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1. Introduction

Let IF denote one of the three fields IR, €, or IH. Write
1.n G=GL(nIr)

for the group of invertible # by n matrices with entries in IF. We determine explicitly
the set G, of equivalence classes of irreducible unitary representations of G. For
IF = @, the answer has been expected for thirty years: each element of G, is unitarily
induced from (one dimensional) unitary characters and certain very simple
complementary series. (A precise statement is in Theorem 6.18. Gelfand and
Naimark in [14] overlooked some of the complementary series. This was pointed
out by Stein in [31], and that paper may have created the impression that Gelfand
and Naimark missed a great many representations. However, our result shows that
Stein actually found everything that they missed.) For IF =R or H, it is still true
that the ‘““building blocks™ for constructing all unitary representations are one
dimensional unitary characters, and the analogues of Stein’s complementary series.
However, one must use not only ordinary induction, but also Zuckerman’s derived
functors [11, 36]. This does not seem to bode well for a generalization to non-
archimedean IF, where no analogue of Zuckerman’s functors is known. However,
one can view them as implementing certain very special cases of Langlands
functoriality; from this point of view, the results make some conjectural sense for
any division algebra IF over a local field. (They may however be too naive, at least in
residual characteristic less than or equal to ». Since this work was completed, M.
Tadic in [32] has announced a classification of the unitary representations of
GL (n, IF) for commutative p-adic IF. His results describe everything else in terms of
the discrete series, and so avoid such pitfalls.)

If one wishes to use only unitary induction, the set of building blocks must be
enlarged when IF is IR or IH. Suppose first that IF = IR. Then whenever 7 is even,
Speh [29] has described a family of unitary representations of GL (n,IR)
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parametrized by

IN—-O)xIR.

(The last factor is just the central character.) For n = 2, they are the discrete series;
for n > 2, they are not tempered. When »n is a multiple of 4, there are complementary
series attached to the series induced from a product of two copies of one of Speh’s
representations on GL (n/2,IR) x GL (n/2, R).

Next, suppose IF = IH. In this case there is a family of unitary representations
parametrized by (IN — (0)) xR for every n. When n is 1, it is the discrete series of
GL (1, H). (Recall that this group is isomorphic to SU(2) x IR.) For even #, there
are complementary series attached to these representations on GL(n/2,H)
x GL(n/2,H). Using these extra building blocks, one can obtain all unitary
representations by unitary induction.

For other real reductive groups, one expects the unipotent representations to
complicate the picture substantially [1, 2]. A representation of GL (n, IF) is special
unipotent if and only if it is of the form

Ind(P 1T G)(y).

Here y is a character of P which is trivial on the identity component of P. (Non-
special unipotent representations have yet to be defined.) This paper may therefore
(with a little twisted logic) be regarded as evidence that most of the difficulties in
treating general reductive groups involve unipotent representations. At any rate, it
is intended as such evidence.

Here is an incomplete outline of some previous results about this problem.
When n=2, GL (n,IF) is (up to center) locally isomorphic to SO (d+1,1), with d
equal to the dimension of IF over IR. The unitary duals were determined by
Bargmann [3]for IR, Gelfand-Naimark [13] for €, and Hirai [18] for IH. For n =3,
the case of € was treated by Tsuchikawa [33], and IR by Vakhutinski [34]. The case
of IH is a little easier than IR, but I know of no published treatment of it for n = 3.
For n=4, R was treated by Speh [30]. For n =4 and 5, € was treated by Duflo [9].
Partial results are too numerous to discuss completely, but those of Enright [10] are
among the most powerful. In unpublished joint work, Enright and Parthasarathy
determined completely the spherical unitary representations of GL (n, €C) with
regular infinitesimal character. The Yale dissertation of S. Sahi determines the
spherical unitary representations which are induced from a character (which, by the
results of this paper, is all of them). The work of Guillemonat [15] is of a similar
nature.

To understand the organization of the paper, keep in mind that we have four
tasks: to produce a list of representations (construction); to prove that they are all
unitary (unitarity); to prove that they are all irreducible (irreducibility); and to
prove that any representation not on the list is not unitary (exhaustion). Crudely
put, the main idea is to reduce matters to the case of spherical representations (those
which have a vector fixed by a maximal compact subgroup). Each tak therefore has
a “spherical” part, and a “‘reduction” part.

Even to state the result requires carrying out the construction step. The
“spherical construction” (that is, construction of all spherical unitary repre-
sentations) contains no surprises. We recall the least familiar aspect of it (Stein’s
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complementary series) in Sect. 2, and complete it in Sect. 3. The reduction part of
the construction (in which general unitary representations are constructed from
spherical ones) is parametrized by K, via the theory of lowest K-types. Kis discussed
in general terms in Sect. 4, and computed very explicitly for each of the fields in
question in Sect. 5. Section 6 completes the reduction construction, and states the
main theorem (Theorem 6.18).

The exhaustion argument depends on some complicated but formal properties
of K, which are discussed in Sect. 7 through 9. With these in hand, we can actually
carry out the reduction part of exhaustion; this is done in Sect. 10.

The spherical case (exhaustion, irreducibility, and unitarity) is treated next, with
generalities in Sect. 11, and a detailed discussion of each field in Sect. 12 through 14,
This is certainly the heart of the paper; the reader wishing to find more than bells
and whistles must look for it here. Sections 15 and 16 are devoted to the reduction
arguments for unitarity and irreducibility, respectively. Section 17 discusses
alternative constructions of the representations.

It is a pleasure to thank a few of the mathematicians who have helped in this
work. Birgit Speh taught me the foundations of the subject as she was helping to
build them. Over C, the critical Proposition 12.2 was suggested by Thomas
Enright; I have benefitted from many conversations with him. The fundamental
idea of controlling the signature of a Hermitian form on very special K-types I
learned from Enright (although it could be attributed to many people). I have come
to understand it better through its appearance in the thesis of Susana Salamanca,
and in conversations with her. Most importantly, the entire treatment of the
complex case here is an extension of unpublished joint work with Dan Barbasch
(including the proof of Proposition 12.2); this made everything else possible.

2. Stein’s complementary series

We continue to write IF for IR, €, or IH. (For most of the next two sections, it would
suffice to require IF to be a finite dimensional division algebra over a local field.)
Assume n =2 m, with m a positive integer. Write

A B
2.1)(a) P=LN={(0 D)

for the indicated maximal parabolic subgroup of G = GL 2m, IF). (Here M (m, IF)
denotes the algebra of all m by m matrices over IF.) The indicated (Levi)
decomposition of P is as a semidirect product, with N normal. More precisely,

A, DeGL(m,IF), Be M (m, IF)}

2.1)(b) L =GL(m,IF) x GL(m,F),
realized as block diagonal matrices, and
Q2.1)(c) N=M(m,TF)

is the unipotent radical of P.
The representations to be constructed are induced from certain characters of P.
To describe these characters, first write

2.2) 5,,: GL (m, IF) - (R*),
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for the modular function: §,,(g) is the Jacobian of the change of variable v — g.v on
IF™, with respect to Lebesgue measure on IF™. (If IF has dimension d over IR, then
IF" may be identified with IR%™, In that case, §,,(g) is the determinant of the dm by
dm real matrix representing g. If IF = C, then

Om(g)=|detc(®)]*.)

Definition 2.3. Fix a one dimensional unitary character j of GL (m,IF), and a
complex number ¢. Let P = LN be the group defined in (2.1). Consider the (possibly
non-unitary) character

b2m(,1): P> C7,
defined by
[®2m(, D1 (g, B 1) = [j (gh)] [0, (gh~ D]’
(for g and A in GL(m, IF), and n in N). Put

02mUs ) =Ind (P1 G) (¢, 1))

The characters of GL (m, IF) may be identified in a natural way with the characters
of GL (1, IF); so j extends to a character (still denoted j) of GL (2m, IF). Clearly

GZm(.j, t) go.2m(1a t) ®]’
so we could consider only the case j=1 for the study of these representations.

Lemma 2.4. (cf. Stein [31]). In the setting of Definition 2.3,

a) 0,,(J, 1) is unitary and irreducible for t in iIR.

b) There is a nondegenerate Hermitian pairing between c,,,(j, t) and ¢ ,,,(J, — ).

¢) 0,,(j,?) and o0,,,(j, —t) have the same distribution character.

d) Whentis%, 6,,,(j, t) is reducible. It contains as a subquotient a representation
o' induced from a one dimensional unitary character of the parabolic subgroup with
Levi factor GL (m+1,1F) x GL(m—1, IF).

e) 0,,,(,t) is irreducible for |t| <%.

Proof. By the remark before the lemma, we may assume that j is trivial
Irreducibility follows by investigating the restriction of o,,(1,¢) to P (see [31]).
Another proof is in Sect. 10 through 14 (particularly Propositions 12.2, 13.4, and
14.2). For (b), let K be a maximal compact subgroup of G. Then we can realize the
non-unitarily induced representations as functions in L*(K), satisfying certain
transformation properties under K N P. The same calculation proving that o, ,, (1, t)
is unitary for ¢ in /IR, shows that the inner product on L?(K) gives the pairing
needed in (b). For (c), one computes the character as usual.

For (d), embed o = 6 (1,4) in a principal series representation I (as can easily be
done explicitly — cf. (11.12)). Then by inspection, ¢’ occurs in a principal series
representation I’ with the same character. Since I, I, o, and ¢’ all have unique
K-fixed vectors, and ¢ is irreducible (Sect. 11-14 again), it follows that ¢’ is a sub-
quotient of ¢. That ¢’ is not equal to ¢ follows by inspection of characters.

The validity of (¢) with some positive constant ¢ in place of 4 follows from the
irreducibility of a,,,(1, 0) (cf. (). That ¢ is at most § follows from (d). For R and €,
we will prove the irreducibility of o,,(1,f) for || <3 in Sect.11, by general
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nonsense about intertwining operators and the Langlands classification; this can be
carried over to any commutative local field IF. For IH, the argument is more subtle
(Sect. 14), and I do not know how to do it for general division algebras. (For H, the
general nonsense argument gives 6 2%.) Q.E.D.

Proposition 2.5 (cf. Stein [31]). For all real t such that |t| <%, and all unitary
characters j of GL (m, IF), the representation o ,,,(j, t) is infinitesimally equivalent to
a unitary representation.

Proof. We apply Lemma 2.4 and a standard deformation argument. Lemma 2.4(b)
and (c) provide a Hermitian form on each of the representations in question. The
form is non-degenerate for |¢| <} by Lemma 2.4(e), and positive definite for =10
by Lemma 2.4(a). It is known (and not hard to prove) that the forms may be chosen
to depend continuously on ¢. They are therefore positive definite in the whole
interval. Q.E.D.

Definition 2.6. The Stein complementary series of GL (2m,IF) consists of the
representations a,,,(j, 1), for 0 <<%,

Notice that these representations are induced (but not unitarily) from one-
dimensional representations.

3. The almost spherical principal series

Fix a unitary character
(3.1)(a) JuF* > C";

as in the remark after Definition 2.3, this corresponds naturally to a family of
characters

3.1)(b) Ju:GL(m,IF) > C*,

characterized by the property that for m < m’,

(3.1)() | L 1) = o

We refer to the collection (j,,) loosely as j. Define

(3.2) K(m,IF)=standard maximal compact subgroup of GL (m,IF)

We will discuss these groups in some detail in Sect. 5, but for now their precise
nature is not important. Recall that a representation of GL (m, IF) is called spherical
if it contains the trivial representation of K(m, IF).

Definition 3.3. Let j be a family of characters as in (3.1). Define one dimensional
representations u,, of K(m,IF) by

Uy = Jm |K(m,]F)'

Write u for the collection {u,,}. We call p,, a special one dimensional representation
of K(m, IF). A representation ¢ of GL (m, IF) is called almost spherical of type u if u,,
occurs in the restriction of ¢ to K (m, IF); or, equivalently, if j,,! ® ¢ is spherical.
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We will often write

3.4 G=GL(nIF); K=K(nIF).
We will also need to consider the Borel subgroup
(3.9 B=B(nIF)

consisting of upper triangular matrices.

Definition 3.6. An (ordered) partition of n is a sequence

=Py, ..., Pr)
of positive integers, such that Tp, = n. (We may occasionally write this condition as
|z} =n.) Define
GL(n,IF)=GL(p,,IF)x ... xGL(p,,IF) =G,
Kan,F)=K(p,,F)x ... xK{p,, F)=KnG(n)
to be the obvious groups of block-diagonal matrices. Next, put
P(rn, IF) = parabolic subgroup generated by GL (n, IF) and B

(cf. (3.5)), and
N (n) = unipotent radical of P ().

Definition 3.7. Fix u = {u,,} as in Definition 3.3. We wish to define a special class of
almost spherical representations of type u. The data are a partition n = (p,) of n, and

a collection
‘L'=(‘L'i), TiEGL(pi’H:)A’

such that

a) t; is almost spherical of type u;, and

b) 1, is either a unitary character or a Stein complementary series (Definition
2.6).

In terms of the family of unitary characters (j,,) of (3.1), this may be made more
explicit as follows. For each i, either

b1) there is a v; /IR such that

Ti =jP: ® (51,‘)".
(cf. (2.2)); or
b2) p;=2m, and there are a v;eiRR and ¢,€(0, %), such that
1= 02m (jm ® (5m)v" ti)

(Definition 2.3).
Finally, define

6, (0)=Ind(P(n)T G)(®1),
a basic almost spherical representation of type u.

Theorem 3.8. Use the notation of Definitions 3.3 and 3.7.
a) The basic almost spherical representations o,(t) and o, (t") are equivalent if
and only if (n',1) is a permutation of (=, ).
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b) The basic almost spherical representations are unitary.
c) The basic almost spherical representations are irreducible.
d) Any unitary almost spherical representation of GL (n, IF) is basic.

Outline of proof. Part (a) is an easy calculation of distribution characters. Part (b)
follows from Proposition 2.5. Parts (¢) and (d) are of course the main points, and
will occupy much of the rest of this paper (particularly Sect. 11-14). An interesting
aspect of the argument is that the proof of (d) is nor independent of the general
theorem on the unitary dual: the analysis of the almost spherical representations
uses a small but important part of the analysis of the general case (see the proof of
Lemma 12.12).

Of course it seems natural to conjecture that Theorem 3.8 is true for all local
division algebras IF. This has been proved for commutative p-adic IF by S. Sahi and
M. Tadic independently.

4. Maximal compact subgroups

Up to this point, we have described those unitary representations of G containing a
vector transforming in a special way under a maximal compact subgroup K. The
general classification will be reduced to that case. To describe this a little more
precisely, let us recall the Langlands classification of (not necessarily unitary)
representations of a general reductive Lie group, as formulated in [35] and [36]. To
each representation = of G is assigned a small finite set of “‘lowest K-types.** These
are representations of K occuring in . In case G is GL (n, IF), the lowest K-type is
unique. One therefore obtains an approximate partition of the representations of G,
into parts parametrized by representations of K; this is precise for GL (n, IF).

The classification treats each piece of this partition separately. To each
representation u of K, it associates a subgroup L of G, and a representation u, of
L N K. The main reduction step in the classification theorem (Theorem 6.5 below)
gives a bijection between representations of G with lowest K-type u, and repre-
sentations of L containing the L n K-type u;. To obtain an explicit classification,
one must then treat the cases when L = G; but these are relatively easy.

Our analysis of the unitary dual will proceed along similar lines (cf. [23]). As
noted above, a representation of GL (», IF) has a unique lowest K-type. To each
representation y of K, we will associate a subgroup L of G, and a representation u;
of L n K. L will be a product of various GL (m;, IF;), and g, will be almost spherical
for L. (Except when IF is C, this L is different from the one in the Langlands
classification; it is larger in the case of IH, and smaller in the case of IR.) The main
reduction step provides a constructive bijection between unitary representations of
G with lowest K-type 1, and unitary representations of L containing the L n K-type
;- Because the latter are determined by Theorem 3.8, this determines G, .

To state this reduction step more precisely, we need to describe K and its
representations. In this section, we will give some general results; in the next, we will
consider €, IR, and IH in detail.

The space IF" will be regarded as a right vector space of column vectors over IF;
then G acts (linearly) by matrix multiplication on the left. The standard anti-
automorphism of IF will be denoted by a bar. It is trivial for IR; complex
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conjugation for €; and
xi+yj+zk+w) = —xi—yj—zk+w.
In all cases, we have
(ab)" =(b")(a").
Write (,) for the sesquilinear form
(L,w)=2(v;)" (W)
on IF”. It satisfies
(va,w) =a" (v, w)
(v, wb) = (v, W) b
(v,w) = (w,v)~

for v and w in IF" and g and b in IF. The real part of (,) gives a real Euclidean
structure to IF", corresponding to its standard identification with IR (mentioned
after (2.2)). In particular, we have a norm

lo]= (v, v)!/2.

If A is any m by n matrix over IF, we define 4* to be the n by m conjugate
transpose matrix; it is obtained by applying bar to each matrix entry, then
transposing. If 4 is n by n, we have

(Av, w) = (v, A*w).
Finally, for g in G, we define
4.1 fg=(g")"".

This is an involutive (that is, of order two) automorphism of G. It is also a Cartan
involution, meaning that its fixed point set is a maximal compact subgroup of G.

Definition 4.2. The standard maximal compact subgroup K of GL (n, IF) consists of
all elements satisfying any of the following equivalent conditions.

a) Ok=k.

b) (kv, kw)=(v,w), for all v and w in IF".

¢) |kv|=|v|, for all v in IF".
IfIFisIR, Kis denoted O (#), and called the orthogonal group. If IF is €, K is denoted
U (n), and called the unitary group. If IF is H, K is denoted Sp (n), and called the
compact symplectic group.

The identification of IF" with IR%" allows us to regard GL (n, IF) as a subgroup of
GL (dn,R). In this identification, we have

K=0(dn) nGL(n,TF).

Recall that a (g, K)-module is a complex vector space endowed with
representations of g and of K, satisfying some compatibility and finiteness
conditions (cf. [36]). The Harish-Chandra module of a representation of G is the
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(g, K)-module of its smooth K-finite vectors. From Harish-Chandra’s collection of
results relating group representations and Harish-Chandra modules, we want
mainly the following one.

Theorem 4.3 (Harish-Chandra [16]). Suppose G is a reductive Lie group, and K a
maximal compact subgroup. Passage to K-finite vectors defines a bijection from the
set of equivalence classes of irreducible unitary representations of G, onto the set of
equivalence classes of irreducible (g, K)-modules admitting a positive definite
invariant Hermitian form.

We turn now to the parametrization of representations of compact Lie groups.

Definition 4.4. Suppose H is a compact Lie group (possibly disconnected). Let T,
be a maximal torus in the identity component H,,. The complexified Lie algebra
then has a root space decomposition

h=t® ) b,

acdh,t)

Fix a set 4" (b, t) of positive roots, and write

b=t® ) h,=t+n
aeAt
for the corresponding Borel subalgebra.
Let {,)> be an H-invariant positive definite inner product only, . A weight 4 in t*
is called dominant (with respect to b or A*) if

{Aa>z0, allaed™,

Write T for the normalizer of b in H; we call T a Cartan subgroup of H. The
identity component Ty, is then a maximal torus in H,. A dominant representation of
T is one whose differential is a sum of dominant (with respect to the given Borel
subalgebra) weights. Since we will often consider the same Cartan subgroup 7 in
various compact groups, we may say H-dominant for definiteness.

Proposition 4.5 (Cartan-Weyl). Suppose H is a compact Lie group, and T is the
Cartan subgroup associated to the Borel subalgebra b of ly. Write 1 for the nilradical
of b. Then passage to n-invariant vectors defines a bijection from the set of irre-
ducible representations of H, onto the set of irreducible dominant representations of T.

If u in A corresponds to y in T, we will say that x has highest weight y, even
though y may not be a one dimensional character of 7.

We will sketch a construction of the inverse map from T to H. It is by no means
the easiest one, but it is the one we will need later. It is convenient to generalize
things a little.

Definition 4.6. Suppose H is a compact Lie group, and q is a parabolic subalgebra
of ). Write u for the unipotent radical of q. Write L for the normalizer of q in H, the
Levi subgroup of q. (The complexified Lie algebra [ is easily seen to be a Levi
subalgebra of q.) Recall from [36], Definition 6.3.1, the cohomological parabolic
induction functors, taking locally finite representations of L to locally finite
representations of H. They are defined by twisting by a fixed one dimensional



458 D.A.Vogan, Jr.

representation 7 of L; extending to a representation of q trivial on u; algebraically
producing to an L-finite representation of ljy; and applying Zuckerman’s derived
functors to get a representation of H. Briefly,

(R =T"((b, L)1 O, H))e pro((@, L) T (b, L)) (* ®¢7™).

The notation is explained in [36)]. The twist t~ is introduced for later convenience
only. For not-so-distant convenience, we write it as

1" =1 Q (A%);
here § is the dimension of u.

We will also need the dual construction. Write q°7 for the complex conjugate of
q (which still has Levi subgroup L). Define

(LHY=Ioind(@%, L)1 (5, L)) (* ®¢1").
This has formal properties closely related to those of ## (cf. [38], Sect. 5).

Proposition 4.7. (see [11]) In the setting of Definition 4.6, the functors (RH) and
(LY are zero for i greater than S, and j less than S. In degree S the functors are
isomorphic, and may be computed as follows. Fix a Borel subalgebra b of H,
contained in q. Write T for its normalizer in H, and T, for its normalizer in L. Let
(u;, V) be an irreducible representation of L, corresponding to the irreducible L-
dominant representation y,; of T, (Proposition4.5). Set

y=Ind(T,TT)(y,®1)

(with 7 as in Definition 4.6). If y is H-dominant, then (£ )S(V) is the sum of the
irreducible representations of H corresponding to the constituents of vy (Pro-
position 4.5). If y is not H-dominant, then (£"YS(V) is zero.

In the setting of the proposition, it is easy to check that if y is not H-dominant, then
no constituent of it is either.

Taking q to be a Borel subalgebra, and 7 trivial, we get a construction of the
inverse of the bijection of Proposition 4.5.

We conclude this section by recalling the definition of lowest K-type. We will
confine ourselves to the simple definition in [35], despite the technical merits of the
more complicated (but equivalent) version in [36].

Definition 4.8. Suppose G is a reductive Lie group, and K is a maximal compact
subgroup. Let b be a Borel subalgebra of f, and T the corresponding Cartan
subgroup. Write 2p, for the sum of the roots of t in b. Fix an irreducible
representation u of K, of highest weight y in T. Let y, in t* be a weight of y. Define
the norm of u to be

Hull=<u+2p.,u+2p.

If X is any (g, K)-module, we say that u is a lowest K-type of X if
a) p occurs in the restriction of X to K; and
b) ||l is minimal subject to (a).

As was remarked earlier, representations of general reductive groups may have
several lowest K-types. The situation is completely described in 6.5 of [36], however.
Specializing those results appropriately, we find
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Theorem 4.9. Suppose G = GL (n,F), and X is an irreducible (g, K)-module. Then X
has a unique lowest K-type. It occurs with multiplicity one in X.

5. Parametrization of K

The program outlined at the beginning of Sect. 4 requires us to associate to each u in
K a subgroup L of G, and a representation g, of L n K. We will do this on a case by
case basis. Always we proceed in two steps. First, we assign to za weight A = A(u) in
the dual t* of a Cartan in f. We will define
(5.1) Ly= Lo()
= centralizer of 4 in G.
(Except for the case of IH, the weight 4 will be the one constructed in Sect. 5.3 of
[36].) We will also define 1, , . Next, we will define L to be the Levi subgroup ofa real
parabolic subgroup of L,. (Except for the case of IR, L will be all of L,.) Finally, we
will define u, to be a certain almost spherical representation of L N K.
Suppose first that G is GL (n, €). Recall that K is the group U (n). Define
(5.2)(a) T = group of diagonal unitary matrices
=U)x...xUQ1) (ncopies).
As usual, we identify
(5.2)(b) T=2"

Write ¢; for the usual basis elements of Z". T has the same weights on f as on p; the
non-zero ones are the weights of the form e; — e;, for i different from j. We choose a
Borel subalgebra b of , corresponding to the positive roots

(5.3) AT (E )= {e—eli<j}.

The dominant weights (and therefore the representations of K) correspond to
decreasing sequences of integers:

(5.4) Re{y=@y ..,z 2.

The one dimensional representations of K are all special (Definition 3.3); they
correspond to the constant sequences. (In particular, they are naturally
parametrized by Z for any n.)

Fix an irreducible representation x of K, of highest weight y. Define

(3-5) Alp)=7.

Write © = 1t () for the coarsest ordered partition of n such that y is constant on the
parts. Then

(5.6) L,=GL(n, €)

(Definition 3.6), a product of copies of GL (p;, €). We take L= L, and let u, be
the representation of L n K of highest weight y. If we write y (j) for the constant
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value of y on the jth block of =, then
(5.7) Hy= @ (det)?9.

Clearly this is an almost spherical representation of L N K.
Next, suppose G is GL (#,IR). Recall that K is O(n). Define m = {n/2], and
e=n—2m; thus

(5.8) n=2m+e.

Recall that the group SO(2) (the identity component of O(2)) is naturally
isomorphic to the circle, by the identification of IR? (on which SO (2) acts) with €
(on which the circle acts). Explicitly, the matrix

(5.9 r(0)=< cos 8 sin@)

—sinf cos6
corresponds to exp (i6). Set
(5.10) To=SO(2)x ... xSO(2) (m copies),

embedded in O(n) in the obvious way. Using the coordinates (7.2) to identify T,
with the product of m circles, we get

5.4 (Ty) " =Z™.
Consider the following three sets of weights in (7;)":
A={e,te;|i<j}
(5.12) B={2¢}
C={e;}
We choose as positive roots of T in f
(5.13) A* ¢, H)y=A4ueC;

this rather loose notation is intended to mean A alone if nis even, and the union of 4
and C if n is odd. The roots of T, in p are

(5.14) A(p,ty=+(4uBuUeC).
Let r, denote the matrix
(5.15) r,=diag(,...,1, —1).

Then r, normalizes T, , and permutes the positive roots of Tj, inf. It acts trivially on
the first m— 1 SO(2) factors of T,, and acts on the last by (—1)"+¢) — that is,
trivially if #is odd and by inversion if r is even. In any case, the Cartan subgroup of
K (Definition 4.4) is

(5.16) T=T,>(1,r,}

If n is odd, then T is a direct product, and its irreducible representations are one
dimensional. They are parametrized by pairs (y,7), with y (the weight of Ty) a
sequence of m integers, and # (the weight of r,) equal to 0 or 1. If n is even, the
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irreducible representations of T are of two types. First, there are the representations
induced from T;, . These are two dimensional, and are parametrized by the inducing
weight y, a sequence of m integers with y,, positive. Second, there are the one
dimensional representations. They are parametrized by pairs (y,7), with 7 (the
weight of T;) a sequence of m integers ending in zero, and # (the weight of r,) equal
to0or 1.

Taking into account Proposition 4.5, we obtain a description of the represen-
tations of O (n).

Propesition 5.17. The representations of O(n) are parametrized by pairs (y,1),
subject to the following conditions. Write n=2m + ¢ as in (5.8).

a) y is a decreasing sequence of m non-negative integers.
b) If n is even and v, is not zero, then n is %; otherwise n is 0 or 1.

Let p1 be the representation of highest weight (y,n). If n is 0 or 1, the restriction of u
to SO (n) is the irreducible representation of highest weight y. If y is %, the restriction is
the sum of the representations of highest weights y and (v, ..., —7Vm)-

The two one dimensional representations of O(n) are those parametrized by
(0, ...,0),0yand ((0, ..., 0),1). They are both special (Definition 3.3); they are the
restrictions to K of the trivial and determinant characters of G, respectively.
Let u be an irreducible representation of O(n), of highest weight (y, 1) as in
Proposition 5.17. Let p be the largest integer such that y, is at least 2. Define

(5.18) A () = (max (y;— 1,0))
=@ =1, ..., 70—1,0,...,0).

Let 7 be the coarsest ordered partition of p such that y is constant on the parts of 7.
Then an easy calculation shows that

(5.19) Ly=GL(n,C) x GL (n—2p,R).

(Here GL (n, €) denotes the obvious product of copies of GL (p;, €). We let u,, be
the representation of L, K of highest weight

((%_1, LR Vp—lﬁ Vp+1s ooes ym)’rl)

Write u, for the representation of O(n—2p) parametrized by the last m —p
coordinates of y, and 5. Let y (j) denote the constant value of y on the j-th part of z.
Then

(5.20) =@ det? D@ p,.

Next, we turn to the description of L itself. Write g =n — 2p. The last [#/2] — p
terms of y are zeros and ones; say there are ¢’ ones. Define g, and g, as follows:

(5.21)(a) ifyis0ord, theng,=¢, and go=¢q — ¢, ;
and
(5.21)(b) ifnis1 ori, then go=¢’, and q, = q— ¢,.
Let

(5.22) L=GL(n, C)x GL(go,R) x GL(g,,R).
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Set
(5.23) U =[Rdet??-1]® 1 @ det.

Obviously this is an almost spherical representation of L N K, but it may appear to
have been pulled from a hat. To allay the reader’s fears on this point, we include
here a lemma which will not be needed (or proved) until section 8.

Lemma 5.24. Suppose q, and q, are non-negative integers, and q = qqo+ q, . Write
q =2r + &, in analogy with (5.8). Then there is a unique decreasing sequence y of r ones
and zeros: and an n equal to 0, L, or 1, with the following properties. Write g’ for the
number of ones iny. First,nis%if and only if g is even andy, is 1. Second, (5.21)(a) and
(b) hold.

Write p, = pi,(qo, q,) for the irreducible representation of O(q) of highest weight
(7,1 (Proposition 5.17). Then p, is the lowest O(q)-type of

Ind (O(g0) x O(g1) T O(9)) (1 @ det).

We defined lowest K-type only for (g, K)-modules, but obviously the definition
requires only the K-structure. In any case, the induced representation in question is
the restriction to K of a (g, K)-module.

Next, suppose G is GL (n, H), so that K is the (connected) compact symplectic
group Sp(n). The group Sp (1) is the group of unit quaternions. This obviously
contains a copy of the unit circle U (1), the complex numbers of absolute value 1.
The natural embedding of Sp(1)” into Sp (n) then defined a subgroup

(5.25)(a) T=U)x...xU@) (ncopies)
of K. It is a maximal torus and a Cartan subgroup. Clearly
(5.25)(b) T~z

Consider the weights

(5.26)(a) A={e+eli<j}, B={2e;}.
We can choose as positive roots of T in f

(5.26)(b) AT EH)=A4UB.

The roots of T in p are

(5.27) Ap, )=+ 4.

The dominant weights are decreasing sequences of # positive integers:

(5.28) R={y=@1 .. ) 112 ... 27,20},

Since K is connected and semisimple, the only one dimensional representation is the
trivial one; it is special (Definition 3.3).
Fix a representation u of K, associated to y by (5.28). Define
(5.29) Au); =y; + 1, if y, is positive; or
=0, if y, is zero.
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We willlet L be equal to the centralizer L, of A. To describe it, write ¢ for the number
of zeros in the sequence y, and p = n — ¢. Let n be the coarsest ordered partition of p
so that y (or rather the first p coordinates thereof) is constant on the parts of . Then

(5.30) L=GL(rn, C)x GL(q, H).

We let u; be the representation of LK with highest weight y. With notation
analogous to that in (5.7), this is

(5.31) Uy=[®@det*V+1]®@1.
Clearly it is special (Definition 3.3).

6. The induction functors

In this section, we will define the functors which will exhibit the bijection between
unitary representations of G with lowest K-type u, and (almost spherical)
representations of L containing the L n K-type u, . Once again this construction will
be in two steps, corresponding to the two steps in the definition of L. The functors
from representations of L to representations of L, will be ordinary (normalized)
parabolic induction. To go from L, to G, we will use cohomological parabolic
induction as in [36] (but with a twist in the normalization). We therefore begin by
recalling its definition.

Definition 6.1 (cf. [36], Definition 5.2.1). A 6-stable parabolic subalgebra of g is a
parabolic subalgebra q of g, stable under the (complexified) Cartan involution 6.
Necessarily such a g meets its complex conjugate in a Levi factor [ of q. Write

g=I[+u

for the corresponding Levi decomposition of g, and L for the normalizer of q in G
(the Levi subgroup of q). Recall from [34], Definition 6.3.1, the cohomological
parabolic induction functors (from (I, L n K)-modules to (g, K)-modules)

'%iz'%i((QwLmK)T (ga IQ)
=T'((8, LnK)1 (8, K)) o pro((a, LnK)T (8, LNK))(* ® 7).

(The symbols are explained in [36].) Here we have allowed a twist by a one
dimensional character ™ of L. (In [36], t~ was fixed as the top exterior power of u.
This normalization has not aged well. Fixing it properly in general would lead us
too far astray, but we cannot resist the temptation to improve matters for GL (n).)
We will write (ZX) for the analogous functors with q and g replaced by g Nt and f
(defined in Definition 4.6); these take representations of L N K to representations of
K. As in Sect. 5 of [38], it is actually more convenient to consider the functors

PI=T4oind((q°", LnK)1 (g, LNK)(* ®¢T7)

and (£ X)’. We will mention properties of # only because it is # rather than &
which is discussed in [36].
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If Y is any (I, L~ K)-module, the inclusion of U(t) in U(g) induces a natural
homomorphism of (f, L n K)-modules

ind (q°?nE, LK) T, LNK)(Y®17)
.ind (07, LK) (9, LNK)(Y®17),
and so a family of homomorphisms
(6.2)(a) v (ZKY Y- LY
of K modules. Similarly, we have homomorphisms
(6.2)(b) O RY - (RK) Y.

Here are some of the less obvious formal properties of these functors which we
will use.

Propeosition 6.3. In the setting of Definition 6.1, let Y be an (1, LN K)-module, and let
S be the dimension of unt.

a) Z'Y and (R¥)'(Y) are zero for i greater than S.

b) #J and (LX) are zero for j less than S.

c) The homomorphism ¢° of (6.2) is surjective, and y*S is injective.

Part (a) of this proposition, due to Zuckerman, is Corollary 6.3.21 in [36]; and (b) is
analogous ([38], Lemma 5.2(b)). Part (c) is discussed in Definition 6.9 of {36].
As background and motivation for what is to come, we recall now a few more
pieces of the Langlands classification of irreducible (g, K)-modules (for general
reductive G, for the moment). One of the key ideas in that classification is

Theorem 6.4 (Langlands; cf. [36], Sect. 6.5). Suppose G is a reductive Lie group, with
maximal compact subgroup K. Any irreducible (g, K)-module X is the unique
irreducible quotient of a certain “‘standard” (g, K)-module C(X). C(X) has the
following properties, which characterize it uniquely;

a) The lowest K-types of C(X) are precisely the same as those of X.

a)' The leading exponents in the asymptotic expansions of matrix coefficients of
C(X) are the same as those for X.

b) If X' is any (g, K)-module of finite length satisfying (a) or (a)', and X is a
composition factor of X', then

Hom  ,(C(X),X") +0.

(We have included (a)' only as motivation for those to whom the words have a
meaning already; others may safely ignore it.) The point is that C (X) is some sort of
canonical covering of X; not precisely a projective cover, but something with that
general flavor.

Here is a more precise version of the reduction step alluded to at the beginning
of Sect. 4.

Theorem 6.5 ([36], Theorem 6.5.12). Suppose G is a reductive Lie group, with
maximal compact subgroup K. Fix a representation p of K. Then there is attached to u
a B-stable parabolic subalgebra

9=qq(4),
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and a representation p; of LN K (notation as in Definition 6.1), with the following
properties;

a) There is a bijection X, — X from irreducible (I, LN K)-modules with lowest
L K-type u,, onto irreducible (g, K)-modules with lowest K-type p.

b) Suppose X, has lowest L K-type u;. Then (with S equal to the dimension of
unft),

) LICXN=C(X): LI(CX)N=0, j+8S.

c) X is the unique irreducible quotient of £5(C(X))): and X is a quotient of
L5(X,).

d) (LX) defines a bijection from the set of lowest L~ K-types of X onto the set
of lowest K-types of X. In particular,

(L u)=p.
Using a simple induction by stages argument ([36)], Proposition 6.3.6), we deduce

Corollary 6.6. The conclusions of Theorem 6.5 remain valid if q,, is replaced by any
O-stable q containing it.

We now return to the special case of G = GL (n, IF). Fix g in K, and define 1 asin
(5.5), (5.18), and (5.29). Recall that A belongs to a fixed Cartan subalgebral of . We
want to define a 0-stable parabolic subalgebra
(6.7)(a) q=Is+ 1,

of g; recall that Lyhas already been defined in (5.1). It is enough to specify the set of
weights of t in u,. These are given by

(6.7)(b) Ay, Hy={aed(g,t)|<a, i) >0},
For comparison, note that
(6.7)(c) Ay, ty=4{aed(g,)|<a, )=0}.

Lemma 6.8. In the setting of (6.7), the parabolic q, contains the one q, of
Theorem 6.5. In particular, all the conclusions of that theorem are available for q,.

Sketch of proof. The definition of q, is contained in Definition 5.3.22 (and hence in
Proposition 5.3.3) of [36]. It is analogous to (6.7), but uses a different weight 4.
Carrying out the calculation in Proposition 5.3.3 of [36] shows that A is equal to
ous A for GL (n, €) and GL (n,IR); so the two parabolics coincide in those cases.
For H, in the notation of (5.29),

(Aa)i=v;+1, alli.

Once this is verified, the claim in the lemma is very easy to check. We leave the
details to the reader.

We now choose the shift ¢~ appearing in the definition of cohomological
induction.

Lemma 6.9. In the setting of (6.7), write
Ly=GL(n,€C)x GL(g,IF)
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as in (5.6), (5.19), and (5.30). Let 6 be 0 if F=C, 1 if F=1R, and —1 if F=H.
Consider the one dimensional character

T=det’®1
of Lyn K. Define
77 =1 @ (A5uyni)

(cf. Definition 4.6). Then the differential of t~ is p (u,), half the weight of 1, on the
top exterior power of ug,. Consequently 1~ extends uniquely to a character (still
denoted t7) of L,.

Sketch of proof. Write R for the dimension of u,n p. What must be shown is that
2 @ (A5 (ugNnE))2 = AR+5 (uy).

This is equivalent to

(6.10) 2 ® AS(ugnt) = AR (4N p).

Over €, I and p are isomorphic as representations of K, and (6.10) is clear. Over
IR or H, the calculations in Sect. 5 ((5.13) and (5.14), and (5.26) and (5.27)) show
that the weights of tin f and p are nearly the same; they differ only by various 2e;.
Careful inspection of this claim gives (6.10); details are left to the reader. The point
of the final assertion of the lemma is that p (11,) automatically defines a Lie algebra
character. The question of whether such a character exponentiates is always settled
on a maximal compact subgroup. Q.E.D.

Definition 6.11. In the setting of (6.7) (which depends on a choice of a
representation u of K), define

j(?: gs((%zLonK)T (g’ K))9

a functor from (I, L,n K)-modules to (g, K)-modules (Definition 6.1). We use the
twist 77 of Lemma 6.9. Put
(FB)= (L5,

a functor from representations of L,NK to representations of K.

There are at least three simple but important observations to make about this
definition. First, Corollary 6.6 applies (by Lemma6.8): these functors relate
representation theory for G and for L, in the strong way outlined in Theorem 6.5.
Second, (.#¥), has been computed in Proposition 4.7; it essentially twists highest
weights by the factor t appearing in Lemma 6.9. In particular, inspection of (5.7),
(5.20), and (5.31) shows that

(6.12) (FF)e(pr) =n.

This makes the notation of Sect.5 consistent with that in Theorem 6.5. Third,
suppose (following Harish-Chandra) that we identify infinitesimal characters with
Weyl group orbits in duals of Cartan subalgebras. Then #, preserves infinitesimal
characters precisely; the p shift appearing in (say) Proposition 6.3.11 of [36] is
cancelled by our new choice of 7.
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As a final observation, we note that we can drop some of the occurrences of the
phrase “‘lowest K-type”.

Lemma 6.13. Suppose G = GL (n, IF), i is an irreducible representation of K, and X
is an irreducible (g, K)-module containing the K-type u. Assume that either
a) u is special (Definition 3.3): or
b) IF=1R, and u is one of the representations u, described in Lemma 5.24.
Then u is the unigque lowest K-type of X.

Sketch of proof. In case (a), this is an elementary consequence of the definition of
lowest. The main point is that the differential of a special representation of K lives
on the center of g. Case (b) is a consequence of the fact that that u is fine, and the
general theory of fine K-types (cf. [35]). It can also be deduced directly from the
subquotient theorem and the definition of lowest.

Corollary 6.14. In the setting of Definition 6.11, any irreducible (15, Ly K)-module
containing p,, has that as its unique lowest Ly K-type.

Definition 6.15. Inthe setting of (6.7), let L be the subgroup of L, defined in Sect. 5;
recall that it is equal to L, unless IF = IR, in which case it is given by (5.22). Fix a real
parabolic subgroup P of L,, with Levi factor L; write

P=LN

for the Levi decomposition. Of course P = L, unless IF =IR; and in that case, we
can take P to be the block upper triangular matrices in the GL (¢, R) factor of L,
(together with the entire GL (n, €) factor). Define

I =1Ind(P1 L,)

(normalized parabolic induction), a functor from (I, L N K)-modules to (1,, L,N K)-
modules. Put

(FOr=Ind(LNKT LynK),
a functor from representations of LN K to representations of Ly K.

Obviously this is a much more familiar kind of object than #,; everything is really
going on inside GL (g, IR). The functor ( #X)y , for example, is essentially induction
from O(q,) x O(q,) to O(q). For now, the most serious observation we want to
make about (#¥)y is Lemma 5.24. Although it is not strictly necessary, we should
also mention the weak version of Theorem 6.5 available in this context.

Theorem 6.16. Suppose q, and q, are non-negative integers, and q=qq,+ q,. Put
G=GL(g,R), and u=p, as in Lemma 5.25. Define L to be GL(gy,R) x GL(g,,R),
and u; to be the representation 1 @ det of O(q,) x O(q,). Define Iy and (I¥)g as
in Definition 6.15.

a) There is a bijection X,— X from irreducible (1, LnK)-modules, almost
spherical of type u,, onto irreducible (g, K)-modules containing the K-type p (cf.
Lemma 6.13(b)).

b) Suppose X, contains u; . Then S5 (C(X))) and C(X) have the same irreducible
composition factors and multiplicities.
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¢) X is the unique irreducible subquotient of either Fx(C(X})) or of Ix(X))
containing .
d) u is the lowest K-type of (FX)g ().

Part (a) follows essentially from the subquotient theorem (compare Chap. 4 of [36],
especially Theorem 4.4.8.) Since the standard modules here are ordinary principal
series for GL (¢, 1R), part (b) is just induction by stages. Part (c) follows from (b),
and (d) is Lemma 5.24.

Definition 6.17. Fix an irreducible representation u of K, and define L as in (5.6),
(5.22), and (5.30). Set

I = Fyo Ip
(Definitions 6.11 and 6.15), a functor from (I, L uK)-modules to (g, K)-modules.

Put
I = (IK)po (FF)R

a functor from representations of LN K to representations of K.
Here is the main theorem.

Theorem 6.18. Suppose IF is R, €, or H, G=GL (n,IF), and u is an irreducible
representation of the standard maximal compact subgroup K of G (Definition 4.2).
Define (L, u,) as in Sect. 5 ((5.6) and (5.7); (5.22) and (5.23); and (5.30) and (5.31)).
Then L is a product of various GL (m,;,IF;), and u, is a special one dimensional
representation of LN K (Definition 3.3). The functor # of Definition 6.17 defines a
bijection from the set of irreducible unitary representations of L, almost spherical of
type u, , onto the set of irreducible unitary representations of G of lowest K-type u. In
particular, ¥ has the following three properties.

a) If Y is a basic almost spherical representation of L of type u,, then FY is
unitary.

b) If Y is a basic almost spherical representation of L of type u,, then JY is
irreducible.

¢) If Xisany irreducible unitary representation of G of lowest K-type u, then there
is a unitary almost spherical representation Y of L, such that X is a subquotient of #Y.

Together with Theorem 3.8, this parametrizes the unitary dual of G. The reader
may be unhappy with the pervasive use of cohomological induction in the
statement, even over € where it is not needed. This is done partly for philosophical
reasons, but mostly for convenience in the proof. In those cases (for example always
over €) when L is the Levi factor of a real parabolic subgroup, we can (using known
“independence of polarization” results) replace .# by ordinary parabolic induction;
and in general, # may be built mostly from ordinary induction. We will return to
this point in Sect. 17. In any case, the functors fare quite computable (for example
on the level of distribution characters).

We conclude this section with the (g, K)-module analogue of Theorem 6.18.

Theorem 6.19. Suppose we are in the setting of Theorem 6.18.
a) There is a bijection X;— X from irreducible (I, L K)-modules, almost
spherical of type u,, onto irreducible (g, K)-modules with lowest K-type p.
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b) X is the unique irreducible subquotient of either F(C(X))) or of F(X)
containing U.

c) u is the lowest K-type of FX(u;).

This is immediate from Corollary 6.6, the first remark after Definition 6.11, and
Theorem 6.16. We lose (b) of Theorem 6.16 because .# is not exact; this could be
remedied by replacing £, by an alternating sum of cohomological induction
functors.

Because of this theorem, parts (a), (b), and (c) of Theorem 6.18 imply the rest of
that theorem.

7. Small representations of K

In this section, we will begin to introduce some of the ideas needed to explain the
proof of Theorem 6.18. We must begin in the context of Theorem 3.8.

Definition 7.1. Fix a collection (one for each m) of special one dimensional
representations y,, of K(m,IF), the restrictions to K of some characters j,, of G
(Definition 3.3). Fix n, and an integer g between 0 and n. Define

Z(g:n)=Ind(K(q) x K(n— )t K(m)) (1, ® 1t o) ,

an infinite dimensional representation of K(n). (We will write Z(g) when no
confusion will result; in general we want to consider these representations for fixed
n and varying ¢.) It will often be convenient to write

Z(—1;n=0.

Although we could proceed immediately with some abstract definitions, it is
perhaps more helpful to recall the (well known) decomposition of Z{(g) into
irreducibles. Set

(1.2) X(g;m)=Kn)/(K(g)x K(n—q))
= Grassmanian of g-planes in IF".

For example, X (1;n) is n— 1 dimensional projective space over IF. Obviously
(7.3) Z(q;n) = u, D (functions on X (q;n)).

The space X (g;n) is a symmetric homogeneous space for K(#), so the space of
functions on X(g; n) is computed by Helgason’s theorem ([17], Corollary V.4.2).
Making explicit the definitions there, and using the parametrizations of K in (5.4),
Proposition 5.17, and (5.28), we arrive at the following lemma.

Lemma 7.4. In the setting of Definition 7.1, suppose q < [n/2]. Then the K-types of
Z(q) all occur with multiplicity one. They are parametrized by (weakly) decreasing
sequences (a,, ..., a,) of q non-negative integers, as follows.

a) Suppose IF=C, and u is det™ (of highest weight (m, ..., m)). Then the
constituents of Z(q) have highest weights

(m+a,m+a,,....m+a,m ....,mm—a, ..., m—ap).
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b) Suppose IF = IR, and u is det", with n equal to zero or one (with highest weight
(0, ..., 0),n). Then the constituents of Z (q) have highest weights

((201, LR} 2045 07 LR ] 0)9 1’[,),

with n' equal to n or .
¢) Suppose IF =H, so that u must be trivial. Then the constituents of Z (q) have

highest weights
(@, a,a;,...,a,,a,,0,...,0).

Since obviously Z (g) is isomorphic to Z (r — g), this lemma computes Z (q) in all
cases.

Corollary 7.5. Inthe setting of Definition 7.1, suppose ¢' < q < [n/2). Then there is an
inclusion Z(@) > Z().

This inclusion is analytically quite interesting, and may be obtained more
explicitly in various ways. For example, Lemma 2.4(d) exhibits an inclusion of two
(g, K)-modules. Restricted to K, they are just Z(m—1;2m) and Z (m;2m). The
proof of that lemma (which relies on fairly serious results still to come) extends
easily to yield all the inclusions of Corollary 7.5.

Alternatively (at least as a point of view; the mathematics is in some sense the
same), there is a Radon transorm from functions on X (g') to functions on X (¢),
obtained by integrating over ¢’-planes contained in a fixed g-plane. From this point
of view, there is some analysis to do to prove the injectivity of the transform.

Definition 7.6. In the setting of Definition 7.1, define (for 0 < g < [n/2])
w,(u; n) = lowest K-type of Z(q;n)/Z(g—1;n).

This makes sense because of Corollary 7.5. In the parametrization of Lemma 7.4,
w, corresponds to the sequence

(a)=01,...,1,0,...,0) (g ones).
In particular, w, (u) is u itself. The set of small representations of K associated to i is
S ={w,w1=q=[n/2]}.

More generally, suppose G is a product of various GL (m;,IF;), and p is a special
one dimensional representation of K; say u=(®y;). Then

S ={®0;16;=u; for i+ iy, and ;,€ S (1)} -

Definition 7.7. Let Y be anirreducible almost spherical (g, K)-module of type u. We
say that Y satisfies Hypothesis 7.7 if it falls in one of the following three cases.

Case 1. Y does not admit an invariant Hermitian form {,).

Case 2. Y admits aninvariant Hermitian form which is positive on z, but not on
every K-type in S(y) (Definition 7.6).

Case 3. Y is basic (Definition 3.7).

Obviously Theorem 3.8(d) follows immediately from
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Theorem 7.8. Suppose G=GL (n,IF), and Y is an irreducible almost spherical
(9, K)-module of type u (Definition 3.3). Then Y satisfies Hypothesis 7.7.

This theorem says that ¥ can fail to be unitary only if it admits no invariant
Hermitian form, or if its form has different signs on the K-type g and some small K-
type w. Its advantage over Theorem 3.8 is not that it is intrinsically interesting —
after all, it says nothing about the unitary representations — but that it is ideally
suited to proving Theorem 6.18. Its proof is in Sects. 12-14.

8. Relatively small representations of K: Fine case

In this section, we will formulate an extension of Definition 7.6 to general
representations of K. The most difficult case is that of the K-types considered in
Lemma 5.24, and this section will be devoted to it. It is rather technical, and the
reader may wish to omit it. We need from it only Corollary 8.12.

We begin with a very useful general fact.

Proposition 8.1. Suppose G is a real reductive group, K is a maximal compact
subgroup, and P is a parabolic subgroup. Fix a Levi decomposition P= LN with L
stable under the Cartan involution. Write M = LK. Let Y be an irreducible (I, M)-
module, and Z an irreducible representation of M occuring in Y. Put

X=Ind(P1 G)(Y)

If Z is not a lowest M-type of Y, then Ind (M 1 K)(Z) contains no lowest K-type of X.
That is, the lowest K-types of the induced are contained in the induced from the lowest.

Proof. Recall the parameter A(y) attached to a representation of K by
Proposition 5.3.1 of [36]. (It was referred to as A, in the proof of Lemma 6.8, to
avoid confusion with the A defined only for GL (n) in section 5. Since it is used now
only within this proof, no confusion should result.) We will use the fact ([35],
Lemma 8.8) that lowest can be defined by minimizing the length of this parameter.
Let Z, be a lowest M-type of Y. Then we conclude that

(8.2) 14(Zo) | < 1A(2)].

Recall from [35] that 1 (Z,) is the Harish-Chandra parameter for the discrete series
representation = figuring in the Langlands classification for Y. Let u be a lowest K-
type of X, and X,, an irreducible subquotient of X containing u. Then = is also the
Langlands discrete series for X,, so A(x) is actually conjugate to A(Z,). In
particular,

8.3) [A(Zo) =12 |.

Choose a representation Y’ of L with lowest M-type Z (as is always possible),
and let p' be the lowest K-type of X' =Ind(Y’). Applying (8.3) to these
representations gives

(8.4 [A(Z) | =14()].
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If 4" isany K-type of Ind (Z), then u” occurs in X': so (using the analogue of (8.2) for
G)
(8.5) [A@) =AY
Combining (8.2)-(8.5) gives
A <A@,
which is the conclusion of the proposition. Q.E.D.

Here are the standing hypotheses for the rest of this section. G will be GL (n,IR).
Fix non-negative integers ¢, and ¢, , such that

(8.6)(a) dot+qr=n.
Recall from Lemma 5.24 the representation
(8.6)(b) u=usqo,9q1)-

The representation y is defined by specifying its highest weight. It is an easy exercise
to calculate the highest weights of the exterior algebra representations, and deduce
that

(8.6)(c) u=[AR"] @ C.
It will be convenient to write
(8.6)(d) M=0(q,) x O(qy).

Proof of Lemma 5.24. We want to show that u is the lowest K-type of Ind (1 @ det).
We will apply Proposition 8.1, with P = P(q,, ¢,) (Definition 3.6). The conclusion
is that we may replace 1 ®det by (the restriction to M of) any irreducible
representation Y with unique lowest M-type 1 ®det. We choose for Y a full
principal series representation of GL (¢o) x GL(g,). Then X'=1Ind(Y) is a full
principal series for G. We need to show that u is the lowest K-type of X. This follows
from Sect. 5.3 of [36], because u is fine (as was first observed in [5]). Q.E.D.

Definition 8.7. In the setting (8.6), and using the notation of Definition 7.6, define
w, o (1) = lowest K-type of Ind (M1 K)(w,(1) ®det) (0= g = [g0/2])
w,, 1 (1) = lowest K-type of Ind (M1 K)(1 ®w,(det)) (0=g=1q,/2]).
The set of relatively small representations of K associated to i 1s
S () = {wg, o) [0 <q=[q6/21}
Ui, (W) 10<g=1q:/2}.

Because of the last part of Definition 7.6, this is precisely the set of lowest K-types of
Ind (M1 K){(w), as o runs over S(1 ®det).

We want to compute S (i) explicitly.

Lemma 8.8. In the notation of Definition 8.7, the highest weight of w, o(u) may be
computed as follows. Recall m and ¢ from (5.8). Write (y,n) for the highest weight
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of the representation yi;(q,—2q, q,) of O(n—24); this is defined in Lemma 5.24.
(In particular, y is a string of ones and zeros.) Then the highest weight of 0, o) is

@ ...2n.m (@2s).

An analogous formula applies to w, ().

Proof. The representation w,(1;24) of O (2¢) has highest weight ((2, ..., 2),3). Itis
very easy to check from the definition that w,(1; g,) is the lowest K-type of

8.9) Ind(O(2q) x O(gy—29) (0w, ®1).

(Part of the reason this is easy is that the inducing subgroup contains a Cartan
subgroup.) It therefore follows from Proposition 8.1 and Definition 8.7 that
@, o(#) is the lowest K-type of

(8.10) Ind (O (2¢) x O (g0 — 24) x O(q,)) (w, ®1®det).

Now we reverse the reasoning, and compute the lowest K-type by induction by
stages with the last two factors grouped together. Lemma 5.24 and Proposition 8.1
imply that w, o(u) is the lowest K-type of

(8.11) Ind(0(2¢) x O(n—29) (0, B (90— 24, 41)) -

Again because the inducing subgroup contains a Cartan for K, this lowest K-type is
easy to compute; it is the one given in the conclusion of the lemma. Q.E.D.

Corollary 8.12. In the setting of Definition 8.7, taking the lowest K-type of
Ind (M 1 K) defines a bijection from S (1 @det) onto S(u). Fix w in S{u), and a
standard SO (2) inside K. Then the weights of the SO (2) in w are integers between —2
and 2.

It is only the latter assertion of this corollary which we will really need, and that
only in the following weak form: if ¢ belongs to S(1®det), then there is a
representation o of K which contains J, and has SO (2) weights in between — 2 and
2. This sounds like it should be very easy (since the SO (2) weights of § are between
—2and 2). To see that there was really something to check, consider the analogous
problem when ¢ is 1 ® det. This has all its SO (2) weights equal to zero; but any
representation of K containing it must have some non-zero SO (2) weights.

9. Relatively small representations of K: General case

We have up until now defined S (1) when  is special one dimensional, and when u is
one of the representations of O (n) in Lemma 5.24. We extend this definition to
product groups as at the end of Definition7.6. This covers the case of the
representations u, of Ly K, introduced in Sect. 5. The following easy lemma is one
of the main steps in the reduction of Theorem 6.18 to the almost spherical case. It
will guarantee the existence of representations of K on which it is possible to study
Hermitian forms.

Lemma 9.1. Suppose G=GL (1, IF), and p is an irreducible representation of K.
Define Ly and p,, as in Sect. 5 (cf. (5.6) and (5.7); (5.19) and (5.20); and (5.30) and
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(5.31)). Recall the character t of Ly K defined in Lemma 6.9. Suppose v, belongs
to S(uy,). Then the highest weight of w,;, &1 is K-dominant: so

w=(I5)(0.,®1)
(cf- Definition 6.11 and Proposition 4.7) is a non-zero representation of K.

Proof. We have computed all the highest weights and positive roots explicitly, so
we only need to inspect the results in each case. Consider for example the case
F =1, with w,, differing from x,, only on the GL (n—2p, R) factor. Using the
notation around (5.19), we see from Lemma 8.8 that w,, has highest weight of the

form
02 (i—1...,7-1,2,...,2,1,...,1,0,...,0), 7).

Tensoring with t adds 1 to the first p coordinates. The resulting weight will be
dominant if the sequence is decreasing and non-negative. Since y already has this
property, we only need to check that y, is at least 2. But p was defined exactly to
make this true, proving the lemma in this case. The other cases are similar, slightly
easier, and notationally more complicated; so we leave them to the
reader. Q.E.D.

Definition 9.3. In the setting of Lemma 9.1, define the set S (1) of relatively small
representations of K associated to y to be the set of all irreducible constituents of the
various (J¥),(w,,), as w,, runs over S(u, ). This latter set is defined in Definitions
7.6 and 8.7, and the remarks preceding Lemma 9.1.

Even though we need no more than is contained in Lemma 9.1, careful inspection of
the calculations in it actually proves a bit more.

Corollary 9.4. In the setting of Lemma 9.1, we have
a) (IK), defines a bijection from S(u,,) onto S(u): and
b) taking the lowest K-type of IX(w ) defines a bijection from S (u;) onto S (u).
Here we use the notation of Definition 6.17.

We record here the part of Theorem 6.18 which will follow from Theorem 7.8.

Theorem 9.5. Suppose we are in the setting of Theorem 6.18, and X is an irreducible
(9, K)-module with lowest K-type u. Assume that X admits an invariant Hermitian
Jorm {,>, which we may assume to be positive on u. Let X, be the irreducible
(I, Ln K)-module corresponding to X (Theorem 6.19). Then either

a) X, is basic: or

b) there is a K-type w in S (1) (Definition 9.3) on which {,> is not positive.

This includes (the contrapositive of) Theorem 6.18(c). It follows from Theorem 7.8
and Proposition 10.2 below.

10. Induction and Hermitian forms

In this section, we will recall some known results about the effect of various kinds of
induction on Hermitian forms. These will be the basic tools used in proving
Theorems 7.8 and 9.5. We begin with a definition from [38]. Recall that a (g, K)-
module is called admissible if each K-type has finite multiplicity.
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Definition 10.1. Let Y be an admissible representation of G, with an invariant
Hermitian form ¢, . The signature of {,> is a triple (p, g, z) of three functions from K
to IN, defined as follows. Fix an irreducible representation (4, V) of K, and a
positive invariant Hermitian form on V;. Then

Y;=Homg(V;, V) 2 (Vy)* @Y

acquires an invariant Hermitian form {,);. We define z(d) to be the dimension of
the radical of {,);, and (p(d), ¢(d)) to be the signature of the induced non-
degenerate form on Y;/(rad{,>;). Thus the multiplicity of é in Y is given by

m(0)=p(0)+q(d)+z(6).
For definiteness, we may sometimes write p (d, Y), etc.

In terms of signatures, we can formulate the reduction theorem which gives
Theorem 9.5 from Theorem 7.8.

Proposition 10.2. Suppose G is GL (n,TF). Let X be an irreducible representation of
G admitting a non-zero invariant Hermitian form {,». Let u be the lowest K-type
of X, and define (L, u;) as in section 5. Let X, be the irreducible almost spherical
representation of L of type u, corresponding to X (Theorem 6.19).

a) X, admits a non-zero invariant Hermitian form (,),. Fix a K-type

we{u}uSu)
( Definition 9.3), and let

wpe{u) uS(uy)

be the corresponding L~ K type { Corollary 9.4). Assume that . is normalized to be
positive on u, and {,», to be positive on ;. Then

b) plw,X)zp(w,X): q(w,X)Zq(w, X;)
(¢f. Definition 10.1).

We will prove this result at the end of this section.

We consider now the behavior of Hermitian forms under ordinary parabolic
induction. We may as well work in the context of a general reductive Lie group G,
with maximal compact subgroup K. Suppose Q is a parabolic subgroup of G. Then
necessarily

(10.3)(a) L=0n60Q

is a Levi factor of Q. Write U for the unipotent radical of Q. Then there is a Levi
decomposition

(10.3)(b) 0=LU,

a semidirect product with U normal.
Each element of G can be written as a product of an element of K and an element

of Q:
(10.4) G=KQ.
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Proposition 10.5. Let Q = LU be a parabolic subgroup of G as in (10.3), and Y an
{1, LN K)-module.
a) As representations of K,

Ind(Q1 G)(Y) =Ind (LNKT K)(Y).

This isomorphism is defined by restricting functions in the induced representation to
K. In particular (writing m(t,0) for the multiplicity of a representation 1 in an
appropriate restriction of ), we have for any u in K,

muInd(@1G)¥)= Y muym(Y).
te(LnK)"
b) Suppose Y admits an invariant Hermitian form {,>,. If we regard elements of
the induced representation as functions on K with values in Y (as is possible by (a)),
then

<U, W> = f <U’ (k)a w(k)>Ldk
K

defines an invariant Hermitian form on the induced representation. Its signature
( Definition 10.1) is given by the formula in (a), with the first and third m’s replaced by
D, q, or z. In particular, the induced form is non-degenerate (respectively, positive
definite) if and only if {,>, is.

This is standard and easy. In (b), the fact that induction preserves unitarity goes
back at least to Wigner. The importance of the (equally simple) fact that it also
preserves failure to be unitary was noticed more recently; I learned of it in the
dissertation of Birgit Speh [28].

We turn now to the case of cohomological parabolic induction.

Proposition 10.6. In the setting of Definition 6.1, let Y be an (I, LN K)-module,
endowed with an invariant Hermitian form {,>, (which may be degenerate). Let S be
the dimension of uni.

a) LY and (LX)°Y carry induced Hermitian forms

LD =06 =0 (LR =k

b) The restriction (that is, pullback via w*s; cf. (6.2)a)) of (,>gto (L*)Yis (,>k.
¢) (LK) carries positive definite forms to positive definite forms.

This is closely related to the theorem of Enright and Wallach in [11]. Part (c) is due
to Enright; the entire proposition may be found in Corollary 5.5 and Proposition
6.10 of [36].

One should keep in mind the fact (Proposition 6.3(c)) that ySis an inclusion. It
is helpful to drop the map from the notation, writing

(10.7) LY LY.

This inclusion plays some of the role of the isomorphism in Proposition 10.5(a).

We have most of the machinery needed to prove the following lemma, but some
otherwise useless definitions would be required first. We will therefore regarditasa
formal consequence of the fact that the set of irreducible (g, K)-modules admitting
non-zero invariant Hermitian forms is explicitly known (by the work of Knapp-
Zuckerman and others; see for example [37] or [38]).
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Lemma 10.8. In the setting either of Theorem 6.5 or of Theorem 6.16, X admits a
non-zero invariant Hermitian form if and only if X, does.

Proposition 10.9. In the setting of Theorem 6.5, suppose X admits a non-zero
invariant Hermitian form . Let u be a lowest K-type of X, and u, the corresponding
lowest LNK type of X,. Let {,>, be a non-zero invariant Hermitian form on X,
(Lemma 10.8). Assume that {,> is normalized to be positive on u, and (,», to be
positive on u, . Fix an irreducible representation w, of LN K. Assume that (£ *)5(w;)
is non-zero: fix an irreducible constituent w of it. Then

p((l), X) ;p(wLaXL)
q((l), X) é q(a)L’XL)
(cf. Definition 10.1).
Proof. Since X, is a quotient of C(X,) by some Q; (Theorem 6.4), we can regard
{,>. as a form on C(X,) with radical Q,. Write {, ) for the induced form on
C(X)=25(C(X))

(Theorem 6.5(b) and Proposition 10.6). By Proposition 10.6(b) and (c), <,y is
positive on u. Because X is the unique irreducible quotient of C (X)) (say by Q), and
occurs only once as a composition factor, a formal argument shows that the radical
of (,>¢is Q. S0 {,Dgisjust {,>, up to a positive constant multiple. Write , > ¢ for the
form on (LX)5(C(X,)) induced by {,),. Proposition 10.6(c) gives

])((D,<,>K) zp(wu XL)
q(w><9>K) ; q(wL’ XL) .
Proposition 10.6(b) gives

p(w’<a>) gp(w’<’>l()
q(a),<,>) g q((ua<’>K) .
The proposition follows. Q.E.D.

This argument used Theorem 6.5(b) in an essential way. The analogous statement
fails in the context of Theorem 6.16. To replace it, we need the following lemma.

Lemma 10.10. Ir the setting of Theorem 6.16, fix an irreducible representation
w of K. Assume that in the restriction of © to a standard SO(2), only the weights

between —2 and 2 appear. Then the multiplicity of » in X is the same as its multiplicity
in Ir(X)).

This is proved in precisely the same way as Lemma 13.3 below, so we leave the
details to the reader.

Here is an analogue of Proposition 10.9.

Proposition 10.11. In the setting of Theorem 6.16, suppose X admits a non-zero
invariant Hermitian form {,». Let{,> be a non-zero invariant Hermitian formon X
(Lemma 10.8). Assume that {,) is normalized to be positive on u, and {,>; to be
positive on p,. Fix an irreducible representation v, of LNK, and an irreducible
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constituent o of (SFK)g(w,). Assume that in the restriction of o to a standard SO (2),
only the weights between —?2 and 2 appear. Then

p(w, X)2p(w, X))

g(w, X) 2 q(w,, X;)
(cf. Definition 10.1).
Proof. One essentially imitates the proof of Proposition 10.9, using Proposition
10.5(b) in place of Proposition 10.6. One has to find some relationship between

{,»¢ and {,> on w; this is accomplished by Lemma 10.10. Details are left to the
reader. Q.E.D.

In light of the defining properties of S (1) established in Sect. 8 and 9, we see that
Proposition 10.2 follows from Propositions 10.9 and 10.11.

11. Spherical representations: General results

At last it is time to pass beyond formal preliminaries to the substance of the
argument. The first item on the agenda is the proof of Theorem 7.8. In Sect. 12
through 14, we will establish it for each of the three fields in question. First,
however, we need some notation and results common to the three cases. Write

(11.1)(a) A = group of n x n diagonal matrices
with positive real entries
(11.1)(b) M = centralizer of 4 in K
=K(1,IF) x ... x K(1,IF) (n copies).
Here K(1,IF) (notation (3.2)) is the maximal compact subgroup of the
multiplicative group of IF; it is U (1), Z/2Z, or Sp (1) (which is SU (2)) according as

IFis €, R, or IH. The group 4 may be taken as the one figuring in an Iwasawa

decomposition of G. The Lie algebra of 4 is
(11.2)(a) a, =IR",

the isomorphism identifying the exponential map for 4 with the usual exponential
map on each diagonal entry. Consequently

(11.2)(b) A ~a* >

The set of restricted roots of a in g is

(11.2)(c) 4(g,9)={e;—¢;};

each has multiplicity 4 (the dimension of IF over IR). The little Weyl group is
(11.2)(d) W(d)=S§,,

the group of permutations of the coordinates in 4. Taking the obvious choice for
A" (cf. 5.3)), we get
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(11.3) N = upper triangular matrices with

ones on the diagonal
for the Iwasawa N. Notice that the group B of (3.5) is just MAN.

Definition 11.4. Suppose v is a character of 4 (which, by (11.2)(b), we may regard
as an element of C”"). The spherical principal series representation with parameter v,
I(v), is the Harish-Chandra module of

Ind (B1 G) (v).

Here we regard v as a character of B= M AN by making M and N act trivially, and
we use normalized induction. (With this parametrization, /(v) is naturally unitary
whenever v lies in /IR™) As is well known,

IM | zIndM T K)(T).
In particular, the trivial representation of K occurs exactly once in 7(v). Write

J (v) = unique irreducible subquotient of 7(v)

containing the trivial representation of X.

Here are some of the basic results about spherical representations. They are by now
partly “classical”, but some proofs and references may be found in [22] and [24].

Theorem 11.5. Fix notation as above.

a) If weW(A) and v ea*, then J(v) is isomorphic to J(wv).

b) If v and v’ belong to a*, and J(v) is isomorphic to J(v'), then there is a
weW (A) with wy=v'.

In the remaining statements, v is an element of o*, which is sometimes identified
with C".

c) J(v) admits a non-degenerate invariant Hermitian form if and only if v is
conjugate under W (A) to — V: that is, if and only if the sequence (v;) is a permutation of
(=)

d) Assume that the sequence (Rev,) is decreasing. Then J(v) is the unique
irreducible quotient of 1(v).

e) Assume that the sequence (Rev,) is increasing. Then J(v) is the unique
irreducible subrepresentation of 1(v).

Fix m<n. Let s be the permutation transposing m and m+1, and let v/ =sv.

f) There is a natural intertwining operator A(s) from 1(v) to 1(v"): it is induced
from the corresponding operator on the minimal parabolic subgroup corresponding
to s.

g) If Rev,) = Rev,, ), then A(s) is non-zero on the trivial representation of K.

h) A (s) is an isomorphism unless v,,— v, , is of the form + (d+2k), with d the
real dimension of T, and k in IN.

The following corollary, although not decisive, indicates the general way in which
we will use this result.

Corollary 11.6. Fixvina*. Partition the variousv; into subsets in such a way that if v;
and v; belong to different subsets, thenv,— v, is not an even integer (if IF is € or IH), or
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not an integer (if IF is R). Permute v to a new sequence v', in which each subset is an
interval: that is, of the form

{(V’)p’ (v,)p+1’ et (v,)q} .

The subsets then define an ordered partition n of n ( Definition 3.6 ). For each part p; of
n, let (v')! be the corresponding interval of the (v');’s, and let J ' be the representation
J((v'Y) of GL(p;, IF). Then

J() =Ind (P(m) 1 G)(®J).

Proof. We may assume without loss of generality that the v, are ordered with
decreasing real parts, and that the permutation to v’ does not disturb the ordering
within each subset. That permutation may clearly be written as a product of
transpositions satisfying the condition in Theorem 11.5(h). Consequently I(v) is
isomorphicto 7 (v'). Write w, for the permutation which reverses the order of all the
coordinates, and w, for the one reversing the order within each part of . The same
argument shows that I(w,v) is isomorphic to I(w,v’).

On the other hand, parts (d) and (e) of Theorem 11.5 guarantee that there is a
unique (up to multiple) non-zero intertwining map from I(v) to I(w,v), and that its
image is J(v). By the first part of the proof, it follows that any non-zero map from
I1(v") to I(w,v") has image J(v).

Finally, define representations /;(v') and I;(w,v') in analogy with J;; then I(v")
is induced from the product of the I;(v') on P(rn). By Theorem 11.5 applied to
GL (p;), thereis a map from 7;(v') to I;(w, v'), with image J;. The induced map from
I(v') to I(w,v') has image Ind (® J;). By the preceding paragraph, this completes
the proof. Q.E.D.

Corollary 11.7. Theorem 7.8 may be reduced to the case Y= J(v), with all
coordinates of v real.

The argument for this is based on the following simple lemmas, which we will use
repeatedly.

Lemma 11.8. In the setting of Definition 3.6, fix a part p; of ©, and a small
representation w,(1; p;) of K(p;). Let 6, be the representation of K (n) which is w, on
the K(p;) factor, and trivial on all the other factors. Then

w,(1;n)<Ind (K(m)t K)(3,).

Proof. Perhaps the easiest method is to show that w, (1; n) is actually the lowest K-
type of the right side. To prove that, Proposition 8.1 allows us to replace §, by
something of which it is the lowest K (n)-type. Write " for the refinement of x in
which p; is replaced by 2¢4 and p; — 2q. Define J, to be the representation of K(n")
which is w, (1; 2g) on K(2¢), and trivial on the other factors. Then (8.9) says that we
may replace J,, by

Ind (K(z")t K(n))(6,).

By induction by stages, we can therefore replace r by n’ throughout. Now compute
the lowest K-type by induction by stages through K(2q) x K(n— 2q), using (8.9)
again. Q.E.D.
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Lemma 11.9. In the setting of Definition 3.6, let J,= & J, be an irreducible spherical
representation of G (n). Assume that J_admits an invariant Hermitian form, and that
J=1nd (J,) is irreducible. If each J; satisfies Hypothesis 7.7, then so does J.

Proof. Assume that all Hermitian forms are positive on the spherical vectors. We
use Proposition 10.5. First of all, it says that J admits an invariant Hermitian form.
If J is basic, there is nothing to prove; so assume it is not. The set of basic
representations is closed under induction, so some J; must not be basic. By
Hypothesis 7.7, there is a small representation §; of K(p;) such that the form on J;is
partly negative on §;. Define d, to be the product of §; with trivial representations
on the other factors. By Lemma 11.8,

Ind(K(n)T K)(3,)

contains a small representation « of K. By Proposition 10.5, the form on J is partly
negative on w. Q.E.D.

Proof of Corollary 11.7. We may as well assume that Y has an invariant Hermitian
form. Partition the v; by putting two of them in the same class whenever they have
the same imaginary part. This partition satisfies the hypotheses of Corollary 11.6.
The condition in Theorem 11.5(c) for having an invariant Hermitian form must be
satisfied by each subset of the v;’s separately; so the representations J; of Corollary
11.6 all admit invariant Hermitian forms. By Lemma 11.9, it is enough to prove
Theorem 7.8 for each J; separately. This reduces us to the case when all v, have the
same imaginary part c. Since

(11.10) JO) ® (8,) = J((vi+ d1))

(with d the dimension of IF, and §, as in (2.2)), we can change the imaginary part of v
without changing unitarity. Thus finally we are reduced to the case of imaginary
part zero. Q.E.D.

A reduction argument like Corollary 11.7 is available for all reductive groups
(cf. [37], Corollary 3.6).
We will often use the following lemma.

Lemma 11.11. Suppose the sequence Re(v)) is decreasing. Then J(v) is finite
dimensional if and only if for every i, v;— v, is of the form d+ 2k, with d the
dimension of IF and k in IN. It is one dimensional if and only if v,— v, is always
equal to d.

This result has the same status as Theorem 11.5. Using it, we can identify the Stein
complementary series in these parameters. Put

(11.12)(a) p)=d((n—12+t,(n—=3)2+¢, ..., —(n—1)/2+1).
(It will sometimes be convenient to write p (¢;#) instead of p (¢).) Then
(11.12)(b) 02m(1, )2 (p(2), p(—1)).

Two coordinates of the v parameter here which come from different blocks differ by
d(m+ 2t), with m an integer. Corollary 11.6 now implies that equality holds in
(11.12)(b) whenever 1¢1Z (over R or €), or 1¢4Z (over IH). This proves all the
irreducibility assertions in Lemma 2.4 except at t =0 or (if F=IH) r=1.
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12. Proof of Theorem 7.8: Complex case

In this section, G will be GL (n, €). We use other notation as in Sect. 5 and 11. Fix v
in a*; we will generally regard v as a sequence of n complex numbers. Rearrange the
sequence in such a way that the following properties hold: there is an ordered
partition

(12.1)(a) =P, .5 D)
of n, such that
(12.1)(b) Vi— Yy €2IN — {0}

when iand i + 1 belong to the same block of 7. We also assume that 7 is maximal (in
the usual partial order on partitions) with respect to this property. Write v/ for the
restriction of v to the p; block of x; it is a sequence of complex numbers, strictly
decreasing by positive even integers. (A little thought should convince the reader
that the set of pairs (p;,v’) is determined uniquely up to permutation.) By
Lemma 11.11, the corresponding spherical representation J; of GL (p;, €) is finite
dimensional.

Proposition 12.2. Let J(v) be any irreducible spherical representation of GL (n, €).
Define n and the various J; as above. Then

J() 2Ind (P(n)? G)(®J)).

Let me emphasize again that this result was conjectured by Enright and proved with
Barbasch. It includes all the irreducibility assertions in Lemma 2.4 and its proof
over C.

Proaf. Using Corollary 11.6, we can reduce to the case when all the v; are congruent
mod 2Z. (The reduction serves only to simplify the notation somewhat.) Write v’
for the sequence rearranged in decreasing order. The multiplicities in this sequence
give a second ordered partition & = (g,) of n, with s parts. The largest part p,, of 7 is
the length of the longest possible sequence of distinct v;’s. This is nothing but the
number s of parts of £. (It is also the largest block of the transpose of £.) The
corresponding sequence v™ consists of one representative from each block of v'.
Continuing in this way, one finds that = and & are transpose partitions.
The next step in the argument works for any complex reductive group.

Proposition 12.3. Let G be a complex connected reductive Lie group, and J an
irreducible spherical representation of G. Write £ for the annihilator of J in U(g).

a) S is the unique maximal ideal in U (@) of the same infinitesimal character as J.
Any other primitive ideal of this infinitesimal character has strictly larger Gelfand-
Kirillov dimension.

Write S for the set of irreducible representations of G having the same infinitesimal
character, Gelfand-Kirillov dimension, and central character as J. Write V for the left
cell representation of the integral Weyl group W (J) attached to S by Joseph and
Lusztig (cf. [20]).

b) The cardinality of S is the dimension of Homgy,, (V, V).
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Proof. Part (a) follows from Duflo’s analysis in [8]. Part (b) may be found in [2],
Proposition 5.25. Q.E.D.

Corollary 12.4. No other representation of GL(n, C) has the same infinitesimal
character, central character, and Gelfand-Kirillov dimension as J (v).

Proof. The left cell representations of the symmetric group are all irreducible (see
[21]), so the Hom in Proposition 12.3(b) is one dimensional. Q.E.D.

It is possible to argue a little more directly from Joseph’s resuits on GL (n), but
Proposition 12.3 seemed to be worth stating in general.

To finish the proof, we observe that Joseph calculates the Gelfand-Kirillov
dimension of J(v) in [19]. It is

2n(n—1)-22p;(p;—1).

But this is exactly the Gelfand-Kirillov dimension of the induced representation in
Proposition 12.2. By Corollary 12.4, J (v) is the only possible composition factor of
the induced representation. Q.E.D.

The reader who is unhappy with the invocation of soft-core non-commutative
algebra to prove what amounts to a result about intertwining operators will find
that the argument given in the next section for IR can be adapted to this case as well.

Proof of Theorem 7.8 over €. We proceed by induction on #n. We may assume that
Y = J(v) is not basic, but that it does admit an invariant Hermitian form. We want
to show that Y is in Case 2 of Hypothesis 7.7. By Corollary 11.7, we may assume v
is real. Theorem 11.5(c) says that v must be a permutation of —v. Choose notation
as in (12.1). Write p=p,, and consider the sequence

(12.5) vVi=(0y, o, 0,),

which decreases by positive even integers. There are two cases. First, assume that v!
is a permutation of —v'. Then the same is true for the remaining n — p coordinates v’
of v. This means that the finite dimensional representation J(v'), and also J(v"),
admit invariant Hermitian forms. We are therefore in the setting of Lemma 11.9. By
inductive hypothesis, that lemma now reduces us to the case when p = n, so that
J(v) is finite dimensional. That case is treated by the following lemma.

Lemma 12.6. Let g,=%,+ p, be a Cartan decomposition of a semisimple Lie
algebra. Let F be an irreducible finite dimensional spherical representation of g,
admitting an invariant Hermitian form positive on thet,-fixed line F,. If F is not one
dimensional, then F has aly-invariant subspace F, , isomorphic to a subspace of p, on
which the form is negative.

We defer the proof for a moment. Lemma 7.4 and Definition 7.6 show that the p
representation is w,, which is a small representation attached to the trivial
representation of K; so J(v) falls in Case 2 of Hypothesis 7.7, as we wished to show.

Next, suppose that v! is not a permutation of —v*. Since v is a permutation of
—v, it follows that —v' must be one of the other v/; say v2, without loss of
generality. Once again an application of Lemma 11.9 and the inductive hypothesis
reduces us to the case when v = (v!, v?). Say vis congruent to ¢ mod Z, with ¢ strictly
between — 1 and 1. After interchanging the roles of v! and v?, we may assume ¢ is
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between 0 and 1. Define

O =) —(, ..., 8
OH =H+1=-e),...,1—2)

(12.7) vi=(OhH, -0
vo=(H7, =)
Y= J(*).

A standard continuity argument shows that the signatures of the forms on Y and Y*
(Definition 10.1) satisfy

(12.8) pH(O=p©)
q*(9) < q(9),
with obvious notation.

The terms of v* are all congruent mod 2Z, and have multiplicity one or two. By
Proposition 12.2, each is induced from a finite dimensional Hermitian repre-
sentation E* of GL (r*) x GL (s*). If either of these representations has dimension
greater than one, Lemma 12.6 and Lemma 11.9 say that the corresponding Y*

satisfies Case 2 of Hypothesis 7.7. By (12.8), Y does as well. So we may assume that
E* are one dimensional. This means that, up to permutation,

(12.9) vE=(p(0;r%), p(0;5%))

(notation (11.12)(a)). A simple argument shows that this is impossible unless the
coordinates of v! decrease by exactly 2. That is,

(12.10) vi=p(sp)

for some real number ¢ not in $Z. Possibly interchanging the roles of v' and v?
again, we may assume that ¢ is positive. By (12.9), ¢ is at most #/2. We are assuming
that Y is not basic. By (11.12)(b), this means that ¢ is greater than 3.

Write I(s) for 6, ,(1, s) (Definition 2.3), and J(s) for its irreducible spherical
subquotient; these coincide unless s €$Z. Recall from Definition 7.6 that the set of
small representations attached to the trivial representation consists of p
representations w,, for k running from 1 to p; and that w, is the trivial
representation of K. By Lemma 7.4, all of these occur in 7 (s), with multiplicity 1. Fix
a positive integer m less than or equal to p. Lemma 7.4 and Proposition 12.2 show
that

(12.11) w, occurs in J(m/2) if and only if kS p—m.
In particular, w,_,, occurs in J(m/2), and w,_,, 4+ does not. This suggests

Lemma 12.12. With notation as above, suppose s is between m/2 and (m +1)/2. Then
the Hermitian form on J(s) which is positive on the spherical vector is negative on
Wp-m+1-

Proof. The representation i = w,_,, occurs in J(z) for all z between 0 and s (by

(12.11); so a continuity argument shows that the form on J (s) is positive on u. Let Z
denote the unique irreducible subquotient of 7((m+ 1)/2) containing x. We may
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endow Z with a Hermitian form positive on 4. By Theorem 3.8 of [38] (that is,
“obviously”), it suffices to show that the form on Z is negativeon w = w,_,,,, . To
do this, we need to identify Z in the parametrization of irreducible (g, K)-modules
with lowest K-type u, given by Theorem 6.19. First, Lemma 7.4 guarantees that u is
the lowest K-type of Z. The pair (L, u,) attached to u is computed by (5.6) and (5.7).
Lis GL (p—m)x GL(2m) x GL(p — m), and u, is det ® 1 @ det . The K-type w
belongs to S (u) (Definition 9.3); in fact it corresponds to the p representation of the
U(2m) factor. Write

Z,=URQVRW
for the representation of L corresponding to Z (Theorem 6.19). Here V' = J(¢)isa
spherical representation of GL (2m); and U is of the form

U= J(y) ® (det/|det}).

with J(y) spherical for GL (p — m). By symmetry (more precisely, using the inverse
transpose automorphism of GL (r)), we see that

W= J(y) ® (det/|det|) .

By Proposition 10.2, we must show that the form on J(¢) is negative on the p
representation of U (2m).

To do this, we must say something about ¢. We compute the infinitesimal
character of Z, first in terms of Z,, and then in terms of the induced representation
I((m+-1)/2). The conclusion is that

(213)  (wi+ D, b, (v~ D)y =w(p(m+1)/2;p), p(— (m+1)/2; p))

for some permutation w of 2p. More explicitly, the term on the right is (up to
permutation)

p+mp+m—2,..., —p+m+2,p—m—-2,p—m—4,..., —p—m)

In particular, all the terms in ¢ are congruent mod 2Z, and they have multiplicity at
most two. By Proposition 12.2, J(¢) is induced from a product of two finite
dimensional Hermitian representations. By Lemma 12.6, it is enough to show that
these are not both trivial. Suppose they are; then ¢ is a permutation of
(p(0;1), p(0;2m—r) for some r between 0 and 2m.

It will be convenient to assume that y is decreasing. The largest term of ¢ is at
most 2m — 1. Since the largest term on the right in (12.13) is p + m (which is at least
2my), it follows that y, is p + m — 1. This is already a contradiction if p is equal to m
(when i, is undefined) or m + 1 (when y; must be zero by the symmetry condition).
Assume then that p is at least m+ 2. By symmetry, y,_,, is 1 —p — m. Eliminating
the four terms corresponding to y, and y,_,, from both sides of (12.13), we get
another equation of the same form, with p replaced by p — 2, and m unchanged.
Continuing in this way, we eventually arrive at a contradiction. Q.E.D.

Lemma 12.12 is an explicit version of Theorem 7.8 in the case to which we had
reduced it. This therefore completes the proof of Theorem 7.8 over C.

Proof of Lemma 12.6. Let {X;} be an orthogonal basis of {, for the Killing form,
with elements of length —1, and {Y,} an orthonormal basis of p,. Pick a non-zero
vector v in F,. Since F is non-trivial, the Casimir operator Q has a positive
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eigenvalue on F. Hence

0 <<{Qu,v) = —Z{(X)?v,0)> + Z{Y)*v,0).
The first term is 0 since v is spherical. Since ¥; is a skew-Hermitian operator, the
second is —E(Y0, Y.

So some of the Y;v have negative length. On the other hand, they obviously span a
f-stable subspace of F, which is a homomorphic image of p. Q.E.D.

13. Proof of Theorem 7.8: Real case

Our treatment of the real and quaternionic cases is complicated by the fact that
nothing so simple as Proposition12.2 is true. A simple example is the
representation J(2,1, —1, —2) of GL(4,R). It is contained in several different
induced from finite dimensional representations, but is equal to none of them. We
will prove a much weaker version of Proposition 12.2 (Proposition 13.4), which
suffices to treat reducibility questions for basic representations and a few others.
We need a different kind of result to show that the remaining representations are of
no interest for the unitary theory. Here it is. (Throughout this section, G will be
GL(n,IR), and v will be a more or less fixed element of a*.)

Proposition 13.1. Suppose v is divided into two subsequences v' and v, with p and q
terms respectively. Assume that

i) if'i and j belong to different blocks, then v;—v;+ + 1. Write P for the parabolic
P(p, q) (Definition3.6), and

I{(p,q)=Ind (P G)(J() ® J(+?)).

Then any K-type of 1(p, q)/J (v) must have highest weight (y,n) ( Proposition5.17)
with y, at least 3. In particular, any small K-type & attached to the trivial
representation of K (Definition4.7) occurs in 1(p, q) exactly as often as in J(v).

We will prove this in a moment. What matters most about it is

Corollary 13.2. In the setting of Theorem 13.1, assume that J(v') and J(v?) are
Hermitian. If they both satisfy Hypothesis 7.7, then J(v) does as well.

The point is that Proposition 13.1 allows us to compute the form on small K-types
in I(p, g) instead of J(v). One can therefore argue as in the proof of Lemma 11.9.

Proof of Proposition 13.1. The argument is modelled on the proof of Corollary
11.6. Instead of examining the intertwining operator on full induced repre-
sentations I(*), however, we confine attention to a single K-primary subspace
I(*);. The role of Theorem 11.5(h) is played by

Lemma 13.3. In the setting of Theorem 11.5(f), suppose 0 is a representation
of K with highest weight (y,#), and that y, is at most 2. Assume that the real part
of ¢ =v,— v, is non-negative. If ¢ is not 1, then A(s) is an isomorphism from
I(v)s to I(v');.
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Proof. By Theorem 11.5(h), we may assume that ¢ =2k + 1, with k a positive
integer. By Theorem 11.5(f), the kernel of 4 (s) is induced from the corresponding
kernel Z on GL(2,IR) x GL (1,IR)""2, As is well known, Z is a discrete series
representation, with weights + (2k+2), £ (2k+4), ... on SO(2). Consequently,
any representation of O(n) occurring in the kernel of A4 (s) must contain an SO (2)
weight of the form 2m, for some m greater than k. Our assumption on ¢ forces all its
SO(2) weights to be +2, +1, or 0; so I(v); does not meet the kernel of
A(s). Q.E.D.

Proposition 13.4. Assume that v contains a subsequence of the form
vi=(p+z,p—1+2z ...,1+2),

so that J (v!) is one dimensional ( Lemma 11.11). Write v* (say with q terms) for the
remaining n — p coordinates of v. Assume that

i) if v; is any coordinate of v* which is congruent to z mod Z, then v; is equal to
some coordinate of v*.

Write P for the parabolic P(p,q) (Definition 3.6). Then

J() =Ind (P1 G)(J(v!) ® J(v2)).

(Together with Corollary 11.6, this contains all the irreducibility assertions in
Lemma 2.4 and its proof over IR.)

The non-formal part of the proof is contained in the following result, which we
prove first.

Lemma 13.5. With notation roughly following Proposition 13.4,
J,r,r=1,r=2, ..., ) =2Ind(P1GYJH) R J(r,r—1,..., 1)).

Proof. Write Y for the right side; we must show that Y is irreducible. By
Lemma 11.11, the inducing representation is one dimensional. By Lemma 7.4, the
K-types of Y form a one parameter family. It is easy to see that the action of p can
move at most one step up or down in this family. It follows that if Y is reducible,
then its spherical composition factor is finite dimensional. This is impossible by
Lemma 11.11. Q.E.D.

Corollary 13.6.
Ind(PU,NTHIORJ(,..., 1)) 2Ind(P(r, DT G)(J(r,...,) ®J()).

Proof of Proposition 13.4. Using Corollary 11.6, we can reduce to the case when all
v; are congruent mod Z. Using (11.10), we may assume that z = 0; so we can write

(13.7 v=p,...,p,p—1,...,p—=1,...,1, ..., D).
We also take v' and v? to be in decreasing order. Define
(13.8) v =1 v?).

Write w® for the longest element of the symmetric group S, (which reverses the
order of the n coordinates), and w' and w? for the corresponding elements of S, and
S, respectively. There is a commutative diagram of intertwining operators
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1) 22wty
(139) A(w?) l 1 A(w?)
I(W*V) ——— I(w'w?y)
AwY)

Each of these operators is induced from an operator on GL (p) or GL (g); all are
non-zero on the spherical vectors. The induced representation in the proposition is
clearly the image of 4 (w!) A (w?); we must show that it is irreducible. This will
follow from the following two facts:

(13.10)(a) I(v)/ker 4 (w') has J(v)

as its unique irreducible quotient;
and

(13.10)(b) the image of 4 (w!) in I(w!w?v') has J(v)
as its unique irreducible submodule.

(The point is that these two statements force J(v) to be the unique irreducible
submodule and quotient of the image of 4 (w') 4 (w?).) Because they are formally
identical, we will prove only (a).

Because of Theorem 11.5(d), it is enough to prove that

Ind(P(p, )T G)(J(p,p—1,...,1) ®I(¥?))

is a homomorphic image of I(v). We proceed by induction on n. By induction by
stages, this induced representation is isomorphic to

Ind(J(p,p—1,.... )1, ..., »)RI(p—-1,p—1, ..., 1)),
say with r—1 p’s in the middle term. By Corollary 13.6, this is isomorphic to
Ind(p,....)@J(p,p—1,.... D)@ I(p—-1,p-1, ..., 1).
This representation is clearly a homomorphic image of
Y=Ind(I(p, ..., p, )@ J(p—1,p-2, ... )@ I(p-1,p—-1,..., 1)),
with r p’s. By inductive hypothesis,
Ind(P(p—1,qg—r+D)TGL(n—-)(J(p—1,....)®I(p—-1,p-1,...,1)

is a homomorphic image of I(p—1, p—1, ..., 1, 1). By induction by stages, it
follows that Y is a homomorphic image of I(v). This proves (13.10)(a), and hence
the proposition. Q.E.D.

The argument from here on parallels the complex case; but since it is more
complicated in detail, we will explicitly isolate the first main step.

Proposition 13.11. Let J(v) be a Hermitian spherical representation of GL (n,IR):
we take the form positive on theK-fixed vector. Assume that all the coordinates

of v are real and congruent modZ. There are two mutually exclusive alternatives.
The first is
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a) J(v) is not basic. In that case, the form is not positive on the p representation
of K.

The second is

b) J(v) is basic. In that case, v (after permutation) is of the form

v=(, ..., LJji—=1, ..., j=1, ..., —J, ..., —]).

Here 2j is a non-negative integer: and the term j—k occurs p, times. We have
Pv=2P_1, and p, increases for k <.

Because the p representation is small {Definition 7.6), this proposition includes
Theorem 7.8 for integral v.

Proof. We proceed by induction on n. Assume that v is decreasing. By Theorem
11.5(c), v must be a permutation of —v. Write j=v,; then v must be of the form in
(b), but with no conditions on the p, . Since v is a permutation of —v, p,=p_,.Itis
easy to see that J (v) is basic exactly when the p, increase for k& < j. So suppose they
do not; we want to establish the conclusion of (a).

Assume first that p, is actually zero, for some k with 0 < k <j. Write v! for the
coordinates which exceed j — k in absolute value, and v? for the rest. This partition
satisfies the hypotheses of Proposition 13.1. That proposition allows us to reduce to
the case v=v!; that is, to

Vz(i,j, a]—k+1$ _(j_k+1)a s —j’ _j)
Define

v(iy=v+(, ..., t, —t, ..., —1).

Proposition 13.1 applies to v(¢) and the parabolic P (n/2, n/2), for all positive ¢. It
shows that the multiplicity of the p representation (or any small representation of
K) in J(v(r)) is independent of r. We want to show that the form on the p
representation is not positive. By a continuity argument, it suffices to do this for
large positive 7. For such ¢, the eigenvalue of the Casimir operator is positive. The
proof of Lemma 14.6 now gives the desired conclusion.

Next, assume that all the terms j— k actually occur in v. Set

v=0@j—1 ..., —G=1, —)),
and write v2 for the rest of the coordinates. Proposition 13.4 shows that
J(v) 2Ind (C® J(v?)).

Because v is assumed to fall in case (a) of the proposition, v? does as well. By
inductive hypothesis, its form is not positive on p; so that for the induced
representation J(v) cannot be either. Q.E.D.

Proof of Theorem 7.8 over IR. We proceed by induction on n. Suppose ¥ = J(v)
admits a Hermitian form, but is not basic. By Corollary 11.7, we may assume v is
real. After permutation, we may assume that v, is the largest of the coordinates, and
that

(13.12)(a) vVi=(vy, ..., v,)
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consists of all the coordinates congruent to v, modZ, in decreasing order. By
Theorem 11.5(c), —v, is among the v,. If it occurs in v', then Corollary 11.6,
Lemma 11.9, and the inductive hypothesis quickly reduce matters to the case v = v!.
That case is treated by Proposition 13.11. So we may assume that —v, is not
congruent to v,. Then

(13.12)(b) V2= (=v,, s — V)

is (up to permutation) a subsequence of v. Corollary 11.6, Lemma 11.9, and the
inductive hypothesis allow us to assume

(13.13)(c) v=('v?).

Assume next that there is a term v, — k, lying between v, and v, , which does not
appear as a coordinate of v!. Set
A=, vy, o, v—k+1)
p! = remaining coordinates of v'
A= (ll, —'11), pP= (pls —'pl) .
The partition (4,p) of the coordinates of v satisfies the hypotheses of
Proposition 13.1, and so allows us to reduce to a smaller #. (Since v is not basic, one

of the two pieces must also fail to be.)
We may therefore assume that v! contains the subsequence

(13.14) A=, v—1..,v,).

Proposition 13.4 guarantees that J(v) is induced from J(4', —4') and another
Hermitian representation. By inductive hypothesis, we are finally reduced to the
case v! = A'. The analysis of this case is exactly parallel to that given for the complex
case, and we leave it to the reader. Q.E.D.

14. Proof of Theorem 7.8: Quaternionic case

In this section, G is GL (r, H).

Proposition 14.1. Suppose v € a* is divided into two subsequences v' and v*, with p
and q terms respectively. Assume that

1) if i and j belong to different blocks, then v,—v; is not equal to +4.
Write P for the parabolic P(p, q) (Definition 3.6), and

I(p,q) =Ind(P1 G)(J(* ®J(v?)).

Then any K-type of I(p, q)/J (v) must have a highest weight y (cf. (5.28)) with y, at
least 2. In particular, any small representation of K ( Definition 7.6 ) occurs in I(p, q)
exactly as often as in J(v).

Outline of proof. The argument is exactly as in the real case. The key to the
calculation is the fact that if J is the quotient of the principal series /(4 + 2k) for
GL (2,H), then the Sp(2)-types of I(4+2k)/J are of the form (k+1,k+1),
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(k+2,k+2),and so on. Because GL (2, IH) is locally isomorphic to SO (5,1) x IR,
this fact is well known.

Proposition 14.2. Assume that v contains a subsequence of the form
vi=@p+z,4(p—D+z ...,4+2),

so that J (vY) is one dimensional ( Lemma 11.11). Write v? (say with q terms) for the
rest of the coordinates of v. Assume that

i) ifv;isany coordinate of v* which is congruent to zmod 2Z, thenv; — z is an even
integer between 2 and 4p+ 2 (inclusive).

Write P for the parabolic P(p,q). Then

JW 2Ind(PT ) (JWH® J(v?)).

This result will complete the proofs of the irreducibility assertions in Lemma 2.4
and its proof.

Lemma 14.3. If s is any real number in the open internal (4r+4,0), then
J(s, 4r,dr—4, ..., ) =Ind(PA,NTOJ()R J(4r, 4r—4, ...,4)).

This is proved in exactly the same way as Lemma 13.5. Using this lemma, one can
prove Proposition 14.2 by following the argument for Proposition 13.4. Details are
left to the reader.

Just as for IR, we begin with a special case of Theorem 7.8.

Proposition 14.4. Let J (v) be a Hermitian spherical representation of GL (n, IH); we
take the form positive on the K-fixed vector. Assume that all the coordinates of v are
even integers. There are two mutually exclusive alternatives. The first is

a) J(v) is not basic. In that case, the form is not positive on the p representation
of K.

The second alternative is

b) J(v) is basic. In that case, v (after permutation) is of the form

v=(v},v?),
with each subsequence of the form
Vi=(4j,...,4),4j—4,...,4j—4, ..., —(4j—4), —4j, ..., —4j).

Here 2j is a non-negative integer: and the term 4j— 4k occurs p, times. We have
P=D_i, and p, increases with k for k <j.

Proof. Weproceed by induction on n. By Theorem 11.5(c), v must be a permutation
of —v. By hypothesis, each coordinate is congruent to its negative mod4. We
partition v into the two congruence classes v' and v? mod 4. This partition satisfies
the hypotheses of Proposition 14.1, and the two representations J(v") carry
Hermitian forms. Since the p representation is small (cf. (8.11)), Proposition 14.1
and the inductive hypothesis reduce us to the case v=v'. The rest of the argument is
exactly like that for Proposition 13.13. Q.E.D.

The rest of the proof of Theorem 7.8 is quite similar to the real case; the
argument needs to be modified just as the proof of Proposition 13.11 was modified
to give Proposition 14.4. Details are left to the reader.
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15. Reduction to the spherical case: Unitarity

In this section, we recall some deeper results about the cohomological parabolic
induction functors, and use them to prove Theorem 6.18(a). This is based on the
ideas in Sect. 7 and 8 of [38]. Unfortunately, none of the results stated there is
entirely adequate for the present situation. Here is an extension which meets our
needs. We begin by recalling the notation in [38], suitably modified to take into
account the more general twisting 7~ allowed in Definition 6.1.

So suppose G is a reductive Lie group, and

(15.1)(a) qg=I1+u

is a O-stable parabolic subalgebra. Fix a Cartan subalgebra
(15.1)(b) hel.

Define

(15.1)(c) p (1) = half the sum of the roots of h in u
(cf. Lemma 6.9). Let

(15.1)(d) Y = an irreducible ([, LN K)-module.

Recall that Harish-Chandra parametrizes the infinitesimal character of a
representation by a weight in a Cartan subalgebra, defined up to the Weyl group.
Fix a weight

(15.1)(e) Aeh*
with the property that the infinitesimal character of Y is defined by the weight
15.0)(H) A+pu)y—1t~.

Here we have used the same letter 1~ to denote the restriction to | of the differential
of the twist 1~ appearing in Definition 6.1. For the case of the functors .#, of
Definition 6.11, Lemma 6.9 guarantees that the two twists cancel:

(15.1)(g) A= infinitesimal character of Y (case of GL (n)).
The reason for the twists is Proposition 6.3.11 of [36], which says that
(15.1)(h) A = infinitesimal character of .#/Y (general case).

Proposition 15.2. In the setting (15.1), assume that the Cartan subalgebraly has an
orthogonal decomposition
h=s+c¢

with the following properties;
i)y sc[l,I];
il) ¢>center of 1;
iii) Rea¥,A|>> —1, all xe A4(u,b); and
iv) if F is any finite dimensional representation of |, and 2’4 p(u)—1~ is an
infinitesimal character occurring in Y @ F, then (perhaps after replacing 2" by a W (1)
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conjugate), we may assume that
Al = 4|+ (weight of ¢ in F)
Re{Al,, Al SRel|,, 1.
Then
a) the cohomologically induced representation #7Y vanishes except for j=S:

and
b) if Y is a unitary (I, LnK)-module, then £5Y is a unitary (g, K)-module.

We take this opportunity to point out a mistake in [38]. The statement of
Proposition 8.18 there omits the first condition in (iv) above; but it is certainly used
in the proof.

Proof. By Theorem 7.1 of [38], it suffices to show that the map y, of (8.3)(c) in [38]
is injective for ¢ = 0. The proof of this fact parallels that of Proposition 8.18 in [38]
exactly. The only difference is the derivation of (8.15) in [38]. Just as before, one gets
a formula (in which the restrictions are indicated by subscripts)

(15.3) A=A+ Cna)]..

Here the second term is a sum of roots in u. We want to show that A, is strictly
shorter than (4"), unless the second term is zero. To do this, first choose the n, in
(15.3) so that their sum is as small as possible. If two of the roots which appear have
a negative inner product, they may be replaced by their sum (which is a root).
Consequently, we may assume that all the roots appearing have non-negative inner
products with each other. Now we compute

<(i/)cs (/lr)c> - <Av:7 j'c> = <2naa9 2/1c+ Znaa>
= 2 (n)? (o, 0> + 2n, o, 1))
=2 n, o, 0 (n,+ <", 40) .

By hypothesis (iii), each of the terms in parentheses at the end has positive real part.
The sum therefore has positive real part unless it is empty, as we wished to show.
Now proceed as in [38]. Q.E.D.

Proof of Theorem 6.18 (a). We need to show that the correspondence of Theorem
6.19 takes unitary (basic almost spherical) representations to unitary repre-
sentations. Recall (Definition 6.17) that the correspondence is contructed in two
steps. The first of these is unitary induction, which preserves unitarity (Proposition
10.5). We will treat the second step .#, using the criterion of Proposition 15.2.
Assume therefore that q,=1,+ u, is as in Definition 6.11, and use the notation
there. Let Y be an irreducible (I, Lyn K)-module of lowest Ly K-type p,,. We are
assuming that Y is of the form £y Z for some basic almost spherical representation
Z of L. Since the functor g is real parabolic induction, we conclude (from the
definition of basic) that ¥ must be induced from a one dimensional representation ¢
of a parabolic subgroup P = MAN of L,. Choose a Cartan subalgebra b of m + a;
write ¢ for the center of m, and s for h n[m, m]. This will be the decomposition
required in Proposition 15.2. The infinitesimal character of the inducing
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representation ¢ (and hence of Y itself) may be identified with the weight
A=A, 4,) b,
defined by
A= differential of ¢
A, =p(m).

(The last term is half the sum of any set of positive roots for m.)
With this notation established, the first two hypotheses of Proposition 15.2 are
clear. The third is this: for each root a of }) in u,

(15.4) Re(a”, 2> > —1.

It is convenient to prove this for each of the three cases separately. In each case, the
weight A is a sum of three terms,

(15.5)(a) A=A+ A+ Ay

The first, 4, is the restriction of A to the compact part of the center of . Obviously
it coincides with the corresponding restriction of the highest weight of x4, . By
inspection of the definitions of x,, and 4 (u) in Sect. 5, one sees that

(15.5)(b) Ay=A(u).
Because of (6.7), it follows that
(15.5)(c) {a,4,)>0.

The second term comes from the unitary part of the character ¢ on the vector
subgroup A. It does not contribute to the real part of the inner product (15.4), and
we will ignore it. The last, 4,, comes from the real part of the character on A4. It arises
from the Stein complementary series involved in Y. It is restricted to be small, but
can be negative on a. Over R and €, we will show that

(15.5)(d) oV, Ay > —1;

together with (15.5)(c), this will certainly prove (15.4). Over IH, we will find that
(15.5)(e) a¥, Ay > —(3/2);

but that

(15.5)(® @¥,Apz3.

Adding these gives (15.4).

So suppose first that IF= €. We may identify h* with €"x €". The roots
are of the form e;— ¢;. The precise form of the weight 4, is not important; what
matters is that all its coordinates are less than § in absolute value. Now (15.5)(d)
is clear over C.

Next, suppose IF = R. We may identify h* with €”, with roots ¢; — ¢;. Again all
coordinates of 1, are less than % in absolute value, and (15.5)(d) follows.

Over H, we can identify h* with €2, with roots e, — e;. Write y for the highest
weight of the lowest K-type; say the first p coordinates are non-zero. Because of
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(15.5)(b) and (5.29), 4, is
LA s 71,0, 0, =, 4+ 1), .o, — (4 1))

Because the y; are integers, (15.5)(f) follows from (15.5)(c). The first and last p
coordinates of J, are less than L in absolute value; the middle 2»# — 2p are less than 1.
The inequality (15.5)(e) follows.

Finally, we must verify hypothesis (iv) of Proposition 15.2. Any constituent of
Y® F is induced from a constituent of ¢ ® (Fl|,,,). If we write 1’ for the
infinitesimal character of that constituent, then A’ satisfies the two conditions in
question. Q.E.D.

16. Irreducibility results

The only result still unproved is Theorem 6.18(b): that the functor .# takes
irreducible (basic almost spherical) representations of L to irreducible repre-
sentations of G. We first dispose of (or rather ignore) the ordinary induction aspect
of this problem.

Lemma 16.1. Suppose n=p+ q, and Y° and Y' are basic spherical representations
of GL (p,R) and GL (g, R), respectively. Then

Ind(P(p,q)T G)(Y° x [Y! ®@ sgn(det)])
is irreducible.

This follows from a slight generalization of Proposition 13.4, the formulation and
proof of which we leave to the reader.

We must therefore prove a result about irreducibility of cohomologically
induced representations. To state it, we need some language from [7] and [8].

Definition 16.2. Let g be a complex reductive Lie algebra, and G¢ a corresponding
algebraic group. Fix a Cartan involution 0 of G¢, and a commuting Chevalley
antiautomorphism g —'g. Define o6g="(0g)" . (If G is GL (n, €), we can take 6
to be conjugate transpose inverse, and the Chevalley antiautomorphism to be
transpose. Then ¢ is just complex conjugation of matrices.) Regard g as a real Lie
algebra, and write g for its complexification; this has a new complex structure j, in
addition to the muitiplication by i from g. Define

(16.3) g"={3(X—jiX)|Xeg}
g*={3(cX+ji(c X)) | Xeg},

the holomorphic and anti-holomorphic tangent spaces to G at the identity. The
indicated parametrizations define complex-linear isomorphisms ¢~ and ¢® of g
with g’ and g¥®, respectively. We will therefore sometimes write

(16.4) 8c=gxg=g-x gk

Write D for the fixed points of 8, and b, for its Lie algebra. In the identification
(16.4), its complexification is

(16.5) b={(X, -'X)| Xeg}.

This provides an isomorphism ¢?® of g with b.
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Suppose M is a (g, g)-bimodule. (This means that M is both a left and a right
module for g, and that the two structures commute.) We make M into a left module
for g using (16.14):

(16.6)(a) PrXym=Xm, ¢RY)m=m(Y).
The action of b is then
(16.6)(b) PP (X)m=Xm— mX.

A Harish-Chandra bimodule for G is a bimodule M, endowed with an algebraic
(that is, holomorphic and locally finite) action

Ad: Ge—End (M),
the differential of which (written ad) is
ad(X)m=Xm-—mX.

The point of the definitions above is to identify the category of Harish-Chandra
bimodules with the category of Harish-Chandra modules (or rather (g¢,D)-
modules) for G¢ (regarded as a real group).

Example 16.7. If I is a two-sided ideal in U(g), then M,=U(g)/I is a Harish-
Chandra bimodule. If /is primitive, then M has finite length, and one can apply to
it the theory of finite length Harish-Chandra modules for G . This is the main idea
in [7] and [8].

Here is the irreducibility result that we need. Although we will not explicitly
invoke it, the Beilinson-Bernstein theory of [4] is obviously an important
motivation for the proof.

Proposition 16.8 (J. Bernstein). Suppose we are in the setting of Proposition 15.2,
with the same hypotheses on Y. Let R, be an algebra of endomorphisms of
Y®1~®C_,,, containing the image of U(1). This makes R into an (I,1)-bimodule:
assume it is a Harish-Chandra bimodule of finite length. Let Q ¢ be the real parabolic
subgroup of G¢ with Lie algebra . Then

R=Ind(Q¢1 Go)(RY)

(which is a Harish-Chandra module for G ) may be endowed with the structure of an
algebra. We have
a) Ractsnaturallyon X = #5Y, and X is an irreducible (R, K)-module (or zero).
b) The action of U(g) on X is induced by the homomorphism

U(g)— R

which (in terms of the U(g) ® U(g) action on R) sends u to (u®@1) 1.
In particular, X is irreducible if the b-fixed vector of the induced representation R
is cyclic.

Probably this is true if one assumes only that the produced module

Hom, (U(g), Y®1")
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(or rather its L N K-finite part) is irreducible; this at any rate is enough to make Ran
algebra (cf. Proposition 16.9 below).

We will postpone most of the proof of Proposition 16.8 for a moment, but one
of the main ideas will be helpful in the application of it.

Proposition 16.9 (Conze-Berline, Duflo [7], Proposition 5.5). Suppose Qo= LU
is a parabolic subgroup of the complex reductive group Go. Let Z be a Harish-
Chandra module for L. Assume that Z is of the form

LN D-finite part of Hom (Z', Z%),
for two |-modules Z' and Z*. Define
X'=ind @1 9)(Z! ® T, ()

X2=pro(at 9)(Z°®C,,,)-
Then X =Ind (Q ¢t G)(2Z) is isomorphic to

D-finite part of Hom (X, X?).

In particular, if Z'=2Z? (so that the inducing representation has an algebra
structure}, and the natural map from X* to X* ([38), Lemma 5.15) is injective, then
the induced representation has an algebra structure.

This is actually proved in [7] only under slightly more restrictive hypotheses; but the
argument there gives this result.

Proof of Theorem6.18 (b). Because we have already dealt with S, we can consider
only .#,. To be consistent with the notation in Sect. 6, we should write g, for our
parabolic subalgebra; but we drop the 6 for simplicity. In that setting, Y is induced
from a one dimensional character ¢ of a parabolic subgroup P (L) of L. Thatis, Yis
the LN K-finite part of the module

(16.10) Hom,,,(U(M), C,.,);
here p is p for the parabolic P(L). We may assume that P(L) is chosen so that
Z' = ind (p(D) T )(C,, )
is irreducible. We set
(16.11)(a) R, = Lo D-finite part of Hom(Z!,Z")
=Ind(P(L)¢ T L) (D).

Here ¢ denotes the (one dimensional) endomorphism ring of the module ¢ for the
Levi factor of p (L), regarded as a Harish-Chandra module; the isomorphism in
(16.11)(a) is a consequence of Proposition 16.9.

Now define

(16.11)(b) Pe=P(L)¢Ue,
a parabolic in G contained in Q. The ring R of Proposition 16.8 is

(16.11)(c) R=1Ind(P¢? G¢) (D).
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We must show that the D-fixed vector in this induced representation is cyclic. We
will sketch two proofs of this fact.

For the first argument, we need to describe @ a little more precisely. The
complexified Iwasawa a in G may be naturally identified (up to the Weyl group)
with a Cartan subalgebra by of g. We may assume that b lies inside p (L), so the one
dimensional character ¢ gives a weight in h*; this weight was called A.in Sect. 15.
Inspecting the definitions, one finds

(16.12) the differential of @ on a is 24,.

Because of (15.4), the cyclicity of the D-fixed vector in Ris now a consequence of the
following proposition.

Proposition 16.13. Suppose P=P(n) is a standard parabolic subgroup of
G = GL (n, ©), and ® is a one dimensional character of P which is trivial on PnK.
Write v e C" for the differential of ¢ restricted to A (cf. (9.2)). Assume that if i < j,
and i and j belong to different blocks of n, then the real part of v;— v, is greater
than +2. Then the K-fixed vector is cyclic in Ind (PT G)(®).

This can be proved by the argument given for Proposition 13.4. Details are left to
the reader.

The second proof is due to Borho and others (cf. [6], [20]). Notice first that
Proposition 16.9 exhibits R as a ring of endomorphisms of a highest weight module
V. Write I for the annihilator of ¥ in U(g); then we are investigating the inclusion

(16.14) U(g)/I—-R.

As a representation of the maximal compact subgroup D, the right side is
(16.15) Ind(PcnD1 D)(T).

To compute the left side, we pass to the associated graded ring

(16.16)(a) M==S(g)/grl.

Now [ is the annihilator of a highest weight module induced from a finite
dimensional representation of p. Therefore [6] implies that the associated variety of
M (inside g* = Spec (S(g))) is equal to the closure ¥~ of the G ¢ orbit of the nil radical
of p. This gives rise to a surjective map of representations of D

(16.16)(b) M — algebraic functions on ¥,

But the right side of (16.16)(b) is the same as (16.15), by the (deep) theorem of Kraft
and Procesi in [25]. So the left side of (16.14) is as large as the right as
representations of D; so they coincide. Q.E.D.

Proof of Proposition 16.8. By Proposition 16.9, R may be regarded as an algebra of
endomorphisms of

(16.17) Z=ind ((¢°*, LnK)1 (g, K))(Y®1~).

The techniques of [11] show how to make R act on the derived functor modules
I'*Z,in such a way as to recover the action of U(g) on its image in R. What we want
to show is that, under the hypotheses of the proposition, this action is actually
irreducible.
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Fix a large integer n, and let F; be the nth power of the one dimensional
representation of L on A%mty, Write Y' = Y ® F,; this is still an irreducible unitary
representation of L, satisfying the conditions of Proposition 13.4. Write E, for the
(one dimensional) ring of endomorphisms of F;, regarded as a Harish-Chandra
module for L. Then (R,)' = R, @ E, is a finite length Harish-Chandra bimodule of
endomorphisms of Y @ ® 1~ € _,,, containing the image of U(l). Consequently,
R'=Ind(Q¢1 Gg)((R)) is an algebra of endomorphisms of X'= #5Y’. What we
have gained by all of this is that if » is large enough, X' is actually irreducible as a
(g, K)-module ([38], Proposition 4.18); so it is certainly irreducible as an (R’, K)
module.

We want to relate X* and R’ to X and R. Let F* be the finite dimensional
representation of Gg of lowest weight (F)*, and let E=F®F* be its
endomorphism ring. By the Jacobson density theorem, the algebra R'® E acts
irreducibly on X’'® F*. List the distinct infinitesimal characters occuring in
X' ®@F*asy,,...,x . Write P, for the functor which takesa 3 (g)-finite g-module
to its summand of generalized infinitesimal character y;. Then

X' Q@F*=3P(X' @ F*)=XX,.

Similarly, P, can be made to act on Harish-Chandra modules for G, regarded as g*
or (after twisting by the Chevalley automorphism) g® modules; we write these two
functors as (P,)L and (P)X, respectively. Put

R;; = [(P)-(P)FI(R).

Then R;;maps X; to X;; by the density theorem again, it is dense in the space of all

such linear transformations. In particular, X; is an irreducible module for R;;.
To finish the proof, it suffices to show that our original X is one of the X; (say

X)), and that R, is R. These two assertions are proved in exactly the same way

(indeed the second is in a certain sense a special case of the first), so we concentrate
on the first. We have

(16.18)(a) X' Q@F*=I'S(ZQ F*)
(cf. Definition 5.8 and (16.17)); and
(16.18)(b) ZQ@F* =ind((YY®17)® F*).

Lemma 16.19. In the setting above, let F, be any irreducible representation of L
occurring in F, and let 1, + t~ — p (1) be an infinitesimal character for L occuring in
(Y, ® (F)*. Assume that A, is in the g Weyl group orbit of A. Then F, is F,.

Proof. The infinitesimal character for Lof Y’ is A+ 2np (1) + t~ — p(u); this is the
n introduced at the beginning of the proof of Proposition 16.8. As a
subrepresentation of F, F, has weights of the form

2np(u)—Zn,a,
the sum extending over roots in u. This leads to an equation
A+t —py=RA+2np)+1"—p@)] - 2np)—Zn,a].

Consequently
wi=21+2Zno.



500 D.A. Vogan, Jr.

In particular, the two sides of this last equation have the same length. By the proof
of Proposition 15.2, this implies that all the n, are zero. It follows that the weight
2np(u) occurs in F;, which proves the lemma. Q.E.D.

By standard arguments (cf. [36], Lemma 7.2.3 and Proposition 7.4.1), Lemma
16.19 implies that Y'is one of the Y;, as we wished to show. This completes the proof
of Proposition 16.8, and that’s the ball game.

17. Other constructions and parametrizations

In this section, we consider other ways of organizing the classification of unitary
representations. The purpose of this exercise is to provide a more flexible toolkit for
possible harmonic analysis applications, and to gain a little insight into possible
generalizations of these results to other groups. Neither of these purposes seems to
demand proofs, so we omit them. On the other hand, it is perhaps worthwhile to
keep the discussion in the framework of general reductive Lie groups for as long as
possible.

Definition 17.1. Suppose G is a reductive Lie group. A Levi subgroup L of G is the
centralizer in G of a reductive abelian subalgebra of g,. Any such L is conjugate by
G to one which is stable under the Cartan involution 6; so we assume that is the case.
Write

(a) c=center of [=cnf+ ecnp.
Define
(b) Ly= centralizer of ¢cnfin G.

Then L is the Levi subgroup of a real parabolic subgroup
(© P=LN

of L,. There is a f-stable parabolic subalgebra

(@ qo=lg+ Uy

of g, with Levi subgroup L,. As usual, define

(e) p (u) = half the trace of [, on u,.
To simplify notation, we will assume that L, has a character
63 17 Ly—>C

with differential p (). This is automatic for GL (n), by a generalization of Lemma
6.9. (In general, following Duflo, one shoud introduce a two-fold cover of L, on
which ¢~ exists, and work with representations of it.)

Fix now an irreducible (I, L N K)-module Y. Define

(g Ao (Y) = weight by which ¢nT acts in Y e(cni)*.
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We say that q, is weakly non-negative for Y if for every weight o of ¢t in u,,
(h) {g(Y),0) 2 0.

Obviously such g, exist.

Using P and q,, one can proceed exactly as in Definition 6.15 to construct a
functor £ from (I, L~ K)-modules to (g, K)-modules. We call .# weakly non-
negative for Y if q, is.

In this generality, one can expect essentially nothing good to be true about #Y .
One needs to restrict ¥ to be small in some sense; exactly what sense is an excellent
and interesting question. Once this is done, #Y should be unitary (though not
necessarily irreducible); it will depend heavily on the choice of g,. For GL (n), the
situation is rather good.

Theorem 17.2. Suppose G = GL (n, IF), and L is a 8-stable Levi factor of G. Use the
notation of Definition 17.1. Then L is of the form

L=GL (%, €C)x GL(,IF).
Here w is an ordered partition of p, and & is an ordered partition of q. In the case of T,
p=nand g=0. For R, n=2p+q. For H, n=p+ q. In any case,

L,=GL(n, €)x GL(q, IF).

Let Y be an irreducible unitary (I, LN K)-module. Assume that on each GL factor
of L, Y is either a one dimensional character, or a Stein complementary series
representation. Fix ¥ weakly non-negative for Y (Definition 17.1).

a) FY is unitary.

b) £Y is irreducible or zero.

c) If #' is also weakly non-negative for Y, then $'Y = #Y.

Definition 17.3. Suppose G is GL (n, IF). A Levi datum for G is a pair (L, Y) as in
Theorem 17.2. (In particular, Y is a tensor product of unitary characters and Stein
complementary series.) Fix # as in Theorem 17.2, and define

F(L1G)(Y)= FY,

a unitary (g, K)-module which is irreducible or zero.
Write

L=GL(r, €) x GL (&, TF).

as in Theorem 17.2. The parameter A,(Y) is specified by an integer A,(i) (the
compact part of the central character) on each factor GL (p;, ©); it is necessarily
zero on GL (&, IF) (which has no central compact torus). We say that (L, Y) is non-
degenerate if each 4, (i) is at least equal to d in absolute value. Here

dc=0, dIR=1’ le=2

The motivation for the definition of non-degenerate is the next result, which is just a
rewording of Theorems 6.18 and 3.8.

Theorem 17.4. Any unitary irreducible representation of GL (n, IF) is of the form
FLTGY(T)
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for some non-degenerate Levi datum (L,Y) (Definition 17.3). The pair (L,Y) is
unique up to conjugacy under K. The parameter A (u) attached to the lowest K-type u
of FY in section 5 is conjugate to 1y,(Y).

The last assertion of this theorem makes sense for degenerate data as well, but is
false in that case if IF = H.

Here are the two basic “independence of polarization” results, which give some
flexibility in the construction of £Y. In both cases, we begin with a chain of Levi
subgroups

(17.5) LeLcG.

We also fix an irreducible unitary (I, L nK)-module Y, such that (L, Y) is a Levi
datum (Definition 17.3).

Theorem 17.6. In the setting (17.5), assume that L' is a Levi subgroup of a real
parabolic subgroup P'=L'N' of G. Then

F(L1G)(Y) =Ind (P'1 G)(F(L1 L)(Y)).

One immediate corollary of this theorem is that unitarily induced repre-
sentations of GL (n, IF) are all irreducible.

Theorem 17.7. In the setting (17.5), assume that L' is the Levi subgroup of a 0-stable
parabolic subalgebraq’ =1' + u’ of g. Recall that ¢t denotes the compact part of the
center of 1, and that A,(Y) belongs to the dual of this space. Assume that for every
weight o of ¢nl in W, we have

@ (Ao (Y), 020
Then

F(LT YY) =L@, L'nK)T (9, K) (S(LTL)(Y)).
The other L1 (S (L1 L)Y) are all zero.

Even if L' is the Levi subgroup of some 8-stable parabolic, it may not be possible
to find one satisfying the positivity condition (i). In that case, I know of no
construction of #(L1 G)(Y) from £(L1 L)(Y).

Definition 17.8. Suppose we are in the setting of Definition 17.1; use the notation
there. Set

(a) Lg = centralizer of cnpin G

Then L is the Levi factor of a #-stable parabolic subalgebra

(b) "=l
of I, . There is a real parabolic subgroup

© P'=[LgN'
of G.

Using q’ and P’, one can proceed as in Definition 6.15 (but with the order of the
steps reversed) to construct a functor # from (I, L n K)-modules to (g, K)-modules.
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Again there is a notion of weakly non-negative, still referring only to the
cohomological induction step of the construction.

Using Theorems 17.6 and 17.7, one deduces immediately

Corollary 17.9. In the setting of Definitions 17.1 and 17.8, suppose G is GL (n, IF). In
the notation of Theorem 17.2, we have

Lg=GL(epn, IF) x GL(,IF).

The notation means that each part of 7 is multiplied by the constant e, which is 2 for
R and 1 otherwise. If Y is an irreducible unitary (1, L n K)-module, such that(L,Y) isa
Levi datum (Definition 17.3), and q' is chosen to be weakly non-negative for Y, then

SY=SY.

Using this theorem, one sees that the only cases when the cohomological
induction functor is absolutely needed are to go from a unitary character or a Stein
complementary series of GL (n, €) to a representation of GL (egn, IF). The resulting
representations of GL (en, IF) are the “extra building blocks” mentioned in the
introduction.

To complete the picture of induction we have developed, we only need to
compute £Y in the case of degenerate data. Using induction by stages (Theorems
17.6 and 17.7), one is reduced to a very few cases. Theses are dealt with by the next
results.

Proposition 17.10. Suppose G is GL(2n,IR), L is GL(n, C), and Y is a unitary
character or a Stein complementary series for L. Assume that the datum (L,Y) is
degenerate: that is, that Y has an L~ K-fixed vector ( Definition 17.3). Let L denote
the subgroup GL (n,IR) x GL (n,R), which is a Levi subgroup of a real parabolic
subgroup P'= L N' of G. Then there is a unitary character or Stein complementary
series Y' of L, such that

FY =Ind(P'1 G)(Y').

Explicitly, Y' is described as follows.
a) Suppose Y is the unitary character 6% (¢f.(2.2)) of L.

Y’ =(6") @ (sgn(det) - 67).
b) Suppose n=2m is even, and Y is a Stein complementary series
G, (07, 1)
(¢f. Definition 2.3} of L. Then
Y =0,,(0"1) ®a,,(sgn(det) - 67, 1).

Proposition 17.11. Suppose G is GL(n,IH), L is GL(n, C), and Y is a unitary
character or a Stein complementary series for L. Assume that (L, Y) is degenerate;
that is, that the lowest U (n)-type of Y is trivial, det, or (det) ™.

a) If the lowest U (n)-type of Y is trivial, then Y is zero. Suppose for the rest of
the theorem that the lowest U (n)-type of Y is det. (The (det)™ ! case is identical.)
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Twisting Y by 6% twists FY by 6%, so we may as well assume that Y is trivial on the
split part of the center of L. There are several cases.

b) Suppose n=2m+1, and Y is a character. Then FY is unitarily induced from
the trivial character of GL (m+1,H) x GL (m, H).

c) Suppose n=2m, and Y is a character. Then #Y is the Stein complementary
series 6,,,(1,1).

d) Suppose n=4m, and Y is the Stein complementary series with parameter t.
Then #Y is induced from GL 2m,H) x GL (2m,H), by the Stein complementary

series
Oam(L,E+12) ®0,,(1,5—1/2).

€) Suppose n=4m+2, and Y is the Stein complementary series with para-
meter t. Then F is induced from GL(2m+2,H) x GL(2m,H), by the Stein

complementary series
62m+2(15 1/2) ® O-Zm(la [/2) .

The most striking feature of this proposition is perhaps (c): a representation
which looks entirely “complementary” can in fact be realized in a ““discrete” way.
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