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Annals of Mathematics, 121 (1985), 41-110

Unipotent representations of complex
semisimple groups

By Dan BarBascu* aND Davip A. Vocan, Jr.**

Introduction

In [A], Arthur introduced some families of representations of a semisimple
algebraic group over R or C. In this paper, we restrict attention to C. We
generalize Arthur’s definition slightly (or perhaps simply make it more precise).
All of the resulting representations, except for a finite set, are then unitarily
induced from representations of the same kind on proper parabolic subgroups.
We call the finite set remaining special unipotent representations; a precise
definition will be given later (Definition 1.17). Our main result (Theorem III of
this introduction) is a character formula for any special unipotent representation.
Of course such a formula can be deduced from the Kazhdan-Lusztig conjecture
(cf. [V3]). The advantages of Theorem III are that it is in closed form, and that it
lends itself to verification of some conjectures of Arthur in [A].

So let G be a connected complex semisimple Lie group, and g its Lie
algebra. Choose

B C G a Borel subgroup; b = Lie(B),

(1.1)

K C G a maximal compact subgroup; f, = Lie(K).
Define
(1.2) T = K N B, a maximal torus in K; t, = Lie(T),

H = centralizer of T in G, a Cartan subgroup; ) = Lie(H),
W = W(g, §) the Weyl group,
a,= V- 1t,, A = exp(a,),
A(g,b) = rootsof ) in g C b*,
A*=A(b, b),
(,) = restriction of Killing form to ), b*, etc.

*Supported by an NSF grant and a Rutgers Research Council Grant.
**Supported in part by NSF grant MCS 8202127.
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Choose a Chevalley automorphism

(1.3) o: £, > £y,0,, =—1d,
and extend it to g by complex linearity. As in [V2], Section 7.1, we can identify
(1.4) gc=gXg
in such a way that the following properties hold. Write
(1.5) f=(f)e t=(td)e a=(agc
Then
(16)(a) t ={(x,00)lx € g},
(b) be=bh XD,
(c) t={(x, —x)lxe b} =,
(d) a={(x,x)x€bh} =0

Definition 1.7. Suppose A,p € h*, and A — p is a weight of a finite
dimensional holomorphic representation of G. Using (1.6)(b), regard (A, i) as a
real-linear functional on I, and write

(a) Cx.,,) = character of H with differential (A, p)
(which exists). In the identifications (1.6)(c) and (d),

(b) C()\,;L)lT= CA—,n

(C) C(A,p)'A = CA+,L~

Extend C, ,, to a character of B. Put

(d) X(A, p) = Kinite part of Ind§(C,, ,,).

the principal series representation with parameter (A, p). Set

X (A, ) = unique irreducible subquotient containing the K
representation of extremal weight A — p,

the Langlands subquotient.

Prorosition 1.8 (Zhelobenko). In the setting of Definition 1.7, fix (A, p)
and (N, ') such that A\ — p and N — p' are weights of finite dimensional
holomorphic representations of G. Then the following are equivalent:

(a) X(A, p) and X(N', 1’) have the same composition factors and multiplici-
ties;

(b) X\, p) = X\, )

(c) (N, pn) =w(A,p), for somew € W.

Any irreducible (g, K) module is equivalent to some X(\, ).
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In order to motivate the definition of unipotent representations, we include
a brief discussion of some questions connected with the unitarity of the X(A, p).

Let p = m + n be a parabolic subalgebra such that ) € m and let P = MN
be the corresponding parabolic subgroup. Then it is wellkknown that, if X, is a
unitary representation,

X =Ind$(X,, ® 1) (unitary induction)
is also unitary.
It would be desirable to have a solution to the following problem.

Problem A. Find all representations that are fundamental in the sense that:

1. They cannot be obtained by unitary induction from any proper parabolic
subgroup P.

2. Any other unitary representation is obtained by induction from some
fundamental representation (possibly by considering complementary series).

Of course this is beyond our reach. A somewhat weaker formulation would be the
following. It is known by [B-V1], [H], how to attach to any representation X a set
in the nilpotent cone in g*, denoted by WF(X) and called the wavefront set. In
the case when X is irreducible, WF(X) is the closure of one nilpotent orbit.

There is a simple relation between induction and the wavefront set. If
X = Ind(X,, ® 1), then

(1.9) WF(X) = Ind}WF(X,,)

where induction of nilpotent orbits is as in [L-Sp] (see (4.13)). This suggests the
following problem.

Problem B. Find the unitary irreducible Harish-Chandra modules X such
that WF(X) is not induced from any nilpotent orbit of a proper parabolic
subgroup.

The Dirac inequality suggests that if X(A, p) is to be unitary, then Re(\ + p)
ought to be small. Therefore Problem B suggests:

Problem C. Fix a non-induced nilpotent orbit @ C g*. Find all irreducible
Harish-Chandra modules X = X(A, p) such that

(a) WF(X) =0,

(b) A and p are integral,

(c) ||A]] + ||p|| is minimal subject to (a) and (b).
(We will discuss (b) at the end of the introduction.)

Using the theory of primitive ideals, we determined the spherical representations
in Problem C for Sp(2n,C) some time ago. The answer was found to coincide
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with the set of representations considered in [A]. Arthur’s formulation suggests
how to solve Problem C in general. In addition, his considerations lend some
philosophical support to the conjecture that such representations are unitary, that
is, that Problem C is really a part of Problem B.

From this point of view, the purpose of this paper is to solve Problem C, and
to compute the distribution characters of the representations it describes.

Definition 1.10. A nilpotent orbit ¢ C g* is called special if there is an
irreducible Harish-Chandra module X = X(A, ), such that

(a) WF(X)=0

(b) A and p are integral.

In [B-V2] and [B-V3] it is shown that this definition agrees with Lusztig’s
original one in [L1]. Obviously we only need to consider special orbits @ in
Problem C; for otherwise there will be no Harish-Chandra modules with the
desired properties. Put
(1.11) & = set of special nilpotent orbits in g*.

The next step is to describe the non-induced elements of %.

Definition 1.12. Suppose a € A(g, h). Let h, € h be the corresponding
Chevalley generator, defined by

(a) A(h,) = 2(a, A) /(a, a)

={a&, ).
We call h, (or sometimes &) the coroot corresponding to a. Define
(b) Ly = p*,

"A={hJaeA}ch=("p)*,

the coroot system. It is a root system. We fix once and for all a semisimple Lie

algebra

(c) Lg 2ty
such that
(d) A(“g,%p) ="A.

The “g is called the dual Lie algebra to g. Notice that its Weyl group is
canonically isomorphic to that of g:

(e) W(ta,"p) = W(g, b).
Put

(1.13) I = set of special nilpotent orbits in (*g)*.
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Using the theory of primitive ideals, we can define an order-reversing bijection
(1.14) n: F-L#, 9(0) =Lo
(Corollary 3.25(a)); this map was first defined in another way in [Sp].

ProposiTion I (Proposition 5.1 below). Suppose O C g* is a special nilpo-
tent orbit, not induced from any orbit in a proper parabolic subalgebra. Then “0
(cf. (1.14)) is even (Definition 2.11).

We actually solve the analogue of Problem C assuming only that @ is
special, and ©0 is even. So fix such an 0. Let

(1.15)(a) Lp ety

be the semisimple element corresponding to “@ (cf. Definition 2.7). By Definition
1.12(b), “h corresponds to an element of h*, which we call

(1.15)(b) 2\, € h*.
By Definition 2.11 and Definition 1.12(b),
(1.16) Ao(h,) € Z, forall « € A(g, b);

that is, A, is an integral weight.

Proposition II (Corollary 5.18 below). Suppose O C g* is a special nilpo-
tent orbit such that "0 is even (cf. (1.14)). Define A, <€ bh* by (1.15). Let
X = X(A, p) be an irreducible Harish-Chandra module such that A and p are
integral, and

WF(X) c 0.
Then

Al = [[Aoll,

el = (1Al

Suppose that (say) ||A|| = ||A,||. Then X = wA, for some w € W, and WF(X)
= 0.

Definition 1.17. Suppose 0 is a special nilpotent orbit with 0 even; define
A, by (1.15). An (integral) special unipotent representation attached to 0 is an
irreducible Harish-Chandra module X = X(A, p) such that

a) A and p are both conjugate to A, under W; and
b) WF(X) = 0.
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(General special unipotent representations are discussed at the end of this
section.) By Propositions I and II, the representations of Problem C are (integral)
special unipotent representations. Because we consider no others in this paper,
we generally drop the adjective “integral.” We turn now to their parametrization
and character formulas.

Let

(1.18)(a) A(0) = group of components of the centralizer of an element of ¢
(cf. Definition 2.3), and
(1.18)(b) A(0) = Lusztig’s quotient of A(0) (cf. (4.4)(c)).
Define
(1.19) [A(0)] = set of conjugacy classes in A(0),
[x] = conjugacy class of x € A(0).

According to [L3] (see Theorem 4.7(c)) there is a one-to-one correspondence

(1.20) [A(0)] — subset of W, [x] - o,.

Set

(1.21) W, = {we Wwh,=\,).

For [x] = [A(0)], define

(1.22) R,=R, = ¥ tr(o(w)X(Agwho);
* |W>\0| wew

this is to be regarded as an element of the complexified Grothendieck group of
Harish-Chandra modules.

Tueorem III. Fix a special unipotent orbit O with "0 even; define A\, by
(1.15). There is a bijection

T X,

between the set of irreducible representations of the finite group A(0) (cf-
(1.18)), and the set of special unipotent representations of G attached to O
(Definition 1.17). We have character formulas

() X,=—— ¥ ta(x)[z]R..

T A9 1Ty

(b) R.= )Y tra(x)X,.

Te(A(0))
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If 7 is trivial, X is one of Arthur’s representations from [A].

In [L3], Lusztig proves formulas like (b) for unipotent representations of
finite Chevalley groups. (This is the source of our terminology and notation.)
However, in his case there were more X_’s than R_’s; so his formulas cannot be
inverted to get an analogue of (a).

Here is an outline of the paper. Section 2 collects some basic facts about
nilpotent orbits. Section 3 recalls the theory of primitive ideals as developed in
[B-V2] and [B-V3]. These results (which rely in turn on the Kazhdan-Lusztig
conjecture) are our basic tool. Section 4 describes ideas of Lusztig relating that
theory to the Springer correspondence. Section 5 begins the proof of Theorem
III; the main result is Proposition 5.31. Section 6 outlines the proof. The first
major reduction is carried out in Section 7, and the next in Section 8. We are left
with a small number of very interesting cases, which are dealt with in Sections 9
through 11.

Except for the last three sections, we have tried to minimize the appearance
of case-by-case considerations. This is misleading; even the definitions entering
Theorem III ((1.20, for example) are made on a case-by-case basis. At various
critical points in the argument, one must verify simple facts in all examples (if
only because the definitions are not “uniform”). Here is a list of our basic
references for such arguments, (which will generally be left to the reader): for the
explicit calculation of the Springer correspondence: [Sho], [A-L], and the refer-
ences there. A different formulation of Shoji’s results is given in [L4]; for the
parametrization of cells in W: [L2] and Chapter 4 of [L3]; for the calculation of
the order relation on nilpotent orbits: [Spa]; for induction of nilpotent orbits in
the exceptional algebras: the tables of Elashvili reproduced in [Spa); for facts
about induction of representations of exceptional Weyl groups: [Al].

We have confined our attention to integral infinitesimal character. Arthur
does not, and gets a larger class of representations than the ones we have called
integral special unipotent; we call these special unipotent. Theorem Il im-
mediately gives character formulas for these as well, when applied to the subroot
system on which the parameter is integral. We have not bothered to make this
explicit, however, because we believe that it is a little misleading. There are
unitary representations which seem obviously to be attached to certain (non-
special) nilpotent orbits, but which are not given by Arthur’s construction. (The
metaplectic representation is an example.) In a treatment of non-integral infini-
tesimal character, these objects (for which we are reserving the unmodified term
“unipotent representation”) ought to play a central part. We hope to pursue this
in a future paper. For now, we can write down a large number of representations
for which an analogue of Theorem III holds; what remains is to decide which of
them ought to be called unipotent.
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2. Nilpotent elements

In this section we collect some of the basic results on nilpotent elements in
semisimple Lie algebras. The references have been chosen for convenience, and
are often not to original sources.

Definition 2.1. Suppose e € g is a nilpotent element. Write

(a) 0,=Ad(G)-ecg,
the orbit of e in g;

(b) G = {ge Gl|Ad(g)e = e},
the centralizer of e in G;

(c) g¢ = Lie(G*),

the centralizer of e in g;

(d) u® = (ad(e)g) N g°,

(e) U°¢ = exp(u®).

TuEOREM 2.2. Suppose e € g is a nilpotent element.
(a) There is a homomorphism

¢: 51(2) > g
such that
0 1)\ _
¢(0 0) - &

(b) Suppose ¢’ is another homomorphism from 3[(2) into g with the
property in (a). Then there is a unique element u € U° such that

Ad(u)e ¢ = ¢'.

Part (a) is the Jacobson-Morozov theorem, and (b) is due to Kostant. A proof
of the entire result may be found in [Ko]. For a variety of reasons, it will usually
be more convenient for us to work with the homomorphism ¢ than with e itself.
Consequently, it is helpful to introduce some redundant notation.

Definition 2.3. Suppose ¢: 3[(2) = g is a Lie algebra homomorphism. Set
0 1
(@ e=c=9(g o

(b) h= ¢=¢(1 0),
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(c) G? = {g € G|Ad(g)z = z,forall z € $(31(2))} c G,

(d) A(0,) = G°/G¢ - Z(G) (the component group of G¢ in Ad(G);
recall that 0, is the orbit of e in g).

Because A(0,) need not be abelian, it depends (like a fundamental group)
on the choice of a base point e. Ignoring this will cause no difficulty, however.

ProposiTioN 2.4. Suppose ¢: $1(2) — g is a Lie algebra homomorphism.

Define e = ¢(8 (1)), and use the notation of Definitions 2.1 and 2.3.

a) G*=G*- U,

a semidirect product. The group G? is reductive, and U° is unipotent; it is the
unipotent radical of G°.

b) The component groups G*/G¢Z(G) and A(0,) are canonically isomor-
phic under the map induced by the inclusion G* = G°.

Proof. Because U° is defined in terms of e, it is normal in the centralizer G*¢
of e. By the representation theory of $1(2), applied to the representation ad° ¢
of 31(2) on g, u® is contained in the sum of the eigenspaces of h (Definition
2.3(b)) with positive eigenvalues. It is therefore nilpotent, so U¢ is unipotent. As
the centralizer of a reductive subgroup of a reductive group, G¢ is reductive.
(This well-known fact follows, for example, from Weyl’s unitary trick.) Since G*
can have no unipotent normal subgroup but {1}, we deduce

(2.5) G* N U° = {1}.
To prove (a), fix g € G¢ and set
¢’ = Ad(g) ' 9.
Then
40 1) _ -1,(0 1
¢(0 0) = Ad(e) ‘b(o 0)
= Ad(g) '(e)
=e,

since g € G°. By Theorem 2.2(b), there is a u € U* such that

Ad(u)ed = ¢ = Ad(g) oo
so that

Ad(gu)e ¢ = ¢.
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Therefore gu belongs to G*. In conjunction with (2.5), this proves (a). Because
U* is connected by definition, (b) follows. Q.E.D.

The splitting in Proposition 2.4(a) was discovered by Kostant for that
nilpotent orbit in Eg for which A(0) is isomorphic to the symmetric group Ss.
(In that case, the group G? is discrete, and so isomorphic to Sy. Kostant also
proved in this case that ¢(SL(2)) is the full centralizer of G* in G, which is very
unusual.) Part (a) suggests the question of whether any (disconnected) algebraic
group in characteristic zero has a Levi decomposition. This ought to be well-
known, but we have not found a reference.

We turn now to Dynkin’s list of all nilpotent conjugacy classes, which we
will need at several critical points.

TaEOREM 2.6 (Malcev—see [Ko)]). Let ¢ and ¢’ be two homomorphisms
from 81(2) into g, and suppose that h, is conjugate to h, under G (Definition
2.3(b)). Then there is an element g € G such that

1) Ad(g)(h,) = hy,

2) Ad(g)eo = ¢

Definition 2.7 (Dynkin). Let @ be a nilpotent orbit in g. Choose a
homomorphism

0 1
0 0

(cf. Theorem 2.2). Replace ¢ by a conjugate under G, in such a way that

_ (1 0
he = ¢(0 —~ 1)
belongs to the closure of the positive Weyl chamber in the Cartan subalgebra §.
(Since h,, is automatically semisimple, this is possible.) The Dynkin diagram of @
is a labelling of the Dynkin diagram of g: the vertex corresponding to a simple
root « is labelled with a(h,), the eigenvalue of h, on the a weight space.

¢: 81(2) — g, ¢( )60

By the representation theory of 31(2), the labels in the Dynkin diagram of @
are non-negative integers. An extremely easy argument shows that 0, 1, and 2 are
the only possibilities.

CoroLLARY 2.8. Suppose O and O’ are nilpotent orbits having the same
Dynkin diagram. Then O = O'.

In [Dy], Dynkin has determined all possible Dynkin diagrams of nilpotent
orbits. To our knowledge, there are no general results providing a priori
restrictions on the form of the answer.
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Example 2.9. Let 0 = {0} = { e}, the zero nilpotent orbit in g. Then the
map ¢ of Theorem 2.2 is just the zero map; so h, is also zero. The Dynkin
diagram of @ has all vertices labelled zero.

Example 2.10. Kostant established in [Ko] the fundamental properties of the
unique nilpotent orbit O of largest dimension, the principal nilpotent orbit. (An
element of it is called a principal or regular nilpotent element.) The Dynkin
diagram of @ has every vertex labelled 2.

Both of these nilpotent orbits are of the special kind in the next definition.

Definition 2.11. A nilpotent orbit @ is called even if any one of the
following equivalent conditions is satisfied. Choose ¢ as in Theorem 2.2.

a) The exponentiated map ¢: SL(2) — Ad(G) factors through PSL(2).

b) All eigenvalues of ad(h,) (Definition 2.3) are even.

¢) In the Dynkin diagram of @, each vertex is labelled 0 or 2.

We conclude this section with a summary of the Springer correspondence
(see [Spr]). Define

(2.12) % = set of Borel subalgebras of g,
the flag variety of g. There are isomorphisms

(2.13) G/B = %, gB — Ad(g)(b),
(2.14) K/T= 2%, kT — Ad(k)(b),

(Here b is our fixed Borel subalgebra.)

Definition 2.15. Suppose e € g is a nilpotent element. The Dynkin variety
of e is

%, = set of Borel subgroups containing e C %.

Obviously G° acts on #, (Definition 2.1). A standard argument shows that
the induced action on cohomology is trivial on G¢; so

(2.16) A(0,) actson H*(%,,C)
(cf. Definition 2.3(e)). For an irreducible representation (7,V,) of A(0,), define
(2.17) H*(%,,C), = HomA(me)(V,,,H*(fé’e,C)).

THEOREM 2.18 ([Spr]). For any nilpotent element e, there is a natural action
of Won H¥(4%,,C).

(a) The actions of W and A(0,) commute; so W acts on each H*(%,,C),,
(m € A(0,)").
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(b) The natural maps
H*(%#,C) - H*(4,,C),

induced by B, - B, are W-equivariant.

(c) For 7 € A(@e)A, the representation o(e, ) of W on Hdi’“l‘ge(gé’e,C),, is
irreducible or zero.

(d) If = is trivial, o(e,m) # 0.

(e) Suppose o € W. Then there are: a nilpotent element e € g, unique up
to Ad(G); and a unique 7 € A(0,)", such that

o=o(e,m).

The correspondence

(2.19) (G-e,m) > a(e,n)
is called the Springer correspondence. We write
(2.20) o(0) = o(e, 1) (e€0).

In this way, each nilpotent orbit @ is attached to a finite set of Weyl group
representations, having a distinguished element o(®). There is some question of
normalization here: we require

(2.21) 0({0}) = sign representation of W,
o(principal nilpotent) = trivial representation.

Recall from (1.10) the set of special nilpotent orbits. A Weyl group representa-
tion o is called special if 0 = () for some special nilpotent orbit @. Because
the zero orbit and the principal nilpotent orbit are both special, (2.21) shows that
the sign and trivial representations of W are special.

From the invariant bilinear form, orbits of G on g and g* are identified.
Those on g* corresponding to nilpotent orbits on g will also be called nilpotent
orbits, and freely identified with their counterparts on g. In particular, we may
write ¢(0) for the Weyl group representation attached to @ C g*. In fact the
Springer correspondence is perhaps most naturally made directly in terms of
nilpotents on g* only, using the moment map

a: T*(B) - g*
and defining
B, =7 Ye)

for e € g* a nilpotent element. The reader may notice that we use the Jacobson-
Morozov theory (which is suited to nilpotents in the Lie algebra) mostly on g,
and the Springer theory (suited to nilpotents in the dual) on g. This is probably
significant, but in what way we do not know.
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3. Primitive ideals and characters of complex groups

We summarize in this section some of the main results we need from [B-V2]
and [B-V3] (see also [L1], [J2]).
Fix a negative integral weight p € h*, and define, for w € W,

(3.1) M(wp) = U(g) 8 Cunepo

L(wp) = unique irreducible quotient of M(wp),
Prim U(g) = set of primitive ideals of infinitesimal character p,
I(wp) = Ann L(wp) € Prim U(g).
By [D], the map from W to Prim U(g) given by

(3.2) w — I(wp)
is surjective. Notice that it is constant on left cosets of
(3.3) W, = {we Wwp=p}.

For any w € W, the rinvariant is
(3.4) 7(w) = {simple roots « € A™: wa & A*}.

Each left W, coset contains a unique minimal element w, for the Bruhat order,
which may be characterized by the fact that

a €8t (ap) = 0= wla) € A",
For such a minimal w,, the Borho-Jantzen-Duflo 7-invariant of I(w,\) is
(3.5) m(I(w,N)) = 7(w,);

it depends only on the ideal, as the notation indicates. Notice that for a simple
root «a,

(3.6) (a,p) =0=a & 7(I), foranyI € Prim U(g).

Suppose now that X is an irreducible Harish-Chandra module for the
complex group G. The annihilator of X is of the form

AmmX =1, ® U(g) + U(g) ® I,,
and we define the left and right annihilators and 7-invariants by
(3.7) LAmmX =1,, RAmnX = I,,
(X)) = 7(I,), r(X) = 7(I,).
Assume that X has infinitesimal character (A, p), with A and — p dominant
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integral weights. Then
(3.8) X=X\, wp),

for some w € W. Only the double coset W,wW, is determined by X; and if w is
chosen to be minimal in that double coset, then

(3.9) 7(X) = 7(w™ ') = {asimple: w 'a & A},
(X)) = 7(w) = {a simple: wa & A™}.

Still assuming (3.8) and that w is minimal in its double coset, Joseph has
computed (with w, the longest element of W) ([J1] Theorem 5.2)

(3.10) LAmnX = I(— w™'A),
R Ann X = I(— wgwp);

here the caret denotes the principal antiautomorphism of U(g), which is — 1
on g.

Assume now that A and — p are dominant, integral, and regular. We define
an order relation % on W by

(3.11) w) < wy < R Ann(X(A, w;p)) € R Ann(X(A, w,u))

< I(wowl( — 1)) € I(wywy(— )
= I(wy(p)) € I(wy(p)).
(The last equivalence is not quite formal.) Similarly, define

(3.12) w) < wy < L Ann(X(A,w,p)) € L Ann(X(A, w,p)

< I(wl_l(— \)) c I(wz‘l(— A))

e w ' <w, L
L

Because the Kazhdan-Lusztig conjectures are true, [V1] shows that these relations
coincide with the ones defined by Kazhdan and Lusztig in [K-L]. The smallest
relation containing < and < is denoted by <. Define

L R LR

(3.13)(a) W)= Wy S W) < Wy and  w, <w
o I(w,p) = I(w,yp).
Similarly we define = and = . Set
R LR

(3.13)(b) @H(w) = {w’ € W|w’ 2 wh = {w € WI(wh) 2 I(wp)},

and similarly €%(w), C*®(w). They are called the left, right, and double cones
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over w. The equivalence classes of w under =, etc., are denoted by ¥*(w), etc.
They are called left, right, and double cells.L

That the relations just defined are independent of the choices of A and p is
the first of many uses we will make of the Borho-Jantzen-Zuckerman translation
principle. All the results of this kind that we need may be found in [B-]J] and
[V2]. We need too many different results to list them all, but here are some
typical ones. Suppose A and — p are dominant integral; w € W is minimal in
the double coset WywW,; and A, and — p, are dominant, integral, and regular.
Then there is a finite dimensional representation F of G such that

X(X, wp) is a direct summand of X(A,, wp,) ® F,

and
X(X,, wpy,) is a submodule of X(A, wp) ® F*.

An immediate consequence is that WF(X(A, wp)) = WF(X(X,, wp,)). Under
the same assumptions, write

‘Y(}\r’w”r) = Z ayX(}\r7y”’r)
YeWw

as in (3.14) below. Then
X(\,wp) = 2 a,X(A,yp).
Yew

The connection of such ideas with primitive ideal theory, which we also exploit,
is the subject of [B-]].
The complexified Grothendieck group %(A, n) of formal characters of G

having infinitesimal character (A, ) has as a basis the various principal series
X(A, wp). We may therefore identify it with C[W]:

(3.14) Y e, © X, X\ wp).
wew

The Weyl group of the complexified Lie algebra of G is W X W; so W X W acts
by coherent continuation on this Grothendieck group. In the identification with
C[W], the action is identified with the regular representation:

(3.15) (w,, wy) ~(§cww) = %cw(wlwwgl)

= chflwwzw’
w

The main fact about cones is that they are invariant under this action:

(3.16) (w,,1)- XA, wp) =Y, a, XA wp).

w’ € Cl(w)
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Set
(3.17) VEi(w) = span{ X(A, w'p)|w’ € €4(w)} € 9(A, p),
KX(w) = span{ X\, wip)jw' € CHw), v’ & €4(w)),
VEi(w) = VH(w) /KX (w).
These all carry representations of W arising from the action of the first factor in

the coherent continuation representation. We call V(w) a left cell representa-
tion. Similarly we define VA(w) and V*#(w). Thus

(3.18) Cwl= @ Viw)

left cells

as a left representation of W, and

(3.19) C[w] = o bGIB uSVLR(w)

as a representation of W X W. (These isomorphisms are not canonical; the right
side in each case is the associated graded module for a filtration of the left.)

TueoreM 3.20 ([B-V2], [B-V3]). Fix w € W. Then VX(w) contains a
unique special representation o(w) € W, with multiplicity one. Write O(w) or
O(o) for the nilpotent orbit in g* associated to o by the Springer correspondence
(cf. Theorem 2.18). Then for any dominant integral weights A and — p, such
that w is minimal in W\wW,,

(a) WF(X(A\,wp)) =0(w) .

Every special representation of W arises as o(w), for some w € W.

Fix 0 € W. By (3.19), ¢ occurs in a unique double cell representation, say
VLR(w). Define O(w) as in Theorem 3.20, and set

(3.21)(a) a(s) = |A*| — 1/2dim O(w).
For o, and o, in W, we write

(3.21)(b) o) = 0, < 0; occurs in V**(w,), and w) < w;.

0, = 0, o, and 0, occur in a common V*#(w).
LR
Define

(3.22)(a) €LR(0) = {o’lo’ﬁo},

% R(o) = {o’|o’;o}.
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If O is a special nilpotent orbit, we may also write
(3.22)(b) ¢LR(0) = €"R(0)
whenever 0 = 0(o).

Propos1TiON 3.23. The Springer correspondence
o — 0(o)

of (2.20) defines an order isomorphism from the set of special representations of
W (ordered by (3.21)(b)) onto the set & of special nilpotent orbits in g.

Proof. That the map is bijective follows from Theorem 3.20. That it respects
the order relations is an elementary consequence of the definition of WF. That
every inclusion @ C @’ for special nilpotent orbits arises from a relation ¢ < o’
may be checked case by case, using [Spa] to describe all the inclusions,Lgnd
the techniques of [B-V2] and [B-V3] to find relations ¢ < ¢’. Because we will not
really use this fact, we omit the details. LR Q.E.D.

ProposiTION 3.24. Fix regular integral negative weights A\ € h*, L\ €
(*b)*. Then the map

(a) I(w)) - I(wwy(*\))
is a well-defined order-reversing bijection
(b) Prim,U(g) — Prim, U(*q)

(notation (3.1), (3.2)). In particular, the map w — ww, is order-reversing for
% . On the level of cells, there is a natural isomorphism

(c) Vi(w) = VH(ww,)*  sgn;

and similarly for right and double cells. (Here * denotes the contragredient
representation.)

Because W is the same for g and g, this is a reformulation of 2.23, 2.24
and 2.25 of [B-V3].

CoroLLARY 3.25. There is an order-reversing bijection

(a) n: 0 ->L0
from special nilpotent orbits in g to special nilpotent orbits in g, such that
(b) n(mg(w)) = 0Lg(ww0)

(cf. Theorem 3.20). The corresponding special representations are related by
(c) o(*0) = unique special representation in € %(o(0) ® sgn)
(cf. (3.22)).
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For the classical groups, and most cases in the exceptional groups, o(#) ® sgn
is itself special. Further discussion of this duality may be found in Appendix A.
If X is any non-zero finitely generated g module, then a choice of gener-
ating subspace gives rise to a filtration of X compatible with the standard

filtration of U(g), and hence to a graded S(g) module gr X. The Gelfand-Kirillov
dimension of X is defined to be

(3.26) Dim X = Krull dimension of gr X,

and the multiplicity ¢(X) (called Bernstein degree in [V1]) is the multiplicity of
gr X: that is, the leading coefficient of the Hilbert-Samuel polynomial, times
(DimX)!. Therefore c¢(X) is a positive integer. For A and — p dominant,
regular, and integral, and w € W, define

(3.27) c(w)(X, 1) = c(X(A, wp)).

By [J2], ¢(w) extends to a harmonic polynomial on H* X h*, homogeneous of
degree a(o(w)) (Theorem 3.20 and (3.21)) in each variable separately, and
transforming according to o(w) X o(w) under W X W. It may also be com-
puted as follows [Ki]. Write

(3.28)(a) X(A, wp) = Ya XA\, whp)
in the Grothendieck group %(A, p). The numerator of the global character of

X(A, wp), lifted to a holomorphic function of the complexified Lie algebra
b X b, is

(3.28)(b) 8(a,b) = T a, et mwmied (a.b < b).
Define
(3.28)(c) dw)(A,p) = tlil(r)x+ t 290y (ta,, thy),

with a, and b, fixed dominant regular elements of b.

ProrosrTioN 3.29 ([Ki]). With notation (3.27) and (3.28), there is a non-zero
constant A, depending only on a,, b, and the double cell €**(w), such that
c(w)=A-d(w).
We need two more general facts about multiplicities.
ProposiTioN 3.30 ([J2]). With notation (3.27), suppose A, and p, are

dominant and integral, but possibly singular; and that w is minimal in W, wW, .
Then

C()_((Ao’wﬂ'o)) = c(w)(Ag, po)-
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ProposiTiON 3.31. Let p = m + n be a parabolic subalgebra of g, and X
an irreducible Harish-Chandra module for m. Then there is a constant B,
depending only on p and WF(X ), such that

c(Ind$X ) = B- ¢(X,,).

This is more or less known; it may be deduced from the two preceding
propositions.

4. The group A(0)

We now have two rough correspondences between Weyl group representa-
tions and nilpotent orbits, given by Theorem 2.18 and Theorem 3.20. The goal of
this section is to describe Lusztig’s extension of the latter correspondence to
something as detailed as Theorem 2.18, and to relate the two correspondences.

Definition 4.1. Fix 0 € W. Put
a) 0(0) = unique nilpotent orbit G - e such that o = o(e, )

(Theorem 2.18). Next let 6’ be the unique special representation of W such that
o’ zR 6 (Theorem 3.20 and (3.21)(b)). Set
L

b) 0,,(0) = 0(c").

Another way to say (b) is this: fix w € W so that ¢ occurs in VX(w) (cf. (3.17)).
Then, in the notation of Theorem 3.20

b)’ 0,,(c) = WF(X(\, wp)).
The first result is included as motivation for (4.4).

ProposITION 4.2 (Lusztig). Suppose o,,0, € W, and 0, < 0,. Then
LR

asp(al) 2 0(02)'
If o, and o, are special, this is a consequence of Proposition 3.23. If

0, = 0,, it may be checked case-by-case from the calculation of = in [B-V2] and

[B-V3], and the known explicit form of the Springer correspondence. The general
case is a consequence of these two particular ones. Now fix a special nilpotent
orbit

(4.3)(a) Oy (cf.(1.11)),

and an element

(4.3)(b) ceo.
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Define

(4.3)(c) 6, = o(0)

(cf. (2.20)), the special Weyl group representation attached to 0. Now define
(4.4)(a)

Z(0) = {0 e W|0(o) = 0,,(0) = O (Definition 4.1)}

= {o IS W]a;ol, and o = o(e, 7) for some 7 € A(@)" (Theorem 2.18)};

(4.4)(b) K(0) = N . (kerm) c A(0),
oo 2(0)
(4.4)(c) A(0) = A(0)/K(0).

The group A(0) is Lusztig’s canonical quotient of A(®). By definition, some of
the characters of A(0) parametrize some of the Weyl group representations in
¢18(0), the = equivalence class of the special representations o,.

We want to describe #XF(0) in terms of A(®). There are a few cases where
this description is a little less pleasant.

Definition 4.5 [L1]. A special nilpotent orbit @ is called exceptional if g

contains a simple factor of type E, or E4, and the Dynkin diagram of @ on this
factor is one of the following:

010101
0

2010101
0

1010001
0

This set is closed under duality; the first orbit is self-dual, and the last two are
dual to each other. (Note that even orbits and their duals are never exceptional.)
We turn now to Lusztig’s description of €XF(0).

Definition 4.6. In the setting (4.3), define
M(0) = {(x,&,)|x € A(0), and £, is an irreducible representation of
the centralizer of x in A(0)};
[M(0)] = set of A(0) orbits on M(0)
2 [A(0)], A(0)".
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If A(0) is a product of copies of Z/2Z (as it is for classical G), then
M(0) = A(0) X A(0)",
a symplectic vector space over Z /27Z.

THEOREM 4.7 (Lusztig [L3]). Suppose O is a special nilpotent orbit. With
notation as in Definition 4.6, there is an injective correspondence

¢LR(0) > [M(0)], o - [m(o)],

(notation (3.22)(b)) with the following properties. Recall that o, is the special
representation attached to 0.

(a) m(o,) = [(1, 1)].
(b) If # € A(O) , and o(e, w) # 0 (Theorem 2.18), then
m(o(e, 7)) = [(1,7)] (cf. (4.4)).

(c) Suppose O is not exceptional (Definition 4.5). Then every element of
[M(0O)] of the form [(x,1)] (that is, an element of [A(0)] C [M(0))]) is in the
image of the correspondence; we write

o, €W (x € A(0))
for its preimage.
(d) Suppose O is not exceptional. Then there is an isomorphism

i: A(0) - A(-0)
such that the diagram
0L (0)— [M(0)]
® sgn i
«1(10) 5 (M(40)]
commutes.

We turn now to the Lusztig-Spaltenstein notion of induced nilpotent orbits.
If O is any nilpotent orbit, define

(4.8) d(0)=|A"| — +dim 0.
For 6 € W, Definition 4.1 and (3.21)(a) give

(4.9) a(e) = d(@sp(o)).
We have

(4.10)(a) 0cC 0 =d0)=d0).
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Proposition 3.23 therefore implies

(4.10)(b) 0, <0y = a(o,) < a(o,).

Definition 4.11. Suppose W, C W is the Weyl group of a root system
contained in A. We define truncated induction ], from an irreducible representa-
tion o, of W, to a representation of W, as follows. Define

A= {a € W/o occurs in Ind%(oo’), for some o; = 00},
° LR

a= Lnelga(o).

Then
wl(o) = @ [003 °|WO]° < Indv\«“}/o(oo)~

ceEW

a(o)=a
The most important case of this definition is when W,, is the Weyl group of a
Levi factor of a parabolic subalgebra of g. Let us consider that case, and use the
notation of Proposition 4.14 below. Write ¢, for the unique special representa-
tion of W in VX(w). By Proposition 4.14(a), each constituent ¢ of Indy (o)
satisfies

>
¢ 20,
and so by (4.10)(b)
a(o) > a(o;).

Hence a = a(¢,). Combining Proposition 4.14(c), Definition 4.12(b), and (4.9),
we deduce

a=a(o,) =a(s).

When W, is not a Levi subgroup, we know no simple formula for the
constant a of Definition 4.11. We will use the definition in only finitely many
other cases (Lemma 10.17 below), where the properties we need are simply
verified. Nevertheless, we record here a few general properties in what seems to
be the most general interesting case (which includes the examples in Lemma
10.17). Suppose W, is the integral Weyl group for some regular A € h*:

W, = {w € W|w\ — X is a sum of roots}.
Fix o, € W,, and let o; € W, be the special representation with o§ = o,. By
LR

[J2], o4 may be realized uniquely on a subspace V;’ of

Sa(ﬂé)(b)_
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Let V' C S*%)(h) be the W-invariant subspace generated by V,’ and o¢’, the
representation of W there; it is irreducible. By [L1], it is the Springer representa-
tion for a nilpotent orbit ¢’, with

d(o’) = a(oo’).

Let 0 = 0, (0’) be the smallest special nilpotent orbit containing @’ in its
closure. Then the constant of Definition 4.11 is

a=d(0)=a(d).

This follows from the next more precise statement. Suppose oj" > o,,, and o”

LR
occurs in Ind”v‘(,o( o4’). Then the nilpotent orbit @” attached to 6"’ by the Springer
correspondence satisfies

0" c 0
and consequently,
o’ >0, a(o”)=a(d).
This in turn follows from the theory of primitive ideals with non-integral

infinitesimal character. Since we will not use these results, and the proofs would
lead us even further astray, we omit details.

Definition 4.12 ([L-Spa]). Let p = m + n be a parabolic subalgebra. The
nilpotent orbit @ for g is said to be induced from 0, C m if either of the
following equivalent conditions is satisfied:

a) 0N(0,+n) =0, + n;or
b) O meets 0, + n, and d(0) = d(0,,) (cf. (4.8)).

Given 0, Lusztig and Spaltenstein show that there is a unique ¢ induced
from it; we write

(4.13)(a) 0 =1nd%(0,).

They also show that @ depends only on m and @, and not on p; so we may also
write

(4.13)(b) 0 =Tnd(0,).

ProrosiTioN 4.14 ([B-V3]). Suppose p = m + n is a parabolic subalgebra
of g containing bY; write W(m) for the Weyl group of % in m. Fix

w € W(m), o, € W(m)";
and assume that

o,, occurs in V.1 (w)
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(notation (3.17)). Define
0,=0,(0,) = 0,(w) ( Definition 4.1).
Then
a) Vi(w) = IndV,,(Vyi(w))
b) VH(w) = Iy V()
¢) O(w) = Ind}(0,(w)) (notation (4.13))
d) Jm(€1(0,)) € €7R(0) (notation (3.22)(b)).

Definition 4.15 (Lusztig). Suppose b = m + n is a parabolic subalgebra of
g, and O, is a special nilpotent orbit for m. Set

0 =1Ind$(0,).

We say that @ is smoothly induced from 0, if ]v‘{‘,’(m) is a bijection from
€LR(0,,) onto €LF(0) (see Proposition 4.14(d)).

ProposiTiON 4.16 (Lusztig [L3]). In the setting of Proposition 4.14, O is
smoothly induced from 0, if and only if A(0) = A(0,). In that case, the
isomorphism may be chosen in such a way that the corresponding bijection
[M(0,)] = [M(0)] (Definition 4.6) induces the bijection

]V‘é’/(m): (gLR(@m) - (gLR(@)

via Theorem 4.7.

5. Some distinguished nilpotent orbits

PRoPOSITION 5.1. Let O be a special nilpotent orbit in g, and “0 the dual
special orbit in ©g (Corollary 3.25). Consider the properties:

a) 0O is not induced from any proper Levi subalgebra of g (Definition 4.12).

b) O does not meet any proper Levi subalgebra of “g.

c) L0 is even.

Then (a) = (b) = (¢).

Because the proof is a simple case by case verification, we omit it. For the
balance of this section, we fix a special nilpotent orbit @ in g, and assume that

(5.2) Lo is even.
By Theorem 2.2, we can find a homomorphism
(5.3)(a) ¢: 31(2,C) »"g
such that

(5.3)(b) o9 1) =recto.
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We may also assume that
Ly — (1 0\ _L
(5:3)(c) n=o(y _9)<t,

the fixed Cartan subalgebra of “g, and “h is dominant. It is then uniquely
determined by “@ (Theorem 2.6). As in (1.15), we define

(5.4) A, = element of h* corresponding to 1(“h);

this is a dominant integral weight for g.

Our next goal is Proposition II of the introduction. We will prove a result
about conjugacy classes in “g, and translate it into a result about infinitesimal
characters in g using Proposition 3.24. To simplify the notation, however, the
results about conjugacy classes will be formulated in terms of g.

ProposiTiOoN 5.5 [L-Spa]. Suppose the Dynkin diagram of the nilpotent
orbit O has node o labelled 2. Let p = m + n be the maximal parabolic
subalgebra corresponding to this node. Then there is a nilpotent orbit 0, in m
such that

0 = Ind§0,.
CoROLLARY 5.6. Suppose O is an even nilpotent orbit. Let p = [ + u be

the parabolic subalgebra such that the simple roots in | are the simple roots
labelled 0 in the Dynkin diagram of 0. Then

0= Indg({()});

that is, O N u is dense in u.

In this situation, therefore, the semisimple element h attached to @, and @
itself, are both closely related to p. Any other nilpotent in u lies in @, and so
should have a smaller h. The next result is motivated by these facts.

LEmma 5.7. Let p = [ + u be any parabolic subalgebra of g such that
b2 band [ DV. Let S be the set of simple roots of ¥ in |. Define £ € 1 by

a(¢) =0, a€ESs,
a(¢) =1, a simple but notin S.
Let e € u be arbitrary, and fix ¢: 31(2) » g and h as in Definition 2.3. Then
€l = [13All,

with equality if and only if £ is conjugate to 3h. In that case e is even, and b is
the parabolic attached to it by Corollary 5.6.
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Proof. Choose a conjugate ¢’ of ¢ so that h’ is a dominant element of .
Define A| € H* by

Ay(x) = (b, x) XE .

Since h’ is integral on roots instead of coroots, A; need not be an integral
weight; but some multiple

A= kX,

will be integral. Write (F,, 7, ) for the finite-dimensional representation of g of
highest weight A. Define N to be the unique integer such that

Wx(e)N * 0, 7T>\(6)N+l = 0.

Of course this could be calculated with e’ replacing e.
By the representation theory of $1(2),

(5.8) N = max{»(h’)|» a weight of F,}
= AR)
=k(hW,h) = %()\,A).
If X, is any root vector in u, then B involves a simple root not in S; so

(r,§) <(v+B,§&) — 1, for all » € h*.

It follows that if we filter F, by the inner products of its weights with £,
then u acts by raising degrees by at least 1. The length of this filtration is

M= (A —wyh,§).
It follows that if X € u then
m(X)M 1 =o.
Since e belongs to u, M > N; or (by (5.8))
(5.9) FOLA) < (A= woh, §)

= (N &) = (wor, §)
< 2N, MVHE EH2
Consequently,
%<)\’ >\>l/2 < <§’ §>1/2,
or

B(h Y2 < (5,62,
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as we wished to show. If equality holds, then the condition for equality in the last
step of (5.9) makes £ a positive multiple of A, and therefore a positive multiple of
h'. The equality of lengths then gives £ = ;h’. The last assertions are clear.

ProposiTioN 5.10. Let X be an irreducible module for g of dominant
integral infinitesimal character A € Hh*. Let O’ be the nilpotent orbit attached to
the primitive ideal Ann X. Fix any special nilpotent orbit O such that L0 is
even, and O’ C 0. Then

AL = (1Al
(notation (5.4)). Equality holds if and only if O = O’, and X\ = X,
Proof. We begin by clarifying slightly what @’ is supposed to be. As in (3.2),
choose w € W so that
Ann(X) = I(wyw])
and so that w is minimal in the left coset wW,. Choose a regular dominant
integral weight A,. Then Ann X will be related to I(w,wA,) by a translation

functor (cf. [B-J]); and 0’ means the nilpotent orbit ¢(w) defined in Theorem
3.20. By Corollary 3.25,

(5.11)(a) Lo ote
(5.11)(b) Ly = WF(X(w ™ 'p, 1))

Here p is any regular dominant integral weight for “g. (The reader may wonder
why there is no w, explicit here, as in Corollary 3.25. The point is that w,u is a
negative regular integral weight; so (5.11)(b) may be written as

L0" = WF(X(p, (ww,)(won))),

which follows directly from Corollary 3.25(b).) Since w is minimal in the left
coset wW,, (3.6) guarantees that for any positive a orthogonal to A,

(5.12)(a) (&, w 'n) >0.
Furthermore,
(5.12)(b) (&, p) >0

for such roots since p is dominant and regular. Now let
Lp =Lfm +In

be the parabolic subalgebra of L g corresponding to the simple roots orthogonal to
A. By (5.12), the Langlands quotient

(5.13) X, (w'p,p)=F
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is a finite dimensional representation of “m. By induction by stages

(5.14) X(w 'u,p) C Ind7:(F).
Since WF(F) = {0}, (1.9) implies
(5.15) WF(X(w ™', p)) C closure of Ind7:({0}).

By (5.11), therefore, “O meets “n. Lemma 5.7 now guarantees that
(5.16) Aol < [1£]l
with equality if and only if £ = A,. Here £ €Xh = h* is defined by
(&,&) = 1if ais simple and (&, A) > 0,
(&, &) = 0if ais simple and (&, A) = 0.
Since A is integral, obviously
(5.17) €N < NIl
with equality if and only if £ = A. The proposition follows from (5.16) and (5.17).
Q.ED.

CoroLLARY 5.18 ( Proposition 11 of the introduction). Fix a _special nilpo-
tent orbit O such that "0 is even, and define A, by (5.4). Let X(\,p) be an
irreducible Harish-Chandra module for g such that

WF(X) c 0,
and N and p are integral. Then
TSI = 1Ay Aol
with equality if and only if X and p are both conjugate to A,. In that case
WF(X) = 0.

This follows from Proposition 5.10 applied to the irreducible g X g module
X(A, p).

CoroLLARY 5.19. Let X be a Harish-Chandra module for g of infinitesimal
character (X 5, A ) (cf. 5.4). Assume that

dimWF(X) < dim 0.
Then X = {0).

CoroLvLARY 5.20. Fix a special nilpotent orbit O such that 0 is even, and
define A, by (5.4). Let w, be the longest element of the Weyl group fixing \ ,;
that is, if p =1+ u is the parabolic defined by \,, then w, is the longest
element of W(1). Let N\ be a dominant regular integral weight for g, and p such
a weight for g. Fix an irreducible Harish-Chandra module X of infinitesimal
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character \, and wavefront set 0; and choose w € W so that X is obtained
from X(A, wywA) by a translation functor. Then

a) LAnn X = RAnn X = I(A,) = I(wyA )

b) L Ann X(A, wyw)) = R Ann X(A, waw) = I(w,\)

c) L Ann XLa(p,wp,) = R Ann )_(Lg(p, wp) = I(— wyp).

Proof. For (a), I(A,) is the unique maximal element of Prim, (U(g)); so
(5.21) I(A,) 2 L Ann X.

On the other hand, Proposition 5.10 guarantees that X has minimal Gelfand-

Kirillov dimension among Harish-Chandra modules with infinitesimal character
(A > Ap). Therefore

(5.22) DimU(g)/L Ann X = DimU(g)/I(A,).

One cannot have a proper containment of prime ideals in U(g) of the same
Gelfand-Kirillov dimension ([BK], Korollar 3.5); so (5.21) and (5.22) give the first
equalities of (a). The last is trivial. Part (b) follows from the translation principle
of [B-]], and (c) from Proposition 3.24(a). Q.E.D.

We can now improve a little on Definition 1.17.

Definition 5.23. Let O be a special nilpotent orbit such that “@ is even, and
X an irreducible Harish-Chandra module with infinitesimal character (A, A,)
(notation (5.4)). We say that X is a special unipotent representation attached to
0 if any of the following equivalent conditions hold:

a) WF(X) c 0.

b) Ann X is the maximal primitive ideal with infinitesimal character (A 4, A ;).

¢) Dim X = dim(0).

There are just two easy examples for this definition. First, let ¢ = {0}, so
that “0 is the principal nilpotent orbit in “g (Example 2.10). Since the Dynkin
diagram of L0 has each node labelled 2, A, must take the value one on each
simple coroot; so A, is p, half the sum of the positive roots. Any of the three
conditions in Definition 5.23 now shows that the only special unipotent represen-
tation attached to O is the trivial representation.

Next, let @ be the principal nilpotent orbit in g (Example 2.10). Then
Lo = {0}, so A, = 0. The only special unipotent representation attached to @ is
therefore the irreducible tempered spherical principal series representation
X(0, 0).

We now begin the determination of the set of special unipotent representa-
tions.
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COROLLARY 5.24. In the notation of Corollary 5.20, the cardinality of the
set of special unipotent representations attached to O is the same as that of

{w € Withe left and right annihilators of X(\, wew ) are both I(w,A)}
= ¢"(wow,) N € (wow,)
(cf. (3.13)); and this in turn has the same cardinality as
€1 (we) N €7 (w,).

The first assertion is Corollary 5.20(b); the second is a definition (cf.
(3.12)—(3.13)); and the last is Proposition 3.24. To compute these numbers, we
use a result of Lusztig.

ProposrTion 5.25 ([L3]).
card(€%(w,) N €7 (w,)) = dim Homy,(VEi(w,), Vi(w,)).

Because of this proposition, we need to understand V(w,). With notation
as in Corollary 5.20, — w,u is dominant, integral, and regular for *[; so
L, (— wep) is finite dimensional, and I; (— wep) has finite codimension in
U*1). Hence w, is the unique maximal element of W(*1) = W(I) for 5% . The
left, right, and double cell and cone representations of W(I) corresponding to w,
all coincide:

V/(wp) = V/R(w,) = sign representation of W(I).

Now Proposition 4.14 shows that

(5.26) Vi(w,) = @D [sgn: ol w03
ceEW
a(e)=|A" (D]
and by Proposition 3.24(c),
(5.27) VEi(wow,y) = VE(w,) ® sgn

= &) [trivial: o]y, ] 0.
ceWw
a(o®@sgn)=|A" ()|
(We use the fact that representations of W are self-dual.) The Weyl group

representation VX(w,) may be computed explicitly from (5.26). Lusztig has done
this in [L2], and in [L3] has formulated the answer as follows.

PROPOSITION 5.28. Suppose L0 is an even nilpotent orbit, and define w, as
in Corollary 5.20. Then, in the notation of Theorem 4.7(c),

VL(wQ) = @ ox’
(x]€[AC0)]

VL( woww) = GB_ Oy
[x]€[A(®)]
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Combined with Corollary 5.24 and Proposition 5.25, this gives immediately:

CoROLLARY 5.29. Suppose O is a special orbit, and “O is even. Then the
number of special unipotent representations attached to O (Definition 5.23) is
the number of conjugacy classes in A(0).

CoROLLARY 5.30. Suppose 0 is a special nilpotent orbit and -0 is even. Fix
o € W, and suppose
o >o0(0)
LR
(cf. (3.21)); that is, that o occurs in VER(waw,) (cf. Corollary 5.20).

a) The representation o occurs in VX(w,w,) if and only if 6 = o, for some
x € A(0).

b) If o occurs in VEX(wyw,), then it has a unique W,, fixed vector. (Here
W,, = W(I) is the stabilizer of A, in W; see Corollary 5.20.)

¢) If o does not occur in V*(wqw,), then it has no W,  fixed vector.

Part (a) is Proposition 5.28. Part (b) follows from (5.27) and the fact
(contained in Proposition 5.28) that VX(wyw,) decomposes with multiplicity
one. For (c), suppose o has such a fixed vector. Then (5.27) implies that

(%) a(o ® sgn) # |A*(1)].

On the other hand, ¢ ® sgn must contain the sign representation of W, ; so
Proposition 4.14 shows that ¢ ® sgn occurs in V(w,). Consequently

o ® sgn > o(~0).
LR
By Proposition 3.24,
<o0(0).
o <o(0)
Together with the first hypothesis of the corollary, this gives
0 = 0,

LR
and so

o ® sgn = o(L0),
LR
a(o ® sgn) = d(“0)
= 1a7(0)

(cf. (4.9)). This contradicts ( *), and proves (c).
We can now prove a preliminary version of Theorem III of the introduction.

ProposiTion 5.31. Fix a special nilpotent orbit O such that “0 is even, and
define A, by (5.4). Write 9, for the Grothendieck group of all Harish-Chandra
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modules of finite length, and
Ye=9,®C.
Define
(a) U(®) = span of all special unipotent representations attached to O
c %.
Define A(O) by (4.4)(c), and the various R, € 9 by (1.22). Then
(b) {R,I[x] € [A(0)]}

is a basis of U(0). Consequently, any special unipotent representation X
attached to O may be written

(c) X= Y c(x)R,

x€A(0)

in 9,. Here c(x) isa class function on A(0), and depends on X.

Proof. Recall the subspaces (A, p) C 9. defined before (3.14). We will
use the standard translation functor

(5.32) T: 9(p,p) = G(Ag,Ap)

(see for example [V2], Definition 4.5.7). The space ¥(p, p) has as a basis the set
of standard representations

{X(p, wp)lw e W}

(cf. (3.14)). We consider the projection onto W(A ;) X W(A,)-fixed vectors (cf.
(3.15)), which is

(5.33) M: %(p,p) — %(p,p),

1
M(X(p, wp)) = = 2 X(p,xwy o).
IW)\ml x,yeW,,

Now T satisfies

(5.34) T(X(p, wp)) = X(Xg, wh,)

(see for example [V2], Proposition 8.2.12); so we conclude that
(5.35) T=TM.

Consider now the double cone

(5.36) VIR (wqw,) < 9(p, p)

(cf. (3.17)). If 0 € W and w’ € W, set

(5.37) R (w)= X (tro(x))X(p,xw'p).

xew
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Using (3.16), we find:

_ Observation 5.38. If ¢ occurs in_X_ﬂ‘R( w,w,) and w’ € W, then R (w') €
Vi (wgw,), and such elements span VA(wqw,).

On the other hand, Definition 5.23(a) and the translation principle show that

(5.39) T(VER(wyw,)) = U(0).
So we need to apply T to the R (w’). We have, for ¢ occurring in VA(wyw,),
T(R,(w)) = TM(R (w")) (by (5.35)).

By Corollary 5.30(c), this is zero unless ¢ is equal to some o,, with x € A(0). So
assume that o = ¢,. By Corollary 5.30(b), (5.34), and the definition of R,

TR (w') = a R,.

By observation 5.38 and (5.39), the various R, span U(0). By Corollary 5.29,
they are linearly independent. Q.E.D.

6. Outline of the proof of Theorem III

Theorem III of the introduction will be proved in the course of Sections 6
through 11. Throughout, we will assume that the result is known for groups of
strictly smaller dimension. We use two basic reduction techniques, given in
Sections 7 and 8. The cases to which neither applies seem to us to be of special
interest; they are treated in Sections 9 through 11. This section contains several
lemmas which are needed at various points in the argument.

LeEmMma 6.1. Let O be a special nilpotent orbit with L0 even. Then there is a
constant m = m(0), with the following property. Let X be any special
unipotent representation attached to 0, and write

X= Y c(x)R,

xEA(0)
in accordance with Proposition 5.31(c). Then the multiplicity of X (defined after
(3.26)) is

m - ¢(1).

Proof. By Propositions 3.29 and 3.30, it is enough to prove this with
multiplicity replaced by the limit in (3.28). So fix a, and b, as in (3.28), and
write ¢, for the numerator of the character of R,. Recall d(©) from (4.8). What
we have to show is that

lim ¢ 24 (ta,, thy) = 0
t—0



74 D. BARBASCH AND D. A. VOGAN

for x # 1. But by []J2], for example, the Weyl group representation ¢, does not
occur in S“®() unless it is special; that is, unless x = 1. Since ¢, transforms
according to o, ® o,, the result follows. Q.E.D.

LemMma 6.2. Suppose A € h* is an integral weight. Define W, to be the
stabilizer of N\ in W. Suppose 6 € W and z € W. Define
1

R (z) = Al Zwtro(w)X(zA,w)\),

an element of the Grothendieck group of Harish-Chandra modules.
a) If o does not contain the trivial representation of W,, then R (z) = 0.

b) If o contains the trivial representation of W, exactly once, then R (z) =
c(z)R (1).

This is an elementary formal result about representations of finite groups,
using only the fact that X(wA,wp) = X(A,p) in the Grothendieck group.
Details are left to the reader (cf. Proposition 5.31).

LemMMa 6.3. In the setting of (1.22), let E be any finite dimensional
Harish-Chandra module. Consider the functor
TX = By, (X @ E)
on Harish-Chandra modules of finite length; here P denotes projection on the
indicated infinitesimal character. Then

TR, = m(T)R,.

Proof. We may assume that, as a ¢ X g module,
E=F®C,

with F a holomorphic representation. (Then symmetry treats C ® F, and the
two cases combine to give the general result.) Then

TX(Ay, wh,) = Y X(Ap+ p,why,)
1 a weight
I L

= ). (multiplicity of 2A, — Ay in F)X(2\,, wh,).
zEW/W,,

Consequently,
TR,= Y (multiplicity of zA, — Ac,,)( Y tro(w)X(zA,, w}\a)).
zEW/W, wew

Lemma 6.2 shows that each inner sum on the right is a multiple of R,. Q.E.D.
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LemMa 6.4. In the setting of (1.22), the multiplicity of X(A,, A,) in the
virtual representation R _ is one.

_ Proof. Because X(Ag, Ap) is the only standard representation in which
X(A gy, Ap) can occur, this is equivalent to expressing R, in terms of standard
representations, and asking for the coefficient of X(A 4, A ). It is
1 - _
W Y (tro)(w)= [tr1V1al. lew,w] =1,

Aol we Wy,

by Corollary 5.30. Q.E.D.

LemMma 6.5. Let o be any representation of W such that a(e) > d(0).
Then, for any z € W,

Y tro(w)X(zA,, wA,) = 0.

wew

Proof. By Theorem 3.20 and (4.8), the sum is a combination of irreducible
characters with wavefront sets of dimension at most 2(|A*| — a(¢)). This
number is assumed to be less than

2(]A7| — d(0)) = dim 0.
The lemma now follows from Corollary 5.19. Q.E.D.

ProprosiTIiON 6.6. In the setting of Definition 4.11 and Proposition 5.31,
assume that o, € W,, and

o, = ]‘,‘{,‘;00,
for some x € A(0O). Then
Y. troy(w)X(Ay wA,) = cR,,

weWw,

for some real number c.

Proof. Let o0,,0,,0,,...,0, be the irreducible constituents of Ind‘&io( g,). By
hypothesis and Definition 4.11,

(6.7) a(o;) > d(0), i=1,...,r.

A formal calculation in the group ring of W gives an expression

Y tro(w)w= ) Y |a, tro(w)+ iai,ztroi(w) z 'w.

weWw, zeEWweWw i=1



76 D. BARBASCH AND D. A. VOGAN

Consequently, in the notation of Lemma 6.2,
Z troO(w)X(A(D’ w>\0) = Z ax,zRax(z) + Z ai,zRoi(z) .
weWw, z i=1

By Lemma 6.5 and (6.7), the last terms on the right are zero. By Lemma 6.2, the
first terms are all multiples of R, . Q.E.D.

7. Reduction when "0 is smoothly induced

In this section we give the first main induction step (Proposition 7.20) in the
proof of Theorem III of the introduction. It applies under three hypotheses. The
first is:

Hypothesis TA. There is a parabolic subalgebra “p =%m +%n in “g such

that *0 is smoothly induced from a special nilpotent orbit “@_ < “m (Definition
4.15).

It may be that this implies the other two hypotheses, but we have not
checked this and do not need it. The second is:

Hypothesis TB. The orbit »0,, is itself even.

Now (1.15) provides elements A, and A,. Set
(7.1) “[' = centralizer of A, in“m,
L1 = centralizer of A, in .
By Hypothesis 7A and Corollary 5.6,
(7.2) L0 = Indjs,({0}) = Ind}:({0}).

This formula makes “[ and “[* very closely related—for example, they have the
same dimension—but they need not coincide. Almost all of the work in this case

arises when they are different. Our last hypothesis says that they are not too
different.

Definition 7.3. Two Levi factors r and t’ (generated by simple root vectors
for the same positive root system) are said to be adjacent if they differ by
transposing two type A factors. More precisely, we require that r and r’ lie in a
larger Levi factor 3, and that

8 =238l(p+gq)xs°
r=23l(p) X 3l(q) x 38°,
" =3[(q) X 3l(p) x 8°.
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We say that r and t’ are linked if there is a sequence of Levi factors, beginning
with r and ending with r’, such that any two terms are adjacent.

Hypothesis 7C. The Levi factors [ and [! in g (corresponding to “I and
L cf. (7.1)) are linked.

Obviously linked Levi factors are conjugate, and the converse is probably
true as well.

Choose a chain [},...,[" = [ of Levi factors as in the definition of linked,
and define

A? = sum of fundamental weights for g corresponding to simple
(7.4)(a) roots not in [?;

(7.4)(b) w? = longest element of W([?).
It follows that
(7.5) N =X, w' = wy, w! = w, .

m

(cf. Corollary 5.20).

By Corollary 5.30, we are interested in Vi(wyw"). We will study it by
studying VX(w,w"), then relating the various VX(wqw?).

LemwMa 7.6. For any p, in the notation of Theorem 4.7(c),

Vi(ww?)= @ o,.
[x] EA(O)

Proof. By the argument for (5.27),
VE[waw?] = @ [trivial: olw(lp)]o.
a(0®sgm = A" (17)]

Since all the [? are conjugate, this shows that the left side is independent of p.
To prove the lemma, we take p = r. By (7.5), w’ = w,; so the result follows
from Proposition 5.28. Q.E.D.

Now define for each p, and [x] € [A(0)],

1
Wil

in analogy with (1.22). By (7.5),
(7.7)(b) R’ =R..
Using Lemma 7.6 and the proof of Proposition 5.31, we get

(7.7)(a) R} = 2 tr(o(w))X(A”, wh?),

weWw

ProposiTioN 7.8. For fixed p, the various R? constitute a basis of the
subspace of 9(AP,AP) (notation before (3.14)) spanned by representations X
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with the following properties:
a) X has infinitesimal character (AP, AP); and
b) WF(X) = 0.

Our next goal is to study the representations of Proposition 7.8 when p = 1,
relaiing theT to their analogues for m. Let k be the number of conjugacy classes
in A(0) = A(0,,). By inductive hypothesis, there are exactly k representations of
m having infinitesimal character (A, , A, ) and wavefront set 0, (Theorem III
of the introduction). Write them as
(7.9)(a) {Xu(Ag wAo i =1,2,....k},
with w; € W(m). We may assume that
(7.9)(b) w; is maximal in its W(m) N W, -double coset.

By (7.1) and (7.4), this is the same as

(7.9)(c) w; is maximal in its Wy double coset.

Let p be a dominant integral regular weight for ©g. By Proposition 3.24,
(7.10)(a) (X, (b, — wyp))
is the set of irreducible representations of “m having wavefront set -0,
infinitesimal character (u, p), and every root in [! in the 7 invariant. By [S-V],
(7.10)(b) X, (g, — wip) = IndpX, (B, — wip).
Consequently, these representations of “g have infinitesimal character (p, p),
every root in [! in the 7 invariant, and wavefront set
Indis(“5,) =
(cf. [B-V1]). By Proposition 3.24 for m, we deduce:
LemMAa 7.11. In the notation (7.9), the representations of Proposition 7.8 for
p=1are
(X (N w)j=1,..., k).
(We have shown that these representations have the desired properties. That
there are no others follows from Proposition 7.8 and the fact that k is the number

of conjugacy classes in 5(@).)
For x € A(0,,) = A(0), write

(7.12) o™ e W(m)"

for the corresponding Weyl group representation (Theorem 4.7(c)). By Hypothe-
sis 7A,

o, ® sgn C IndYy (o ® sgn(m)).
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Consequently
(7.13) o, C Indv“(,(m)o;".
LemMma 7.14. With notation as above and in (7.9), fix j between 1 and k.
Write
X, (Ag.wAy )= Y  a"RT,
[x]1€[A(0,)]
)?( W, Al) Ya.R

(]

(as is possible by inductive hypothesis Lemma 7.11 and Proposition 7.8). Then

m o
ay =a,.

Proof. Define
(7.15)(a) A =setof W, N W(m )-double cosets in W(m),
B = set of W, -double cosets in W.
By (7.1) and (7.4), A C B; put

(7.15)(b) C=A-B.

Write

(7.16)(a) Xu(Agpwde )= X a. X, (Ag, 27, ).
zZEA

A straightforward argument using either intertwining operators or highest weight
modules (see [B-V3]) shows that then

(7.16)(b) X (N, wN)= ¥ a. X (N, 2N) + ¥ b, X (A, wAb).

z€A weC
Similarly, write
(7.17)(a) R"= Y ¢.X,(Ag, 2], )
ZEA
R, = ZAC;XQ(A‘, 2\ + chng(}\l,w)\l).
zE weE

’

We can compute c,, ¢/, and d, directly from the definitions. For ¢/, for
example, let v be the (unique up to scalars) unit vector in the space of o, which
is fixed by Wy (cf. proof of Lemma 7.6). Then

c; = |WuzWyu|/|Wy|{zv,v).
A similar formula holds for c; so by (7.13),
(7.17)(b) c,=cl
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Combining (7.16) and (7.17), we can write
X, (N, wN) - YarRL = ¥ X (M, wX).
[x] weC
When expressed in terms of irreducible representations, the left side involves

only the various X (', w,A'), and the right involves none of them (Proposition
7.8 and Lemma 7.11). So both sides are zero. Q.E.D.

The next step is to relate the representations of Proposition 7.8 for different
values of p. This requires a variation on standard translation principles.

LemMa 7.18. With notation (7.4), fix p with 1 < p < r. Denote by F the
finite dimensional holomorphic representation of g of extremal weight A\P*! — AP
Let E be the g X g module F ® F, regarded as a Harish-Chandra module for G.
Consider the functors

T(Y) = Pypor yo)(Y ® E),
8(z2) = P()\P,)J’)(Z ® E*);
here P denotes projection on the indicated generalized infinitesimal character.
Then
TR? = R2*,
SRP*1 = R?
(notation (7.7)).

We will prove this in a moment.

CoRoLLARY 7.19. Let X be one of the irreducible representations of Proposi-
tion 7.8 for p. Then TX has the same properties for p + 1.

Because T and S are exact, this is a formal consequence of Lemma 7.18.

ProposiTION 7.20. Suppose O is a special nilpotent orbit, -0 is even, and
Hypotheses TA-TC are satisfied. Assume that Theorem Il of the introduction
holds for m and 0,,. To each character = of A(0) = A(0,,), attach a representa-
tion X as follows. Begin with the special unipotent representation X' for m.
Let X} be the representation of g corresponding to it via (7.9) and Lemma 7.11.
Assume X? is defined for some p < r — 1; define

Xp*l = TX?
using the functor of Lemma 7.18. Finally, set
X, =X

With this definition, Theorem III holds for g and 0.
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This is immediate from Proposition 7.8, Lemma 7.14 and Lemma 7.18.
We turn now to the proof of Lemma 7.18. For convenience, write
(7.21) W, = stabilizer of A/ in W.

LeEmMA 7.22. Suppose u is a weight of the representation F of Lemma 7.18.
Then AP + u belongs to W - AP+ if and only if

p=oAP*L — AP = g(APF! — \P)

for some ¢ € W,. Two such weights p. are equal if and only if the corresponding
o’s have the same image in W,/ W, N W, __ .

Proof. Write
(7.23) AP + u=wAPtl,
Then
p=wAPTl — \P,
so that

(Bsp) = (NP, A7) + (NPT NPT — (NP wAP T
= (AP = APFLAP = APHLY 4 (AP, AP — APy,
Since A?*! is dominant, AP*! — wAP*! is a sum of positive roots; so the second

term is non-negative. Since p is a weight of F, it cannot be longer than the
extremal weight A — A?*1, The conclusion is that

(7.24) AP*1 — wAP*1 is a sum of roots orthogonal to A”.

Now suppose w is chosen to have minimal length in the coset wW, . Write a
reduced expression

w =3y e 8

@ a,’
with each «; a positive root. Then

Sai(saHl to Sa,)xp+l = (Sa : Sa,)xp+1 - miai'

Here m, is non-negative because the expression is reduced, and m; is nonzero by
the minimality of w in wW,, ;. By (7.24), each of the a; is orthogonal to A”; that
is, s,, belongs to W,. So w belongs to W,,. The lemma is now clear from (7.23).
Q.ED.

Proof of Lemma 7.18. By symmetry, we need consider only T. On the level
of characters,

T(X (AP, wAP)) = Y X(A? + p,w(A? + v)).
u, v weights of F
AN+, AP +peW AP+!
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Using Lemma 7.22, we can rewrite this as

T(X(AP,wA?P)) = |W, N W, |72 ¥ X(A"*!, ywad?*h).
y,2€W,

By (7.7)(a),
(7.25)(a) TRZ = |[W,| W, N W,,,| > ¥ tr(o,(w))X(\"*, yuwzhr*!)

y,2€W,
weW

= lel _1|Wp n Wp+1| -2 Z tr(ox(ywz))x(}\p+l’wxp+l)'
y,2€W,
wew

On the other hand, the proof of Lemma 6.2 shows that
(7.25)(b) TR? = mR?,
for some constant m. Because X(AP*!, AP*!) occurs exactly once in R}, m is

equal to its multiplicity on the right in (7.25)(a):
(7.25)(c)  m= (W UW,A W, ¥ t(o(ywz)).

y,2€W,
weW,

We may replace ywz by zyw inside the trace. Then zy runs over W, with
multiplicity |W,|; so

m = |Wp N ‘A7p+1|_2 Z trox(yw)

yEW,7
wew, ,
= |Wp N Wp+l|—2tr[( Z Ox(y))( Z ox(w))]
yEWp wEW,hLl

Each of the inner sums is a multiple of the orthogonal projection Q, on the
unique Wiinvariant line L in o,. So

(7.26) m = (|W,[|W,.11/IW, 0 W, 12)er(Q,0,:1)
= (IW,1|W,.11/IW, N W, |2)cos*6;

here @ is the angle between L, and L, .

Now we use the hypothesis that the Levi factors [? and [?*! are adjacent
(Definition 7.3). In that notation, all the contributions to m from W( 39) cancel,
and we are left with the following calculation. Write n = p + g, and let o be the
representation of the symmetric group S, attached to this partition of n. Choose
fixed vectors v and w for S, X S, and S, X S, respectively. Then (if say p > q)

(727)  m=([pla1*/[(a)*(p = @)3)(1(v, )%/ (v, 0)(w, w)).
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Since o has a very simple realization, one might hope to calculate directly that

m = 1. In fact it seems to be easier to view the preceding calculation as reducing
Lemma 7.18 to the case

g=gllp+4q)
A =(1,..,1,0---00 (pls)
APl =1(1,...,1,0---0)  (q[l%s).
Then F has highest weight
(1,...,1,0---0) (p— g 1),

and R? is the spherical irreducible representation X with infinitesimal character
(AP, AP). This X is induced from a one dimensional representation of

[a1(2)]” x[a1(1)]"~7,
which allows TX to be calculated easily. Details are left to the reader. Q.E.D.

8. Reduction when 0 is smoothly induced

In this section we give the second induction step (Proposition 8.10) in the
proof of Theorem III. It requires two hypotheses:

Hypothesis 8A. There is a parabolic subalgebra “p =m +Ln in Lg, such
that “O meets “m. Write “0,, for an orbit of “M on X0 NFm.

Hypothesis 8B. A(0) = A(0,)). Henceforth we assume this isomorphism
chosen as in Proposition 4.16. By Corollary A4,

(8.1) 0 =Ind$(0,).
By Hypothesis 8A,

LemMma 8.3. Suppose X, is a special unipotent representation of m attached
to O,. Then every irreducible constituent of

X = Ind$X,,
is a special unipotent representation of g attached to 0.

Proof. Condition (a) of Definition 5.23 follows from (8.1), and the infinitesi-
mal character condition from (8.2). Q.E.D.
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Lemma 8.4. If x € A(0) = A(0,,) (Hypothesis 8B), then
a) Indy o =0, + Y m,0o’;
o’ > o,
LR

b) Ind}RY = R,.
Proof. Part (a) is a consequence of Proposition 4.16. For (b), clearly
1

(8.5) Ind$RT = tro(w)X (A, wA,).
? |W>\gn W(m)| we%(m) ( ) ¢ 0)

Consider the element of C[W ] defined by

_[tro(w), we W(m)
f(w)_{ 0, we W(m).

In the decomposition

Clwl= Y v,oV,

seWw
part (a) allows us to write

f(w)=vx+ Z Do"
¢’ >0,
LR

Here v, belongs to V, ® V, and v, to V,, ® V,.. In the notation of Lemma 6.2,
(8.5) now gives (with A = A )

mdiR" = ¥ (c(z)Ry(2)+ ¥ co,(z)Ro,(z)).

zEW o'>a,
By Lemma 6.2, this amounts to
Ind§R, = a,R,.
Lemma 6.4 implies that a, = 1. Q.ED.
List the special unipotent representations attached to 0, as
(8.6) {Xi =X, (Ag.wAg i=1,...,7},

in such a way that “a-parameters” increase with j:

(8.7) lwdg, +Ag | > [whg +Xg | =j>f.
Define

(8.8) Xl = YQ(AO’wj}\O)’

(8.9) Ii = Inds X{,.
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Case by case, one verifies that the X é are all distinct (as j varies). Therefore,
they exhaust the special unipotent representations attached to 0.

ProposiTioN 8.10. Suppose O is a special nilpotent orbit, “0 is even, and
Hypotheses 8A and 8B are satisfied. Assume that _T_'heorem_III of the introduc-
tion holds for m and O,,. For each character m of A(O) = A(0,,), define

X8 =X

j
g

(notation (8.8)), in such a way that

(notation (8.6). Then
a) X, = Indj X7
b) Theorem 111 holds for g and 0.

Proof. Part (b) is a consequence of (a) and Lemma 8.4(b). To prove (a),
recall that every constituent of I] (cf. (8.9)) is one of the X é‘, by Lemma 8.3.
By (8.7)

(8.11) Ii=Xi+ kE b X},
<i

for some integers b;;. What we must show is that all the b, are equal to zero.
Write

(8.12) ™ € A(0,)

for the representation corresponding to X/ . By Lemma 6.1 and Theorem III for
m, the multiplicity of X/ is

(8.13) c(X}) = cq - dimm,.

By Proposition 3.31,

(8.14) C(Ig) = ¢, dim;.

Because the formulas (8.11) are obviously invertible, it follows that

(8.15) c(X{;') =co-a;,

with a; a positive integer less than or equal to dim«;. Now (8.11), (8.14), and
(8.15) give

(8.16) dimm; = a; + kE'bjkak.
<j
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The proposition therefore comes down to proving that

(8.17) a; = dim;.

To prove this, we may assume g is simple. If dim T = 1, we are done; and if
g = m, the proposition is trivial. So assume g # m, and dim#; > 1. By inspec-
tion of cases, this forces g to be of type E, or Eg, and A(0) = S; (the symmetric
group on three letters). This group has three representations m,, 7, and 7, (the
ordering forced by (8.7)); they have dimensions 1, 2 and 1, respectively. Our
assumption forces j = 2. Suppose the proposition is false. By (8.11) and (8.16),
a, =1, and

(8.18) 12 = X2+ X,
on the level of characters. Because the induction is unitary (by (8.2)) and X 2
admits a non-degenerate invariant Hermitian form, the induced representation I gz

does as well. Consequently (8.18) must actually be a direct sum on the level of
representations; so

(8.19) Hom,,, (12, X}) # 0.

Now let F, be the lowest K-type of X g‘, regarded as a holomorphic
representation of g. By inspection in each of the two cases, one sees that the
highest weight of F, is shorter than the corresponding weight for X ; So

(8.20) Hom,(F,, X}) = 0.
Write E, for the finite dimensional Harish-Chandra module F, ® C (for g X g).

Since dim 7 = 1,
(8.21) X2=1}

this representation is the unique special unipotent representation attached to 0
having a K-fixed vector (by (8.7)). By (8.20), therefore,

(8.22) Hom,., x(X2 ® E,, X}) = 0.

Because X3 is an induced representation (cf. (8.21)), X 3 ® E, has a computable
filtration (coming from a p-invariant filtration of F,) whose subquotients are
induced representations. After projecting on the infinitesimal character (A 5, Ao)
to eliminate most of these, a standard calculation exhibits I gz as a quotient of
X2 ® E,. Therefore,

(8.23) Hom,,, «(X2 ® E,, X}) 2 Hom,, «(I2, X;)-

Now (8.19), (8.22), and (8.23) together give a contradiction. Q.E.D.
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9. Cases when neither 0 nor “0 is smoothly induced:
Parametrization of unipotent representations

Throughout sections 9 through 11, we assume

Hypothesis 9A. 0 is a special nilpotent orbit; L0 is even; the hypotheses of
Sections 7 and 8 both fail for any proper parabolic subalgebra; and g is simple.

Such orbits are very rare indeed. (They play a distinguished role also in
Lusztig’s work on characters of finite Chevalley groups.) Here is a list of all of
them. There are none in type A. In types B and C, they exist only if n is twice a
triangular number: n = m(m + 1), with m > 1. For such n there is a unique @
in B, and in C,; it has symbol (cf. [L3] or [L1])

(9-1)(a) (0 1 ? 3.-..2m—1

In 80(2n + 1), this is the nilpotent with Jordan blocks
9.1)(b) (1+1)+B+3)---+2m—-1+2m—1)+2m+ 1.
In 8p(n), the Jordan blocks are

2m).

(9.1)(c) 2+2)+(4+4) - +(2m + 2m).
In both cases,
(9.1)(d) A(0) = A(0) = (Z/22)™.

These nilpotents are dual to each other in the duality of Corollary 3.25.
In type D, Hypothesis 9A is satisfied only for n a perfect square: n =
(m + 1), with m > 1. The symbol (cf. [L3] or [L1]) is

020 o2 . o)
in 30(2n), O has Jordan blocks
(9.2)(b) I+1)+@+3) - +[2m + 1) +(2m + 1)].
It is self-dual, and
(9-2)(c) A(0) = A(0) = (Z/22)™.

In G, the self-dual subregular nilpotent satisfies 9A. It has
(9.3) A(0) = A(0) = s,.

In F, the unique self-dual nilpotent, with Dynkin diagram (02 00), satisfies
9A. It has

(9.4) A(0) = A(0) = S,
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In Eg the unique self-dual nilpotent, with Dynkin diagram

00200
(9.5)(a) 0

satisfies 9A. It has
(9.5)(b) A(0) = A(0) = S,.

Hypothesis 9A is never satisfied in E,. (The unique self-dual nilpotent,
which is exceptional in the sense of Definition 4.5, is not even.)

In E there are two self-dual nilpotents. One has A(®) = { e}, and may be
treated by the reduction techniques of Section 7 or Section 8. The other has
diagram

0002000
(9.6)(a) 0

and satisfies Hypothesis 9A. It has
(9.6)(b) A(0) = A(0) = S,

In this section, we will construct the special unipotent representations attached
to 0, and establish the parametrization stated in Theorem III. The character
formulas will be proved in Sections 10 (for the exceptional groups) and 11 (for
the classical groups). The main results of this section are Proposition 9.27 and
Definition 9.28. We first parametrize unipotent representations by a set P(0) of
weights (Lemma 9.10 and Proposition 9.11), then identify P(0) with A(O ).

LemMa 9.7. Suppose that neither O nor -0 is smoothly induced. Let
p = m + n be the parabolic subalgebra of g defined by .., (that is, by the
torus in an 81(2) C g meeting O). Define

P(0) = {wh,lw € W, and w] 4|, is dominant and regular } .

a) 0 = Ind§ (zero) _

b) |P(0)| = number of conjugacy classes in A(0).

c) There is a unique element N, € P(O) such that for any p € P(0),
p — Ny, is a sum of negative roots. For every simple root a of b in m, we have

(&, Ny = 1.

d) Suppose p and p’ belong to P(O); and p’ = wp for some w in the

stabilizer of Ny in W. Then p’ = p.

(Here P stands for “parameters”; this set will parametrize the representa-
tions.) This is a completely straightforward case-by-case verification. Let p_ be
half the sum of the positive roots in m. For p € P(0), let F," denote the finite
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dimensional holomorphic representation of m of highest weight p — p,; and set

(9.8) E,=F"®Fmy,

a Harish-Chandra module for m of infinitesimal character (g, A},). Put

(9.9)(a) I, = Id§(E,) (n € P(0)),
(9.9)(b) X, = unique irreducible subquotient of I,

containing the K-type p — A}

Lemma 9.10. With notation as above,

a) All I, and X, have infinitesimal character (\,, \,), and wavefront
set 0.

b) The various X, are distinct, and exhaust the special unipotent represen-
tations attached to 0.

c) The irreducible composition factors of 1 u are X, and various other X,
with
I = Nl > | — Nl
d) Every X, may be written as an integral combination of the I, (on the
level of characters)
e) There is a constant c, depending only on 0, such that the multiplicity of

I”zs

c(I”) =¢p- dimF,
f) The multiplicity of each X , is an integral multiple of c,,.
Proof. Part (a) is a consequence of Lemma 9.7 (a) and the definitions. Part

(b) follows from Lemma 9.7 (d) and (b). Parts (c), (d), and (e) follow exactly as in
the proof of Proposition 8.10; and (£) is immediate from (d) and (e). Q.E.D.

ProposiTion 9.11. With notation (9.9), 1, is irreducible, so that I,=X,.

Proof. We may assume g is simple. If it is classical, then all the E" are of
dimension 1; so Lemma 9.10 implies that X, and I, both have multlphclty Co-
By Lemma 9.10(c), I, is irreducible.

So we may assume ¢ is of exceptional type. We can list the elements of
P(0) as

(9.12)(a) P(O) = {Np, X%, X}
in such a way that

(9.12)(b) INo = Xol < INg' = Ny
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for i = 1,...,7 — 1. (This depends on the explicit form of P(®), computed in
the verification of Lemma 9.7.) In addition, we have

(9.12)(c) Ng 1 — N, is a sum of negative roots.

We now define some modules in category O for g: for p € P(0), set
(9.13) M,=U(g) ® (F,Lm ® Cp(l‘l))'
b

L, = unique irreducible quotient of M,,.
For simplicity, we write
(9.14) M, =M,
and similarly for L.

Lemma 9.15. Suppose g is an exceptional simple Lie algebra. With notation
as above,

a) M, and L, have infinitesimal character X ,; they have Gelfand-Kirillov
dimension dim(n) = 3dimc0; and they are locally finite for m (for u € P(0)).
b) The L, exhaust the irreducibles in category O having the properties
in (a).
¢) The multiplicity of M . is the dimension of E".
d) On the level of characters
M,=L,+ Eiaiij

for some integers a, i

This is just the category @ version of Lemma 9.10; it relies on the definition
of P(0) and (for (d)) on (9.12)(c). We leave the trivial details to the reader.

LemMa 9.16. Suppose i < j, and L, has a non-split extension with L j- Then
L; is a composition factor of M.

Proof. Because of the existence of a composition-series reversing duality in
category (), we may assume the extension E looks like

0->L,>E->L, 0.

Because of (9.12)(c), N, — p is a highest weight of E; so the universality
property of algebraic induction gives a non-zero map

3
M, - E.

If ¢ is not surjective, its image must be L j- Since M; has a unique irreducible
quotient, this is impossible; so ¢ is onto, and L j oceurs in M. Q.E.D.
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LemMma 9.17. M, is irreducible.

Proof. We proceed by induction on i. For i = 1, M, has multiplicity 1 (by
Lemma 9.15(c) and Lemma 9.7(c)); so it can have only L, as a composition
factor. Now suppose i > 1, and the result is known for all M, with k < i.
Lemma 9.16 then tells us that:

(9.18) If k < i, L, has no extensions with L ; in category O, for any j.

Let

(9.19)(a) V, = finite dimensional holomorphic representation of g
of extremal weight X', — A,

(9.19)(b) V,™ = representation of m of highest weight i, — AL,
Because of (9.12)(b),
(9.19)(c) Viln = V" ® X a, V" & W,
j<i
and none of the V™ occurs in W,. Consider the translation functor
T(X) =P, (X V)

on representations of g. Because of (9.19)(c), T(M,) has a filtration whose
subquotients are M, (once) and, for j < i, a, j occurrences of M; = L.. By
(9.18),

T,(M)) =M, ® )} a;L;
j<i
on the level of representations. Since M, = L, admits a non-degenerate con-

travariant form, T(M,) does; so M, does as well. Since L, is the unique
irreducible quotient of M, this implies the lemma. Q.E.D.

These two lemmas together give

CoroLLaRy 9.20. Let M be an object in category O, such that
a) M has generalized infinitesimal character A ,,.
b) M is m-locally finite.

Then M is a direct sum of various L,, with p € P(0).

This corollary and the preceding lemma hold even if g is not exceptional. In
the general case, (9.12)(b) and (c) fail; but we used these only to prove the
irreducibility of the M, (which is obvious for classical g by the multiplicity one
argument).
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We return now to the proof of Proposition 9.11, still assuming that g is
exceptional. By a left translation functor in the category of Harish-Chandra

modules for g—that is, (g X g, K) modules—we understand any functor of the
form

T(X) = P ,,(X 8(F & C)).

Here F is a holomorphic representation of g, and F ® C is regarded as a
(g X g, K) module trivial on the second factor.

Lemma 9.21. If I, is as in (6.42)(a), and T is any composite of left
translation functors, then

P()\m»xa)(T(Iﬂ'))= @ a, I

wePO)

a direct sum on the level of representations.

Proof. I, is the K-inite dual of a highest weight module of the form
M, ® M,. 1t is therefore clear that P, 2 (T(1,)) is the K-finite dual of an object
in category @ of the form ‘

[P (T(M,))] @ M,.

The first factor satisfies the hypotheses of Corollary 9.20 and is therefore a direct
sum of various M. The lemma follows. Q.E.D.

Now let
T(X) = Py, 2p(X ®(V; ® 1))
(cf. (9.19)). By (9.19)(c) and Lemma 9.21,
(9.22) T(Iy) =1, ® S.

Since Iy, is irreducible, it follows first of all that I x, is self-dual. If it is not
1rredu01ble we can therefore find a j > i so that

Hom(Iy,, X,,) # 0
(cf. (9.9)(b)). By (9.22), it follows that
Hom(I, ®(V;® 1), X,,) # 0
and therefore that
Hom(I,,, X,; ® (V;* ® 1)) # 0.

Since I is irreducible, this implies that the trivial representation of K (the
lowest K-type of I, ) must occur in X », ® (V;* ® 1); and thus that V, occurs in
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X,y |k- Since V; has extremal weight A, — N, and the lowest K-type of X A 1S
V., (9.12)(b) now implies that j < i. This contradiction proves Proposition 9.11.

Although the definitions in (9.8) and (9.9) are not symmetric in the two
factors of g X g, Proposition 9.11 shows that the induced representations do not
depend on this choice. We may therefore strengthen Lemma 9.21:

CoroLLARY 9.23. Suppose O satisfies Hypothesis 9A, and X is a special
unipotent representation attached to 0. Let T be any composition of translation
functors. Then

LAVEWIERY)
is a direct sum of special unipotent representations attached to 0.

Probably this is true whenever L0 is even.

Next we reparametrize the special unipotent representations attached to 0,
in accordance with Theorem III of the introduction. Recall (Lemma 9.7) that m
is the centralizer in g of an element in §) of a special form: There is a
homomorphism

(9.24)(a) i 81(2) > g, ¢(g (1)) —ecO
such that if we define

(9.24)(b) h= 4,(3 B (1’) €

then

(9.24)(c) m = centralizer of h in g.

In accordance with Definition 2.3(c), set

(9.25) GY¥ = centralizer of the image of Y in G

C M = centralizer of h.
Finally, in the notation established before (9.8), we define

(9.26) D,=F"®(Fy)* (n € P(0)),
a finite dimensional holomorphic representation of M.

Prorposition 9.27. With notation as above, fix p € P(0).

a) A(0) = GY/GYZ(G);

b) D, is trivial on the subgroup G§Z(G) of M.

c) The representation @, of A(0) on D, (defined because of a), b), and
(9.25)) is irreducible.

d) The correspondence p. — m, is a bijection from P(0) onto A(0)".



94 D. BARBASCH AND D. A. VOGAN

This is proved by a case-by-case verification. (Part a), in light of Proposition
2.4(c), says simply that A(0) = A(0). This has already been noted, in (9.1)—(9.6).
What makes the calculation fairly easy is that M is always of classical type. We
omit the details.

Definition 9.28. Suppose O satisfies Hypothesis 9A. We define a bijection
from A(0)" to the set of special unipotent representations of G attached to @, as
follows. Fix 7 € A(0) . Let p € P(0) (Lemma 9.7) be such that 7 = ™,
(Proposition 9.27). Then we define

X, =X, =Ind§(E,)

(cf. (9.9) and Proposition 9.11).

10. Proof of the character formulas for exceptional groups

We now have the special unipotent representations parametrized as required
by Theorem III. Since they are given explicitly as induced representations, we
have explicit character formulas. It remains only to verify that these agree with
the ones stated in Theorem III. This verification is quite hard to do by brute
force, although a computer would probably make it possible. We will therefore
introduce some additional ideas, which reduce the actual calculation required
substantially. They apply in general, but it is easier to establish some of them just
for the exceptional groups. The classical groups will be treated in Section 11 by a
different trick.

PropositioN 10.1. Under Hypothesis 9A, suppose g is exceptional; and let
7 be a virtual representation of A(0). Write U(Q) for the linear span of the
special unipotent characters attached to O (Proposition 5.31(a)). There is a
linear transformation T, on U(O) with the following properties:

a) TX,= XY [r7®plX, (peA(0)),
YEA(O)
b) T,R, = trm(x)R, (x € A(0)).

Assuming this for a moment, let us complete the proof of Theorem III when G is
exceptional. Fix x € A(0), and define

(10.2) P = Z Atrp(x)Xp.
pEA(0)
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By Proposition 10.1(b),

T(P,) = X tro(x)[y: 7 ® p] X,
- E—(lﬁ Y ¥ (p(x))(trv(z))(tr(z))(tr(2))X,

p.y 2€EA(0)
by the orthogonality relations for characters of A(®). Now
0, x not conjugate to z
t t = —
Zp: rp(2)trp(x) {|A(@)|/|[x]|, x conjugate to z.
So

T,(E) = Ttry(x)trn(x)X,

Y
= trm(x)P,.

By Proposition 10.1(b), the R, are the unique simultaneous eigenvectors for all
T,. Hence

x = CXRX.
By (10.2), P, contains X, with multiplicity one; and by Lemma 6.4, R, does as
well. So P, = R, proving Theorem III(b). Theorem III(a) follows, by the

orthogonality relations for characters. This proves Theorem III in the exceptional
case.

We turn now to the proof of Proposition 10.1.

Lemma 10.3. In the setting of Proposition 10.1, fix virtual representations
m, and 7, of A(0O). Suppose that T, and T, satisfy (a) and (b) of Proposition

10.1. Then the linear transformations T, ., and T, o, defined by
T'lr1+7r2 = Tvrl + Tvrz’
Tm@vrz = TﬂlTwZ

satisfy Proposition 10.1(a) and (b) as well.

This is trivial. Consequently, it is enough to produce the T, for a set of =
generating the ring of virtual representations of A(0). Recall from (9.3)-(9.6)
that A(0@) is isomorphic to S;, S,, or S5. Define

(10.4) 7, = reflection representation of S,

¢ = sign representation of S, .
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(Here =, has dimension r — 1.) Then #, (and 1) generate the ring of virtual
characters of S;; and 7, and € generate this ring for S, and S;. This establishes

LemMma 10.5. It is enough to prove Proposition 10.1 for the particular
virtual representations w, + b - 1 and (if G is not of type Eg) € (cf. (10.4)).
(Here b may be any fixed integer.)

We begin with e. Put
(10.6)(a)

%(X > Ap) = complexified Grothendieck group of Harish-Chandra modules
with infinitesimal character (A ,, A ) 2 U(0O)

(cf. Proposition 10.1). This space has as a basis the set
(10.6)(b) {X(Ap, wAp)lw € W, \ W/W,_}.

Definition 10.7. Suppose the longest element w, of W is — 1. Define a
linear transformation T, on 9(A,, A ) by

TX(Ap, why) =a-X(A,, — wh,)
=a - X(Ay, wwy )
=a-X(— Ay, wh,).

Here
1)|A*(m)|.

a= (-

Lemma 10.8. In the setting of Proposition 10.1, suppose w, = — 1. Let
wy(m) denote the longest element of W(m), and define a as in Definition 10.7.

a) TX,=X_ymn (n€P0O)),
b) TR, =a-o(w,)R, (x€ A(0)).

Proof. Part (a) follows from Proposition 9.11 and the formula for induced
characters. Part (b) is immediate from the definitions. Q.E.D.

LemMma 10.9. In the setting of Lemma 10.8,

a) T o = T, ® € (n € P(0); cf. Proposition 9.27(d)),

b) o(wy) =a-e(x) (x € A(0)).

Both of these facts are simply verified case by case. In conjunction with
Lemma 10.8, this proves Proposition 10.1 when 7 = &.
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We turn now to the reflection representation of A(®). Define

_ [ Lif there is only one root length in g
(10.10)(a) B { 0 if there are two root lengths
(10.10)(b) #,=a +b-1,

a virtual representation of A(®) (cf. (9.32)). Set
(10.11)(a) F = ineducil?le holomf)rph.ic representation of g
whose highest weight is a short root,

E = (g X g,K) module F ® C.
Define a translation functor on 9(A 4, A,) by
(10.11)(b) T,X =Py, (X ®E).
Finally, fix y € A(0), and let p. € P(0) be the corresponding element (Proposi-
tion 9.27(d)). Set
(10.12) D,=D,

(notation (9.26)), a finite dimensional holomorphic representation of m1.

LemMma 10.13. With notation as above,
(a) Fl,=D,®b-D &Y,

and none of the D, occur in Y. More generally,

(b) F|,®D, = Z, A[p: %, ® y]D,| @ Y,,
pEA(O)

and none of the D, occur in Y.

This is verified case by case. One has to compute only the restriction of the
small representation F to the large Levi factor m; so it is quite easy even in Eg.

CoroLrary 10.14. With notation (10.10) and (10.11),

LX,= L [e:#©7]X, (v € A(0)").
pEA(0)

Because of Proposition 9.11, X, is induced from m; so one applies the
standard computation of translation functors on induced representations, and
Lemma 10.13(b).

It remains to show that T; satisfies (b) of Proposition 10.1. This is quite
difficult. We will obtain R, from an R, for a smaller group S, and show that the
necessary calculation may be made on S. This reduces to the case x = 1, but

Hypothesis 9A is lost in the process; so we need to treat quite a few cases
separately.
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We begin by describing the smaller group S.

Definition 10.15. Suppose Hypothesis 9A holds, and g is exceptional. Fix
x € A(0). We attach to x a new group S, as follows. We require S to be a
complex semisimple group sharing the Cartan subgroup H with G, and having
root system

(a) A(s,9) € A(a, b),
defined below. (Such a group exists for any subsystem of A(g, §); since A(8, §)
need not be closed under addition in A(g, §)), S may not be a subgroup of G.)
Consider the extended Dynkin diagram I' obtained from the Dynkin diagram of
G by adjoining a vertex for the lowest short root 8. Write
(b) -B= Y m&

a simple

label the vertex a in I' by m,, and B8 by 1. Attach to x a vertex y, of I, subject
to

(c) label of y, = order of x in A(®).

(This does not always specify y,; we eliminate the ambiguity below.) Finally, set
(d) A(3,H) = subsystem of A(g, })) with simple roots " — {7, }.

To eliminate the ambiguity in (c), we will simply tabulate the type of T — {,)

in a few cases. The number we need to list is reduced by
(e) If x and y are not conjugate in A(®), then the corresponding root systems
are non-isomorphic.

Here are the ambiguous cases. Elements of A(®) (which is always a
symmetric group) are given by their cycle decomposition.

TasLE 10.16
G X A( 3 > b)
F, (12)(34) C,
Eg (12)(34)(5) Dy
Eg (123)(4)(5) Ag
Eg (1234)(5) DJ*A,

It is possible to give a much simpler definition of S: let # be the element of
A(*0) corresponding to x (Theorem 4.7(d)). Choose a semisimple representative
s of ¥ in “GP°. Let ©S° be the identity component of the centralizer of s in “G°,
and § its dual group. (In fact this depends on the choice of s, but the choice may
be made to give the same answer as Definition 10.15.) Since all of our arguments
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require an explicit knowledge of S, and few of them use the fact that it arises this
way, the simpler definition leads to substantially more work in the proof.

LemMma 10.17. In the setting of Definition 10.15, the inclusion A(*8,%§) C
A(*g,%b) defines an inclusion “S° CG°. The orbit “0 in “q° meets -38°; write
(a) LOy =0 N3P,
(b) Og = dual orbit in S,
(c) o5 = special representation of W(S) attached to 0.
Then
(d) Jwsy(os) = o, ( Definition 4.11).

Outline of Proof. The first assertion is fairly clear from Definition 10.15. The
second (which would be trivial if we had used the alternate definition of S) can
be verified from Dynkin’s tables in [Dy]. (Notice that, since “0 is even, 0 is as
well.) Part (d) may be verified from Alvis’s tables in [Al]. Q.E.D.

This lemma must be proved case by case, because o, is defined (by Lusztig)

case by case. However, it suggests the possibility of defining o, by Lemma
10.17(d).

CoroLLARrY 10.18. R is equal to

1
WA W) L, ()Xo who).

we W(s)

This uses Proposition 6.6.

Definition. 10.19. Use the notation of Lemma 10.17. Since S and G share
the Cartan subgroup H, and W(S) C W, there is a virtual holomorphic represen-
tation Fg of S, whose H-character is equal to that of F (cf. (10.11)(a)). Set

Fy = sum of all constituents of Fg on which Z(S) acts trivially,
Eg = virtual (8 X 8, Kg) module Fy ® C,
I X = P()\m,xa)(x ® Es),

a translation functor on virtual (8 X 8, Kg) modules.

The representation Fg is a sum of one copy of the representation whose
highest weight is a short root, for each simple factor of S having such a root, plus
or minus some copies of the trivial representation.

LemMA 10.20. In the setting of Definition 10.19, suppose
TsR, = cR, (notation (1.22)).
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Then

a) TR, = cR, (cf. (10.11)(b)),

b) Ty multiplies the multiplicity of any special unipotent representation of S
attached to O, by the constant c.

Part (b) of this lemma is just a special case of Lemma 6.1. We will return to the
proof of (a) in a moment. Assuming it, let us complete the proof of Proposition
10.1(b) for = = #,. On the one hand, by (10.10)(b),

(10.21) tr#,(x) = (number of fixed points of the permutation x) + (b — 1).

This number is therefore easy to compute in each case. We must compute the
constant ¢ of Lemma 10.20, and check that it is equal to tr #,(x). We compute ¢

using Lemma 10.20(b). For every case except one in Eg, O is a Richardson
orbit:

O5 = Indf’ns({O}).
In analogy with Lemma 9.7, define
P(05) = {wh Jw € W(S), and wA o, is dominant and regular} .
Just as in Lemma 9.7(c), there is a distinguished element p, such that
(&, po) = 1, all simple a € A(mg, §).
Define F"s, ET's, 1 S, and D,"s in analogy with (9.8), (9.9) and (9.26). Then I 3 is

[T
a combination of special unipotent representations attached to @;. The standard

calculation of translation functors on induced representations gives

T, = Y [dimHom, (D™, Fy)] - IS.
rEP(0s)

Consequently, the constant ¢ of Lemma 9.48(b) is

(10.22) c= [dim Hom,, (D™, FS)]dim(DMms).
rEP(0)

Computing it involves only restricting the small representation Fg to the large
Levi factor mg, and so is very easy. In each case, the answer agrees with (10.21).
There remains the case when g is of type Eg; and x has order 4. Then

F = adjoint representation,
% = 30(10) X 80(6),
(10.23) 05 = (minimal orbit) X ({0}),
tra(x) =1,
. = ad(50(10)) ® ad(30(6)).

There is a unique special unipotent representation X of $ attached to 0. It is
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trivial on $0(6), and

(10.24) X5 = (U(80(10)) /(Joseph ideal).

For any g,U(g) modulo the Joseph ideal contains the adjoint representation
exactly once. Consequently,

Ts(xs) = P(A,y,x@)(xs ®(Fs ® C))

can contain X at most once. But the action of 80(10) defines a non-zero map
X, ®(Fs® C) > Xg;

)

(10.25) T X = X;.

The constant ¢ of Lemma 10.18 is therefore 1 in this case. Together with the
next to last assertion of 10.23, this proves Proposition 10.1 for #. By Lemma
10.5, the general case follows.

It remains to prove (a) of Lemma 10.20.

LemMa 10.26. In the setting of Definition 10.19, suppose ¢ € W - X, but

¢ & W(S) - A, Then
Z tr(os(w))Xs(qb, w,) = 0.
we W(S)

Proof. Obviously the sum is a combination of irreducible characters with
wavefront set in g (Theorem 3.20). Because ¢ belongs to W - A ,, the length of
the infinitesimal character (¢, A ) is equal to the length of (A, A,). However,
the infinitesimal character is not equal to (A,, A,), since ¢ & W(S) - A,. The
lemma therefore follows from Corollary 5.18. Q.E.D.

Proof of Lemma 10.20(a). We use the fact that
(10.27) Xs(A, ) = Xs(N, p) = Xc(A, p) = Xe(N, ),

both equalities understood on the level of characters. (This follows from Proposi-
tion 1.8.) Now (with a some normalizing constant)

(10.28) TR, =Tsla Y, tr(og(w))Xg(Ay, wh,)
we W(S)

=a Z Z tr(os(w))Xs(V + XgwAyp)
we W(S) v weight of F
v+ A€ W(S)-A,p

by Definition 10.19. By Lemma 10.26, this is
=a ) Y trog(w))Xg(v + A, why).

we€ W(S) v weight of F;
v+A, €W A,

If v is a weight of F, and » + A, belongs to W(S) - A, then » is a sum of roots
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in A(3, h); so » is a weight of F;. We may therefore write

I,T, =a > > (tros(w))XS(V + Ap, wAy).
we W(S) v weight of F
v+A,EW-A,

On the other hand, the hypothesis is that this is ¢cR o
ca ) (trog(w)) Xs(A o, wl,)

weW(S)

=a Y Y, trog(w)Xg(v + Ay, why).
we€ W(S) v weight of F
v+A,EW-A,y

By (10.27), we may replace the subscript S by G everywhere. By a calculation
like (10.28) for G, this amounts to

T.R,=cR;
here we use the formula in Corollary 10.18 for R,. Q.E.D.

11. Proof of the character formulas for classical groups

In this section, we prove Theorem III for the classical cases of Hypothesis
9A. We emphasize again that Proposition 10.1 is still true; but we will use
another approach which requires less calculation. So assume we are in one of the
cases (9.1) or (9.2), so that A(0) is isomorphic to (Z /2Z)™. Define b = m + n as
in Lemma 9.7. Put

(11.1)(a) B = highest short root,

(11.1)(b) [ = Levi factor generated by roots orthogonal to 8
(11.1)(c) = | + u corresponding maximal parabolic subalgebra,
(1L.1)(d) A, = A(1) U{£B},

(11.1)(e) W, = W(A,) = W(1) X Z/2Z.

Lemma 11.2. The parabolic subalgebra p defined by Lemma 9.7 is con-
tained in the maximal parabolic g of (11.1)(c). Set

(a) 0, = ind;, ({0}).
Then L0, is an even nilpotent in (; define

(b) A= >‘01

as in (1.15). Then A, is (up to conjugacy in W)
(c) Ao=13B+ A
(d) A(0) = (z/22)"""

(with m as in (9.1) and (9.2)).
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This is verified case by case.

By inductive hypothesis, Theorem III is available for the unipotent repre-
sentations of [ attached to @,. Case by case, this can be made explicit.

Write C, ,; for the holomorphic representation of [ of weight 38 (cf.
(11.1)(a)). Define two one-dimensional (I, L N K) modules by
(11.3) Dl = C1/2B ® C1/2B’

D_; =C, 5 ® Cfop.

(Notice that D, is trivial on L N K, and D_, is trivial on [ N p.)

Definition 11.4. For 7 € A(@I)A, let X% be the corresponding unipotent
representation of L attached to @, (Theorem III, which is available for L by
induction). For ¢ = +1, set

XL . =XIl®D,
(cf. (11.3)). Finally, define
X, .= Indgx,ﬁe.
ProrosiTion 11.5. In the setting of Definition 11.4, X, , is an irreducible
unipotent representation of G attached to 0. This defines bijections
A(0,)" x{£1} © {unipotent representations attached to 0}
o A(0),
the latter correspondence being that of Definition 9.28.

We will prove this in a moment. The idea is to use it to lift the known
character formulas for X to formulas for X, ,. To do this, we must lift the other
side of the formula as well.

Definition 11.6. For x € A(0,), let RL be the virtual character of (1.22).
For e = +1, define

R;.=R;®D,
(cf. (11.3)). Regard W, as W(1) X { +1} (cf. (11.1)). If 7 is a character of { 1},
define

1
RL = T tr L®'T w)X >\1,w>\1
x,T IW»@n WOI wEZWO (ox )( ) L( Y 0)
= Rf’l + 7(— I)RI;’ 1

Finally, define
R, = Inng’;’,

1 L L.
- Wy, 0 Wo wz_‘,wotr(ox ® T)(w)x(}\‘”’“»w)'
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ProrosiTioN 11.7. In the notation of Definitions 11.4 and 11.6,
Xoo=9x L w(x)eR,,
(x, 1) €A(O) X (1)

This will turn out to be the character formula in Theorem III.

Proof. By Definition 11.6, and Fourier inversion in the group { +1},
1

(11.8) RE, =5 ¥ 1(e)RE,.
, 9 i .
TE€{+1)
By Theorem III for L,
(119) lefl,e = 1 Z '”(x)Rf:l,s‘

2" Lo,
Inserting (11.8) in (11.9), and inducing, we get the proposition. Q.E.D.
LemMa 11.10. The map ]y, of Definition 4.11 is a bijection from
{oF®@1x € A(0), T€ {£1}}
to
{oyly S X(@)}.
The induced bijection

(a) A(0,) x(+1)" o A(0)
is an isomorphism of groups. The dual bijection
(b) A(0) x {1} o A(0)°

is the same as that of Proposition 11.5.

This is proved case by case, by an explicit calculation. By Proposition 6.6,
the first assertion implies that if (x, 7) corresponds to y, then
(11.11) R,..=R,
(see the last formula of Definition 11.6). By the last assertion, the formula of
Proposition 11.7 is Theorem III(a). The second formula of Theorem III follows
by Fourier inversion in (Z/2Z)™.

It remains only to prove Proposition 11.5. Define

(11.12) P(0,) = {wA|Jw € W(I), and wA/]|,, is dominant and regular}.
For e = 1, set

(11.13) P(0,), = {p + 3eBln € P(0))}.
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By Lemma 11.2, and the definition in Lemma 9.7,
(11.14) P(0) 2 P(0,), L P(O,) _,.

Case by case, it is trivial to verify that equality actually holds in (11.14).
Consequently, P(0,) has 2™ ! elements. Recall the element A, of Lemma 9.7.
Clearly it belongs to P(0,),, and we define A} by

(11.15) A, = A + 38.

Now define, for p € P(0)),

(11.16) E = holomorphic representation of m of highest weight p — p,,,
Ef = (I, L N K) module F" ® F>\L11,

I* = Ind,  EF.

Now suppose ¢ = +1, p € P(0,). Then it is immediate from the definitions that
(11.17) L.\ =Id$(IF ® D,).

We know from Section 9 that the representations on the right are all distinct and
irreducible, and exhaust the unipotent representations of G attached to 0.
Consequently, the various I ‘f must be distinct and irreducible. As they obviously
have wavefront set @, and infinitesimal character A, and there are 2™ ! of
them, the I uL must exhaust the unipotent representations of L attached to 0,.
Proposition 11.5 follows. Q.E.D.

12. Complements

The results in this section are obtained by straightforward applications of
the techniques used in the paper. We have omitted the proofs which involve
tedious case-by-case checking and only mention two results which seemed
noteworthy to us.

The first is a generalization of Corollary 10.18. In the setting of Theorem III,
let s be a semisimple element of “G centralizing an element of “0, and 5 its
image in A(*0)= A(0). In a way similar to Definition 10.15, let S =
Cent(s,“G) and let S be a connected reductive group whose dual is S. Then ~0
meets ©3 (the Lie algebra of S) in an orbit Z0,. Clearly “0, is also even. Let O,
and o{” be the dual orbit and the special representation attached to it,
respectively. Let W(S) be the Weyl group corresponding to S.

ProrosiTion 12.1.

W (s) —
]W(S)ols = 0.
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CoroLLARY 12.2.

1

T T
W, N W(S)I o, Swes)

R; = tr(os(w))Xc(A@,w)\@).

Proposition 12.1 and Corollary 12.2 are generalizations of Lemma 10.17(d)
and Corollary 10.18 and proved in exactly the same way.

This result can be restated so as to match the conjectures in [A]. Let H be a
Cartan subgroup of S with Lie algebra .

ProposiTion 12.3. There is a correspondence

for
from C*(G) to CX(S) such that
XA, p)(f) = Xs(A, p)(£°)

forall A, p € bh*.

Proof. This can be obtained from the Paley-Wiener theorem for complex
groups ([Ze], [De]).

A generalization of the map f — f5 for real groups and different classes of
functions is obtained in the work of D. Shelstad.

CoROLLARY 12.4.
L uw(n(3)XI(f) = X tu(p(D)X(f°).
neA(0) pEA(0s)

Proof. This is immediate from Theorem III, Corollary 12.2 and Proposition
12.3.

Corollary 12.4 is mentioned for its similarity with Conjecture 1.3.3(iii) in
[A].

The second result is a generalization of the reduction techniques in Section
8. Let 0 = Ind$0,, be an induced nilpotent such that “¢ is even. We would like
to compare the representations { X}, < 4») With {(Ind$X (MY e i ..

PropPOSITION 12.5. There is a subgroup A™)(0) C A(0) with the following
properties: _
a) A(0,,) is a quotient of A"™)(0). Write
1>k A™(0) > A(0,) - 1.

b) For any 7 € A™)(0) we can find an irreducible representation X ) of
M such that

Indg(Xﬁ,‘“))= Z ["7|Z(m)w)‘ W]Xn'
n€A(0)
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The infinitesimal character of X{™ is of the form (w),, A,) and the left and
right annihilators are maximal for their respective infinitesimal characters.

In other words, the composition series of representations induced from
unipotent representations matches induction from A™)(@) to A(®). The quo-
tient space A(0)/A™)(0) plays the role of the Knapp-Stein R-group.

The proof of this proposition involves a minor generalization of Theorem I1I
to include the representations X{™. Then statement (b) is simply matching the
known character of Ind$(X{™) to the right-hand side of the equation.

Finally, we remark that the group A(™)(0) is the same as the one considered
by [L3] in 10.7. "

Appendix: Duality for nilpotent orbits

In [Spa], Spaltenstein defined an order-reversing map d from the partially
ordered set A" of nilpotent orbits in g, onto the set % of special nilpotent orbits.
When restricted to ¥, d may be seen (by calculation in each case) to coincide
with the order-reversing bijection of Corollary 3.25. We propose here to define an
analogue of d, called 7, from A" to the set “4” of nilpotent orbits in ©g. While
our definition is much less elementary than Spaltenstein’s, we believe it is
simpler. We have not tried to find “natural” proofs of the basic properties of 7;
since the map is easily computed by known techniques (and Corollary 5.20),
these properties can be simply checked case by case. Our main motivation for
including the material is Corollary A4.

Definition Al. Let O be a nilpotent orbit in g. Choose a map ¢: 81(2) = g
so that

o d)ee
i _g)-nen

Define p, €Xh* = § to be the weight corresponding to 3h. Set

LI, = maximal primitive ideal in U(Xg)
with infinitesimal character .

Let “X be the Harish-Chandra module U(*g)/*I,. Define
Lo = 7(0) = unique open orbit in WF(*X).

We may call this map 7, for precision.
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ProrosiTion A2. Suppose O is a nilpotent orbit in g.
a) If O’ is any other nilpotent orbit and O’ C 0, then

7(0) cn(0).
b) ng ° "ILG° ng = T’g'
Consequently, n, is an order reversing bijection of the image of the n L, onto the
image of 1, with inverse ML,
¢) Suppose O meets a Levi factor m C g; say it contains the m orbit 0.
Then

14(0) = Ind,(1,,(0,,)).

d) The image of n is precisely the set “% of special nilpotent orbits in " g.
On &, n is the duality of Corollary 3.26.

Sketch of Proof. In the notation of Definition Al, define a subsystem R of
the root system of g by

R={a€ A(g,h)a(h) € 2Z}.

Obviously R is the root system of a subalgebra e 2 b of g; and R is the set of
integral roots for u, in “g. Clearly @ meets e in an orbit 0,, which is even. Let
o, be the representation of W(e, ) inside S(}), which is generated by the
product of the roots orthogonal to h. Let o, be the unique special representation
in the W(e) double cell of o, ® sgn, and V,” its realization on harmonic
polynomials of minimal degree. Let (¢’,V’) be the W representation generated
by (o/,V.”) in S(b). By [BV2,3], ¢’ is the Springer representation attached to
7(0). In this way one can compute the map m explicitly, and so verify
immediately (a) and (b). To minimize the work required in verifying (c), we may
assume (by induction on dim g and dim g/m) that m is in the unique minimal
conjugacy class of Levi factors meeting ¢. The representation “X of Definition Al
is just the unique irreducible spherical representation of “g of infinitesimal
character u,. Consequently (since pp= pq )

LX is a subquotient of Ind®,, .(¥X ),

m+u

with obvious notation. It follows that

n,(0) < Tnd%(n(G,,)).

So we only need to check that both sides have the same dimension. For (d),
Lusztig shows in [L1] that the class of special nilpotents is closed under
induction. To prove that n(A") CL%, it suffices therefore to consider an orbit ¢
not meeting any Levi factor. Case by case, one can check that such an orbit is
even. Therefore, u, is integral, and n(0) is special by Theorem 3.20. The last
assertion of (d) may be verified by inspection. Q.E.D.
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CoroLLARY A3. (n, °n )(0) is the unique smallest special nilpotent orbit
containing 0. If it is denoted s(0), then

n(0) = dual of s(O) in the sense of Corollary 3.25.

CoRoLLARY A4. Suppose O is a special nilpotent orbit in g, -0 is even, and
LO meets a Levi factor “m in -0,,. Write 0, for the m orbit dual to “0,,.

a) 0= Ind%(0,).

b) If X, is a special unipotent representation of m attached to 0, then all

composition factors of Ind® . (X, ) are special unipotent representations of g
attached to 0.

Proof. Part (a) follows from (c) and (d) of Proposition A2. Since A, is
obviously equal to A, (cf. (5.4)), part (b) follows from (a) and Definition 5.23.
Q.E.D.
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