r/) (Proposition 5.17). Then It I is the lowest 0 (q)-type o f  

Ind(O(q0) • O(q 0 t O(q)) (1 | det). 

We defined lowest K-type only for (g, K)-modules, but obviously the definition 
requires only the K-structure. In any case, the induced representation in question is 
the restriction to K of a (g, K)-module. 

Next, suppose G is GL (n, IH), so that K is the (connected) compact symplectic 
group Sp (n). The group Sp (1) is the group of unit quaternions. This obviously 
contains a copy of  the unit circle U (1), the complex numbers of absolute value 1. 
The natural embedding of  Sp (1)" into Sp (n) then defined a subgroup 

(5.25)(a) T =  U(1) x . . .  • U(1) (n copies) 

of K. It is a maximal torus and a Cartan subgroup. Clearly 

(5.25) (b) / '  ~ Z". 

Consider the weights 

(5.26)(a) A = {e,+- e~li < j } ,  B = {2ei}. 

We can choose as positive roots of T in t 

(5.26)(b) A + (L t) = A wB. 

The roots of T in la are 

(5.27) A (p, t) = + A. 

The dominant weights are decreasing sequences of n positive integers: 

(5.28) /~ ~ {7 = (Ta . . . . .  7,) I h  > . . .  > 7, > 0}. 

Since Kis connected and semisimple, the only one dimensional representation is the 
trivial one; it is special (Definition 3.3). 

Fix a representation ~ of K, associated to ~ by (5.28). Define 

(5.29) 2 (~)i = 7i + 1, if ~i is positive; or 

= 0, if ~ is zero. 
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We will let L be equal to the centralizer L o of 2. To describe it, write q for the number 
of zeros in the sequence V, andp = n - q. Let ~ be the coarsest ordered partition ofp  
so that V (or rather the first p coordinates thereof) is constant on the parts of g. Then 

(5.30) L = GL (~, ~)  • GL (q, IH). 

We let/z L be the representation of L ~  K with highest weight ~. With notation 
analogous to that in (5.7), this is 

(5.31) pL= [| deter)+1] | 1. 

Clearly it is special (Definition 3.3). 

6. The induction functors 

In this section, we will define the functors which will exhibit the bijection between 
unitary representations of G with lowest K-type p, and (almost spherical) 
representations of L containing the L c~ K-type PL. Once again this construction will 
be in two steps, corresponding to the two steps in the definition of L. The functors 
from representations of L to representations of Lo will be ordinary (normalized) 
parabolic induction. To go from L o to G, we will use cohomotogical parabolic 
induction as in [36] (but with a twist in the normalization). We therefore begin by 
recalling its definition. 

Definition 6.1 (cf. [36], Definition 5.2.1). A O-stable parabolic subalgebra of g is a 
parabolic subalgebra q of g, stable under the (complexified) Cartan involution 0. 
Necessarily such a q meets its complex conjugate in a Levi factor 1 of  q. Write 

q = l + u  

for the corresponding Levi decomposition of q, and L for the normalizer ofq  in G 
(the Levi subgroup of  q). Recall from [34], Definition 6.3.1, the cohomological 
parabolic induction functors (from (I, L~K)-modules  to (9, K)-modules) 

~ i =  ~tg ((q, L~K) t (g, K)) 

= F~((g, Lc~K)'~ (g, K)) o pro ((q, Lc~K)? (g, Lc~K))(* | 

(The symbols are explained in [36].) Here we have allowed a twist by a one 
dimensional character C of L. (In [36], C was fixed as the top exterior power of u. 
This normalization has not aged well. Fixing it properly in general would lead us 
too far astray, but we cannot resist the temptation to improve matters for GL (n).) 
We will write (~K)i for the analogous functors with q and g replaced by q c~f and f 
(defined in Definition 4.6); these take representations of  L c~ K to representations of  
K. As in Sect. 5 of [38], it is actually more convenient to consider the functors 

~ = F ~ o ind ((qOp, L~K) ~ (g, L~K))(* | 1 6 2  

and (~g)~. We will mention properties of ~ only because it is ~ rather than ~ '  
which is discussed in [36]. 
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If  Y is any (l, Lc~K)-module, the inclusion of U(f) in U(g) induces a natural 
homomorphism of (f, L • K)-modules 

ind ((q~ c~, L c~ K) ~ (~, L c~ K) ) ( Y | z ' )  

c-~.ind ((q ~ Lc~K) ? (9, L ~ K ) ) ( Y |  

and so a family of homomorphisms 

(6.2)(a) ~uJ: (L~ar) J Y ~  LP J Y 

of K modules. Similarly, we have homomorphisms 

(6.2)(b) chi: ~i  y ~  (~K)i y .  

Here are some of the less obvious formal properties of these functors which we 
will use. 

Proposition 6.3. In the setting of Definition 6.1, let Y be an (I, L r~ K)-module, and let 
S be the dimension o fumt .  

a) ~liY and (~IK)i(Y) are zero for i greater than S. 
b) ~r and (5~r) j are zero for j less than S. 
c) The homomorphism (9 s of  (6.2) is surjective, and qjs is injective. 

Part (a) of this proposition, due to Zuckerman, is Corollary 6.3.21 in [36]; and (b) is 
analogous ([38], Lemma 5.2(b)). Part (c) is discussed in Definition 6.9 of [36]. 

As background and motivation for what is to come, we recall now a few more 
pieces of the Langlands classification of irreducible (g, K)-modules (for general 
reductive G, for the moment). One of the key ideas in that classification is 

Theorem 6.4 (Langlands; cf. [36], Sect. 6.5). Suppose G is a reduetive Lie group, with 
maximal compact subgroup K. Any irreducible (9, K)-module X is the unique 
irreducible quotient of a certain "standard" (9, K)-module C(X). C(X)  has the 
following properties, which characterize it uniquely; 

a) The lowest K-types of C (X) are precisely the same as those of X. 
a)' The leading exponents in the asymptotic expansions of matrix coefficients of 

C (X) are the same as those for X. 
b) I f  X'  is any (g, K)-module of finite length satisfying (a) or (a)', and X is a 

composition factor of X', then 

Homg.x(C(X ), X') # 0. 

(We have included (a)' only as motivation for those to whom the words have a 
meaning already; others may safely ignore it.) The point is that C(X) is some sort of 
canonical covering of X; not precisely a projective cover, but something with that 
general flavor. 

Here is a more precise version of the reduction step alluded to at the beginning 
of Sect. 4. 

Theorem 6.5 ([36], Theorem 6.5.12). Suppose G is a reductive Lie group, with 
maximal compact subgroup K. Fix a representation It of K. Then there is attached to It 
a O-stable parabolic subalgebra 

q = ~ct ~u), 
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and a representation 12 L of  L ~ K  (notation as in Definition 6.1), with the following 
properties; 

a) There is a bijection X L ~ X  from irreducible (l, Lc~K)-modules with lowest 
L ~  K-type I~c, onto irreducible (~, K)-modules with lowest K-type I~. 

b) Suppose X c has lowest L~K- type  it L. Then (with S equal to the dimension of  
u~t), 

5Fs(c(xL))= C(X): ~,~J(C(Xz)) = 0, j + S .  

c) X is the unique irreducible quotient of  ~s(C(XL)):  and X is a quotient of  
!*s(x~). 

d) (s defines a bijection from the set of  lowest L ~ K-types of  X L onto the set 
of  lowest K-types of  X. In particular, 

( ~ " ) s  (~,L) = ~. 

Using a simple induction by stages argument ([36], Proposition 6.3.6), we deduce 

Corollary 6.6. The conclusions of  Theorem 6.5 remain valid if  qct is replaced by any 
O-stable q containing it. 

We now return to the special case of G = GL (n, IF). Fix/~ in k, and define 2 as in 
(5.5), (5.18), and (5.29). Recall that 2 belongs to a fixed Cartan subalgebra I oft.  We 
want to define a 0-stable parabolic subatgebra 

(6.7)(a) q0 = I0 + u0 

of g; recall that L o has already been defined in (5.1). It is enough to specify the set of 
weights of t in u0. These are given by 

(6.7)(b) A (u0, t) = {~ cA (~, f) ] <~t, 2> > 0}. 

For comparison, note that 

(6.7)(c) A (10, t) = {~ ~ A (9, t) ]<~, 2> = 0}. 

Lemma 6.8. In the setting of  (6.7), the parabolic qo contains the one qcZ of  
Theorem 6.5. In particular, all the conclusions of  that theorem are available for qo. 

Sketch of  proof  The definition of qct is contained in Definition 5.3.22 (and hence in 
Proposition 5.3.3) of  [36]. It is analogous to (6.7), but uses a different weight 2c~. 
Carrying out the calculation in Proposition 5.3.3 of [36] shows that 2ct is equal to 
ous 2 for GL (n, ~)  and GL (n, IR); so the two parabolics coincide in those cases. 
For IH, in the notation of  (5.29), 

(2c1)i = ~i + 1, all i. 

Once this is verified, the claim in the lemma is very easy to check. We leave the 
details to the reader. 

We now choose the shift z- appearing in the definition of cohomological 
induction. 

Lemma 6.9. In the setting of(6.7), write 

L o = GL 0z, ~)  • GL (q, IF) 
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as in (5.6), (5.19), and(5.30).  Let  3 be 0 f l F =  •, 1 if lF = IR, and - 1  i f lF  = IH. 
Consider the one dimensional character 

= det ~ | 1 

o f  Loc~K. Define 

z" = z | (ASnomf) 

( c f  Definition 4.6). Then the differential o f t "  is p (Uo), hal f  the weight ofloc~t on the 
top exterior power o f  Uo. Consequently z-  extends uniquely to a character (still 
denoted z ~) o f  L o . 

Sketch o f  proof. Write R for the dimension of u0 c~ p. What must be shown is that 

z z | (AS(uoC~t)) 2 = AR+S(uo). 

This is equivalent to 

(6.10) z z | AS(uoC~f) = A R (nora t3). 

Over r  t and p are isomorphic as representations of K, and (6.10) is clear. Over 
IR or IH, the calculations in Sect. 5 ((5.13) and (5.14), and (5.26) and (5.27)) show 
that the weights of t in t and p are nearly the same; they differ only by various 2e i . 
Careful inspection of this claim gives (6.10); details are left to the reader. The point 
of the final assertion of the lemma is that p (u0) automatically defines a Lie algebra 
character. The question of whether such a character exponentiates is always settled 
on a maximal compact subgroup. Q.E.D. 

Definition 6.11. In the setting of (6.7) (which depends on a choice of a 
representation # of K), define 

J0 = ~LaS((q0, Lo c~K) ~ (~, K) ) ,  

a functor from (Io, LomK)-modules  to (fl, K)-modules (Definition 6.1). We use the 
twist r" of Lemma 6.9. Put 

( jK)o  = (Lex)s,  

a functor from representations of Lo~ K to representations of K. 

There are at least three simple but important observations to make about this 
definition. First, Corollary 6.6 applies (by Lemma6.8): these functors relate 
representation theory for G and for L o in the strong way outlined in Theorem 6.5. 
Second, (J~)0 has been computed in Proposition 4.7; it essentially twists highest 
weights by the factor z appearing in Lemma 6.9. In particular, inspection of (5.7), 
(5.20), and (5.31) shows that 

(6.12) ( JK)O(ltLo) = It. 

This makes the notation of Sect. 5 consistent with that in Theorem 6.5. Third, 
suppose (following Harish-Chandra) that we identify infinitesimal characters with 
Weyl group orbits in duals of Cartan subalgebras. Then J0 preserves infinitesimal 
characters precisely; the p shift appearing in (say) Proposition 6.3.11 of [36] is 
cancelled by our new choice of  z ' .  
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As a final observation, we note that we can drop some of the occurrences of  the 
phrase "lowest K-type". 

Lemma 6.13. Suppose G = GL (n, IF), I~ is an irreducible representation of  K, and X 
is an irreducible (g, K)-module containing the K-type I~. Assume that either 

a) /t is special (Definition 3.3): or 
b) IF = IR, and I~ is one of  the representations Cry described in Lemma 5.24. 
Then l~ is the unique lowest K-type of  X. 

Sketch of  proof. In case (a), this is an elementary consequence of the definition of 
lowest. The main point is that the differential of  a special representation of  K lives 
on the center of g. Case (b) is a consequence of the fact that that/~s is fine, and the 
general theory of fine K-types (cf. [35]). It can also be deduced directly from the 
subquotient theorem and the definition of lowest. 

Corollary 6.14. In the setting of  Definition 6.11, any irreducible (10, Lo~ K)-module 
containing i~Lo has that as its unique lowest L o ~ K-type. 

Definition 6.15. In the setting of (6.7), let L be the subgroup o f L  o defined in Sect. 5; 
recall that it is equal to L o unless IF = IR, in which case it is given by (5.22). Fix a real 
parabolic subgroup P of Lo, with Levi factor L; write 

P =  LN 

for the Levi decomposition. Of  course P -- L o unless IF = IR; and in that case, we 
can take P to be the block upper triangular matrices in the GL (q, IR) factor of  L o 
(together with the entire GL (re, It) factor). Define 

J ~  = Ind (P 1" Lo) 

(normalized parabolic induction), a functor from (l, L ~ K)-modules to (10, Lo c~ K)- 
modules. Put 

(JK)R ---- Ind (L c~ K ~ Lo ~ K),  

a functor from representations of  L ~ K to representations of  L0 c~ K. 

Obviously this is a much more familiar kind of  object than ~r everything is really 
going on inside GL (q, ]R). The functor (JK)R,  for example, is essentially induction 
from O(qo) • O(ql )  to O(q). For now, the most serious observation we want to 
make about ( Jx )R  is Lemma 5.24. Although it is not strictly necessary, we should 
also mention the weak version of  Theorem 6.5 available in this context. 

Theorem 6.16. Suppose qo and qx are non-negative integers, and q = qo + ql . Put 
G = GL (q, IR), anda = It s as in Lemma 5.25. Define L to be GL (qo, IR) x GL (ql, IR), 
and Ft L to be the representation 1 | det of  O (q0) x O (ql). Define JR  and ( JK)R as 
in Definition 6.15. 

a) There is a bijection X L ~ X  from irreducible (1, L~K)-modules,  almost 
spherical of  type ltL, onto irreducible (g, K)-modules containing the K-type kt (cf  
Lemma 6.13(b)). 

b) Suppose X L contains aL" Then JR  ( C ( XL) ) and C ( X) have the same irreducible 
composition factors and multiplicities. 
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c) X is the unique irreducible subquotient of  either J~(C(XL)) or of  J~(XL) 
containing la. 

d) /~ is the lowest K-type of  ( J r ) ~  (l~L). 

Part (a) follows essentially from the subquotient theorem (compare Chap. 4 of [36], 
especially Theorem 4.4.8.) Since the standard modules here are ordinary principal 
series for GL (q, IR), part (b) is just induction by stages. Part (c) follows from (b), 
and (d) is Lemma 5.24. 

Definition 6.17. Fix an irreducible representation/t of K, and define L as in (5.6), 
(5.22), and (5.30). Set 

(Definitions 6.11 and 6.15), a functor from (1, L w K)-modules to (g, K)-modules. 
Put 

J ~  = ( JX)oO (or 

a functor from representations of L c~ K to representations of K. 

Here is the main theorem. 

Theorem 6.18. Suppose IF is IR, ~,  or IH, G = GL (n, IF), and l~ is an irreducible 
representation of the standard maximal compact subgroup K of G (Definition 4.2). 
Define (L, I~L) as in Sect. 5 ((5.6) and (5.7); (5.22) and (5.23); and (5.30) and (5.31)). 
Then L is a product of  various GL (mi, IFi), and II L is a special one dimensional 
representation of L c~ K (Definition 3.3). The functor J of  Definition 6.17 defines a 
bijection from the set of  irreducible unitary representations of L, almost spherical of  
type laL, onto the set of irreducible unitary representations of G of lowest K-type I~. In 
particular, J has the following three properties. 

a) I f  Y is a basic almost spherical representation of L of type ItL, then J Y  is 
unitary. 

b) I f  Y is a basic almost spherical representation of L of type l~L, then J Y  is' 
irreducible. 

c) I f  X is any irreducible unitary representation of G of lowest K-type I~, then there 
is a unitary almost spherical representation Y of L, such that X is a subquotient of J Y .  

Together with Theorem 3.8, this parametrizes the unitary dual of G. The reader 
may be unhappy with the pervasive use of cohomological induction in the 
statement, even over ~ where it is not needed. This is done partly for philosophical 
reasons, but mostly for convenience in the proof. In those cases (for example always 
over r when L is the Levi factor of a real parabolic subgroup, we can (using known 
"independence of polarization" results) replace J b y  ordinary parabolic induction; 
and in general, J may be built mostly from ordinary induction. We will return to 
this point in Sect. 17. In any case, the functors Jare  quite computable (for example 
on the level of distribution characters). 

We conclude this section with the (g, K)-module analogue of Theorem 6.18. 

Theorem 6.19. Suppose we are in the setting of  Theorem 6.18. 
a) There is a bijection Xr--+X from irreducible (l, Lc~K)-modules, almost 

spherical of  type/aL, onto irreducible (~, K)-modules with lowest K-type lz. 
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b) X is the unique irreducible subquotient of  either J(C(XL)) or of J(XL) 
containing IX. 

c) /t is the lowest K-type of J ~ L ) .  

This is immediate from Corollary 6.6, the first remark after Definition 6.11, and 
Theorem 6.16. We lose (b) of Theorem 6.16 because 0r is not exact; this could be 
remedied by replacing ~r by an alternating sum of cohomological induction 
functors. 

Because of this theorem, parts (a), (b), and (c) of Theorem 6.18 imply the rest of 
that theorem. 

7. Small representations of K 

In this section, we will begin to introduce some of the ideas needed to explain the 
proof  of  Theorem 6.18. We must begin in the context of  Theorem 3.8. 

Definition 7.1. Fix a collection (one for each m) of special one dimensional 
representations r of K(m, IF), the restrictions to K of some characters j,, of  G 
(Definition 3.3). Fix n, and an integer q between 0 and n. Define 

Z (q; n) = Ind (K(q) x K(n - q) ~ K(n)) ~q | r q), 

an infinite dimensional representation of K(n). (We will write Z(q) when no 
confusion will result; in general we want to consider these representations for fixed 
n and varying q.) It will often be convenient to write 

Z ( - l ; n ) = 0 .  

Although we could proceed immediately with some abstract definitions, it is 
perhaps more helpful to recall the (well known) decomposition of  Z(q) into 
irreducibles. Set 

(7.2) X(q; n) = K(n)/(K(q) x K ( n -  q)) 

= Grassmanian of  q-planes in IF". 

For  example, X(1 ; n) is n - 1 dimensional projective space over IF. Obviously 

(7.3) Z(q; n) = p, | (functions on X(q; n)). 

The space X(q; n) is a symmetric homogeneous space for K(n), so the space of  
functions on X(q; n) is computed by Helgason's theorem ([17], Corollary V.4.2). 
Making explicit the definitions there, and using the parametrizations of /~ in (5.4), 
Proposition 5.17, and (5.28), we arrive at the following lemma. 

Lemma 7.4. In the setting of Defi'nition 7.1, suppose q < [n/2]. Then the K-types of 
Z (q) all occur with multiplicity one. They are parametrized by (weakly) decreasing 
sequences (al . . . . .  aq) of  q non-negative integers, as follows. 

a) Suppose IF= C, and 12 is deft" (of highest weight (m . . . . .  m)). Then the 
constituents of  Z (q) have highest weights 

( m + a l ,  m+a2 . . . .  , m+aq,  m . . . .  , m, m - a q  . . . .  , m - a  O. 
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b) Suppose IF = IR, and p is det~, with tl equal to zero or one (with highest weight 
((0, . . . ,  0),~1). Then the constituents o f  Z (q )  have highest weights 

((2al . . . . .  2aq, 0 . . . . .  0), t/'), 

with ~1' equal to ~1 or �89 
c) Suppose IF = IH, so that p must be trivial. Then the constituents o f  Z (q )  have 

highest weights 
( a l ,  a l ,  a 2 . . . . .  aq, aq, O, . . . ,  0).  

Since obviously Z (q) is isomorphic to Z ( n -  q), this lemma computes Z (q) in all 
cases. 

Corollary 7.5. In the setting o f  Definition 7.1, suppose q' < q <= [n/2]. Then there is an 
inclusion 

Z (q') c~ Z (q). 

This inclusion is analytically quite interesting, and may be obtained more 
explicitly in various ways. For  example, Lemma 2.4 (d) exhibits an inclusion of two 
(g, K)-modules. Restricted to K, they are just Z ( m - 1 ;  2m) and Z ( m ;  2m). The 
proof of  that lemma (which relies on fairly serious results still to come) extends 
easily to yield all the inclusions of  Corollary 7.5. 

Alternatively (at least as a point of view; the mathematics is in some sense the 
same), there is a Radon transorm from functions on X(q ' )  to functions on X(q), 
obtained by integrating over q'-planes contained in a fixed q-plane. From this point 
of  view, there is some analysis to do to prove the injectivity of the transform. 

Definition 7.6. In the setting of Definition 7.1, define (for 0 < q < [n/2]) 

~oq(/t; n) = lowest K-type of Z(q;  n ) /Z(q  - 1; n). 

This makes sense because of  Corollary 7.5. In the parametrization of Lemma 7.4, 
~oq corresponds to the sequence 

(ai) = (1, . . . ,  1, 0 . . . .  , 0) (q ones). 

In particular, o~ o (/x) is/~ itself. The set of small representations o f  Kassociated to It is 

S(B) = {~oq(/x) ] 1 _-< q _-< [n/2]}. 

More generally, suppose G is a product of  various GL (mi, IFi), and p is a special 
one dimensional representation of  K; say/~ = (| Then 

S(12) = { | 61[ ~i = txi for i=~ io, and 6io ~ S (tzio) } . 

Definition 7.7. Let Ybe an irreducible almost spherical (~, K)-module oftype/z. We 
say that Y satisfies Hypothesis 7.7 if  it falls in one of the following three cases. 

Case 1. Y does not admit an invariant Hermitian form ( , ) .  
Case 2. Yadmits an invariant Hermitian form which is positive on/t, but not on 

every K-type in S(/x) (Definition 7.6). 
Case 3. Y is basic (Definition 3.7). 

Obviously Theorem 3.8(d) follows immediately from 
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Theorem 7.8. Suppose G---OL(n, IF), and Y is an irreducible almost spherical 
(9, K)-module of  type/2 (Definition 3.3). Then Y satisfies Hypothesis 7.7. 

This theorem says that Y can fail to be unitary only if it admits no invariant 
Hermitian form, or if its form has different signs on the K-type/2 and some small K- 
type ~. Its advantage over Theorem 3.8 is not that it is intrinsically interesting - 
after all, it says nothing about the unitary representations - but that it is ideally 
suited to proving Theorem 6.18. Its proof  is in Sects. 12-14. 

8. Relatively small representations of K: Fine case 

In this section, we will formulate an extension of Definition 7.6 to general 
representations of K. The most difficult case is that of  the K-types considered in 
Lemma 5.24, and this section will be devoted to it. It is rather technical, and the 
reader may wish to omit it. We need from it only Corollary 8.12. 

We begin with a very useful general fact. 

Proposition 8.I. Suppose G is a real reductive group, K is a maximal compact 
subgroup, and P is a parabolic subgroup. Fix a Levi decomposition P = L N  with L 
stable under the Cartan involution. Write M = L c~ K. Let Y be an irreducible (1, M)- 
module, and Z an irreducible representation of  M occuring in Y. Put 

X =  Ind (Pi" G)(Y)  

I f  Z is not a lowest M-type of  Y, then Ind (M $ K)(Z)  contains no lowest K-type o f  X. 
That is, the lowest K-types of  the induced are contained in the induced from the lowest. 

Proof. Recall the parameter 2(p) attached to a representation of K by 
Proposition 5.3.1 of [36]. (It was referred to as flcz in the proof of Lemma 6.8, to 
avoid confusion with the 2 defined only for GL (n) in section 5. Since it is used now 
only within this proof, no confusion should result.) We will use the fact ([35], 
Lemma 8.8) that lowest can be defined by minimizing the length of this parameter. 
Let Z o be a lowest M-type of  Y. Then we conclude that 

(8.2) I 2 (Zo) I < 12 (Z) I. 

Recall from [35] that 4 (Zo) is the Harish-Chandra parameter for the discrete series 
representation 7r figuring in the Langlands classification for Y. Let/2 be a lowest K- 
type of X, and Xo an irreducible subquotient of X containing/2. Then 7r is also the 
Langlands discrete series for Xo, so 4(/2) is actually conjugate to 4(Zo). In 
particular, 

(8.3) 14(Zo) I - -14(~)  I. 

Choose a representation Y' of L with lowest M-type Z (as is always possible), 
and let /2' be the lowest K-type of X ' = I n d ( Y ' ) .  Applying (8.3) to these 
representations gives 

(8.4) I 2 (Z)  I = I 4 ~ ' )  l- 
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If/2" is any K-type ofInd (Z), then/2" occurs in X': so (using the analogue of (8.2) for 
G) 

(8.5) I,~(~') I _ -< I,~(~") I. 

Combining (8.2)-(8.5) gives 

I,~(u) t < I , ~ " )  I, 

which is the conclusion of the proposition. Q.E.D. 

Here are the standing hypotheses for the rest of this section. G will be GL (n, IR). 
Fix non-negative integers qo and ql,  such that 

(8.6)(a) qo + qt = n. 

Recall from Lemma 5.24 the representation 

(8.6) (b) /2 =/2s (qo, q~)- 

The representation/2 is defined by specifying its highest weight. It is an easy exercise 
to calculate the highest weights of the exterior algebra representations, and deduce 
that 

(8.6)(c) /2 = [AqI(IR")I |  Ir. 

It will be convenient to write 

(8.6)(d) M =  O(q0 ) x O(q,) .  

Proof of Lemma 5.24. We want to show that/2 is the lowest K-type of Ind (1 | det). 
We will apply Proposition 8.1, with P = P(qo, q~) (Definition 3.6). The conclusion 
is that we may replace 1 |  by (the restriction to M of) any irreducible 
representation Y with unique lowest M-type 1 | det. We choose for Y a full 
principal series representation of GL(q0)•  GL(ql).  Then X =  Ind(Y) is a full 
principal series for G. We need to show that/2 is the lowest K-type of X. This follows 
from Sect. 5.3 of [36], because/2 is fine (as was first observed in [5]). Q.E.D. 

Definition 8.7. In the setting (8.6), and using the notation of Definition 7.6, define 

coq, o ~ )  = lowest K-type of Ind (Mi" K) (coq(1) | det) (0 _-< q <= [qo/2]) 

coq, 1 (/2) = lowest K-type of Ind (MI" K)(1 | (0 <_ q <= [ql/2]). 

The set of relatively small representations of K associated to/2 is 

S(/2) = {coq,0(P)10 < q =< [qo/2]} 

w {coq,, (/2) 10 < q < [ql/2]}. 

Because of the last part of Definition 7.6, this is precisely the set of lowest K-types of 
I n d ( M t  K)(co), as co runs over S(1 @det). 

We want to compute S (p) explicitly. 

Lemma 8.8. In the notation of Definition 8.7, the highest weight of coq, o(/2) may be 
computed as follows. Recall m and ~ from (5.8). Write (~, t/)for the highest weight 



The unitary dual of GL (n) over an archimedean field 473 

of  the representation p f  (qo - 2q, ql) o f  0 (n - 2q); this is defined in Lemma 5.24. 
(In particular, 7 is a string of  ones and zeros.) Then the highest weight o f  co q, o(lt) is 

((2 . . . .  ,2 ,  ~,), t/) (q 2's). 

An analogous formula applies to coq, 1 (P). 

Proof  The representation coq (1 ; 2q) of  O (2q) has highest weight ((2 . . . . .  2), �89 It is 
very easy to check from the definition that coq(1;qo ) is the lowest K-type of 

(8.9) Ind (O (2 q) • O (qo - 2 q)) (coq | 1 ). 

(Part of the reason this is easy is that the inducing subgroup contains a Cartan 
subgroup.) It therefore follows from Proposition8.1 and Definition8.7 that 
c%, o (/1) is the lowest K-type of  

(8.10) I nd (O (2 q) x O (q0 - 2 q) • O (q 1)) (coq | 1 @ det). 

Now we reverse the reasoning, and compute the lowest K-type by induction by 
stages with the last two factors grouped together. Lemma 5.24 and Proposition 8.1 
imply that co, o(P) is the lowest K-type of 

(8.11) Ind (O (2 q) x O (n - 2 q)) (coq |  - 2 q, q l )). 

Again because the inducing subgroup contains a Cartan for K, this lowest K-type is 
easy to compute; it is the one given in the conclusion of the lemma. Q.E.D. 

Corollary 8.12. In the setting o f  Definition 8.7, taking the lowest K-type o f  
Ind(Mi" K) defines a bijection f rom S(1 |  onto S(p). Fix co in S(p), and a 
standard SO (2) inside K. Then the weights of  the SO (2) in co are integers between - 2 
and 2. 

It is only the latter assertion of this corollary which we will really need, and that 
only in the following weak form: if 6 belongs to S(1 |  then there is a 
representation co of K which contains 6, and has SO (2) weights in between - 2 and 
2. This sounds like it should be very easy (since the SO (2) weights of 6 are between 
- 2 and 2). To see that there was really something to check, consider the analogous 
problem when 6 is 1 |  This has all its SO(2) weights equal to zero; but any 
representation of K containing it must have some non-zero SO (2) weights. 

9. Relatively small  representations of  K: General case 

We have up until now defined S (p) when/1 is special one dimensional, and when/2 is 
one of  the representations of  O (n) in Lemma 5.24. We extend this definition to 
product groups as at the end of Definition7.6. This covers the case of the 
representations/~L0 of Lo ~ K, introduced in Sect. 5. The following easy lemma is one 
of  the main steps in the reduction of Theorem 6.18 to the almost spherical case. It 
will guarantee the existence of  representations of K on which it is possible to study 
Hermitian forms. 

L e m m a  9.1. Suppose G = GL(n, IF), and lZ is an irreducible representation o f  K. 
Define L o and l~Lo as in Sect. 5 (c f  (5.6) and (5.7); (5.19) and (5.20); and (5.30) and 
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(5.31)). Recall the character r of  Loc~K defined in Lemma 6.9. Suppose ogLo belongs 
to S(IxLo ). Then the highest weight of  e~Lo| is K-dominant: so 

(cf. Definition 6.11 and Proposition 4.7) is a non-zero representation of K. 

Proof. We have computed all the highest weights and positive roots explicitly, so 
we only need to inspect the results in each case. Consider for example the case 
IF = IR, with ~oL0 differing from/zL0 only on the GL (n - 2p, IR) factor. Using the 
notation around (5.19), we see from Lemma 8.8 that ~oL0 has highest weight of the 
form 

(9.2) ((71 - 1 . . . . .  ~,p- 1, 2 . . . . .  2, 1 . . . .  ,1 ,  0 . . . .  ,0) ,  r/'). 

Tensoring with z adds 1 to the first p coordinates. The resulting weight will be 
dominant if the sequence is decreasing and non-negative. Since y already has this 
property, we only need to check that 7p is at least 2. But p was defined exactly to 
make this true, proving the lemma in this case. The other cases are similar, slightly 
easier, and notationally more complicated; so we leave them to the 
reader. Q.E.D. 

Definition 9.3. In the setting of Lemma 9.1, define the set S (/1) of  relatively small 
representations of K associated to/~ to be the set of  all irreducible constituents of  the 
various (JK)0 (OLo), as oL0 runs over S ~L0)- This latter set is defined in Definitions 
7.6 and 8.7, and the remarks preceding Lemma 9.1. 

Even though we need no more than is contained in Lemma 9.1, careful inspection of  
the calculations in it actually proves a bit more. 

Corollary 9.4. In the setting of Lemma 9.1, we have 
a) (JK)0 defines a bijection from S(IzLo ) onto S(/x): and 
b) taking the lowest K-type of  JK (OOLo) defines a bijeetion from S (ktc) onto S (,u). 
Here we use the notation of Definition 6.17. 

We record here the part of  Theorem 6.18 which will follow from Theorem 7.8. 

Theorem 9.5. Suppose we are in the setting of  Theorem 6.18, and X is an irreducible 
(g, K)-module with lowest K-type ~. Assume that X admits an invariant Hermitian 
form ( , ) ,  which we may assume to be positive on It. Let X L be the irreducible 
(I, Lc~K)-module corresponding to X (Theorem 6.19). Then either 

a) X L is basic: or 
b) there is a K-type o~ in S (It) (Definition 9.3) on which ( , )  is not positive. 

This includes (the contrapositive of) Theorem 6.18 (c). It follows from Theorem 7.8 
and Proposition 10.2 below. 

10. Induction and Hermitian forms 

In this section, we will recall some known results about the effect of  various kinds of 
induction on Hermitian forms. These will be the basic tools used in proving 
Theorems 7.8 and 9.5. We begin with a definition from [38]. Recall that a (g, K)- 
module is called admissible if each K-type has finite multiplicity. 
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Definition 10.1. Let Y be an admissible representation of G, with an invariant 
Hermitian form <, >. The signature o f ( ,  > is a triple (p, q, z) of  three functions from R 
to IN, defined as follows. Fix an irreducible representation (6, Va) of  K, and a 
positive invariant Hermitian form on V~. Then 

Ya = HomK(V~, Y) --- (V~)* OK Y 

acquires an invariant Hermitian form <,5~. We define z(6) to be the dimension of 
the radical of  (,>a, and (p(6), q(6)) to be the signature of  the induced non- 
degenerate form on YJ(rad<,>a). Thus the multiplicity of  6 in Y is given by 

m (6) = p (6) + q (6) + z (6). 

For definiteness, we may sometimes write p (6, Y), etc. 

In terms of signatures, we can formulate the reduction theorem which gives 
Theorem 9.5 from Theorem 7.8. 

Proposition 10.2. Suppose G is GL (n, IF). Let X be an irreducible representation of 
G admitting a non-zero invariant Hermitian form ( ,  >. Le t / t  be the lowest K-type 
of X, and define (L, laL) as in section 5. Let XL be the irreducible almost spherical 
representation of L of type I~ L corresponding to X (Theorem 6.19). 

a) X L admits a non-zero invariant Hermitian form (,>L. Fix a K-type 

(Definition 9.3), and let 

ooL ~ {~O ws  (~o 

be the corresponding k c~ K type (Corollary 9.4). Assume that ( ,  > is normalized to be 
positive on It, and (,>L tO be positive on t~L. Then 

b) p(~o,X)>p(co>XL): q(oo, X ) >  q(ooL, XL) 

(cf. Definition 10.1). 

We will prove this result at the end of this section. 
We consider now the behavior of  Hermitian forms under ordinary parabolic 

induction. We may as well work in the context of  a general reductive Lie group G, 
with maximal compact subgroup K. Suppose Q is a parabolic subgroup of G. Then 
necessarily 

(10.3)(a) L =  Q~OQ 

is a Levi factor of  Q. Write U for the unipotent radical of  Q. Then there is a Levi 
decomposition 

(10.3)(b) Q = LU, 

a semidirect product with U normal. 
Each element of  G can be written as a product of  an element of  K a n d  an element 

of Q: 

( 1 0 . 4 )  G = KQ. 
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Proposition 10.5. Let Q = LU be a parabolic subgroup of G as in (10.3), and Y an 
(l, L r~ K)-module. 

a) As representations of K, 

Ind(Q? G)(Y) ~Ind(Lr~Kl" K)(Y). 

This isomorphism is defined by restricting functions in the induced representation to 
K. In particular (writing m(v, a ) for  the multiplicity of  a representation z in an 
appropriate restriction of  a), we have for any It in R, 

m (it, Ind(Ql" G)(Y)) = ~ m (r, i t)m (v, Y). 
~: r  ^ 

b) Suppose Y admits an invariant Hermitian form (,>e. I f  we regard elements of  
the induced representation as functions on K with values in Y (as is possible by (a)), 
then 

(v, w> = ~ (v,(k), w(k)>tdk 
K 

defines an invariant Hermitian form on the induced representation. Its signature 
(Definition 10.1) is given by the formula in (a), with the first and third m's replaced by 
p, q, or z. In particular, the induced form is non-degenerate (respectively, positive 
definite) i f  and only i f  <,>t is. 

This is standard and easy. In (b), the fact that induction preserves unitarity goes 
back at least to Wigner. The importance of the (equally simple) fact that it also 
preserves failure to be unitary was noticed more recently; I learned of it in the 
dissertation of Birgit Speh [28]. 

We turn no~v to the case of cohomological parabolic induction. 

Proposition 10.6. In the setting of  Definition 6.1, let Y be an ([,LmK)-module, 
endowed with an invariant Hermitian form ( ,  > L (which may be degenerate). Let S be 
the dimension of  u c~t. 

a) ~ s  y and (SCK)sY carry induced Hermitian Jbrms 

~ s ( < , > L )  = <,>G = < ,> ,  (~e,~)s (<, >L) = <, >,~. 

b) The restriction (that is, pullback via ~s; c f  (6.2) a)) of ( ,  >a to (~K)S is (,>X. 
C) (~K)S carries positive definite forms to positive definite forms. 

This is closely related to the theorem of Enright and Wallach in [11 ]. Part (c) is due 
to Enright; the entire proposition may be found in Corollary 5.5 and Proposition 
6.10 of [36]. 

One should keep in mind the fact (Proposition 6.3 (c)) that ~u s is an inclusion. It 
is helpful to drop the map from the notation, writing 

(10.7) ~ K y =  ~e y .  

This inclusion plays some of the role of the isomorphism in Proposition 10.5(a). 
We have most of  the machinery needed to prove the following lemma, but some 

otherwise useless definitions would be required first. We will therefore regard it as a 
formal consequence of the fact that the set of irreducible (g, K)-modules admitting 
non-zero invariant Hermitian forms is explicitly known (by the work of Knapp- 
Zuckerman and others; see for example [37] or [38]). 
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Lemma 10.8. In the setting either of  Theorem 6.5 or o f  Theorem 6.16, X admits a 
non-zero invariant Hermitian form i f  and only i f  X L does. 

Proposition 10.9. In the setting of  Theorem 6.5, suppose X admits a non-zero 
invariant Hermitian form ( , ) .  Let ~ be a lowest K-type of)(, and l.t L the corresponding 
lowest L ~ K  type of  XL. Let ( , ) t  be a non-zero invariant Hermitian form on XL 
(Lemma 10.8). Assume that ( , )  is normalized to be positive on I~, and ( , )L  tO be 
positive on It L. Fix an irreducible representation o~ L of  L c~ K. Assume that (5~ 
is non-zero: f i x  an irreducible constituent co o f  it. Then 

p (~o, x )  >__p (o~L, xL) 

q (to, X) > q (o~ L, XL) 

(c f  Definition 10.1). 

Proof  Since X L is a quotient of  C(XL) by some QL (Theorem 6.4), we can regard 
( , )L  as a form on C(XL) with radical QL. Write ( , )G for the induced form on 

c (x)  = ~r (c(xL)) 

(Theorem 6.5(b) and Proposition 10.6). By Proposition 10.6(b) and (c), <,>G is 
positive on p. Because X is the unique irreducible quotient of C (X) (say by Q), and 
occurs only once as a composition factor, a formal argument shows that the radical 
of ( , )  G is Q. So ( ,)G is just ( , ) ,  up to a positive constant multiple. Write ( , )K for the 
form on (Lfx)s(C(XL)) induced by ( ,)L- Proposition 10.6(c) gives 

p(~o, (,),3 >__p(~o~, xL) 

q(~o, ( ,)K) > q(~L, XD. 

Proposition 10.6(b) gives 

p(o~, ( , ) )  > p(o~, ( , ) lO 

q(~,  ( , ) )  > q(~o, ( ,)K) �9 

The proposition follows. Q.E.D. 

This argument used Theorem 6.5 (b) in an essential way. The analogous statement 
fails in the context of  Theorem 6.16. To replace it, we need the following lemma. 

Lemma 10.10. In the setting of  Theorem 6.16, f i x  an irreducible representation 
~o o f  K. Assume that in the restriction of  o~ to a standard SO(2), only the weights 
between - 2 and2 appear. Then the multiplicity oJ'o~ in X is the same as its multiplicity 
in Y~(XL). 

This is proved in precisely the same way as Lemma 13.3 below, so we leave the 
details to the reader. 

Here is an analogue of Proposition 10.9. 

Proposition 10.11. In the setting of  Theorem 6.16, suppose X admits a non-zero 
invariant Hermitian form ( , ) .  Let ( , ) L be a non-zero invariant Hermitian form on X L 
(Lemma 10.8). Assume that ( , )  is normalized to be positive on p, and ( , )L  to be 
positive on I~ L. Fix an irreducible representation ~L of  L ~ K, and an irreducible 
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constituent ~o of ( JK)~ (~o L). Assume that in the restriction of ~o to a standard SO (2), 
only the weights between - 2  and 2 appear. Then 

p(co, X) > p(~L, XL) 

q (8, X) > q (~o L, XL) 

(cf. Definition 10.1). 

Proof. One essentially imitates the proof  of Proposition 10.9, using Proposition 
10.5(b) in place of  Proposition 10.6. One has to find some relationship between 
( , )~  and ( , )  on e~; this is accomplished by Lemma 10.10. Details are left to the 
reader. Q.E.D. 

In light of the defining properties o fS  (kt) established in Sect. 8 and 9, we see that 
Proposition 10.2 follows from Propositions 10.9 and 10.11. 

II. Spherical representations: General results 

At last it is time to pass beyond formal preliminaries to the substance of the 
argument. The first item on the agenda is the proof  of  Theorem 7.8. In Sect. 12 
through 14, we will establish it for each of the three fields in question. First, 
however, we need some notation and results common to the three cases. Write 

(l l .1)(a) A = group of n • n diagonal matrices 

with positive real entries 

( l l .1)(b) M = centralizer of A in K 

- K ( 1 ,  IF) • . . .  • K(1, IF) (n copies). 

Here K(1,IF) (notation (3.2)) is the maximal compact subgroup of the 
multiplicative group oflF;  it is U (1), 7//27/, or Sp (1) (which is SU (2)) according as 
IF is r  IR, or IH. The group A may be taken as the one figuring in an Iwasawa 
decomposition of G. The Lie algebra of A is 

(11.2)(a) a 0 ~IR",  

the isomorphism identifying the exponential map for A with the usual exponential 
map on each diagonal entry. Consequently 

(11.2)(b) 3 ---a* ~-r 

The set of restricted roots of a in ~ is 

(11.2)(c) A (g, a) = {e i -  ej}; 

each has multiplicity d (the dimension of IF over IR). The little Weyl group is 

(11.2) (d) W(A) = S, ,  

the group of permutations of the coordinates in A. Taking the obvious choice for 
A + (cf. 5.3)), we get 



The unitary dual of GL (n) over an archimedean field 479 

(11.3) N =  upper triangular matrices with 

ones on the diagonal 

for the Iwasawa N. Notice that the group B of (3.5) is just M A N .  

Definition 11.4. Suppose v is a character of A (which, by (11.2)(b), we may regard 
as an element of Ir"). The spherical principal series representation with parameter  v, 
I(v), is the Harish-Chandra module of 

Ind (Bt  G) (v). 

Here we regard v as a character of B = M A N  by making M and N act trivially, and 
we use normalized induction. (With this parametrization, I(v)  is naturally unitary 
whenever v lies in ilR".) As is well known, 

I(v)  IK ~ Ind (MI" K) (~ ) .  

In particular, the trivial representation of K occurs exactly once in I(v).  Write 

J(v) = unique irreducible subquotient of I(v) 

containing the trivial representation of  K. 

Here are some of  the basic results about spherical representations. They are by now 
partly "classical", but some proofs and references may be found in [22] and [24]. 

Theorem 11.5. Fix notation as above. 
a) I f  w ~ W ( A )  and v ca*, then J(v)  is isomorphic to J (wv) .  
b) I f  v and v' belong to a*, and J(v)  is isomorphic to J(v ') ,  then there is a 

w ~ W ( A )  with wv = v'. 
In the remaining statements,  v is an element o f  a*, which is somet imes  identified 
with ~U". 

c) J (v) admits a non-degenerate invariant Hermit ian f o r m  i f  and only i f  v is 
conjugate under W ( A) to - f: that is, i f  and only i f  the sequence (vi) is a permutat ion o f  
(-fi) .  

d) Assume that the sequence (Revi)  is decreasing. Then J(v)  is the unique 
irreducible quotient o f  I (v). 

e) Assume that the sequence (Revl) is increasing. Then J(v)  is the unique 
irreducible subrepresentation o f  I (v). 
Fix m < n. Let  s be the permutation transposing m and m + 1, and let v' = sv. 

f) There is a natural intertwining operator A (s) Jrom I (v) to I(v'): it is induced 
f r o m  the corresponding operator on the minimal parabolic subgroup corresponding 
to s. 

g) If(Re v,.) > (Re Vm+ 1), then A (s) is non-zero on the trivial representation o f  K. 
h) A (s) is an isomorphism unless v,, - vm+ 1 is o f  the f o r m  + (d+  2k), with d the 

real dimension o f  IF, and k in IN. 

The following corollary, although not decisive, indicates the general way in which 
we will use this result. 

Corollary 11.6. Fix v in a*. Partition the various v i into subsets in such a way that i f  v i 
and vj belong to different subsets, then v i - vj is not an even integer ( i f  IF is ~ or IH), or 
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not an integer (if IF is IR). Permute v to a new sequence v', in which each subset is an 
interval: that is, of  the form 

{ ( v ' ) p ,  ( v ' ) p +  1 . . . . .  (~ ' )q}  �9 

The subsets then define an ordered partition ~ of n (Definition 3.6). For each part p j of  
~, let (v') j be the corresponding interval of  the (v')i' s , and let Jj be the representation 
J ((v') j) of  GL (pj, IF). Then 

J(v) ~ Ind (P(~) 1' G) ( |  Jj). 

Proof. We may assume without loss of generality that the vi are ordered with 
decreasing real parts, and that the permutation to v' does not disturb the ordering 
within each subset. That permutation may clearly be written as a product of 
transpositions satisfying the condition in Theorem 11.5(h). Consequently I(v) is 
isomorphic to I (v'). Write w o for the permutation which reverses the order of all the 
coordinates, and wl for the one reversing the order within each part of~z. The same 
argument shows that I(wov) is isomorphic to I(w~v'). 

On the other hand, parts (d) and (e) of Theorem 11.5 guarantee that there is a 
unique (up to multiple) non-zero intertwining map from I(v) to I(woV), and that its 
image is J(v). By the first part of the proof, it follows that any non-zero map from 
I(v') to I(w iv') has image J(v). 

Finally, define representations Ij(v') and Ij(wl v') in analogy with Jj; then I(v') 
is induced from the product of the Ij(v') on P(~). By Theorem 11.5 applied to 
GL (Pi), there is a map from Ij (v') to lj (w~ v'), with image Jj. The induced map from 
I(v') to I(w~ v') has image Ind (|  Jj). By the preceding paragraph, this completes 
the proof. Q.E.D. 

Corollary 11.'/. Theorem 7.8 may be reduced to the case Y=  J(v), with all 
coordinates of v real. 

The argument for this is based on the following simple lemmas, which we will use 
repeatedly. 

Lemma 11.8. In the setting of Definition 3.6, f ix  a part pj of  ~, and a small 
representation ~%(1 ;p j) of  K (pj). Let 6~ be the representation of K (~) which is O~ q on 
the K(pj) factor, and trivial on all the other factors. Then 

~oq(l ; n) ~ Ind (K(~) 1' K) (6,). 

Proof. Perhaps the easiest method is to show that ~oq(1 ; n) is actually the lowest K- 
type of the right side. To prove that, Proposition 8.1 allows us to replace 6~ by 
something of which it is the lowest K(~)-type. Write ~' for the refinement of ~ in 
which pj is replaced by 2q and p j -  2 q. Define 3~, to be the representation of K(~') 
which is ~q (1 ; 2q) on K(2q), and trivial on the other factors. Then (8.9) says that we 
may replace 3, by 

Ind (K(n') 1" K(~)) (@). 

By induction by stages, we can therefore replace rc by ~z' throughout. Now compute 
the lowest K-type by induction by stages through K(2q) x K ( n -  2q), using (8.9) 
again. Q.E.D. 
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Lemma 11.9. In the setting of Definition 3.6, let J~ = | Jj be an irreducible spherical 
representation of G (~). Assume that Jr admits an invariant Hermitian form, and that 
J =  Ind (J~) is irreducible. I f  each Jj satisfies Hypothesis 7.7, then so does J. 

Proof. Assume that all Hermitian forms are positive on the spherical vectors. We 
use Proposition 10.5. First of  all, it says that Jadmits  an invariant Hermitian form. 
If J is basic, there is nothing to prove; so assume it is not. The set of basic 
representations is closed under induction, so some Jj must not be basic. By 
Hypothesis 7.7, there is a small representation 6~ of K(pj) such that the form on Jj is 
partly negative on 6j. Define ~ to be the product of 6j with trivial representations 
on the other factors. By Lemma 11.8, 

Ind (K(n) "~ K) (6~) 

contains a small representation o~ of K. By Proposition 10.5, the form on J is  partly 
negative on co. Q.E.D. 

Proof of Corollary 11.7. We may as well assume that Y has an invariant Hermitian 
form. Partition the vi by putting two of them in the same class whenever they have 
the same imaginary part. This partition satisfies the hypotheses of Corollary 11.6. 
The condition in Theorem 11.5 (c) for having an invariant Hermitian form must be 
satisfied by each subset of the vi's separately; so the representations Jj of  Corollary 
11.6 all admit invariant Hermitian forms. By Lemma 11.9, it is enough to prove 
Theorem 7.8 for each Jj separately. This reduces us to the case when all vi have the 
same imaginary part c. Since 

(11.10) J (v) | (6,) ~ ~- J ((v, + dt)) 

(with dthe dimension of  IF, and 6, as in (2.2)), we can change the imaginary part ofv 
without changing unitarity. Thus finally we are reduced to the case of imaginary 
part zero. Q.E.D. 

A reduction argument like Corollary 11.7 is available for all reductive groups 
(cf. [37], Corollary 3.6). 

We will often use the following lemma. 

Lemma 11.11. Suppose the sequence Re(v~) is decreasing. Then J(v) is finite 
dimensional i f  and only i f  for every i, v l -  vi+ 1 is of  the form d+ 2k, with d the 
dimension of IF and k in IN. It is one dimensional if  and only if  vl - vl + 1 is always 
equal to d. 

This result has the same status as Theorem 11.5. Using it, we can identify the Stein 
complementary series in these parameters. Put 

(11.12)(a) p ( t ) = d ( ( n - 1 ) / 2 + t , ( n - 3 ) / 2 + t  . . . . .  - ( n - 1 ) / 2 + t ) .  

(It will sometimes be convenient to write p (t; n) instead of p (t).) Then 

(11.12)(b) a2,, (1, t) ~J (p ( t ) ,  p ( -  t)). 

Two coordinates of  the v parameter here which come from different blocks differ by 
d(m + 2t), with m an integer. Corollary 11.6 now implies that equality holds in 
(ll .12)(b) whenever t~�89 (over IR or ~2), or t#�88 (over IH). This proves all the 
irreducibility assertions in Lemma 2.4 except at t = 0 or (if IF = IH) t = �88 
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12. Proof of Theorem 7.8: Complex case 

In this section, G will be GL (n, if2). We use other notation as in Sect. 5 and 11. Fix v 
in a*; we will generally regard v as a sequence of  n complex numbers. Rearrange the 
sequence in such a way that the following properties hold: there is an ordered 
partition 

(12.1)(a) ~ = ( P l  . . . . .  Pr) 

of  n, such that 

(12.1)(b) v , -  vi+l ~2IN - {0} 

when i and i + 1 belong to the same block of re. We also assume that n is maximal (in 
the usual partial order on partitions) with respect to this property. Write v J for the 
restriction of v to the pj block of  re; it is a sequence of  complex numbers, strictly 
decreasing by positive even integers. (A little thought should convince the reader 
that the set of pairs (p j, v j) is determined uniquely up to permutation.) By 
Lemma 11.11, the corresponding spherical representation Jj of GL (p~, ~)  is finite 
dimensional. 

Proposition 12.2. Let J (v) be any irreducible spherical representation of GL (n, ~). 
Define 7~ and the various Jj as above. Then 

J (v) "~ Ind (P(rt) $ G) (| Jj). 

Let me emphasize again that this result was conjectured by Enright and proved with 
Barbasch. It includes all the irreducibility assertions in Lemma 2.4 and its proof  
over r  

Proof. Using Corollary 11.6, we can reduce to the case when all the vi are congruent 
mod 2•. (The reduction serves only to simplify the notation somewhat.) Write v' 
for the sequence rearranged in decreasing order. The multiplicities in this sequence 
give a second ordered partition ~ = (qk) of n, with s parts. The largest part pm o fn  is 
the length of the longest possible sequence of distinct v~'s. This is nothing but the 
number s of parts of 3. (It is also the largest block of the transpose of  ~.) The 
corresponding sequence v m consists of  one representative from each block of v'. 
Continuing in this way, one finds that ~ and r are transpose partitions. 

The next step in the argument works for any complex reductive group. 

Proposition 12.3. Let G be a complex connected reductive Lie group, and J an 
irreducible spherical representation of G. Write J for the annihilator of J in U (g). 

a) J is the unique maximal ideal in U (g) of the same infinitesimal character as J. 
Any other primitive ideal of this infinitesimal character has strictly larger Gelfand- 
Kirillov dimension. 

Write S for the set of irreducible representations of G having the same infinitesimal 
character, Gelfand-Kirillov dimension, and central character as J. Write V for the left 
cell representation of the integral Weyl group W ( J) attached to J by Joseph and 
Lusztig (cf. [20]). 

b) The cardinality of  S is the dimension o fHomw~(V ,  V). 



The unitary dual of GL(n) over an archimedean field 483 

Proof Part  (a) follows f rom Duflo ' s  analysis in [8]. Part  (b) may be found in [2], 
Proposi t ion 5.25. Q .E .D.  

Corollary 12.4. No other representation of  GL(n,  IE) has the same infinitesimal 
character, central character, and Gelfand-Kirillov dimension as J (v). 

Proof The left cell representations o f  the symmetric group are all irreducible (see 
[21]), so the Horn in Proposi t ion 12.3(b) is one dimensional. Q .E .D.  

It is possible to argue a little more  directly from Joseph's  results on G L  (n), but  
Proposit ion 12.3 seemed to be wor th  stating in general. 

To finish the proof,  we observe that  Joseph calculates the Gelfand-Kiril lov 
dimension of  J(v) in [19]. It is 

2n(n - 1) - 2Zp j (p~ -  1). 

But this is exactly the Gelfand-Kiril lov dimension o f  the induced representation in 
Proposi t ion 12.2. By Corol lary  12.4, J(v) is the only possible composi t ion factor o f  
the induced representation. Q .E .D.  

The reader who is unhappy  with the invocat ion o f  soft-core non-commuta t ive  
algebra to prove what  amounts  to a result about  intertwining operators  will find 
that the argument  given in the next section for IR can be adapted to this case as well. 

Proof of  Theorem 7.8 over ~.  We proceed by induction on n. We may assume that  
Y--  J(v) is not  basic, but  that  it does admit  an invariant Hermitian form. We want  
to show that  Y is in Case 2 o f  Hypothesis  7.7. By Corol lary 11.7, we may assume v 
is real. Theorem 11.5(c) says that v must  be a permutat ion o f  - v. Choose notat ion 
as in (12.1). Write p = P t ,  and consider the sequence 

(12.5) v 1 = (vl . . . . .  vp), 

which decreases by positive even integers. There are two cases. First, assume that  v 1 
is a permutat ion o f  - v 1. Then the same is true for the remaining n - p  coordinates v' 
o f  v. This means that  the finite dimensional representation J(vl), and also J(v'), 
admit  invariant Hermitian forms. We are therefore in the setting o f  Lemma 11.9. By 
inductive hypothesis, that lemma now reduces us to the case when p = n, so that  
J(v) is finite dimensional. That  case is treated by the following lemma. 

Lemma 12.6. Let 9o = f 0  + Po be a Cartan decomposition of  a semisimple Lie 
algebra. Let F be an irreducible finite dimensional spherical representation of  go, 
admitting an invariant Hermitian form positive on the fo-fixed line F o . I f  F is not one 
dimensional, then F has a fo-invariant subspace F1, isomorphic to a subspace of  p, on 
which the form is negative. 

We defer the p roo f  for a moment .  Lemma 7.4 and Definition 7.6 show that the p 
representation is col, which is a small representation at tached to the trivial 
representation o f  K; so J(v) falls in Case 2 o f  Hypothesis  7.7, as we wished to show. 

Next, suppose that v ~ is not  a permutat ion o f  - v  1. Since v is a permutat ion o f  
- v ,  it follows that  - v  ~ must  be one o f  the other  v J; say v 2, without  loss o f  
generality. Once again an application o f  Lemma 11.9 and the inductive hypothesis 
reduces us to the case when v = (v 1, v2). Say v is congruent  to e mod  Z,  with e strictly 
between - 1 and 1. After interchanging the roles o f  v 1 and v 2, we may assume ~ is 
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between 0 and 1. Define 

(v  1) - = (v  1 ) - (~, . . . . .  ~ )  

( v l )  + = (v  ~) + ( ( 1  - ~) . . . . .  (1 - ~ ) )  

(12.7) v + = ((vl) +, - (vl) +) 

v - = ( ( v l )  - , - ( v ~ )  - )  

y:~ = J (v• . 

A standard continuity argument shows that the signatures of  the forms on Y and y i  
(Definition 10.1) satisfy 

(12.8) p• (6) < p  (6) 

q• (3) < q (6), 

with obvious notation. 
The terms ofv • are all congruent rood 22g, and have multiplicity one or two. By 

Proposition 12.2, each is induced from a finite dimensional Hermitian repre- 
sentation E • o f G L  (r • x GL (s:L). I f  either of  these representations has dimension 
greater than one, Lemma 12.6 and Lemma 11.9 say that the corresponding Y+ 
satisfies Case 2 of  Hypothesis 7.7. By (12.8), Ydoes as well. So we may assume that 
E ~ are one dimensional. This means that, up to permutation, 

(12.9) v • = (p (0; r• p (0; s• 

(notation (11.12)(a)). A simple argument shows that this is impossible unless the 
coordinates of  v 1 decrease by exactly 2. That is, 

(12.10) v a =p( t ;p )  

for some real number t not in �89 Possibly interchanging the roles of  v ~ and v 2 
again, we may assume that t is positive. By (12.9), t is at most n/2. We are assuming 
that Y is not basic. By (11.12)(b), this means that t is greater than �89 

Write I(s) for azp(1, s) (Definition 2.3), and J(s) for its irreducible spherical 
subquotient; these coincide unless s s�89 Recall from Definition 7.6 that the set of  
small representations attached to the trivial representation consists of  p 
representations (Ok, for k running from 1 to p; and that co o is the trivial 
representation of  K. By Lemma 7.4, all of  these occur in I (s), with multiplicity 1. Fix 
a positive integer m less than or equal to p. Lemma 7.4 and Proposition 12.2 show 
that 

(12.11) e) k occurs in J(m/2) if and only if k < p -  m.  

In particular, c%_ m occurs in J(m/2), and O)p-m+~ does not. This suggests 

Lemma 12.12. With notation as above, suppose s is between m/2 and (m + 1)/2. Then 
the Hermitian form on J(s) which is positive on the spherical vector is negative on 
O ) p - m +  1 �9 

Proof. The representat ion/t  = ~p-m occurs in J(z) for all z between 0 and s (by 
(12.11); so a continuity argument shows that the form on J(s) is positive on/z. Let Z 
denote the unique irreducible subquotient of  I ( (m + 1)/2) containing/~. We may 
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endow Z with a Hermi t ian  fo rm positive on p. By Theorem 3.8 of  [38] (that is, 
"obvious ly") ,  it suffices to show that  the form on Z is negative on co = COp_m + 1" TO 
do this, we need to identify Z in the paramet r iza t ion  of  irreducible (g, K)-modules  
with lowest K-type p, given by Theorem 6.19. First, L e m m a  7.4 guarantees tha t / t  is 
the lowest K-type of  Z. The pair  (L,/ t  o a t tached to / t  is computed  by (5.6) and (5.7). 
L is G L  (p - m) x G L  (2 m) x G L  (p - m), and/tL is det | 1 | d e t -  1. The K-type CO 
belongs to S (/t) (Definition 9.3); in fact it corresponds to the p representat ion o f  the 
U (2 m) factor. Write 

Z L = U |  V |  W 

for the representat ion of  L corresponding to Z (Theorem 6.19). Here  V = J(4)) is a 
spherical representat ion o f  G L  (2m); and U is o f  the form 

U = J(~u) | (det/[det 1). 

with J(~u) spherical for G L  (p - m). By symmetry  (more precisely, using the inverse 
t ranspose au tomorph i sm of  G L  (n)), we see that  

W =  J ( ~ )  | (det / ldet  [) -1 . 

By Proposi t ion 10.2, we must  show that  the form on J(4)) is negative on the t0 
representat ion of  U (2 m). 

To  do this, we must  say something abou t  4). We compute  the infinitesimal 
character  o f  Z, first in terms o f  ZL, and then in terms of  the induced representat ion 
I((m + 1)/2). The conclusion is that  

(12.13) ( (~ i+ l ) , c ) , ( q t~ - -1 ) )= w(p ( (m+ l ) / 2 ;p ) , p ( - (m+l ) / 2 ;p ) )  

for some permuta t ion  w of  2p. More  explicitly, the term on the right is (up to 
permuta t ion)  

( p + m , p + m - 2  . . . .  , - p + m + 2 , p - m - 2 , p - m - 4  . . . . .  - p - m )  

In part icular,  all the terms in 4) are congruent  m o d  2•, and  they have multiplicity at 
mos t  two. By Proposi t ion 12.2, J(4)) is induced f rom a produc t  o f  two finite 
dimensional  Hermi t ian  representations.  By L e m m a  12.6, it is enough to show that  
these are not  both  trivial. Suppose they are; then q5 is a pe rmuta t ion  of  
(p(O;r) ,p(O;2m-r)  for some r between 0 and 2m. 

I t  will be convenient  to assume that  ~ is decreasing. The largest te rm of  q5 is at 
mos t  2 m - 1. Since the largest term on the right in (12.13) is p + m (which is at  least 
2m),  it follows that  q;1 i sp  + m - 1. This is already a contradic t ion i fp  is equal to m 
(when qsl is undefined) or m + 1 (when ~t~ must  be zero by the symmet ry  condition).  
Assume then that  p is at least m + 2. By symmetry ,  u/p_,, is 1 - p - m. Eliminating 
the four  terms corresponding to ~u 1 and q;p_,, f rom both  sides o f  (12.13), we get 
ano ther  equat ion of  the same form, with p replaced by p - 2, and m unchanged.  
Cont inuing in this way, we eventually arrive at  a contradict ion.  Q . E . D .  

L e m m a  12.12 is an explicit version o f  Theorem 7.8 in the case to which we had  
reduced it. This therefore completes  the p r o o f  of  Theo rem 7.8 over  r  

Proof of Lemma 12.6. Let {Xi} be an or thogonal  basis of~ o for  the Killing form, 
with elements of  length - 1, and { Yj} an o r thonorma l  basis o f  Po. Pick a non-zero 
vector  v in F o . Since F is non-trivial,  the Casimir  opera to r  f2 has a positive 
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eigenvalue on F. Hence 

0 < < ~ v ,  v )  = - Z ( ( ~ )  2 v, v)  + z < ( ~ )  2 v, v ) .  

The first term is 0 since v is spherical. Since Y~ is a skew-Hermitian operator, the 
second is -~<Y~v, ~v>. 
So some of the Yjv have negative length. On the other hand, they obviously span a 
[-stable subspace of F, which is a homomorphic image of p. Q.E.D. 

13. Proof of Theorem 7.8: Real case 

Our treatment of the real and quaternionic cases is complicated by the fact that 
nothing so simple as Proposition l2.2 is true. A simple example is the 
representation J(2, 1, - l, - 2 )  of GL(4, IR). It is contained in several different 
induced from finite dimensional representations, but is equal to none of  them. We 
will prove a much weaker version of Proposition 12.2 (Proposition 13.4), which 
suffices to treat reducibility questions for basic representations and a few others. 
We need a different kind of result to show that the remaining representations are of 
no interest for the unitary theory. Here it is. (Throughout this section, G will be 
GL (n, IR), and v will be a more or less fixed element of  o*.) 

Proposition 13.1. Suppose v is divided into two subsequences v 1 and v z, with p and q 
terms respectively. Assume that 

i) i f  i andj belong to different blocks, then vl - vj :4: +_ 1. Write P for the parabolic 
P(p, q) (Definition 3.6), and 

I(p, q) = Ind (P ~ G) (J(v 1) | J(vZ)). 

Then any K-type of I (p, q)/ J (v) must have highest weight (7, q) (Proposition 5.17) 
with ~x at least 3. In particular, any small K-type 3 attached to the trivial 
representation of K (Definition 4.7) occurs in I (p, q) exactly as often as in J (v). 

We will prove this in a moment. What matters most about it is 

Corollary 13.2. In the setting of Theorem 13.1, assume that J(v 1) and J(v 2) are 
Hermitian. I f  they both satisfy Hypothesis 7.7, then J (v) does as well. 

The point is that Proposition 13.1 allows us to compute the form on small K-types 
in I(p, q) instead of J(v). One can therefore argue as in the proof of Lemma 11.9. 

Proof of  Proposition 13.1. The argument is modelled on the proof  of  Corollary 
11.6. Instead of examining the intertwining operator on full induced repre- 
sentations I(*), however, we confine attention to a single K-primary subspace 
1(*)6. The role of Theorem l l.5(h) is played by 

Lemma 13.3. In the setting of Theorem l l . 5 ( f  ), suppose 6 is a representation 
of K with highest weight (7, q), and that 71 is at most 2. Assume that the real part 
of  (~ = v m - Vm+ l is non-negative. I f  (o is not 1, then A (s) is an isomorphism from 
I(v)6 to I(v')6. 
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Proof By Theorem 11.5(h), we may assume that q5 = 2 k +  1, with k a positive 
integer. By Theorem 11.5 (f), the kernel of  A (s) is induced from the corresponding 
kernel Z on GL (2, IR) x GL (1, IR)"- 2. As is well known, Z is a discrete series 
representation, with weights _+ (2k + 2), + (2k + 4) . . . .  on SO (2). Consequently, 
any representation of O(n) occurring in the kernel of  A (s) must contain an SO (2) 
weight of  the form 2 m, for some m greater than k. Our assumption on 6 forces all its 
SO(2) weights to be +2 ,  _+1, or 0; so I(v)6 does not meet the kernel of  
A (s). Q.E.D.  

Proposition 13.4. Assume that v contains a subsequence of the form 

vl = ( p + z , p - l  +z  . . . . .  l + z ) ,  

so that J(v 1) is one dimensional ( Lemma 11.11). Write v z (say with q terms)for the 
remaining n - p  coordinates of  v. Assume that 

i) if  vj is any coordinate of v 2 which is congruent to z mod7/,  then v~ is equal to 
some coordinate of v 1. 

Write P for the parabolic P (p, q) (Definition 3.6). Then 

J(v) -~Ind (PT G)(J(v 1) | j(v2)).  

(Together with Corollary 11.6, this contains all the irreducibility assertions in 
Lemma 2.4 and its proof  over IR.) 

The non-formal part  of  the proof  is contained in the following result, which we 
prove first. 

Lemma 13.5. With notation roughly following Proposition 13.4, 

J(r, r, r - 1 ,  r - 2  . . . . .  1) ~ I n d ( P $  G)(J ( r ) |  J(r, r - 1  . . . . .  1)). 

Proof Write Y for the right side; we must show that Y is irreducible. By 
Lemma 11.11, the inducing representation is one dimensional. By Lemma 7.4, the 
K-types of  Y form a one parameter family. It is easy to see that the action of p can 
move at most one step up or down in this family. It  follows that if Y is reducible, 
then its spherical composition factor is finite dimensional. This is impossible by 
Lemma11.11. Q.E.D.  

Corollary 13.6. 

Ind (P(1, r) ~ G)(J(r) | J ( r , . . . ,  1)) --- Ind (P(r, 1) $ G)(J(r . . . . .  1) | J(r)). 

Proof of  Proposition 13.4. Using Corollary 11.6, we can reduce to the case when all 
vj are congruent mod ;~. Using (11.10), we may assume that z = O; so we can write 

(13.7) v = ( p  . . . . .  p , p - 1 , . . . , p - 1  . . . .  ,1  . . . .  , 1). 

We also take v 1 and v z to be in decreasing order. Define 

(13.8) v ' =  (v 1, v2). 

Write w ~ for the longest element of  the symmetric group S, (which reverses the 
order of  the n coordinates), and w 1 and w 2 for the corresponding elements of  Sp and 
Sq, respectively. There is a commutative diagram of intertwining operators 
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(13.9) 

I(v') A(~) I (wlv  ') 

A (w z) .4 (w z) 

I(w2v ') I (w  x w 2 v') 
A (w t) 

D.A.  Vogan, Jr. 

Each of  these operators is induced from an operator on GL (p) or GL (q); all are 
non-zero on the spherical vectors. The induced representation in the proposition is 
clearly the image of A (wl )A  (w2); we must show that it is irreducible. This will 
follow from the following two facts: 

I(v')/ker A (w 1) has J(v) 

as its unique irreducible quotient; 

(13.10)(a) 

and 

(13.10)(b) the image of A (w 1) in I (w 1W2V ') has J(v) 

as its unique irreducible submodule. 

(The point is that these two statements force J(v) to be the unique irreducible 
submodule and quotient of the image of A (w 1) A (w2).) Because they are formally 
identical, we will prove only (a). 

Because of  Theorem 11.5 (d), it is enough to prove that 

Ind (P(p, q)$ G ) ( J ( p , p -  1 . . . . .  1) | I(v2)) 

is a homomorphic image of I(v). We proceed by induction on n. By induction by 
stages, this induced representation is isomorphic to 

I n d ( J ( p , p -  1 , . . . ,  1) | I(p, . . . ,  p) | I ( p -  1 , p -  1 . . . . .  1)), 

say with r -  1 p's in the middle term. By Corollary 13.6, this is isomorphic to 

Ind (I(p . . . . .  p ) |  . . . .  ,1 )  | I ( p - l , p -  1 . . . . .  1)). 

This representation is clearly a homomorphic image of 

Y = I n d ( I ( p  . . . .  , p , p ) |  1 ) |  . . . . .  1)), 

with r p's. By inductive hypothesis, 

I n d ( P ( p -  1, q - r +  1)$ G L ( n - r ) ) ( J ( p - 1 , . . . ,  1) | I ( p -  1, p -  1 . . . . .  1) 

is a homomorphic image of I (p  - 1, p - 1 . . . .  , 1, 1). By induction by stages, it 
follows that Y is a homomorphic image of I (v). This proves (13.10)(a), and hence 
the proposition. Q.E.D. 

The argument from here on parallels the complex case; but since it is more 
complicated in detail, we will explicitly isolate the first main step. 

Proposition 13.11. Let J (v) be a Hermitian spherical representation of  GL (n, IR): 
we take the form positive on theK-fixed vector. Assume that all the coordinates 
o f  v are real and congruent rood Z. There are two mutually exclusive alternatives. 
The first is 
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a) J(v)  is not basic. In that case, the f o r m  b not positive on the p representation 

o f  K. 
The second is 
b) J(v)  is basic. In that case, v (after permutat ion)  is o f  the f o r m  

v=( j ' ,  . . . , j , j - 1  . . . .  , j - 1  . . . . .  - j  . . . .  , - j ) .  

Here 2j  is a non-negative integer: and the term j - k  occurs Pk times. We have 

Pk = P -  k, and Pk increases f o r  k < j .  

Because the p representation is small (Definition 7.6), this proposi t ion includes 
Theorem 7.8 for integral v. 

Proof. We proceed by induction on n. Assume that  v is decreasing. By Theorem 
11.5 (c), v must  be a permutat ion o f  - v. Wr i t e j  = v~; then v must  be o f  the form in 
(b), but with no conditions on the Pk" Since v is a permutat ion o f  --v,  Pk = P-k"  It is 
easy to see that  J (v) is basic exactly when the Pk increase for k < j .  So suppose they 
do not;  we want  to establish the conclusion of  (a). 

Assume first that  pk is actually zero, for some k with 0 < k < j .  Write v ~ for the 
coordinates which exceed j -  k in absolute value, and v 2 for the rest. This part i t ion 
satisfies the hypotheses o f  Proposi t ion 13.1. That  proposi t ion allows us to reduce to 
the case v--v*;  that  is, to 

V = ( l ' , j  . . . . .  j - k + l ,  - ( j - k + l )  . . . . .  - j ,  - - j ) .  

Define 

v ( t ) = v + ( t  . . . .  , t, - - t  . . . .  , - - t ) .  

Proposi t ion 13.1 applies to v( t )  and the parabolic P(n/2 ,  n/2), for all positive t. I t  
shows that the multiplicity o f  the p representation (or any small representation o f  
K) in J ( v ( t ) )  is independent o f  t. We want to show that  the form on the p 
representation is not positive. By a continuity argument,  it suffices to do this for 
large positive t. For  such t, the eigenvalue o f  the Casimir opera tor  is positive. The 
p roo f  o f  Lemma 14.6 now gives the desired conclusion. 

Next, assume that all the terms j - k  actually occur in v. Set 

vl = (/', j -  1 . . . . .  - ( j -  1), - - j ) ,  

and write v 2 for the rest o f  the coordinates. Proposi t ion 13.4 shows that 

J(v )  ~- Ind (~  | J(v2)).  

Because v is assumed to fall in case (a) o f  the proposition, v g does as well. By 
inductive hypothesis, its form is not  positive on p; so that  for the induced 
representation J(v)  cannot  be either. Q .E .D .  

P r o o f  o f  Theorem 7.8 over IR. We proceed by induction on n. Suppose Y =  J(v )  
admits a Hermitian form, but is not  basic. By Corol lary 11.7, we may assume v is 
real. After permutat ion,  we may  assume that v a is the largest o f  the coordinates,  and 
that  

(13.12)(a) v 1 = (V 1 . . . .  , "dp) 
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consists o f  all the coordinates congruent  to v 1 m o d Z ,  in decreasing order. By 
Theorem 11.5(c), - V l  is among  the v~. I f  it occurs in v ~, then Corol lary 11.6, 
Lemma 11.9, and the inductive hypothesis quickly reduce matters to the case v = vl. 
That  case is treated by Proposi t ion 13.11. So we may  assume that  - v l  is not  
congruent  to v a . Then 

(13.12)(b) v 2 = ( -  vp . . . . .  - vl) 

is (up to permutat ion)  a subsequence o f  v. Corol lary 11.6, Lemma 11.9, and the 
inductive hypothesis allow us to assume 

(13.13)(c) v = (v 1, v2). 

Assume next that  there is a term v 1 - k, lying between v 1 and vp, which does not  
appear  as a coordinate o f  v 1. Set 

21 = ( v l ,  v2 . . . . .  v - k + l )  

pl  ___ remaining coordinates o f  v 1 

2 = (,~1, _ ;tl), p = (pl, _ p l ) .  

The part i t ion (2, p) o f  the coordinates o f  v satisfies the hypotheses o f  
Proposi t ion 13.1, and so allows us to reduce to a smaller n. (Since v is not  basic, one 
o f  the two pieces must  also fail to be.) 

We may therefore assume that  v 1 contains the subsequence 

(13.14) 21 = ( V l '  Y1 - -  1 . . . . .  Yp) .  

Proposi t ion 13.4 guarantees that  J(v) is induced f rom J (2  ~, - 2 1 )  and another  
Hermit ian representation. By inductive hypothesis, we are finally reduced to the 
case vl = ~1. The analysis o f  this case is exactly parallel to that  given for the complex 
case, and we leave it to the reader. Q .E .D .  

14. Proof of Theorem 7.8: Quaternionic case 

In  this section, G is G L  (n, IH). 

Proposition 14.1. Suppose v ~ a* & divided into two subsequences v 1 and v 2, with p 
and q terms respectively. Assume that 

i) i f  i and j  belong to different blocks, then v i - vj is not equal to +_ 4. 
Write P for the parabolic P (p, q) (Definition 3.6), and 

I (p ,  q) = Ind (P? G) (J(v 1 | j (v2)) .  

Then any K-type of  I (p,q) /J(v)  must have a highest weight ~ (cf. (5.28)) with 71 at 
least 2. In particular, any small representation o f  K (Definition 7.6) occurs in I (p, q) 
exactly as often as in J(v). 

Outline of  proof The argument  is exactly as in the real case. The key to the 
calculation is the fact that  if J is the quotient o f  the principal series 1(4 + 2k) for 
GL(2,1H),  then the Sp(2)-types o f  I ( 4 + 2 k ) / J  are o f  the form ( k +  1 , k +  1), 
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(k + 2, k + 2), and so on. Because GL (2, IH) is locally isomorphic to SO (5, I) x IR, 
this fact is well known. 

Proposition 14.2. Assume that v contains a subsequence of  the form 

v I = (4p+z ,  4 ( p - 1 ) + z ,  . . . ,  4 + z ) ,  

so that J(v 1) is one dimensional (Lemma 11.11). Write v z (say with q terms) for  the 
rest o f  the coordinates o f  v. Assume that 

i) i f  vj is any coordinate of  v 2 which is congruent to z mod 2;E, then vj - z is an even 
integer between 2 and 4p + 2 (inclusive). 

Write P for the parabolic P (p, q). Then 

J(v) ~ I n d  (P$ G)(J(v  1) | j (v2)) .  

This result will complete the proofs of  the irreducibility assertions in Lemma 2.4 
and its proof. 

Lemma 14.3. I f  s is any real number in the open internal (4r+4,0) ,  then 

J(s, 4r, 4 r -  4, ' . . . ,  4) ~ Ind (P(1, r) $ G) (J(s) | J(4r,  4 r -  4 . . . . .  4)). 

This is proved in exactly the same way as Lemma 13.5. Using this lemma, one can 
prove Proposition 14.2 by following the argument for Proposition 13.4. Details are 
left to the reader. 

Just as for IR, we begin with a special case of Theorem 7.8. 

Proposition 14.4. Let J (v) be a Hermitian spherical representation o f  GL  (n, IH); we 
take the form positive on the K-fixed vector. Assume that all the coordinates of  v are 
even integers. There are two mutually exclusive alternatives. The first is 

a) J(v) is not basic. In that case, the form is not positive on the p representation 
of K. 

The second alternative is 
b) J(v) is basic. In that case, v (after permutation) is o f  the form 

v = (v 1, v2 ) ,  

with each subsequence o f  the form 

v ' = ( 4 j  . . . . .  4j, 4 j - 4 , . . . ,  4 j - 4 , . . . ,  - ( 4 j - 4 ) ,  - 4 j ,  . . . ,  - 4 j ) .  

Here 2j is a non-negative integer: and the term 4 j - 4 k  occurs Pk times. We have 
Pk = P - k ,  and Pk increases with k for k <j .  

Proof. We proceed by induction on n. By Theorem 11.5 (c), v must be a permutation 
of - v .  By hypothesis, each coordinate is congruent to its negative mod4. We 
partition v into the two congruence classes v 1 and v z mod 4. This partition satisfies 
the hypotheses of Proposition l4.1, and the two representations J(v r) carry 
Hermitian forms. Since the p representation is small (cf. (8.11)), Proposition 14.1 
and the inductive hypothesis reduce us to the case v = vl. The rest of the argument is 
exactly like that for Proposition 13.13. Q.E.D. 

The rest of the proof  of Theorem 7.8 is quite similar to the real case; the 
argument needs to be modified just as the proof  of Proposition 13.11 was modified 
to give Proposition 14.4. Details are left to the reader. 
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15. Reduction to the spherical case: Unitarity 

In this section, we recall some deeper results about the cohomological parabolic 
induction functors, and use them to prove Theorem 6.18(a). This is based on the 
ideas in Sect. 7 and 8 of  [38]. Unfortunately, none of the results stated there is 
entirely adequate for the present situation. Here is an extension which meets our 
needs. We begin by recalling the notation in [38], suitably modified to take into 
account the more general twisting z ~ allowed in Definition 6.1. 

So suppose G is a reductive Lie group, and 

(15.1)(a) q = 1 + u 

is a 0-stable parabolic subalgebra. Fix a Cartan subalgebra 

(15.1)(b) b c l .  

Define 

(15.1)(c) p(u)  = half the sum of the roots o r b  in u 

(cf. Lemma 6.9). Let 

(15.1) (d) Y = an irreducible (l, L c~ K)-module.  

Recall that Harish-Chandra parametrizes the infinitesimal character of  a 
representation by a weight in a Cartan subalgebra, defined up to the Weyl group. 
Fix a weight 

(15.1)(e) 2 e b *  

with the property that the infinitesimal character of  Y is defined by the weight 

(15.1)(f) 2 + p ( u ) - r  ~. 

Here we have used the same letter z ~ to denote the restriction to b of  the differential 
of  the twist z ~ appearing in Definition 6.1. For  the case of  the functors J0 of  
Definition 6.11, Lemma 6.9 guarantees that the two twists cancel: 

(15.1)(g) 2 = infinitesimal character of  Y (case of  GL(n)). 

The reason for the twists is Proposition 6.3.11 of  [36], which says that 

(15.1)(h) 2 = infinitesimal character of  s Y (general case). 

Proposition 15.2. In the setting (15.1), assume that the Cartan subalgebra b has an 
orthogonal decomposition 

b = ~ + c  

with the following properties; 
i) ~ c [I,I]; 

ii) c ~center o f l ;  
iit) Re(c~v ,2 [ , )>  - 1 ,  all c~EA (u,b); and 
iv) if  F is any finite dimensional representation of  I, and 2' + p (u) - z ~ is an 

infinitesimal character occurring in Y | F, then (perhaps after replacing 2' by a W(I) 
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conjugate), we may assume that 

2'1<=;.1<+ (weight o f t  in F) 

Re(21~, 21,5 < Re(2 ' l , ,  2'1,5 �9 

Then 
a) the cohomologically induced representation s vanishes except for j = S: 

and 
b) i f  Y is a unitary (1, L~K)-module ,  then ~ s y  is a unitary (g, K)-module. 

We take this opportunity to point out a mistake in [38]. The statement of 
Proposition 8.18 there omits the first condition in (iv) above; but it is certainly used 
in the proof. 

Proof. By Theorem 7.1 of [38], it suffices to show that the map ~t of (8.3)(c) in [38] 
is injective for t > 0. The proof  of this fact parallels that of Proposition 8.18 in [38] 
exactly. The only difference is the derivation of(8.15) in [38]. Just as before, one gets 
a formula (in which the restrictions are indicated by subscripts) 

(15.3) (2'), = 2< + (27n~) I,. 

Here the second term is a sum of roots in u. We want to show that 2< is strictly 
shorter than (4'), unless the second term is zero. To do this, first choose the n, in 
(15.3) so that their sum is as small as possible. If two of the roots which appear have 
a negative inner product, they may be replaced by their sum (which is a root). 
Consequently, we may assume that all the roots appearing have non-negative inner 
products with each other. Now we compute 

<(4')<, (4'),> - (4~, 4~> = ( S n ~ ,  24<+ Sn:t> 

> 2: [(n~) 2 <~, c~> + 2n~<~, 4<>1 

By hypothesis (iii), each of the terms in parentheses at the end has positive real part. 
The sum therefore has positive real part unless it is empty, as we wished to show. 
Now proceed as in [38]. Q.E.D. 

Proof o f  Theorem 6.18 (a). We need to show that the correspondence of Theorem 
6.19 takes unitary (basic almost spherical) representations to unitary repre- 
sentations. Recall (Definition 6.17) that the correspondence is contructed in two 
steps. The first of these is unitary induction, which preserves unitarity (Proposition 
10.5). We will treat the second step :0  using the criterion of Proposition 15.2. 
Assume therefore that % =  I0+ u0 is as in Definition 6.11, and use the notation 
there. Let Y be an irreducible (10, Lo c~ K)-module of lowest L o c~ K-type ~lLo. We are 
assuming that Y is of the form J ~ Z  for some basic almost spherical representation 
Z of L. Since the functor J ~  is real parabolic induction, we conclude (from the 
definition of basic) that Y must be induced from a one dimensional representation q$ 
of a parabolic subgroup P = M A N  of L o . Choose a Cartan subalgebra b of m + a; 
write c for the center of m, and ~ for b c~[m,m]. This will be the decomposition 
required in Proposition l5.2. The infinitesimal character of the inducing 
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representation ~b (and hence of Y itself) may be identified with the weight 

2 = (2c, 2~) eb*,  

defined by 

2, = differential of q5 

2,  = p (rrt). 

(The last term is half the sum of any set of positive roots for m.) 
With this notation established, the first two hypotheses of Proposition 15.2 are 

clear. The third is this: for each root a of b in u, 

(15.4) Re(c~ v, 2,) > - 1. 

It is convenient to prove this for each of the three cases separately. In each case, the 
weight 2c is a sum of  three terms, 

(15.5)(a) 2c= 2~+ 2v+ 2,. 

The first, 2~, is the restriction of 2 to the compact part of the center ofl0. Obviously 
it coincides with the corresponding restriction of  the highest weight of PL0. By 
inspection of  the definitions of/~L0 and 2 (/~) in Sect. 5, one sees that 

(15.5)(b) 2, = 2 (~). 

Because of (6.7), it follows that 

(15.5) (c) (~, 2,) > 0. 

The second term comes from the unitary part of the character 4~ on the vector 
subgroup A. It does not contribute to the real part of the inner product (15.4), and 
we will ignore it. The last, 2t, comes from the real part of  the character on A. It arises 
from the Stein complementary series involved in Y. It is restricted to be small, but 
can be negative on e. Over IR and tr, we will show that 

(15.5)(d) (e  v, 2,) > - 1 ;  

together with (15.5)(c), this will certainly prove (15.4). Over IH, we will find that 

(15.5)(e) ( e  v, 2,) > - (3/2) ; 

but that 

05.5)(f)  (~v ,2 , )  =>�89 

Adding these gives (15.4). 
So suppose first that IF = r  We may identify b* with tr n x it". The roots 

are of  the form e l -  e~. The precise form of  the weight 2, is not important; what 
matters is that all its coordinates are less than �89 in absolute value. Now (15.5)(d) 
is clear over (17. 

Next, suppose IF = IR. We may identify b* with r with roots e i - e ~ .  Again all 
coordinates of  2, are less than �89 in absolute value, and (15.5)(d) follows. 

Over IH, we can identify b* with ~22", with roots e i - ej. Write 7 for the highest 
weight of the lowest K-type; say the first p coordinates are non-zero. Because of 
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(15.5)(b) and (5.29), 2r is 

� 8 9  1 . . . . .  ~ + 1 ,  0 . . . .  , 0 ,  - % + 1 )  . . . .  , - ( ~ 1 + 1 ) ) .  

Because the ~i are integers, (15.5)(f) follows from (15.5)(c). The first and last p 
coordinates of 2t are less than �89 in absolute value; the middle 2n - 2p are less than 1. 
The inequality (15.5)(e) follows. 

Finally, we must verify hypothesis (iv) of Proposition 15.2. Any constituent of 
Y |  is induced from a constituent of qS| If we write 2' for the 
infinitesimal character of that constituent, then 2' satisfies the two conditions in 
question. Q.E.D. 

16. Irreducibility results 
The only result still unproved is Theorem 6.18(b): that the functor 3 t takes 
irreducible (basic almost spherical) representations of L to irreducible repre- 
sentations of G. We first dispose of (or rather ignore) the ordinary induction aspect 
of this problem. 

Lemma 16.1. Suppose n = p + q, and yO and ya are basic spherical representations 
of GL (p, IR) and GL (q, IR), respectively. Then 

Ind (P(p, q) ? G)(Y ~ • [Y~ | 
is irreducible. 

This follows from a slight generalization of Proposition 13.4, the formulation and 
proof of which we leave to the reader. 

We must therefore prove a result about irreducibility of cohomologically 
induced representations. To state it, we need some language from [7] and [8]. 

Definition 16.2. Let g be a complex reductive Lie algebra, and Gr a corresponding 
algebraic group. Fix a Cartan involution 0 of G , ,  and a commuting Chevalley 
antiautomorphism g ~ 'g. Define ag = '(Og)- 1. (If Gr is GL (n, 1/7), we can take 0 
to be conjugate transpose inverse, and the Chevalley antiautomorphism to be 
transpose. Then o- is just complex conjugation of matrices.) Regard g as a real Lie 
algebra, and write gr for its complexification; this has a new complex structure j, in 
addition to the multiplication by i from g. Define 

(16.3) gL= { �89  IX~ 9} 

9 R = {�89 (~rX)) I X~  9}, 

the holomorphic and anti-holomorphic tangent spaces to G C at the identity. The 
indicated parametrizations define complex-linear isomorphisms ~b L and q5 R of 9 
with gL and gR, respectively. We will therefore sometimes write 

(16.4) g~:= 9x g=  9Lx gR. 

Write D for the fixed points of 0, and b0 for its Lie algebra. In the identification 
(16.4), its complexification is 

(16.5) b = {(X, - ' X )  IX~ g}. 

This provides an isomorphism q5 b of 9 with b. 
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Suppose M is a (g, g)-bimodule. (This means that M is both a left and a right 
module for g, and that the two structures commute.) We make M into a left module 
for 9r using (16.14): 

(16.6)(a) ~b L (X) m = X m ,  4~ R (Y) m = m ( 'Y).  

The action of b is then 

(16.6)(b) ~bb(X) m = Xm - reX. 

A Harish-Chandra bimodule for G c is a bimodule M, endowed with an algebraic 
(that is, holomorphic and locally finite) action 

Ad: G e ~  End (M),  

the differential of  which (written ad) is 

ad (X) m = Xm - reX. 

The point of the definitions above is to identify the category of  Harish-Chandra 
bimodules with the category of Harish-Chandra modules (or rather (ge,D)- 
modules) for G~ (regarded as a real group). 

Example 16.7. If  I is a two-sided ideal in U(g), then M I =  U(g)/I  is a Harish- 
Chandra bimodule. I f / i s  primitive, then Mshas finite length, and one can apply to 
it the theory of finite length Harish-Chandra modules for G e . This is the main idea 
in [7] and [8]. 

Here is the irreducibility result that we need. Although we will not explicitly 
invoke it, the Beilinson-Bernstein theory of  [4] is obviously an important 
motivation for the proof. 

Proposition 16.8 (J. Bernstein). Suppose we are in the setting of  Proposition 15.2, 
with the same hypotheses on Y. Let R L be an algebra of  endomorphisms of  
Y | z ~ | C_p(u), containing the image of  U(1). This makes RL into an (1, l)-bimodule: 
assume it is a Harish-Chandra bimodule of  finite length. Let Q e be the real parabolic 
subgroup of  Ge with Lie algebra q. Then 

R = Ind (Qcl" Gc)(RL ) 

(which is a Harish-Chandra module for Ge) may be endowed with the structure of  an 
algebra. We have 

a) R acts naturally on X = =L# s Y, and X is an irreducible ( R, K)-module (or zero). 
b) The action of  U(g) on X is induced by the homomorphism 

U(g)-~ R 

which (in terms o f  the U(g) | U(g) action on R)  sends u to ( u |  
In particular, X is irreducible i f  the b-fixed vector o f  the induced representation R 

is cyclic. 

Probably this is true if one assumes only that the produced module 

Homq (U(g), Y | z ~) 
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(or rather its L r~ K-finite part) is irreducible; this at any rate is enough to make R an 
algebra (cf. Proposition 16.9 below). 

We will postpone most of  the proof  of Proposition 16.8 for a moment, but one 
of the main ideas will be helpful in the application of it. 

Proposition 16.9 (Conze-Berline, Duflo [7], Proposition 5.5). Suppose Qr = Lr Ur 
is a parabolic subgroup of the complex reductive group Gr Let Z be a Harish- 
Chandra module for Lr Assume that Z is of  the form 

Lr ~D-finite part of Horn (Z 1, Zz) , 

for two 1-modules Z 1 and Z 2. Define 

X 1 = ind (q~ " g)(Z 1 0  ~p(,)) 

X 2 = pro (q t g) (Z 2 | Cp(.)). 
Then X =  Ind(Qr GO(Z)  is isomorphic to 

D-finite part of  Hom (X 1, X2). 

In particular, i f  Z I =  Z 2 (so that the inducing representation has an algebra 
structure), and the natural map from X 1 to X z ([38], Lemma 5.15) is injective, then 
the induced representation has an algebra structure. 

This is actually proved in [7] only under slightly more restrictive hypotheses; but the 
argument there gives this result. 

ProojofTheorem 6.18 (b). Because we have already dealt with J ~ ,  we can consider 
only J0. To be consistent with the notation in Sect. 6, we should write q0 for our 
parabolic subalgebra; but we drop the 0 for simplicity. In that setting, Y is induced 
from a one dimensional character ~b of  a parabolic subgroup P (L) of L. That is, Yis 
the L~K-fini te  part of  the module 

(16.10) Homp(L) (U(1), ~ + p ) ;  

here p is p for the parabolic P (L). We may assume that P (L) is chosen so that 

Z ~ = ind (p(L) t I) (~,+p) 

is irreducible. We set 

(16.11)(a) RL = Le~D-fini te  part of Hom (Z 1, Z 1) 

Ind (P(L)r 1" Lr (~).  

Here ~ denotes the (one dimensional) endomorphism ring of  the module 4~ for the 
Levi factor of p (L), regarded as a Harish-Chandra module; the isomorphism in 
(16.11)(a) is a consequence of  Proposition 16.9. 

Now define 

(16. l l ) (b)  Pc  = P(L)~Ur 

a parabolic in Gr contained in Qr The ring R of  Proposition 16.8 is 

(16.11 ) (c) R = Ind (Pc $ Gr (~).  
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We must show that the D-fixed vector in this induced representation is cyclic. We 
will sketch two proofs of  this fact. 

For  the first argument, we need to describe ~ a little more precisely. The 
complexified Iwasawa a in Gr may be naturally identified (up to the Weyl group) 
with a Cartan subalgebra b of  g. We may assume that b lies inside to (L), so the one 
dimensional character q5 gives a weight in b*; this weight was called 2c in Sect. 15. 
Inspecting the definitions, one finds 

(16.12) the differential of ~ on a is 22 c. 

Because of(15.4), the cyclicity of  the D-fixed vector in R is now a consequence of  the 
following proposition. 

Proposition 16.13. Suppose P=P(Tr)  is a standard parabolic subgroup of  
G = GL (n, ~), and q~ is a one dimensional character of  P which is trivial on P&K. 
Write v ~ I t" for the differential of  (o restricted to A (cf. (9.2)). Assume that if  i < j, 
and i and j belong to different blocks o f  ~, then the real part of  v i - v~ is greater 
than + 2. Then the K-fixed vector is cyclic in Ind (P 1" G)(q~). 

This can be proved by the argument given for Proposition 13.4. Details are left to 
the reader. 

The second proof  is due to Borho and others (cf. [6], [20]). Notice first that 
Proposition 16.9 exhibits R as a ring of  endomorphisms of a highest weight module 
V. Write I for the annihilator of V in U(g); then we are investigating the inclusion 

(16.14) U(g)/I--*R. 

As a representation of  the maximal compact subgroup D, the right side is 

(16.15) Ind (Pc c~D 1" D) (~) .  

To compute the left side, we pass to the associated graded ring 

(16.16)(a) M = S(g)/gr I.  

Now I is the annihilator of  a highest weight module induced from a finite 
dimensional representation of p. Therefore [6] implies that the associated variety of 
M (inside g* = Spec (S(g))) is equal to the closure r Gc orbit of the nil radical 
of p. This gives rise to a surjective map of representations of D 

(16.16)(b) M ~  algebraic functions on "U. 

But the right side of(16.16)(b) is the same as (16.15), by the (deep) theorem of  Kraft  
and Procesi in [25]. So the left side of (16.14) is as large as the right as 
representations of D; so they coincide. Q.E.D. 

Proof of  Proposition 16.8. By Proposition 16.9, R may be regarded as an algebra of  
endomorphisms of  

(16.17) Z = ind ((qOp, L ~ K )  ~ (g, K)) (Y|  z ~). 

The techniques of  [11 ] show how to make R act on the derived functor modules 
FiZ,  in such a way as to recover the action of  U(g) on its image in R. What we want 
to show is that, under the hypotheses of the proposition, this action is actually 
irreducible. 
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Fix a large integer n, and let F L be the nth power of  the one dimensional 
representation of  L on A dim uu. Write Y' = Y | FL; this is still an irreducible unitary 
representation of L, satisfying the conditions of  Proposition 13.4. Write EL for the 
(one dimensional) ring of  endomorphisms of FL, regarded as a Harish-Chandra 
module for Le.  Then (RL)' = R/. @ EL is a finite length Harish-Chandra bimodule of  
endomorphisms of Y' | | z -  IU_p(,), containing the image of U(1). Consequently, 
R'  = Ind (Qr 1" Go) ((RL)') is an algebra of  endomorphisms o f X '  = s  What we 
have gained by all of  this is that if n is large enough, X' is actually irreducible as a 
(g, K)-module ([38], Proposition 4.18); so it is certainly irreducible as an (R',  K) 
module. 

We want to relate X' and R'  to X and R. Let F* be the finite dimensional 
representation of G~ of lowest weight (FL)*, and let E =  F |  be its 
endomorphism ring. By the Jacobson density theorem, the algebra R'  |  acts 
irreducibly on X ' |  F*. List the distinct infinitesimal characters occuring in 
X' | F* as Z1 . . . .  , )~r. Write Pi for the functor which takes a 3 (g)-finite g-module 
to its summand of generalized infinitesimal character Zi. Then 

X'  Q F * =  ZPI(X'  Q F * ) =  Z X  i. 

Similarly, Pi can be made to act on Harish-Chandra modules for Gr regarded as gL 
or (after twisting by the Chevalley automorphism) gR modules; we write these two 
functors as (pi)L and (Pi) R, respectively. Put 

R, i = [(p,)L(p~)R] (R') .  

Then R 0 maps Xj to X~ ; by the density theorem again, it is dense in the space of all 
such linear transformations. In particular, X~ is an irreducible module for R , .  

To finish the proof, it suffices to show that our original X is one of the X~ (say 
X1), and that Rt l  is R. These two assertions are proved in exactly the same way 
(indeed the second is in a certain sense a special case of  the first), so we concentrate 
on the first. We have 

(16.18)(a) X'  | F* ~ - F s ( Z |  F*) 

(cf. Definition 5.8 and (16.17)); and 

(16.18)(b) Z |  F* - i n d  ((Y' |  ~) | F*) .  

Lemma 16.19. In the setting above, let F1 be any irreducible representation o f  L 
occurring in F, and let 21 + z ~ - p (u) be an infinitesimal character for L occuring in 
(Y')L| Assume that 21 is in the g Weyl group orbit o f  2. Then F 1 is FL. 

Proof  The infinitesimal character for L of Y' is 2 + 2n p (u) + z ~ - p (u); this is the 
n introduced at the beginning of the proof  of  Proposition 16.8. As a 
subrepresentation of  F, F1 has weights of  the form 

2n p (u) - Z n ~  , 

the sum extending over roots in u. This leads to an equation 

21 + z ~ - p (u) = [2 + 2n p (u) + z ~ - p (u)] - [2n p (u) - Zn,ct]. 

Consequently 
w2 = 2 + Z n ~ .  
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In particular, the two sides of  this last equation have the same length. By the proof  
of  Proposition 15.2, this implies that all the n, are zero. It follows that the weight 
2np(u)  occurs in F1, which proves the lemma. Q.E.D.  

By standard arguments (cf. [36], Lemma 7.2.3 and Proposition 7.4.1), Lemma 
16.19 implies that Y is one of the Y~, as we wished to show. This completes the proof  
of  Proposition 16.8, and that 's  the ball game. 

17. Other constructions and parametrizations 

In this section, we consider other ways of organizing the classification of  unitary 
representations. The purpose of  this exercise is to provide a more flexible toolkit for 
possible harmonic analysis applications, and to gain a little insight into possible 
generalizations of  these results to other groups. Neither of  these purposes seems to 
demand proofs, so we omit them. On the other hand, it is perhaps worthwhile to 
keep the discussion in the framework of general reductive Lie groups for as long as 
possible. 

Definition 17.1. Suppose G is a reductive Lie group. A Levi subgroup L of  G is the 
centralizer in G of a reductive abelian subalgebra of  go. Any such L is conjugate by 
G to one which is stable under the Caftan involution 0; so we assume that is the case. 
Write 

(a) c = center of  I = cr~f + c a p .  

Define 

(b) Lo = centralizer of  cr~[ in G. 

Then L is the Levi subgroup of a real parabolic subgroup 

(c) P = L N  

of  Le. There is a O-stable parabolic subalgebra 

(d) q0 = 10 + u0 

of  g, with Levi subgroup L o. As usual, define 

(e) p (u0) = half the trace of l0 on u0. 

To simplify notation, we will assume that L o has a character 

(f) "~~ : L o ~  II~ 

with differential p (u0). This is automatic for GL (n), by a generalization of  Lemma 
6.9. (In general, following Duflo, one shoud introduce a two-fold cover of  L o on 
which v ~ exists, and work with representations of  it.) 

Fix now an irreducible (I, L c~ K)-module Y. Define 

(g) 20(Y ) = weight by which c ~  acts in Y~(c~D*.  
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We say that qo is weakly non-negative for Y if for every weight ~ of r  in Uo, 

(h) ()~o (Y), ~) > 0. 

Obviously such q 0 exist. 
Using P and q 0, one can proceed exactly as in Definition 6.15 to construct a 

functor J from (l, LmK)-modules to (g,K)-modules. We call J weakly non- 
negative for Y if q0 is. 

In this generality, one can expect essentially nothing good to be true about J Y .  
One needs to restrict Y to be small in some sense; exactly what sense is an excellent 
and interesting question. Once this is done, J Y  should be unitary (though not 
necessarily irreducible); it will depend heavily on the choice of q0. For GL (n), the 
situation is rather good. 

Theorem 17.2. Suppose G = GL (n, IF), and L is a O-stable Levi factor o f  G. Use the 
notation of  Definition 17.1. Then L is o f  the form 

L = GL (n, ~)  • GL (~, IF). 

Here n is an orderedpartition o f  p, and ~ is an orderedpartition o f  q. In the case of  ~ ,  
p = n and q = O. For IR, n = 2p + q. For IH, n = p + q. In any case, 

L o = GL (n, r  • GL (q, IF). 

Let Y be an irreducible unitary (l, L ~ K)-module. Assume that on each GL factor 
o f  L, Y is either a one dimensional character, or a Stein complementary series 
representation. Fix J weakly non-negative for Y (Definition 17.1). 

a) J Y  is unitary. 
b) J Y  is irreducible or zero. 
c) I f  J '  is also weakly non-negative for Y, then J ' Y  ~ - J Y .  

Definition 17.3. Suppose G is GL (n, IF). A Levi datum for G is a pair (L, Y) as in 
Theorem 17.2. (In particular, Y is a tensor product of  unitary characters and Stein 
complementary series.) Fix J as in Theorem 17.2, and define 

J ( L ' f  G)(Y)  = J Y ,  

a unitary (g, K)-module which is irreducible or zero. 
Write 

L = GL (n, IE) • GL (~, IF). 

as in Theorem 17.2. The parameter 2o(Y ) is specified by an integer 20(i ) (the 
compact part of the central character) on each factor GL (Pl, ~);  it is necessarily 
zero on GL (~, IF) (which has no central compact torus). We say that (L, Y) is non- 
degenerate if each 2o (i) is at least equal to d r in absolute value. Here 

d e = 0 ,  d ~ = l ,  d ~ = 2 .  

The motivation for the definition of  non-degenerate is the next result, which is just a 
rewording of  Theorems 6.18 and 3.8. 

Theorem 17.4. Any unitary irreducible representation o f  GL (n, IF) is o f  the form 

J(L ~ 6) (Y) 
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for some non-degenerate Levi datum (L, Y) (Definition 17.3). The pair (L, Y) is 
unique up to conjugacy under K. The parameter 2 (ll) attached to the lowest K-type lZ 
of  J Y  in section 5 is conjugate to 2o(Y ). 

The last assertion of this theorem makes sense for degenerate data as well, but is 
false in that case if IF = IH. 

Here are the two basic "independence of polarization" results, which give some 
flexibility in the construction of  ~r In both cases, we begin with a chain of  Levi 
subgroups 

(17.5) L ~ L ' c G .  

We also fix an irreducible unitary (1, Lc~K)-module Y, such that (L, Y) is a Levi 
datum (Definition 17.3). 

Theorem 17.6. In the setting (17.5), assume that L' is a Levi subgroup of  a real 
parabolic subgroup P ' - -  L' N'  of  G. Then 

J(L1` G)(Y) ~Ind(P'1`  G)(J(L1` L')(Y)) .  

One immediate corollary of  this theorem is that unitarily induced repre- 
sentations of  GL (n, IF) are all irreducible. 

Theorem 17.7. In the setting (17.5), assume that L' is the Levi subgroup of  a O-stable 
parabolic subalgebra q ' = I' + u' o f  g. Recall that r ~ f  denotes the compact part of  the 
center of  I, and that 2o (Y) belongs to the dual o f  this space. Assume that for every 
weight c~ of  c~f  in u', we have 

(i) (,~o (Y), ~) ->- 0 

Then 

J ( L  1" G) (Y) ~ 5( s ((q ', L' c~ K) 1̀  (g, K)) ( J ( L  1̀ L') ( r ) ) .  

The other ~q~J ( J ( L  1̀  L') Y) are all zero. 

Even if L' is the Levi subgroup of  some 0-stable parabolic, it may not be possible 
to find one satisfying the positivity condition (i). In that case, I know of no 
construction of J ( L  1̀ G) (Y) from J ( L  1̀ E) (Y). 

Definition 17.8. Suppose we are in the setting of  Definition 17.1; use the notation 
there. Set 

(a) L R = centralizer of c r~ p in G 

Then L is the Levi factor of  a 0-stable parabolic subalgebra 

(b) q' = ! + u' 

of  l~. There is a real parabolic subgroup 

(c) P '  = L~N '  

of G. 
Using q' and P' ,  one can proceed as in Definition 6.15 (but with the order of the 

steps reversed) to construct a functor J '  from (1, L c~ K)-modules to (g, K)-modules. 
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Again there is a notion of  weakly non-negative, still referring only to the 
cohomological induction step of the construction. 

Using Theorems 17.6 and 17.7, one deduces immediately 

Corollary 17.9. In the setting of  Definitions 17.1 and 17.8, suppose G is GL (n, IF). In 
the notation of  Theorem 17.2, we have 

L~ = GL (ern,  IF) x GL (~, IF). 

The notation means that each part of  n is multiplied by the constant eF, which is 2for 
IR and I otherwise. I f  Y is an irreducible unitary (I, L ~ K)-module, such that ( L, Y) is a 
Levi datum (Definition 17.3), andq' is chosen to be weakly non-negative for Y, then 

J y  ~_J 'y .  

Using this theorem, one sees that the only cases when the cohomological 
induction functor is absolutely needed are to go from a unitary character or a Stein 
complementary series o f G L  (n, r  to a representation o f G L  (evn, IF). The resulting 
representations of GL (ern , IF) are the "extra building blocks" mentioned in the 
introduction. 

To complete the picture of induction we have developed, we only need to 
compute J Y  in the case of degenerate data. Using induction by stages (Theorems 
17.6 and 17.7), one is reduced to a very few cases. Theses are dealt with by the next 
results. 

Proposition 17.10. Suppose G is GL(2n,  IR), L is G L ( n , ~ ) ,  and Y is a unitary 
character or a Stein complementary series for L. Assume that the datum (L, Y) is 
degenerate: that is, that Y has an L ~ K-fixed vector (Definition 17.3). Let E denote 
the subgroup GL (n, IR) x GL (n, IR), which is a Levi subgroup of  a real parabolic 
subgroup P ' =  E N' of  G. Then there is a unitary character or Stein complementary 
series Y' of  E,  such that 

J Y  ~ Ind (e '  1" G) (Y'). 

Explicitly, Y' is described as follows. 
a) Suppose Y is the unitary character (~iv (cf. (2.2)) of  L. 

Y ' =  (6 iv) | (sgn (det) �9 fir). 

b) Suppose n = 2 m is even, and Y is a Stein complementary series 

(T2r a (6 iv, t) 

(c f  Definition 2.3) o f  L. Then 

Y ' =  a2,, (6 iv, t) | a2m (sgn (det) �9 6 iv, t). 

Proposition 17.11. Suppose G is GL(n,  IH), L is GL(n,  IE), and Y is a unitary 
character or a Stein complementary series for L. Assume that (L, Y) is degenerate; 
that is, that the lowest U (n)-type of  Y is trivial, det, or (det)- 1 

a) I f  the lowest U (n)-type of  Y is trivial, then J Y  is zero. Suppose for the rest of  
the theorem that the lowest U (n)-type of  Y is det. (The (det)- 1 case is identical.) 



504 D.A. Vogan, Jr. 

Twisting Y by 6 2iv twists J Y  by 6 ~, so we may as well assume that Y is trivial on the 
split part o f  the center o f  L. There are several cases. 

b) Suppose n = 2m + 1, and Y is a character. Then J Y  is unitarily induced from 
the trivial character of  G L  (m + 1, IH) x G L  (m, IH). 

c) Suppose n = 2 m, and Y is a character. Then J Y  is the Stein complementary 
series t7 2 m (1,1). 

d) Suppose n = 4 m ,  and Y is the Stein complementary series with parameter t. 
Then J Y  is induced from G L  (2m,  IH) x G L  (2m,  IH), by the Stein complementary 
series 

cr2 m (1,�88 + t/2) | ~2,, (1,�88 - t/2). 

e) Suppose n = 4m + 2, and Y is the Stein complementary series with para- 
meter t. Then J is induced from G L ( 2 m + 2 , 1 H )  • G L ( 2 m ,  IH), by the Stein 
complementary series 

0"2m+ 2 (1 , t/2) | 0"2m (1 , t/2). 

T h e  m o s t  s t r ik ing  fea tu re  o f  this p r o p o s i t i o n  is p e r h a p s  (c): a r e p r e s e n t a t i o n  

wh ich  l ooks  ent i re ly  " c o m p l e m e n t a r y "  can  in fac t  be rea l ized  in a " d i s c r e t e "  way.  
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