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REDUCIBILITY OF STANDARD REPRESENTATIONS

BY DAN BARBASCH! AND DAVID A. VOGAN, JR.2

Let G be a real linear reductive group with abelian Cartan subgroups.
Unexplained notation, in general, follows [3 and 6]. Fix a parabolic subgroup
P = MAN of G and a representation § of M in the limits of the discrete
series. The continuous family of representations

m(v)=IndE(@rel) (veAd=a")

is a typical series of standard representations of G. (These are not, in gen-
eral, unitary since ¥ may not be a unitary character of A.) In order to apply
certain “continuity arguments” in the study of unitary representations of G,
it is necessary to know for which values of v the representations 7 (v) is re-
ducible. We sketch here an explicit answer to this question for classical groups.
(Our techniques reduce the problem for exceptional groups to a (long) finite
calculation.) The continuity arguments mentioned above require a similar un-
derstanding of reducibility for some larger class (it is not yet clear what larger
class) of induced representations. Some of our techniques also apply to this
more general problem.

Write 7(v) for the direct sum of the Langlands subquotients of w(v). These
are the irreducible composition factors of m(v) whose matrix coefficients ex-
hibit the largest possible growth at infinity [1]. (Alternatively [4], they may
be characterized by the fact that their restrictions to a maximal compact sub-
group contain representations which are as small as possible.) Obviously 7 (v)
is reducible if and only if at least one of the following conditions holds: 7(v)
is reducible; or 7(v) has some composition factor not in 7(v). We write the
second possiblity as w(v) # T(v). Now Knapp and Zuckerman have deter-
mined in [2] exactly when the first possibility occurs: v must belong to one of
finitely many linear subspaces in a*, which are explicitly described in terms of
the inducing representation §. We must therefore explain when 7 (v) # 7(v).

In writing a Langlands decomposition P = M AN, we have implicitly fixed
a Cartan involution §. Choose a #-stable compact Cartan subgroup T C M
and write H = T A for the corresponding 6-stable Cartan subgroup of G. The
representation § determines (up to conjugacy under W (M, T)) a positive root
system AT (m,t) and a Harish-Chandra parameter A € t*. Put

F=(A\v)et +a*=h",
R(6@v)={ac Ay bh)(&7) € Z};
as usual, & denotes the coroot 2a/(e, cx).
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The root system R(§ ® v) has several additional structures:

(1) 6 acts on R(6 ® v).

(2) Each 0-fixed (that is, imaginary) root is either compact or noncompact.

(3) Each (—0)-fixed (that is, real) root either does or does not satisfy a
“parity condition” [3].

(4) There is a decomposition

R6®v)=R*T(6QV)URy(§QV)UR (6§ ®V)

of the roots according to whether their inner products with 7 are positive,
zero, or negative.

(5) There is a distinguished choice A*(m, t) of positive imaginary roots.

Fix a nonzero weight ¢ € a* of a in g, and set

R(6xv)? ={aeR(6QV)|als €R - ¢}.

This root system inherits all the extra structure of R(6®v). Choose a positive
root system R (6 ® v)? so that

(a) Ry (6 ®v)? 2 AT (m,t) N Ro(§ @ v).

(b) If a € Rp(§ ® v)? and (—fa) € RT+(6 ® v)?, then a € R (§ @ v).

(c) If & and —fc are distinct elements of Ry(§ ® )%, then both belong to

R (6 ® v), or neither does.
Define

RR*(6®v)* = R** (6@ v)? URS (6 ®v)?,
IT = RII(§ ® v) = simple roots of RR* (6 ® v)?.

If —0 preserves RR* (6 ® v)?, define C(6 ® v)? to be the empty root system.
Otherwise, we can write
=) nao,

a€ll
with n, a nonnegative rational number. We define

Meris = T8 ® )4y, = {o € Ming # 0},

C(6 ® v)® = span of I,

the critical root system.

PROPOSITION [5]. There is a connected simple group G with parabolic
subgroup P = MAN, § € M, b € &*, etc., all unique up to isomorphism,
such that

(a) dimA = 1.

(b) #(¥) = Indg(g ® ¥ ® 1) has integral infinitesimal character.

(c) A(§,) = R(6 ® ) = C(6 ® V)%, the isomorphism preserving the addi-
tional structures (1)—(5) described above.

The critical root system C(6 ® v)? is said to be of reducible type if the
representation 7 () described by the proposition is reducible.



REDUCIBILITY OF STANDARD REPRESENTATIONS 385

THEOREM. Let m(v) = Ind$(6 ® v) be a standard representation as de-
scribed above. Then w(v) # 7(v) (m(v) s distinct from its Langlands subquo-
tients) if and only if there 13 a nonzero weight ¢ of a in g such that the attached
critical root system C(6 ® v)? (defined above) is nonempty and of reducible
type.

This was largely proved (implicitly) in [3]. Our solution to the reducibility
problem (for classical groups) consists of a list of all critical root systems
(together with the additional structures (1)-(5)) which are not of reducible
type. For complex groups and GL(n, R), there are no such irreducible critical
root systems (except the empty one), so the theorem reduces to results of
Zhelobenko [9] and Speh (8], respectively. Kostant’s results [7] on reducibility
of spherical series may be interpreted as describing certain irreducible critical
root systems corresponding to the large region of irreducibility round v = 0.
The group G of the Proposition in these cases has real rank one. This already
accounts for many of the irreducible critical root systems. Most of the rest
correspond to G of real rank 2.

We also give tables describing the smallest real v for which m(v) is reducible
when dim A = 1 and use these to study unitarizability of 7(v) in that case.
Details and proofs will appear elsewhere.
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