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Irreducibility of Discrete Series Representations
for Semisimple Symmetric Spaces

David A.Vogan, Jr.*

§1. Introduction

Let G be a connected reductive Lie group and H a symmetric sub-
group. This means that there is an involution (an automorphism of
order two) ¢ of G with the following properties: ¢ is trivial on H, and H
contains the identity component of the fixed point set of ¢. The quotient
space G/H is a typical reductive symmetric space. (We allow G to be
reductive instead of only semisimple to facilitate inductive arguments).
Such a homogeneous space carries a G-invariant measure, so there is a
unitary representation of G on L*(G/H). The representations of G on
irreducible subrepresentations of G on L*G/H) are called the discrete
series representations of G on G/H. Write L*(G/h), for the sum of all
these discrete series.

Building on work of Flensted-Jensen, Oshima and Matsuki in
[Oshima-Matsuki] (1984) have given a detailed description of all discrete
series representations of G/H. There is a parameter set & (roughly the
characters of a certain compact torus satisfying some regularity and even-
ness conditions). For each X in &, they construct a unitary representation
A(X) and an embedding of A(X) in L*(G/H),. Then they prove that

(L.1) LYG/H), = AX)

(What Flensted-Jensen did was to construct 4(X) and the embedding for
“most” X.)

Our concern in this paper is with a small technical question: whether
the representation A(X) are irreducible. The most interesting question of
this nature is a weaker one: whether (1.1) diagonalizes the invariant
differential operators on G/H. That much is clear from the work of
Oshima and Matsuki. In fact their proof is so compelling that (1.1) is
clearly the “right’ decomposition in some sense. Nevertheless, the irre-
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ducibility question is traditional, and it deserves a decent burial at least.

Theorem 1.2. In the setting (1.1), the representations A(X) are irre-
ducible or zero.

Several remarks are in order. First, this result is proved in [Oshima-
Matsuki] (1984) when X is generic. The proof in general will proceed by
reduction to the generic case. Second, Oshima and Matsuki give a
(complicated) condition for deciding whether A(X) is zero. Third, one
would like to know whether all the 4(X) are inequivalent. The proof of
Theorem 1.2 will probably decide this question as well, but I have not
done the necessary calculations. (Examples indicate that the representa-
tions are inequivalent.) Fourth, one would like to extend the theorem
to “limits of discrete series.” Here again the ideas work, but the
calculations have not been done. Finally, this result does not apply to
“derived functor modules” more general than those in (1.1). Some of
the ideas work, but the calculations break down (and the analogous result
is false). Perhaps the most important way in which the special hypotheses
of (1.1) are used is in establishing the dichotomy of Corollary 6.11.

The proof of Theorem 1.2 is based on the “translation principle” of
Jantzen and Zuckerman. It is known that any A(X) can be obtained
from some A(Y) (with Y generic) by tensoring A(Y) with an appropriate
finite-dimensional representation of G (and then localizing at a maximal
ideal of the center of the enveloping algebra). This is proved here in
Proposition 4.7. We recall in section 3 (essentially from [Vogan] (1986b))
some general hypotheses under which such a construction preserves irre-
ducibility. Sections 5 and 6 describe ways to check these hypotheses.

Here is an outline of the contents. Section 2 recalls (1.1) in a suitable
from, and gives a formulation of Theorem 1.2 which does not refer
directly to G/H (Theorem 2.10). Section 3 discusses translation principles
in general, and the translation of irreducibility we need. The main result
is Corollary 3.11. Section 4 considers the related notion of coherent
families. Section 5 contains several deeper results about the translation
principle; the one we will apply directly is Theorem 5.11. The proof of
Theorem 2.10 is in section 6. The reader in a hurry should pass from
section 2 directly to section 6, and refer backwards as necessary.

Harmonic analysis on symmetric spaces suffers from an (unavoidably)
complicated notation. I have used very little of it. After section 2, even
H will not appear explicitly again; this allows us to use that letter for
Cartan subgroups.

I have benefitted from discussions of this material with Jeff Adams,
Dan Barbasch, Frédéric Bien, and Joseph Bernstein; it is a pleasure to
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thank them. Most of all, I wish to thank Professor Okamoto, Professor
Oshima, and the Taniguchi Foundation for organizing a superb con-
ference.

§2. Definition of A(X)

Recall that G is a reductive Lie group in Harish-Chandra’s class, and
that ¢ is an involution. Fix a Cartan involution § of G commuting with
g. Write X for the fixed points of §, a maximal compact subgroup of G.
The Lie algebra of G is called g, and its complexification is called g.
Analogous notation is used for other Lie groups. We will occasionally
use a non-degenerate symmetric bilinear form {, ) on g,, invariant under
G, 6, and ¢. We may assume that it is negative definite on {,, and positive
definite on the — 1 eigenspace of 4.

Fix an abelian subalgebra t, of I, Define

2.1 L=centralizer of {; in G.

Then L is a §-stable reductive subgroup of G. Fix a §-stable parabolic
subalgebra q of g with Levi subalgebra [. (Such a subalgebra may be
constructed as the set of non-negative eigenspaces of a generic element of
it,) Write u for the nil radical of g, so that

2.2) q=I41u.

It is convenient at this point to recall the metaplectic double cover L™
of L ([Vogan] (1987), Definition 5.7). This is the double cover which
arises in the orbit method, where L appears as the isotropy group of an
elliptic coadjoint orbit. A more clementary definition is that L™ is at-
tached to the square root of the determinant character of L on u. That
is, we have the following things: a short exact sequence

(2.3a) [ T

and a character p(u) of L™ with the properties

(2.3b) p)Q)=-1,
and
(2.30) p(W)(x7) =det (Ad(x) ,).

This last equation is to hold for any element of L, and any preimage x~
of x in L™. These properties characterize L™ up to unique isomorphism.
Finally, recall that a metaplectic representation of L™ is one which is —1
on .
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Obviously there is a natural bijection between representations of L
and metaplectic representations of L™, implemented by tensoring with the
character p(u). Because of this, it is possible to avoid all mention of L™.
The disadvantage is that the bijection shifts infinitesimal characters by
p(u), and the hypotheses of the theorems are most simply formulated in
terms of the infinitesimal characters on L™.

Recall next the Zuckerman functors

(2.4) H=(A,.).

These are covariant functors from the category of metaplectic ([, (L N K)7)-
modules to the category of (g, X)-modules. They are defined in [Vogan]
(1987), Definition 6.20; except for a twist by p(u), they are the functors
considered in Chapter 6 of [Vogan] (1981). One advantage of the twist is
that these functors preserve infinitesimal character (in the Harish-Chandra
parametrization). Some other useful properties may be found in Theorem
6.8 of [Vogan] (1987), which is due to Zuckerman.

Definition 2.5. In the setting above, fix a Cartan subalgebra b of [.
Any irreducible metaplectic ([, (LN K) )-module X has an infinitesimal
character. In Harish-Chandra’s parametrization, this will correspond to
a weight 2 in b*, defined up to the Weyl group W([, ). We say that X
is good (or in the good range) if for each root « of b in u

(&) Re {a, 2)>0.

It is integrally good if for each such root {a”, 2) is not a negative integer
or zero. (Equivalently, we require the condition (G) for each integral root
in u.) It is weakly good (respectively weakly integrally good) if the cor-
responding weak inequalities hold.

Suppose now that [[, [] acts by zero on X. Write 3 for the center of
[. We say that X is fair (or in the fair range) if for each root « of b in u,

(F) Re {a, 2|,>>0.

It is integrally fair if the condition (F) holds for each integral root in u.
It is weakly fair (respectively weakly integrally fair) if the weak inequalities
hold.

Assuming that [[, [] acts by zero, we will show that good implies fair.
The restriction of 2 to 6N [{, [] must be p,, half the sum of a set of posi-
tive roots for b in [. Write w for the long element of W({, b). Then
wp, is —p,. Consequently
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A, =32+ wd).
Condition (F) may now be written
Rela+wa, 2)>0.

Because w (like every element of W([, b)) permutes the roots of b in u,
this condition follows from condition (G).

This definition of *“fair” is certainly not the most general one possible.
The simplest generalization is to replace the assumption that [[, [] acts by
zero by the weaker one that some weakly unipotent primitive ideal in
U([L, []) annihilates X (see [Vogan] (1987), Definition 12.10). Definition
2.5 is adequate for our present purposes, however.

The next theorem explains the importance of the conditions in Defi-
nition 2.5. It combines the results of Zuckerman already mentioned with
Theorem 7.1 and Proposition 8.17 of [Vogan] (1984).

Theorem 2.6. In the setting of (2.1)<2.4), fix an irreducible meta-
plectic (I, (LNK)")-module X. Write S for the dimension of the —|1
eigenspace of 6 on 1.

a) Suppose X is integrally good (Definition 2.5). Then R5(X) is an
irreducible (g, K)-module.

b) Suppose X is weakly integrally good. Then R5(X) is an irre-
ducible (g, K)-module or zero, and R*(X)=0 for j+S.

c) Suppose X is weakly good and unitary. Then R5(X) is unitary.
For the remaining results, assume that [[, [] acts by zero on X.

d) Suppose X is weakly integrally fair. Then R'(X)=0 for j#S.

e) Suppose X is weakly fair and unitary. Then R*(X) is unitary.

For the purpose of describing irreducible unitary representations, it
is important to answer the following question:

(2.7) In the setting of Theorem 2.6(e), when is Z°(X) irreducible?

In the remainder of the section, we will explain how Theorem 1.2 amounts
to an answer to (2.7) in a special case. In sections 3, 4, and 5 we will
present techniques for studying (2.7) in general. Section 6 describes their
application to the special case.

Fix a maximal abelian subalgebra t, contained in the — 1 eigenspace
of ¢ on {,; that is, a Cartan subspace for the compact symmetric space
K/KN H. Oshima and Matsuki show that the discrete series of G/H is
empty unless {; is also maximal abelian in the — 1 eigenspace of ¢ on g,.
Define L to be the centralizer of this special t,, exactly as in (2.1).
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Definition 2.8. The #-stable Levi factor L is said to be of symmetric
type in G if it arises as above; that is, as the centralizer of a compact Cartan
subspace for G/H. Notice that in this case

[=[NEDt;

this is the decomposition of [ into the eigenspaces of o.

Suppose L is of symmetric type, and q is a g-stable parabolic with
Levi factor [. We define the set P(q) of discrete series parameters in the
chamber g, as follows. 2(q) consists of all irreducible ([, (L N K)™)-modules
X with these properties:

i) [I, [] acts trivially on X;

i) X is in the fair range (Definition 2.5); and

iii) the group (LN H)™ acts on X by the restriction of the character
p(u) (cf. (2.3)).

The first condition implies that X is finite-dimensional; if G is connected,
it implies that X is one-dimensional. The first and third conditions imply
that X is unitary. The third condition implies that X is metaplectic.

If X is in 2(q), we define the discrete series representation with para-
meter X by

AX)=R(X)

(cf. Theorem 2.6). This is a unitary (g, K)-module.

Finally (still assuming L to be of symmetric type) we will define the
full set & of discrete series parameters. To do this, we fix representatives
Qu ** *» Qs for the conjugacy classes (under the normalizer of t, in K) of
g-stable parabolics with Levi factor [, (A convenient way to do this is to
fix a set of positive (restricted) roots of t in f, and to consider only para-
bolics compatible with these positive roots. In any case they are para-
metrized by the quotient of “little Weyl groups™ W(g, t)/W(t, t).) Then

Z=U2(q)

Here now is an explicit version of the decomposition (1.1).

Theorem 2.9 ([Oshima-Matsuki] (1984)). Suppose G is a connected
reductive group in Harish-Chandra’s class. Let ¢ be an involution of G,
and H a subgroup between the fixed point set and its identity component.

a) Suppose there is no compact Cartan subspace for the symmetric
space G/H. Then LY(G/H),=0.

b) Suppose there is a compact Cartan subspace t, for G/H. With the
notation of Definition 2.8,
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L(G/H)s= @ AX).

Oshima and Matsuki do not use the Zuckerman functors to construct
A(X), so this theorem still requires a little proof. It is convenient to
postpone the argument to the end of section 4, when an appropriate
translation principle will be available to help.

Finally, here is a precise (and strengthened) version of Theorem 1.2.

Theorem 2.10. Suppose G is a reductive group in Harish-Chandra’s
class. Let L be a §-stable Levi factor of symmetric type (Definition 2.8),
and t, the corresponding Cartan subspace. Let X be an irreducible meta-
plectic (I, (LN K)")-module. Assume that

a) [, 1] acts trivially on X; and

b) X is in the fair range (Definition 2.5).

Then the (g, K)-module R°(X) (cf. Theorem 2.6) is irreducible or zero.

The proof of this result will occupy the rest of the paper. In (b), it
is likely that “fair” can be replaced by “weakly fair.” This would increase
the length of the case-by-case part of the proof somewhat, but examples
indicate that no essential new problems arise. (This would say that
“limits of discrete series” for G/H are irreducible.) The assumption that
L be of symmetric type is essential; it is not enough even to impose this
condition only on the complexification.

§I3. The translation principle: generalities

The ideas in this section are for the most part not new, but it is
difficult to give good references to original sources for the precise formu-
lations we need. As a substitute for such references, here are some
historical remarks.

The term “translation principle” refers to the idea of studying infinite
dimensional representations of reductive Lie algebras by investigating their
tensor products with the (rich, complicated, and well-understood) family
of finite-dimensional representations of G. The idea seems to originate
in the work of Bernstein, Gelfand, and Gelfand on Verma modules (but I
would not wish to have to defend this claim). The idea was extended
greatly by Jantzen, with whom the term originated ; his work is summarized
in [Jantzen] (1979). Schmid and Hecht used the closely related idea of
coherent families in their work on Blattner’s conjecture (cf. [Schmid]
(1977)). Zuckerman made the connection with the translation principle,
and proved some analogues for Harish-Chandra modules of Jantzen’s
results ({Zuckerman] (1977)). At the same time, [Borho-Jantzen] (1977)
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applied the translation principle to ideal theory in the enveloping algebra.

Since then the ideas have been refined and extended substantially.
Two important sources of the extension are the Kazhdan-Lusztig conjec-
ture and the Beilinson-Bernstein localization theory. Each of these had
implications for the translation principle. It was then natural to seek
direct proofs of the implications. Such proofs suggested reformulations
of the basic definitions, and these in turn led to further new results, I will
not try to trace these developments; in addition to those people already
mentioned, A. Joseph played a central part.

We turn now to the translation functors themselves. Our goal is
Corollary 3.11, which gives an abstract criterion for a translation functor
to take irreducibles to irreducibles.

Definition 3.1. Fix a homomorphism ¢ from 2(g) (the center of
U(g)) to C, and write #, for the associated maximal ideal in 2'(g). If M
is any g-module, set

4JM={m e M| for some positive n, (#,)*"m=0}. The functor taking
M to ,M is called projection on the infinitesimal character ¢. If ¢ is at-
tached by the Harish-Chandra homomorphism to a weight 2 in a Cartan

subalgebra, we may write &, and ,M.
We say that M is 2'(g)-finite if M is annihilated by an ideal of finite

codimension in 2(g). In that case,

M=Y M.
¢

Suppose ¢ is a character of Z(g), and F is a finite dimensional re-
presentation of g. The elementary translation functor attached to these
data is the functor 7" defined by

TM = (FQM).

A translation functor is a sum of composites of elementary translation
functors.

If Fis a representation of the group G (and not just the Lie algebra),
then translation functors will act on (g, K)-modules.

The functors ,(-) are exact on the category of 2(g)-finite modules;
they amount to localization functors there. The first important fact in the
theory is that translation functors preserve this category. This follows
from the following more precise result.

Proposition 3.2 ([Kostant] (1975)). Fix a Cartan subalgebra §j of g, a
weight 2 in §*, and a g-module M annihilated by #,. Suppose F is a finite
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dimensional representation of g, with weights p,, - - -, p, (counted without
multiplicity). Then FQM is annihilated by the product ideal

Jhm " 'Jhn'
In particular, the translation functors preserve the property of Z(g)-finiteness.

There is some evidence ([Vogan] (1979)) that this bound for the annihilator
of FQM is best possible. It would be interesting to prove that.

Suppose now that M is a g-module, and (x, F) is a finite-dimensional
representation of g. We want to analyze FQM as a g-module. To do
that, let us recall the slightly subtle way in which the g-module structure
arises. What obviously acts on F@M is the algebra

(3.3a) End (F)@U(g),

by the formula

(3.3b) (EQu)(f@m)= Ef Qum.
If X belongs to g, then we set

X(/@m)=n(X)/@m+f@Xm.

Another way to phrase this is to consider the algebra homomorphism d
from U(g) to End (F)@U(g), defined on elements of g by

(3.4) d(X)=mr(X)®1 + ld®X.

Now the g-module structure arises from the simple action (3.3) and the
complicated map (3.4).

To go further, we will introduce the hypothesis of 2(g)-finiteness,
and work in a more general setting. Fix a connected complex reductive
group G, with Lie algebra g. Suppose we are given an (associative com-
plex) algebra B, and the following additional structure: an algebra homo-
morphism

(3.52) d: U(g)—>B;

and an action (written Ad) of G on B by algebra automorphisms. The
homomorphism 4 automatically makes B into a U(g)-bimodule. These
structures are assumed to satisfy the following compatibility condition:
Ad is locally finite, and its differential ad is related to the bimodule struc-
ture by

(3.5b) ad(X)b=Xb—bX (Xegq,beB).
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Finally, we assume that
(3.5¢) B is a U(g)-bimodule of finite length.

Before analyzing B, let us see how such algebras can arise in our
setting.

Proposition 3.6 (cf. [Jantzen] (1983), Kapitel 6). Let I be an ideal in
U(g) such that IN Z(g) has finite codimension in Z(g). Then the algebra
A=U(g)/I satisfies the hypotheses of (3.5).

Suppose in addition that F is a finite-dimensional representation of g,
and that the adjoint action of g on End (F) exponentiates to G,. Then the
algebra B=End (F)®A (with d defined in analogy with (3.4) and Ad in the
natural way) satisfies the hypotheses of (3.5).

It is a consequence of (c) that B is (2'(g) X Z(g))-finite. The analogue
of the decomposition in Definition 3.1 for B is

(3.72) B=7Y ,B,

T
Here the sum runs over pairs of homomorphisms of 2(g) into C. The
subscript on the left (respectively right) denotes the result of applying the
functor of Definition 3.1 for the left (respectively right) action of g.
Multiplication in the algebra is related to this decomposition by the rule

(3.7b) *B’ e xB.C 6‘1 . *B,.

Suppose now that N is (left) B-module. The left 2'(g)-finiteness of B
implies that N is Z'(g)-finite, so

(3.7¢) N=3,N.
¢
We have
(3-7d) 'B’ ] xNC 6‘1 9 *Nq

By elementary manipulations, we deduce

Proposition 3.8. Let B be as in (3.5), and use the notation of (3.7).
Suppose N is an irreducible B-module. Then each non-zero ,N is an irre-
ducible ,B,-module.

The next corollary uses the straightforward extension of the notion of
translation functor to the case of bimodules.
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Corollary 3.9. Let A be an algebra as in (3.5) and M an A module.
Fix data ($, F) for an elementary translation functor T (Definition 3.1) and
assume that the adjoint action of g on End (F) exponentiates to G,. Define

B=End (F)®A4

(¢f. Proposition 3.6).

a) TM=,(FQM).

b) If M is an irreducible A-module, then TM is an irreducible ,B,-
module or zero.

c) Let & be the elementary translation functor for biomodules attached
to the data ((§, ¢), End (F)). Then

Parts (a) and (c) here are reformulations of definitions, and (b) is immediate
from Proposition 3.8.

In the setting of the Corollary, the algebra ,B, comes equipped with
a map

(3.10) d: U(g)—>,B,.

The Corollary says that irreducibility of translated modules is related to
surjectivity of this map. Here is a result along those lines; it is in some
sense the point of this section.

Corollary 3.11. Let I be an ideal in U(g) meeting 2(g) in an ideal of
finite codimension. Let ($, F) be data for an elementary translation functor
T (Definition 3.1). Define the translation functor I~ for bimodules as in
Corollary 3.9. Assume that the map

d: U(g)——>T (U()/T)

is surjective. Then T takes any irreducible g-module annihilated by I to an
irreducible g-module or zero.

The surjectivity hypothesis in the Corollary is a statement about
translation functors for certain bimodules. We will see how to approach
it in section 5.

Because we are interested in irreducible (g, K)-modules (which need
not be irreducible as g-modules), we need a slight refinement of Corollary
311,

Corollary 3.12. In the setting of Corollary 3.11, assume in addition
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that (z, F) is a representation of G. Then T takes irreducible (g, K)-modules
annihilated by I to irreducible (g, K)-modules.

Proof. Write A=U(g)/l, and B=End (F)®A. Let M be an irre-
ducible (g, K)-module annihilated by 7; write § for the representation of
K on M. Then the algebra of operators on M generated by A4 and the
various §(k) acts irreducibly. It follows that the algebra C generated by
the action of End (F)®A and the various Id ® (k) acts irreducibly on F®
M. Since the operators z(k) on F are invertible (and contained in End(F)),
C is equal to the algebra generated by the action of B and the various
x(k)®d(k). These latter elements are exactly those giving the action of K
in the tensor product (g, K)-module structure. Consequently they preserve
the decomposition of F® M by infinitesimal character. Therefore the
algebra of operators on ,(F® M) generated by ,B, and the restrictions of
the various x(k) ® (k) acts irreducibly. Since we are assuming that U(g)
maps onto ,B,, this is what we wanted to show. Q.E.D.

We will make use of a slight variant of these results as well.

Proposition 3.13 ([Vogan] (1986b), Proposition 6.5). In the setting of
Corollary 3.11, write J for the kernel of d. Assume that the annihilator in

U(g) of
T(U(g)/N/d(U(g))

properly contains J. Suppose that M is an irreducible g-module with
annihilator precisely equal to I. Then TM is an irreducible U(g)-module with
annihilator equal to J. The analogous assertion holds for (g, K)-modules.

The hypothesis says that the quotient has a large annihilator, and
therefore that it is small; that is, that the map d is nearly surjective. Under
this hypothesis, the proposition says that U(g)/J and 7 (U(g)/7) have the
same large irreducible modules.

§4. Coherent families

To make good use of the translation functors discussed in Section 3,
we need a way to compute them effectively. This is provided by the con-
ceptually more subtle (but technically less difficult) idea of coherent
families. The version discussed here is taken from [Schmid] (1977), but
related results may be found in older work (e.g. [Jantzen] (1974)).

Definition 4.1. Suppose G is a reductive group in Harish-Chandra’s
class, and H is a Cartan subgroup of G. A subgroup A of the group of
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one-dimensional characters of H is called nice (or (G-nice) if it has the
following properties:

i) for each 1 in A, there is a finite-dimensional irreducible represen-
tation F, of G of extremal weight 1; and

ii) the roots of H in g belong to A.
A finite-dimensional representation of G is called A-nice if all its weights
under H belong to A.

Since G may be disconnected and its Cartan subgroups may be non-
abelian, some care is required. For example, the representation in (i) is
not necessarily unique. A consequence of (ii) in the definition is that if
an irreducible representation F of G has one weight in A, then it is 4-nice.
In particular, its extremal weight spaces are one-dimensional, and F is
irreducible under the Lie algebra g, of G.

Notice that the lattice generated by the roots of H in g is nice.

The next definition uses the notion of virtual representation. The
definition is discussed more completely in [Vogan](1981) (Definition 7.2.5).

Definition 4.2. Suppose A is a nice set of characters of a Cartan
subgroup H (Definition 4.1). Fix an element { of §*, and write {+ A4 for
the set of formal symbols {+ 2 (with 2 in A). A coherent family of (g, K)-
modules on (H, {4 A) is a function & on the set {4+ A4 with values in the
Grothendieck group of the category (g, K)-modules of finite length. It
must satisfy the following properties (for any 2 in A):

i) if Fis any finite-dimensional A-nice representation of G, then

9(C+1)®F=FMZ}‘”) 6((+2A+p); and

i) the virtual representation @({+ 2) has infinitesimal character
{+da.
In (i), 4(F, H) denotes the set of weights of H in F, counted with multi-
plicity.

There are two important sources of coherent families.

Example 4.3. Suppose L is a #-stable real Levi factor for the para-
bolic subalgebra q of g. (We make no further assumptions on q. In this
paper it will usually be g-stable; another interesting case is that of the
complexification of a real parabolic subalgebra.) Fix a Cartan subgroup
H of L, and a G-nice group A of characters of H (Definition 4.1). Then
A is automatically L-nice. Let L~ denote the metaplectic cover of L
(attached to the square root of the determinant character of L on q/l—see
[Vogan] (1987), Definition 5.7). Suppose 6, is a coherent family of meta-
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plectic (I, (L N K)™)-modules based on {+ A (Definition 4.2). Define

05+ D)=[2(—D(R)VO.L+2).

Here the Zuckerman functors #* are defined as in [Vogan] (1987), Defini-
tion 6.20—f. [Vogan] (1981), Chapter 6. Because of the existence of long
exact sequences for the Zuckerman functors, the term in square brackets
is well defined on the level of virtual representations. It is not difficult to
see that 6, is a coherent family of virtual (g, X)-modules (cf. [Vogan]
(1981), Lemma 7.2.9).

The preceding example shows how to make coherent families on big
groups out of coherent families on small groups. We also need a way to
construct coherent families from nothing; this is provided by the next
example.

Example 4.4. Suppose H is a maximally split Cartan subgroup of G,
and A is a nice set of characters of H (Definition 4.1). Fix a set 4* of
positive roots for fjin g. Let F be an irreducible finite-dimensional repre-
sentation of G, of highest weight &. (The irreducible representation § of
H may not be one-dimensional). The differential of £ maps § to scalar
operators; by abuse of notation, we regard d¢ as an element of §*. Finally,
write p for half the sum of the positive roots (regarded as an element of
§*). We define a coherent family © based on (d£+ p)+ 4, as follows. Fix
A2in A. If dé+ p+da is singular, then we define

6(E+p+2=0.

Otherwise, there is a unique element w of W(g, §) with the property that
w(£+ p+d2) is dominant. Write z,, for the unique character of H which
is a sum of roots, such that the differential of r,, is p—wp. Consider the
irreducible representation

ERI®T,

of H. It turns out to be an extremal weight of a unique finite-dimensional
irreducible representation F of G. (The assumption that H is maximally
split is used only here, to guarantee the unicity of F.) We define

6 +p+)=e(W)F.

Here ¢ is the sign character on W.
The Weyl character formula implies that @ is a coherent family.
(Condition (ii) in Definition 4.2 is easy to check. When G is connected,
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condition (i) amounts to a standard formula for decomposing tensor
products ((Humphreys] (1972), p. 142). The general case is similar, relying
on the Weyl character formula for disconnected groups.)

Using these two examples and Theorem 2.6, we deduce immediately

Proposition 4.5. In the setting of (2.2)<(2.3), let H be a maximally
split Cartan subgroup of L, and let A be any G-nice group of characters of
H. Fix a weight { in h* that is the infinitesimal character of a metaplectic
(I, (LN K)")-module Y on which [(, (] acts trivally. Then there is a coherent
SJamily © based on (H, {+ A) with the following property. Fix an element
§ of A that extends to a character of L, and assume that C, QY is weakly
fair (Definition 2.5). Then

6({+4§)=2%(C®Y).

Here is the basic result which shows how coherent families can be
used to compute translation functors. To make sense of it, recall that
translation functors are exact (on 2(g)-finite g-modules), and therefore act
on virtual representations.

Proposition 4.6. Suppose 6 is a coherent family of (g, K)-modules on
(H, {+ A) (Definition 4.2). Fix data ($, F) for an elementary translation
Sunctor T (Definition 3.1), and assume that F is a A-nice representation of G
(Definition 4.1).  Fix a weight 1 in §* corresponding to ¢ under the Harish-
Chandra homomorphism. Then

TOR+D= 3 6C+@+a)

p€4(F,H)
CrdpedIEeW (5,91

As an illustration of how calculations of this kind work, we will show
how to translate some derived functor modules.

Proposition 4.7. In the setting of Definition 2.5, assume that X is
a metaplectic (1, (L N K)™)-module in the weakly fair range. Fix a maximally
split Cartan subgroup H of L, and a representative 2 in §* for the infinitesi-
mal character of X. Let F be an irreducible representation of G having a
unique q-invariant line Cy; here & is a character of L. Write T for the
translation functor attached to the infinitesimal character 2 (for G) and the
representation F* (Definition 3.1). Then

T(Z(XQ CY)=R(X).

The key to the proof is a simple lemma about roots and weights.
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Lemma 4.8. Suppose q=I[+u is a parabolic subalgebra of the
reductive Lie algebra g, and Y is a Cartan subalgebra of [. Assume that 2,
in §* is the differential of a one-dimensional representation X of [, and that

Re {a, 3, >0

for each root « of § in u. Let F be a finite-dimensional irreducible repre-
sentation of ¢ having a q-invariant line on which Yy acts by §&. Write A for
the infinitesimal character of the representation X of [. Let Z be an irre-
ducible constituent of F*|, of highest weight pu. Assume that

p+(2+§) e W(g, h)a.
Then p is —§&, and Z is the lowest weight space of F*.
We will give the proof in a moment.

Proof of Proposition 4.7. We will verify the equality in question on
the level of virtual representations; looking at the argument a little more
carefully would show that an isomorphism is actually produced. Write
Z for

2 (=1,

a map from metaplectic virtual ({, (LN K) )-modules to virtual (g, K)-
modules. Theorem 2.6 allows us to replace %% in the statement of the
Proposition by #. By [Vogan] (1981), Lemma 7.2.9 (b),

FQAY=R(YQF|).

It follows that F® Z(X® C,) is the sum of all the Z(X® C,RZ), with Z
a constituent of F|. Applying the functor ,(-) amounts to considering
only those Z satisfying the hypothesis of Lemma 4.8. By the lemma,

TRXQC)=RXQCR(Cy*)
= R(X). Q.E.D.

Proof of Lemma 4.8. Because W preserves length, the main hypoth-
esis of the lemma guarantees that g+ (14 §) has the same length as 2. We
will argue from the other conditions that x4 (2+4£) is at least as long as
2, with equality only if the desired conclusion holds.

Write §, for the intersection of § with [[, [], and 3 for the center of [;
then

(4.9) b=3+5s
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an orthogonal direct sum. Because C, is one-dimensional, the restriction
of 2to §, must be p,, half the sum of some set of positive roots of § in L.
That is,

(4.10a) A=2A,+p

(in accordance with (4.9)). Similarly, we write

(4.10b) =t i
Here y, must be a weight of 3 on Z, and so on F. Consequently
(4.11a) py=—E+2  nal,

The sum is over roots of § in u, and the coefficients are non-negative
integers. It follows that

(4.11b) (e+Q@+ ) =2+ L n.al,
Using the dominance hypothesis on 1,, we conclude that
(4.12a) (et +6)), =14,

Equality holds if and only if all the n, are zero; that is, if and only if Z is
the lowest weight space of F*.

On the other hand, the restriction of g+ (2+4£) to §, is g, +p,. Since
4, is highest weight of a finite dimensional representation of [(, 1].

(4.12b) |+ pd =104

Recall now that the hypothesis of the lemma guarantees that p+(2+4§)
and 2 have the same length. In light of (4.10a) and (4.12), it follows that
equality must hold in (4.12a). As explained after (4.12a), this implies the
conclusion of the lemma. Q.E.D.

We conclude this section with a sketch of a proof of Theorem 2.9.
Oshima and Matsuki prove a result like Theorem 2.9, but with A(X) re-
placed by another (g, K)-module B(X). B(X) is defined (roughly) as the
space of f-finite hyperfunction sections of a certain bundle (induced by
X) on a space G¢/Q¢. Here G* is another group with complexified Lie
algebra g, and Q¢ is a parabolic subgroup with complexified Lie algebra
q. The sections are required to have support along a certain subvariety
of G¢/Q¢. Because of recent work of Hecht, Milicic, Schmid, and Wolf,
it is possible to find a natural isomorphism between A(X) and B(X); but
an indirect argument is easier to sketch.
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Choose a non-negative integer k so large that X®C,,,,, is in the
good range (Definition 2.5). By Theorem 6.1 of [Schlichtkrull] (1983) (and
its proof),

(4.13a) AX Q@ Cip ) =ZB(XQ Coyp ()

(It is worth remarking that Schlichtkrull’s argument apparently cannot be
generalized to parameters not in the good range). Let F denote a finite-
dimensional irreducible representation of G with a g-invariant line trans-
forming by the character 2kp(u) of L. (The product of the kth powers
of the root vectors in u generates such a representation in S(g).) Let T
denote the elementary translation functor attached to F* and the infini-
tesimal character of A(X) (Definition 3.1). By Proposition 4.7,

(4.13b) TAX@Cyp () = AX).

Since we have not defined B(X) carefully, we cannot prove the corre-
sponding assertion for B(X) in detail. Here is a sketch, however. Write
C(X) for the full space of hyperfunction sections of the bundle on G¢/Q“.
Tensoring a space of sections with F* is the same as tensoring the inducing
bundle with F*. Now a calculation analogous to the proof of Proposition
4.7 shows that

TC(XRCyipw) = C(X).

The isomorphisms involved are easy to write down, and one can see by
inspection that they do not affect support. It follows that

(4.13¢) TB(X®Cupw) = B(X).
Now (4.13) implies that A(X) is isomorphic to B(X).

§ 5. The translation principle: theorems

In order to use Corollary 3.11, we need a detailed understanding of
G finite U(g)-bimodules The main point, first systematically exploited
in [Duflo] (1977), is that such bimodules are essentially Harish-Chandra
modules for G,. 'We will not recall the details of this idea; these may be
found in [Jantzen] (1983), section 7.1 of [Vogan] (1981), or section 16 of
[Vogan] (1986a). An important consequence is that the notion of para-
bolic induction may be applied to bimodules. Before describing it, we
record a careful definition of the category of bimodules under considera-
tion. (We omit a twist by a Chevalley automorphism that is often
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included to facilitate comparison of bimodules with actual Harish-
Chandra modules).

Definition 5.1. Suppose G. is a complex connected reductive Lie
group with Lie algebra g. A Harish-Chandra bimodule for G, is a U(g)
bimodule B of finite length, endowed with a completely reducible locally
finite holomorphic action (sometimes called Ad) of G,. These two struc-
tures are related by the condition that the differential (sometimes called
ad) of the G, action should be given in terms of the bimodule structure
as

ad (X)b=Xb—-bX.
Recall that examples of such bimodules are given by Proposition 3.6.

Definition 5.2. In the setting of Definition 5.1 suppose p=m+n is
a Levi decomposition of a parabolic subalgebra of g. Let C be a Harish-
Chandra bimodule for M,. The induced bimodule Ind, (C) for G is de-
fined as follows. Define a character p, of m by

p(X)=%tr(@d (X)) (Xem).
Define a one-dimensional M, bimodule T, by
Xt=1tX=p,(X)t (Xem,teT)
Ad (m)t=t (meMg teT).

Write p°® for the parabolic opposite to p. Make C® T, into a (p, p°°)-
bimodule by making n act trivially on the left, and n°® trivially on the
right. Define

J(C)=Hom, ,o»(U(@)QU(g), CRT,).

Here the Hom is defined using the left action of p on the first U(g), and
the right action of p°® on the second U(g). We make J,(C) into U(g)-
bimodule as follows: if u, and u, are in U(g), and j belongs to J,(C), then

(u, ju)(0,@uy) = j (0,14, Qu,0,).

We can define an action ad of g on J, by the formula in Definition 5.1.
Finally, we define Ind, (C) to be the subspace of J,(C) on which the action
ad exponentiates to Go. It is easy to show that, as a g-module under ad,
J(C) is isomorphic to

(5.3) Hom,, (U(g), C).
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This formula shows that, as a representation of G, Ind,(C) is just the
representation holomorphically induced from M, to G.. It follows that
Ind, is an exact functor. Here are some additional standard properties.

Proposition 5.4 ([Vogan] (1981), Chapter 6). In the setting of Defini-
tion 5.2, Ind, is a covariant exact functor from Harish-Chandra bimodules
for M, to Harish-Chandra bimodules for G,. Fix a Cartan subalgebra §
of m, and weights 2 and p in §*. Let C be a Harish-Chandra bimodule for
M with infinitesimal character (2, y) (in the Harish-Chandra darametriza-
tion). Then Ind,(C) has infinitesimal character (2, y).

All of our more serious theorems are based on the next result. All
of the difficult ingredients in its proof were established by Kostant (for
example in [Kostant] (1969).) Some were also found (in greater generality)
by Zhelobenko ([Zhelobenko] (1974)). Understanding the importance of
the formulation given here is another significant step, apparently first
taken in [Duflo] (1977). Recall that a weight is called dominant if its inner
product with a positive coroot is never a negative integer.

Theorem 5.5. In the setting of Definition 5.1, suppose b=YH+4n is a
Borel subalgebra of g. Fix a dominant weight 2 in §*, and let #, be the
corresponding maximal ideal in Z(g). Write I, (or I(g)) for the ideal in
U(q) generated by #,. Definite a Harish-Chandra bimodule R, (or R(g))

by
R,=U(QQ)/1,
(¢f. Proposition 3.6). Then
R(@)=1Ind, (R,(H)).

More generally, suppose p=m-+n is a parabolic subalgebra containing b
(and that m contains ). Then

R,(g)=Ind, (R,(m)).

Notice that R,(§) is the one-dimensional bimodule on which H, acts
trivially, and

Xr=rX=1X)r (X e b, re R(D)).

The second claim in the theorem is an immediate consequence of the first
and induction by stages.

Corollary 5.6. Suppose p=m-+n is the Levi decomposition of a
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parabolic subalgebra of 3. Let V) be a Cartan subalgebra of m, and fix a
weight 2 in b*. Assume that for each root a of §) in n, {a”,2) is not a
negative integers. If S is any quotient of R(m) (Theorem 5.5), then Ind (S)
is a quotient of R/(g).

This follows from the exactness of induction.

We turn now to some special results applicable to (2.7). The first is
a version of a result that I learned from Bernstein and from Kashiwara
(independently).

Proposition 5.7 ([Vogan] (1984), Proposition 16.8). Suppose we are
in the setting of Definition 2.5 and Proposition 4.7; use the notation there.
Write & for the translation functor on bimodules associated to (2, 2) and
End (F*).

Write R(L; ) for the (one-dimensional) algebra of endomorphisms of
X coming from the action of U(). Define

R(I: g)=Ind, (R,(I: 1)),

a Harish-Chandra bimodule for G, (Definition 5.2).

a) If 2 is in the weakly good range, then R(L: g) is a quotient of U(g).
The action of U(g) on R5(X) factors through this quotient.

b) There is a natural isomorphism

R([: @)= R,, 4,(I: g).

¢) R)l:@) has a natural algebra structure. This algebra acts on
R(X), and the resulting (R,(L: g), K)-module is irreducible or zero.

Proof. The first part of (a) follows from Corollary 5.6. For the
second part (which requires more argument) we refer to [Vogan] (1984).
Part (b) is analogous to Proposition 4.7, and may be proved in the same
way. Part (c) follows from (a) (applied to an appropriate 14d¢), (b),
and Corollary 3.9. Q.E.D.

It is not difficult to show that the ring R,([: g) may be identified with
the ring of global sections of a certain sheaf of twisted differential opera-
tors on Go/Q,. We will make no explicit use of this fact, however.

In the setting of the proposition, define

(5.8a) I(l: g)=Ker (d: U(g)—>R,(1: @)
(5.8b) A (L: g)=U(@)/I(L: g).
Corollary 5.9. In the setting of Proposition 5.7, suppose that R((: g)
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is a quotient of R(g). Then R5(X) is an irreducible (g, K)-module or zero.

The criterion of Corollary 5.9 is formulated in terms of induced re-
presentations of complex groups. This sounds like a reasonable way to
approach Theorem 2.10. Unfortunately, the criterion is not always satis-
fied. What we will actually use is a reduction technique based directly on
Proposition 5.7. That technique is sufficiently intricate that it is better to
begin with an example.

Example 5.10. Suppose G is Sp (8, C), the group of linear trans-
formation of C'" preserving the standard symplectic form. We can
identify a fixed Cartan subalgebra § of g with C®, with basis linear func-
tionals {e,}. We choose a positive system so that the simple roots are

€—€4y (i=1’2s""7), 2e8‘

We consider the parabolic subalgebra q=[+u with [ corresponding to
the simple roots

€ =8y Oy—C, Cy—€ €,—C, ©€,—, 26,
We have
[=gl(2) X gl(2) X 3p(4).
Consider the infinitesimal character
(@) 2=(2,1,1,0,4,3,2,1).
Let F be the irreducible holomorphic representation of G of highest weight
(b) £=(3,3,0,0,0,0,0,0).

Write T for the translation functor associated to (2, F*) (Definition 3.1)
and & for the corresponding translation functor for bimodules (Corollary
3.9). Recall the notation (5.8)). We claim that

(c) if M is an irreducible A4,, ((:g) module, then TM is irreducible or
zero.

The idea used in Corollary 5.9 will not work: it turns out that 4, ,(l: g)
is a proper subalgebra of R([: g). By Corollary 3.9, it is enough to show
that

(O T Ay, (L g)=A(1: g).
The difficulty is that we lack nice models of the algebras A,, (I: g) and
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A(L: g).
To overcome it, we will find Harish-Chandra bimodules C, and C,,,
having the following properties:

1) FChe=Cy
(d2) each of C,,, and C, is generated by its unique G-fixed vector; and
(d3) there are bimodule maps

Cae e——’Rzu([: 8)
Ci—>R(1: g)

that are non-zero on the G-fixed vectors.

To construct these new bimodules, let p and p’ be the standard para-
bolic subalgebras of g with Levi factors

(© m=gl(2) X gl(4) X g(2).
ey m’=gl(2) X gl(2) X gl(4).
It will be convenient to write

Ind, (2)=Ind, (R,(m: m)).
Put

(f) . C1=Ind. ((2’ I)’ (4’ 3, 2: l), (l’ 0))’

and similarly for 24-¢. (The grouping of the coordinates is intended only
as a reminder of what m is.) Finally, put

(f)' (C’)I=Indu' ((2» l)) (]» O)s (4, 3) 2’ l))’

and similarly for 24 ¢£.

To verify (d1), we proceed as in the proof of Proposition 4.7. Let Z
be any irreducible constituent of the restriction of F* to m, and y its
highest weight. Assume that

® pt+(59,4,32D,0,0)=w(21),43,2,1),(1,0),

for some w in the Weyl group. We must deduce that yuis (—3, —3,0,
-+ +,0); (d1) will follow. The Weyl group acts by permutations and sign
changes. The sum of the coordinates on the right in (g) is therefore at
most 14. The sum of the coordinates of u (as of any weight of F¥) is at
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least —6, so the sum on the left is at least —6+20. It follows that the
sums on both sides of (g) are 14, that w is a permutation, and that the
coordinates of u are non-positive integers whose sum is —6. Now g is a
highest weight for m, so it coordinates decrease in each of the three blocks
of 2,4, and 2 coordinates. Using this information, it is an elementary
exercise to deduce that g is (-3, —3,0, .., 0).

The claim in (d2) for 24 ¢ is immediate from Corollary 5.6. For 2,
we use the parabolic with Levi factor gl(6)x ép(2) and Corollary 5.6.
The result is that the cyclicity we want is equivalent to a corresponding
assertion about GL(6). At that level the induced bimodule is actually
irreducible; this is a consequence of Proposition 12.2 of [Vogan] (1986a).
(This the main step of the argument; everything else we are doing is either
standard or faily easy.)

The maps wanted in (d3) will be constructed in two steps: first from
C, to (C),, then from (C’), to R,(!: g) (and similarly for 24-£). Since p’ is
contained in g, the second is just induced from the natural quotient map

Ri4s,0,0(00(4): 8p(4))—> Ry 5,0,1,(8D(4): 3p(4)).

The first map is induced from the parabolic with Levi factor gl(2) X gl(6).
On the GL(6) level, we need a map

Indul(h)xn((!)((4’ 3! 29 l)) (It 0))_’lnd||(2)x‘l(4)((l9 0)9 (49 3, 29 1))-

Corollary 5.6 guarantees that the term on the left is a quotient of U(gl(6)).
The map arises by the action of U(gl(6)) on the GL(6)-fixed vector on the
left. We only need to see that the ideal

Lian2.0.0,0(@H4) X g1(2): gl(6))

annihilates the bimodule on the right. This is a consequence of the theory
of r-invariants (see [Duflo] (1977) or [Jantzen] (1983), for example). Alter-
natively, one can apply some fairly straightforward intertwining operator
theory. In either case we omit the details.

This completes the verification of the properties (d1), (d2), and (d3).
Using the properties, we verify (c)’. By (d2) and (d3), 4,,, is a quotient
of C;,.. It follows that &4,,, is a quotient of ¥C,,,. By (dl), this
implies that &4,, , is a quotient of C,. Using (d2), we deduce that ¥4,,,
is generated by its unique G-fixed vector. Now (c)’ is immediate.

Here is a general theorem that can be proved using exactly the same
method.

Theorem 5.11. Suppose g is 8p(n, C). Let §) be the standard Cartan
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subalgebra, identified with C* as usual. Fix a positive integer p less than or
equal to n|2; write r=n—2p. Let q be the standard parabolic subalgebra
with Levi factor

[=(gl(2))* X 8p(r).

Suppose 2 is the infinitesimal character of a one-dimensional representation
of Uin the fair range:

2=(m+l’ m, 2; L ltp’r:r—l, =Rersls l)-

Assume that m is less than r but greater than 0. Let F be the finite dimen-
sional representation of g of highest weight §=(r—m,r—m,0, ---, 0).
Write T for the translation functor associated to F* and 2. Suppose M is
an irreducible (g, K)-module annihilated by I,, ((: g). Then TM is an irre-
ducible (g, K)-module or zero.

Because of the notational problems, we leave to the reader the task
of generalizing the argument in Example 5.10. The appropriate choice
for mis

gl(2) X gl(r—m+1) X (g(2))*~* X 8p(m—1).
We will need analogous results for two other classes of pairs (g, [):
(80(2n+e), 30(2r+¢))  (e=0orl);
and
(8l(n), (gU(1))” X gl(n—2p) X gl(1))").

Of these results even the formulation will be left to the reader.

§ 6. Proof of Theorem 2.10

We begin with a reduction technique.

Proposition 6.1. In the setting of Definition 2.5, suppose that X has
infinitesimal character 2. Assume that there is §-stable parabolic p=m+n
containing q with the following properties:

i) for every root a of Yy in n, {a”, 2) is not a negative integer; and

ii) the (m, (M N K)")-module (R,,)(X) is irreducible or zero.

(In (ii), s is the dimension of the — | eigenspace of § on mN\u.) Then R5(X)
is irreducible or zero.

Proof. We use induction by stages ([Vogan] (1981), Proposition 6.3.6)
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for qCp. The hypotheses guarantee that the module on m is irreducible
and in the weakly integrally good range. Theorem 2.6(a) gives the con-
clusion. Q.E.D.

The next result give a sufficient condition for #%(X) to vanish (and
therefore to be irreducible or zero).

Proposition 6.2. In the setting of (2.1)~(2.4), suppose there is a G-stable
parabolic p=m+n containing q, with the property that M|/L is compact.
Let X be any finite-dimensional metaplectic ([, (L N K)™)-module with infini-
tesimal character A. If A is not regular and integral for m, then #'X is zero
for all i.

Proof. Again one uses induction by stages. The compactness as-
sumption implies that the —1 eigenspace of § on uN\m is zero. By the
generalized Blattner formula ([Vogan] (1981), Theorem 6.3.12) it follows
that (#,,,,)'(X) is finite-dimensional. An irreducible finite-dimensional
module has regular integral infinitesimal character; so the second assump-
tion makes the derived functor module zero at the level of m. Q.E.D.

The value of this proposition is as a complement to a much deeper
result (Theorem 6.5) below. Some technical preliminaries are needed for
its formulation.

Definition 6.3. Suppose (g, §) is a reductive symmetric pair with
Cartan subspace . Write [ for the centralizer of t in g. For each re-
stricted root « of t in g, write g, for the root subspace (a representation
of ). An element Z of g, is called generic if [Z, g_,] contains a non-zero
element of {.

Proposition 6.4 ([Kostant-Rallis] (1971)). In the setting of Definition
6.3, let a,, - - -, @, be a set of simple restricted roots, and Z,, - - -, Z, a set
of generic root vectors (Definition 6.3). Write q=1[+u for the correspond-
ing parabolic subalgebra. Then

Z=Y Z,
is a representative of the largest nilpotent conjugacy class meeting 1.

Here is the reason we care about the condition on Z in the proposi-
tion. In what follows, we write

8= —1 eigenspace of

Theorem 6.5. In the setting of Definition 2.8, assume that u()3
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contains a representative of the largest nilpotent conjugacy class meeting u.
Let X be an irreducible metaplectic ([, (LN K)™)-module in the weakly fair
range (Definition 2.5) on which [[, (] acts trivially. Then R5(X) is irreducible.

A more general result may be found in [Bien] (1986), Corollary 2.2.6.
We will give a proof, however, using ideas from [Borho-Brylinski] (1982).
We also use terminology from that paper.

Proposition 6.6 ([Hesselink] (1978)). In the setting of Definition 6.3,
let Q¢ be a parabolic subgroup with Levi factor L,. Then the moment map

x: T¥*Ge/Qc)—>g*
is birational.

The proof is very easy (Hesselink does much more); the main point is that
the nilpotent conjugacy class in Proposition 6.4 is even and naturally at-
tached to Q.

Theorem 6.7 ([Borho-Brylinski] (1982) (Corollary 5.12). Suppose q=
[+ u is a parabolic subalgebra of g, and 1 is the infinitesimal character of a
one-dimensional representation of | in the weakly fair range. Suppose that
the moment map r for Go/Q is birational. With notation (5.8), the associated
variety of the bimodule

Ry(L: g)/A,(L:0)

is strictly smaller than the image of n. Consequently the annihilator of the
bimodule properly contains I(1: g).

Proposition 6.8 ([Borho-Brylinski] (1985), Corollary 1.9 and Proposi-
tion 2.8). In the setting of Definition 2.5, suppose that X is an irreducible
(I, [LN K)")-module in the good range, and that [, [] acts by zero on X.
Then the associated variety of R5(X) is Kq-(uN8). Consequently the
associated variety of the annihilator of R5(X) is Gg-(uN 8).

In particular, the annihilator of R%(X) is equal to I(1: g) if and only if
u N\ 3 contains a representative of the largest Gq-conjugacy class meeting u.

This is a consequence of the 2-module construction of Z3(X) (on
G¢/Qc). We omit the details.

Applying the translation principle (Proposition 4.7), we can immedi-
ately extend the last assertion.

Proposition 6.9. In the setting of Definition 2.5, suppose X is in the
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weakly fair range. Then the annihilator of R5(X) is equal to I(l: g)
(notation (5.8)) if and only if WN 3 contains a representative of the largest
G-conjugacy class meeting u.

Proof of Theorem 6.5. We apply Proposition 3.13. The necessary
hypotheses on rings are proved in Theorem 6.7, and those on modules in
Proposition 6.9. Q.E.D.

We now need some effective way to check the hypothesis of Theorem
6.5.

Lemma 6.10. In the setting of Definition 2.8, suppose « is a restricted
root of t in g. 1If g, is not compact, then the —1 eigenspace of 6 on g,
contains a generic element of q,.

Proof. Write t, for the coroot of « in t, and ¢ for the involution of g
under consideration. Then we can define a non-degenerate symmetric
bilinear form B on g, by

B(Y, Z)=/(t,, |Y, 0Z)).

Since ¢ and # commute, the Cartan involution restricted to g, is orthogo-
nal for the form B. Consequently B is still non-degenerate on each eigen-
space of §. Since the —1 eigenspace is assumed non-zero, we can choose
an element Z in it such that B(Z, Z)is non-zero. Then [Z, ¢Z]is non-zero;
obviously it belongs to the — 1 eigenspace of ¢ on [, which is t. Therefore
Z is generic. Q.E.D.

Corollary 6.11. In the setting of Definition 2.8, there are two mutually
exclusive possibilities: some of the restricted simple root spaces are compact,
or they are all non-compact.

In the first case, there is a §-stable parabolic p=m--n properly contain-
ing q such that m is g-stable and ML is compact. In this case Proposition
6.2 applies (and may say that R5(X) is zero).

In the second case, the largest nilpotent conjugacy class meeting u has
a representative in the —1 eigenspace of @ on u. In this case Theorem 6.5
applies (and R5(X) is irreducible).

Proof of Theorem 2.10. 'We proceed by induction on the dimension
of g. By standard arguments, we may assume g, is simple. Write 1 for a
representative of the infinitesimal character of X.

Suppose first that there is a proper parabolic subalgebra p=m-+n
containing q, with the following properties:
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(notation (3.8)) if and only if UM & contains a representative of the largest
G-conjugacy class meeting .

Proof of Theorem 6.5. We apply Proposition 3.13. The necessary
hypotheses on rings are proved in Theorem 6.7, and those on modules in
Proposition 6.9. Q.E.D.

We now need some effective way to check the hypothesis of Theorem
6.5.

Lemma 6.10. In the setting of Definition 2.8, suppose « is a restricted
root of t in g. If g, is not compact, then the —\ eigenspace of 8 on g,
contains a generic element of q,.

Proof. 'Write ¢, for the coroot of ¢ in t, and ¢ for the involution of g
under consideration. Then we can define a non-degenerate symmetric
bilinear form B on g, by

B(Y, Z)={t,, [Y, ¢Z]).

Since ¢ and # commute, the Cartan involution restricted to g, is orthogo-
nal for the form B. Consequently B is still non-degenerate on each eigen-
space of #. Since the — 1 eigenspace is assumed non-zero, we can choose
an element Z in it such that B(Z, Z)is non-zero. Then [Z, ¢Z]is non-zero;
obviously it belongs to the — 1 eigenspace of ¢ on [, which is . Therefore
Z 1s generic, Q.E.D.

Corollary 6.11. In the setting of Definition 2.8, there are two muitually
exclusive possibilities: some of the restricted simple root spaces are compact,
or they are all non-compact.

In the first case, there is a §-stable parabolic p=m+-n properly contain-
ing g such that m is o-stable and M|L is compact. In this case Proposition
6.2 applies (and may say that R*(X) is zero).

In the second case, the largest nilpotent conjugacy class meeting u has
a representative in the —1 eigenspace of @ on u. In this case Theorem 6.5
applies (and R(X) is irreducible).

Proof of Theorem 2.10. 'We proceed by induction on the dimension
of g. By standard arguments, we may assume g, is simple. Write 1 for a
representative of the infinitesimal character of X.

Suppose first that there is a proper parabolic subalgebra p=m+n
containing g, with the following properties:
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(6.12a) m is the centralizer of a subspace of t; and
(6.12b) for every root & of §j in n, {(a”, 1) is not a negative integer.

The first hypothesis guarantees that M is preserved by the involution g¢.
We may therefore apply our inductive hypothesis to the (smaller) algebra
m, and conclude that (#,,.)'(X) is irreducible or zero. By Proposition
6.1, A5(X) is irreducible or zero.

We may therefore assume that

(6.13a) no parabolic subalgebra satisfying (6.12) exists.

This has the effect of forcing 2 to be fairly small. By Corollary 6.11, we
may as well assume that there is a parabolic p=m+n with the properties
specified there. By Proposition 6.2, we may assume that

(6.13b) 2 is regular and integral for some m DI corresponding to a simple
restricted root.

This has the effect of forcing 2 to be a little big.

At this point, it is necessary to make a list of all the 2 satisfying
(6.13), case by case. It is a happy coincidence that there are none for the
exceptional groups. Unfortunately I know of no way to prove this except
by brute force; my notes for the case of E, cover about twenty pages. (A
similar amount of effort might of course produce a computer program
which would make the calculation.)

For the classical groups, however, there are some cases remaining.
For example, suppose (g, [) is (8p(n), (gl(2))? X 8p(n—2p)) (cf. Theorem
5.11)). Write r for n—2p. Because [[, [] acts trivially on X, 2 must be of
the form

(6.14a) (m+1,m,m+1,my - m,r,r—1,.--,1).
The hypothesis that X be in the fair range amounts to
(6.14b) m+$>me+34>. - >m,+42>0.
Hypothesis (6.13a) means that

(6.14c) m, is an integer less than r.

Hypothesis (6.13b) is

(6.14d) for some i, m,—m,,,—1 is a positive integer.

Taken together, (6.14b) and (6.14d) imply
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(6.14¢) m>1.

We now have all the hypotheses for Theorem 5.11. Write C, for the one-
dimensional representation of L of which the highest weight is r —m times
the root e¢,-}-¢,, and F for the representation of G of highest weight &.
Then

2+$=(’+1, ry «- ');

all coordinates after the first are less than or equal to ». We can apply
Proposition 6.2 to X@C, and the parabolic with Levi factor gl(2)Xx
8p(n—2). By inductive hypothesis, we get irreducibility (or vanishing) on
m; so Proposition 6.2 says that Z5(X® C,) is irreducible or zero. Now
apply the translation functor T associated to F* and 2. This gives #5(X)
(Proposition 4.7), which is therefore irreducible or zero by Theorem 5.11.

Similar discussions may easily be given for the other classical groups;
of course they invoke the variation on Theorem 5.11 mentioned at the
end of section 5. This completes the proof of Theorem 2.10.

References

(Bien](1986) F. Bien, Spherical @-modules and Representations of Reductive Lie
Groups, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1986.

[Borho-Brylinski](1982) W. Borho and J.-L. Brylinski, Differential operators on
homogeneous spaces I. Invent. math., 69 (1982), 437-476.

[Borho-Brylinski](1985) ——, Differential operators on homogeneous spaces III,
Invent. math., 80 (1985), 1-68.

[Borho-Jantzen}(1977) W. Borho and J. C. Jantzen, Uber primitive Ideale in
der Einhiillenden einer halbeinfachen Lie-Algebra, Invent, math., 39 (1977),
1-53.

[Dufio](1977) M. Duflo, Sur la classification des ideaux primitifs dans I'algébre
enveloppante d'une algébre de Lie semi-simple, Ann. of Math., 105 (1977),
107-120.

[Hesselink](1978) W. Hesselink, Polarizations in the classical groups, Math. Z.,
160 (1978), 217-234,

[Humphreys](1972) J. E. Humphreys, Introduction to Lie Algebras and Repre-
sentation theory, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[Jantzen](1974) I. C. Jantzen, Zur Charakterformel gewisser Darstellungen hal-
beinfacher Gruppen und Lie-algebren, Math, Z., 140 (1974), 127-149,

[Jantzen)(1979) ——, Moduln mit einem Hochsten Gewicht, Lecture Notes in
Mathematics, 750, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[Jantzen](1983) ——, Einhiillende Algebren halbeinfacher Lic-algebren, Springer-

Verlag, Berlin-Heidelberg-New York, 1983,
[Kostant](1969) B. Kostant, On the existence and irreducibility of certain series
of representations, Bull. Amer, Math. Soc., 75 (1969), 627-642.
[Kostant](1975) ——, On the tensor product of a finite and an infinite dimen-
sional representation, J. Funct, Anal., 20 (1975), 257-285.
[Kostant-Rallis](1971) B. Kostant and S. Rallis, Orbits and representations as-
sociated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.



Irreducibility of Discrete Series Representations 221

[Oshima-Matsuki](1984) T. Oshima and T. Matsuki, A description of discrete
series for semisimple symmetric spaces, in Advanced Studies in Pure Mathematics
4: Group Representations and Systems of Differential Equations, Kinokuniya,
Tokyo, and North-Holland, Amsterdam-New York-Oxford, 1984.

[Schlichtkrull](1983) H. Schlichtkrull, The Langlands parameters of Flensted-
Jensen’s discrete scries for semisimple symmetric spaces, J. Funct. Anal.,, 50
(1983), 133-150.

[Schmid](1977) W. Schmid, Two character identities for semisimple Lie groups,
196-225 in Non-commutative Harmonic Analysis and Lie groups, J. Carmona
and M. Vergne, eds., Lecture Notes in Mathematics, 587, Springer-Verlag, Berlin-
Heidelberg-New York, 1977.

[Vogan](1979) D. Vogan, Irreducible characters of semisimple Lie groups I, Duke
Math,, J,, 46 (1979), 61-108.

[Vogan](1981) ——, Representations of Real Reductive Lie Groups, Birkhauser,
Boston-Basel-Stuttgart, 1981,

[Vogan](1984) ——, Unitarizability of certain series of representations, Ann. of
Math., 120 (1984), 141187,

[Vogan](986a) ——, The unitary dual of GL(n) over an archimedean field,
Invent. Math., 83 (1986), 449-5085.

[Vogan](1986b) ——, The orbit method and primitive ideals for semisimple Lie

algebras, in Lic Algebras and Related Topics, CMS Conference Proceedings,
volume 5, D. Britten, F. Lemire, and R. Moody, eds. American Mathematical
Society for CMS, Providence, Rhode Island, 1986,

[Vogan](1987) ——, Unitary Representations of Reductive Lie Groups, to appear
in Annals of Mathematics Studies, Princeton University Press, Princeton. New
Jersey, 1987,

(Zhelobenko](1974) D. Zhelobenko, Harmonic Analysis on Complex Semisimple
Lie groups, Nauka, Moscow, 1974,

[Zuckerman](1977) G. Zuckerman, Tensor products of finite and infinite dimen-
sional representations of semisimple Lie groups, Ann. of Math., 106 (1977),
295-308.

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
U.S. A



	ds-191
	ds-192
	ds-193
	ds-194
	ds-195
	ds-196
	ds-197
	ds-198
	ds-199
	ds-200
	ds-201
	ds-202
	ds-203
	ds-204
	ds-205
	ds-206
	ds-207
	ds-208
	ds-209
	ds-210
	ds-211
	ds-212
	ds-213
	ds-214
	ds-215
	ds-216
	ds-217
	ds-218
	ds-218
	ds-219
	ds-220
	ds-221

