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Abstract. The set of orbits of GL(V ) in F l(V )×F l(V )×V is finite, and is parametrized
by the set of certain decorated permutations in a work of Magyar, Weyman, Zelevinsky.
We describe a Mirabolic RSK correspondence (bijective) between this set of decorated
permutations and the set of triples: a pair of standard Young tableaux, and an extra
partition. It gives rise to a partition of the set of orbits into combinatorial cells. We prove
that the same partition is given by the type of a general conormal vector to an orbit. We
conjecture that the same partition is given by the bimodule Kazhdan-Lusztig cells in the
bimodule over the Iwahori-Hecke algebra of GL(V ) arising from F l(V )×F l(V )×V . We
also give conjectural applications to the classification of unipotent mirabolic character
sheaves on GL(V ) × V .

1. Introduction

1.1. Let v ∈ V be a nonzero vector in an N -dimensional vector space over a field k. The
stabilizer PN of v in GLN = GL(V ) is called a mirabolic subgroup of GLN . The special
properties of the pair PN ⊂ GLN are among the principal reasons why the representation
theory of GLN is in many respects simpler than that of the other reductive groups over k

(see e.g. [2], [9]). One more remarkable feature of the pair PN ⊂ GLN was discovered by
P. Etingof and V. Ginzburg a few years ago. Namely, the quantum Hamiltonian reduction
of the differential operators on GLN with respect to PN is isomorphic to the spherical
trigonometric Cherednik algebra HN (see e.g. [5]); equivalently, the quantum Hamiltonian
reduction of the differential operators on GLN ×V with respect to GLN is isomorphic to
HN . Thus one is led to study the D-modules on GLN ×V whose quantum Hamiltonian
reduction lies in the category O for HN (see [6]). The corresponding perverse sheaves are
called mirabolic character sheaves; they are close relatives of Lusztig’s character sheaves
(see e.g. [13]). The present work is a first step towards a classification of mirabolic character
sheaves.

1.2. According to Lusztig’s classification of character sheaves, the set of isomorphism
classes of unipotent character sheaves on a reductive group G is partitioned into cells,
which correspond bijectively to special unipotent classes in G. For G = GLN , each unipo-
tent class is special, and each cell contains a unique character sheaf; thus the unipotent
character sheaves are classified by their (nilpotent) singular supports, so they are num-
bered by partitions of N .

Finally, recall that the cells in question are the two-sided Kazhdan-Lusztig cells of
the finite Hecke algebra HN . If Fl(V ) stands for the flag variety of GL(V ), then HN
is the Grothendieck ring of the constructible GL(V )-equivariant mixed Tate complexes
on Fl(V ) × Fl(V ) (multiplication given by convolution). The two-sided cells arise from
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the two-sided ideals spanned by the subsets of the Kazhdan-Lusztig basis (formed by
the classes of Goresky-MacPherson sheaves). This basis is numbered by the symmetric
group SN , and its partition into two-sided cells is given by the Robinson-Shensted-Knuth
algorithm, see [10]. A GL(V )-orbit in Fl(V ) × Fl(V ) numbered by w ∈ SN lies in a
two-sided cell λ iff a general conormal vector to the orbit is a nilpotent element of type λ,
see [17].

1.3. The starting point of our work is a classification of GL(V )-orbits in N×V where N is
the nilpotent cone in End(V ) (it was independently obtained by P. Achar and A. Henderson
in [1]). We prove (see section 2.2) that the set of orbits is in a natural bijection with the
set P of pairs of partitions (ν, θ) such that |ν| = N , and ν ⊃ θ, that is νi ≥ θi ≥ νi+1

for any i ≥ 1. Note that P arises also in Zelevinsky’s classification of restrictions of
unipotent irreducible representations of GLN (Fq) to PN (Fq) (see [18], Theorem 13.5), and
this coincidence is not accidental.

A conormal vector to a GL(V )-orbit in Fl(V )×Fl(V )×V lies in the variety Z of quadru-
ples (u1, u2, v, v

∗) where v ∈ V , and v∗ ∈ V ∗, and u1, u2 are nilpotent endomorphisms of
V such that u1 + u2 + v ⊗ v∗ = 0. The set of orbits of GL(V ) in Z is infinite, and Z is
reducible (it has N + 1 irreducible components of dimension N2) but we define in 3.2 a
collection of closed irreducible subvarieties of Z numbered by the triples (ν ⊃ θ ⊂ ν ′) of
partitions such that |ν| = |ν ′| = N . These subvarieties are the images of the closures of
the conormal bundles to GL(V )-orbits in Fl(V )×Fl(V )×V ; they are mirabolic analogues
of the nilpotent orbit closures in N .

The Hecke algebra HN acts by the right and left convolution on the Grothendieck group
of the constructible GL(V )-equivariant mixed Tate complexes on Fl(V )×Fl(V )×V ; we will
denote this bimodule by RN . It comes equipped with a Kazhdan-Lusztig basis numbered
by the finite set RBN of GL(V )-orbits in Fl(V )×Fl(V )×V , described in [15] (see also [14]).
Thus we can define a partition of RBN into bimodule KL cells. In this note we define an
analogue of the RSK algorithm which is conjectured to be connected with these bimodule
cells. Our mirabolic RSK correspondence (see subsection 3.5) is a bijection between the
set RBN of colored permutations of {1, . . . ,N}, and the set of triples {(T1, T2, θ)} where
T1 (resp. T2) is a standard tableau of the shape ν (resp. ν ′) where |ν| = |ν ′| = N , and θ
is another partition such that ν ⊃ θ ⊂ ν ′.

We conjecture that the colored permutations w̃, w̃′ ∈ RBN lie in the same bimodule
KL cell iff the output of the mirabolic RSK algorithm on w̃, w̃′ gives the same partitions:
ν(w̃) = ν(w̃′), ν ′(w̃) = ν ′(w̃′), θ(w̃) = θ(w̃′) (see Theorem 3 for a partial result in this
direction). An equivalent form of the conjecture states that theHN -subquotient bimodules
of RN supported by the bimodule KL cells are irreducible (cf. Proposition 7). We also
define a partition of RBN into microlocal two-sided cells according to the type of a general
conormal vector to the corresponding orbit. We prove that the colored permutations
w̃, w̃′ ∈ RBN lie in the same microlocal two-sided cell iff the output of the mirabolic RSK
algorithm on w̃, w̃′ gives the same partitions ν ⊃ θ ⊂ ν ′ (see Theorem 2). In subsection 5.8
we describe combinatorially the involution F on RBN arising from the Fourier-Deligne
transform from the category of GL(V )-equivariant sheaves on Fl(V ) × Fl(V ) × V to the
category of GL(V )-equivariant sheaves on Fl(V ∗)×Fl(V ∗)×V ∗. In subsection 5.9 we give
a conjectural application to the classification of unipotent mirabolic character sheaves. In
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subsection 5.10 we formulate a conjecture on the structure of the asymptotic bimodule
over Lusztig’s asymptotic ring J for diagonal bimodule KL cells: those corresponding to
triples ν ⊃ θ ⊂ ν (that is, ν = ν ′).

1.4. Let us emphasize that almost all arguments and constructions in the paper are of
elementary combinatorial and linear algebraic nature. For instance, even though the bi-
module RN over the Hecke algebra HN is of geometric origin, it is described explicitly
in Propositions 2 and 3. The Kazhdan-Lusztig basis of RN is defined by an inductive
combinatorial algorithm, similarly to the Kazhdan-Lusztig basis of HN . Only the descrip-
tion of the W -graph of the HN -bimodule RN in Proposition 8 does rely on geometric
considerations.

1.5. Acknowledgments. I am grateful to P. Achar and A. Henderson for sending me
their preprint [1] where our Theorem 1 is proved independently (as Proposition 2.3). I am
indebted to M. Finkelberg for posing the problem, numerous valuable discussions and help
in editing the paper. I am thankful to Independent University of Moscow for education,
financial support and various help. I thank P. Etingof for creating the ideal conditions for
my work.

2. GL(V )-orbits in N × V
2.1. The following Theorem essentially goes back to J. Bernstein, who proved in [2], sec-
tion 4.2, the finiteness of the set of PN -orbits in the nilpotent cone of glN . It was inde-
pendently proved by P. Achar and A. Henderson ( [1], Proposition 2.3).

Theorem 1. Let N ⊂ gl(V ) be the nilpotent cone. There is a one-to-one correspondence
between GL(V )-orbits in N ×V and pairs of partitions (λ, µ) such that |λ|+ |µ| = ∑

λi +∑
µi = N . Furthermore, if a pair (u, v) ∈ N ×V belongs to the orbit corresponding to the

pair (λ, µ) then the type of u is equal to λ+ µ = (λ1 + µ1, λ2 + µ2, . . . ) .

Proof. Given a pair (λ, µ) such that |λ| + |µ| = N , we will construct the pair (u, v) in
the following way. Let ν = λ + µ and u be a nilpotent of type ν. Denote by Dν the set
of boxes of the Young diagram ν, i.e. Dν = {(i, j) | 1 ≤ j ≤ νi}. Choose a basis ei,j
((i, j) ∈ Dν) such that uei,j = ei,j−1 for 2 ≤ j ≤ νi and uei,1 = 0. Let v =

∑
i
ei,λi

where

we put ei,0 = 0.
The inverse correspondence is obtained as follows. Let (u, v) ∈ N ×V . Denote by Z(u)

the centralizer of u in the algebra End(V ). Let ν be the type of u and λ be the type of
u|Z(u)v and µ be the type of u|V/Z(u)v .

Let us prove that these two correspondences are mutually inverse. We will need the
following lemma.

Lemma 1. Let A ⊂ End(V ) be an associative algebra with identity and A× the multiplica-
tive group of A. Suppose the A-module V has finitely many submodules. Then A×-orbits
in V are in one-to-one correspondence with these submodules. Namely, each A×-orbit has
the form ΩS := S \ ⋃

submodules S′  S

S′ where S is an A×-submodule of V .
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Proof. It is clear that the sets ΩS give us a decomposition of V into a union of locally closed
subvarieties. So, we must prove that two points v, v′ ∈ V belong to the same A×-orbit iff
they belong to the same ΩS, i. e. they generate the same A-submodule S = Av = Av′. If
v and v′ belong to the same A×-orbit then v′ = av for some a ∈ A× and Av = Aav = Av′.
Conversely, let v, v′ ∈ ΩS for some S, so that Av = Av′ = S. It is easy to see that A×v
and A×v′ are constructible dense subsets of S. This implies that A×v ∩ A×v′ 6= ∅ and
therefore A×v = A×v′. �

2.1.1. Let us deduce the theorem from the lemma. Fix a partition ν of N . Consider all
the GL(V )-orbits in N ×V consisting of points (u, v) where u has the type ν. These orbits
correspond to GL(V )u-orbits in V where GL(V )u is the stabilizer of u in GL(V ). Note
that GL(V )u = (Z(u))×. According to the lemma it suffices to prove that V has finitely
many Z(u)-submodules and find all these submodules. Consider V as a k[t]-module where
t acts by u. This module is isomorphic to

⊕
i

k[t]/(tνik[t]). Let Vi ∼= k[t]/(tνik[t]) ⊂ V be

the the i-th direct summand of this sum. For each i let {ei,j}νi
j=1 be a basis of Vi such that

uei,j = ei,j−1 (j ≥ 2) and uei,1 = 0. We can write

Z(u) = Endk[t](V ) =
⊕

i,i′

Homk[t](Vi, Vi′) ∼=
⊕

i,i′

k[t]/(tmin{νi,νi′}k[t])

Let ai,i′ be a generator of the k[t]-module Homk[t](Vi, Vi′) ⊂ Endk[t](V ) given by

ai,i′ei1,j = δi,i1ei′,(j−max{0,νi−νi′})
(we put ei,j = 0 for j ≤ 0).

Now let S be a Z(u)-submodule of V . Sinse S is invariant under ai,i′ for all i, S has a
form S =

⊕
i Si where Si ⊂ Vi. Further since S invariant under u ∈ Z(u) all the Si have

the form uµiVi. Put λi = νi − µi. The invariance of S under all ai,i′ is equivalent to the
fact that λ and µ are partitions, i.e. λ1 ≥ λ2 ≥ . . . and µ1 ≥ µ2 ≥ . . . . So we have shown
that Z(u)-submodules of V are in one-to-one correspondence with pairs of partitions (λ, µ)
such that λ+ µ = ν. An application of Lemma 1 concludes the proof of the theorem. �

2.2. Comparison with Zelevinsky’s parametrization. A. Zelevinsky considers
in [18], Theorem 13.5.a) the set Z of isomorphism classes of pairs (U,W ) where U is an
irreducible unipotent complex representation of the finite group GLN (Fq), and W is an
irreducible constituent of the restriction of U to the mirabolic subgroup PN (Fq). He
constructs a natural bijection between Z and the set P of pairs of partitions (ν, θ) such

that |ν| = N , and ν̃j − 1 ≤ θ̃j ≤ ν̃j for all j (this is equivalent to νi ≥ θi ≥ νi+1 for all i).
The following Proposition-Construction establishes a natural bijection between P, and
the set of pairs of partitions (λ, µ) such that |λ|+ |µ| = N .

Proposition-Construction 1. Let ν be a partition and ν̃ the conjugate partition so that
νi ≥ j ⇐⇒ ν̃j ≥ i. There exists a natural one-to-one correspondence between pairs (λ, µ)

of partitions such that λ + µ = ν, and partitions θ such that ν̃j − 1 ≤ θ̃j ≤ ν̃j for all j
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(this is equivalent to νi ≥ θi ≥ νi+1 for all i). This correspondence is given by

θi = λi+1 + µi;(1)




λi =
∞∑

k=i

(νk − θk) = νi − θi + νi+1 − . . . ,

µi =
∞∑

k=i

(θk − νk+1) = θi − νi+1 + θi+1 − . . . .
(2)

Proof. It is easy to see that equations (1) and (2) give mutually inverse correspondences.
�

We will denote the above correspondence by (ν, θ) = Υ(λ, µ), (λ, µ) = Ξ(ν, θ).

Corollary 1. A pair (u, v) lies in an orbit (N × V )(λ,µ) such that (λ, µ) = Ξ(ν, θ) iff the
Jordan type of u is ν, and the Jordan type of u|V/〈v,uv,u2v,...〉 is θ.

Proof is obvious from the construction. �

3. GL(V )-orbits in Fl(V )× Fl(V )× V
3.1. Let (F1, F2, v) ∈ Fl(V )× Fl(V )× V . Consider the orbit GL(V ) · (F1, F2, v). If v = 0
then this orbit lies in Fl(V )×Fl(V )×{0}. Such orbits can be parametrized by permutations
of N elements. Otherwise, if v 6= 0 the orbit is preimage of an orbit in Fl(V )×Fl(V )×P(V ).
This follows from the fact that if c ∈ k× then the element (F1, F2, cv) can be obtained
from (F1, F2, v) by the action of the scalar operator c · id ∈ GL(V ). Such orbits are in
one-to-one correspondence with pairs (w, σ) where w ∈ SN is a permutation and σ is non-
empty, decreasing subsequence of w (see [15]). So GL(V )-orbits in Fl(V )×Fl(V )× V are
indexed by pairs (w, σ) where w ∈ SN and σ is a decreasing subsequence of w (possibly
empty). We will give another proof of this fact in the following lemma.

Lemma 2. There is a one-to-one correspondence between GL(V )-orbits in Fl(V )×Fl(V )×
V and pairs (w, σ) where w ∈ SN and σ ⊂ {1, 2, . . . ,N} such that if i, j ∈ σ and i < j
then w(i) > w(j). These orbits can be also indexed by pairs (w, β) where β ⊂ {1, 2, . . . ,N}
is a subset such that if i ∈ {1, . . . ,N} \ β and j ∈ β then either i > j or w(i) > w(j).

We denote by RB the set of such pairs (w, β). We think of elements of RB as of
words colored in two colors: red and blue. Namely, if (w, β) ∈ RB we consider the word
w(1) . . . w(N) and paint w(i) in blue if i ∈ β, and we paint it in red if i 6∈ β.

Proof. For each w ∈ SN let Ωw be the corresponding GL(V )-orbit in Fl(V ) × Fl(V ).
Namely, (F1, F2) ∈ Ωw iff there exists a basis {ei} of V such that

F1,i = 〈e1, . . . , ei〉(3)

F2,j = 〈ew(1), . . . , ew(j)〉(4)

Consider all the GL(V )-orbits in Fl(V ) × Fl(V ) × V consisting of such points (F1, F2, v)
that (F1, F2) ∈ Ωw where w is fixed. Fix a pair (F1, F2) ∈ Ωw and let H be its stabilizer
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in GL(V ). Then these orbits correspond to H-orbits in V . Let Ak ⊂ End(V ) (k = 1, 2)
be the subalgebra defined by

a ∈ Ak ⇐⇒ ∀i a(Fk,i) ⊂ Fk,i.
Denote A = A1 ∩A2. Then H = A× and we can apply Lemma 1.

Let {ei} be a basis satisfying (3) and (4) and Ei,j the operator given by

(5) Ei,jej′ = δj,j′ei.

Then

A =
⊕

i≤i′

w(i)≤w(i′)

kEi,i′ .

Now it is easy to see that all the A-submodules in V have the form S(β) :=
⊕

i∈β kei
where β satisfies the condition of the lemma. So, applying Lemma 1 proves the second
part of the lemma. We will denote by Ωw,β the orbit in Fl(V )×Fl(V )× V corresponding
to (w, β).

For each (w, β) ∈ RB let

(6) σ = σ(w̃) = {i ∈ β | ∀j (j > i) & (w(j) > w(i)) =⇒ j 6∈ β}.
It is easy to see that (w, β) and (w, σ) can be reconstructed from each other. So the lemma
is proved. �

Note that Ωw,β consists of such triples (F1, F2, v) that there exists a basis {ei} satisfy-

ing (3), (4) and such that1

(7) v =
∑

i∈β

ei.

3.2. X,Y,Z and two-sided microlocal cells. We denote Fl(V ) × Fl(V ) × V by X,
and consider the cotangent bundle T ∗X. It can be described as the variety of sextuples
(F1, F2, v, u1, u2, v

∗) ∈ T ∗(X) where (F1, F2, v) ∈ X, ui (i = 1, 2) are nilpotent operators
on V , ui preserves Fi and v∗ ∈ V ∗. The moment map T ∗X → gl(V )∗ ∼= gl(V ) sends a
point (F1, F2, v, u1, u2, v

∗) ∈ T ∗(X) to the sum u1+u2+v⊗v∗. The preimage Y of 0 under
this map is the union of conormal bundles of GL(V )-orbits in X. So all the irreducible
components of Y have the form Yw,σ = N∗Ωw,σ. We determine the type of u1 for a general
point of N∗Ωw,σ.

Now consider the projection π : Y → Fl(V )×V ×N ×N ×V ∗, (F1, F2, v, u1, u2, v
∗) 7−→

(F2, v, u1, u2, v
∗). Let Ỹ = π(Y ). The preimage of a point (F2, v, u1, u2, v

∗) ∈ Ỹ is
isomorphic to the variety Flu1(V ) of full flags fixed by u1. This variety is known to be
pure-dimensional and the set of its irreducible components can be identified with the set
St(λ) of standard tableaux of the shape λ where λ is the type of u1. Namely, for each
T ∈ St(λ) the corresponding irreducible component Flu1,T of Flu1(V ) is defined as follows.

Let λ(i)(T ) be the shape of the subtableau of T formed by numbers 1, . . . , i. Then Flu1,T

is the closure of the set FlTu1
of all F ∈ Flu1(V ) such that u1|Fi has the type λ(i)(T ).

1This formula is different from the one in [15]: v =
P

i∈σ ei.
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Let Z be the variety of quadruples (u1, u2, v, v
∗), where (u1, u2) ∈ N , v ∈ V , v∗ ∈ V ∗

and u1 + u2 + v⊗ v∗ = 0. Then we have a projection π : Y → Z. We say that w̃, w̃′ ∈ RB
belong to the same two-sided microlocal cell if π(Yw̃) = π(Yw̃′). We denote by P the set
of pairs of partitions (ν, θ) such that |ν| = N and νi ≥ θi ≥ νi+1 for each i ≥ 1. Further,
denote by T the set of triples of partitions (ν, θ, ν ′) such that (ν, θ) ∈ P and (ν ′, θ) ∈ P. For
any t = (ν, θ, ν ′) ∈ T denote by Zt the set of quadruples (u1, u2, v, v

∗) ∈ Z such that the
types of u1, u2 and u1|V/k[u1]v are equal to ν, ν ′ and θ respectively (it is easy to check that
for each quadruple (u1, u2, v, v

∗) ∈ Z we have k[u1]v = k[u2]v and u1|V/k[u1]v = u2|V/k[u1]v).

3.3. We fix w̃ ∈ RB. Let y be a general point of variety Yw̃ = N∗(Ωw̃). We take
t = t(w̃) = (ν, θ, ν ′) ∈ T such that π(y) ∈ Zt. We consider the standard Young tableaux
T1 = T1(w̃) ∈ St(ν) and T2 = T2(w̃) ∈ St(ν ′) such that Fi(y) ∈ Flui,Ti (i = 1, 2).

Proposition 1. The map w̃ 7→ (t(w̃), T1(w̃), T2(w̃)) realizes a one-to-one correspondence
between RB and the set of triples (t, T1, T2) such that t = (ν, θ, ν ′) ∈ T, T1 ∈ St(ν), T2 ∈
St(ν ′). Moreover w̃ and w̃′ belong to the same two-sided microlocal cell iff t(w̃) = t(w̃′).

Proof. Denote by Y t,T1,T2 the set of points y ∈ Y such that π(y) ∈ Zt and Fi(y) ∈
Flui,Ti(V ). These sets are locally closed, disjoint, and Y is their union. We claim that all
of them are open subsets of irreducible components of Y . We will use the formula (14)
(see page 18) whose proof does not use the proposition we are proving. (See also Remark 1
below.) Note that the number of the sets Y t,T1,T2 coincides with the number of irreducible
components of Y . This follows from the fact that the number of these sets is equal to the
rank of the right hand side of the formula (14), and this rank coincides with the cardinality
of RB, i.e. with the number of irreducible components of Y . Therefore, if all these sets
are irreducible then their closures must be irreducible components of U . In this case we
obtain a bijection of required form. Hence it is enough to prove that the sets Y t,T1,T2

are irreducible. Note that all the fibers of the projection Y t,Y1,T2 → Zt have the form
Flu1,T1(w̃)×Flu2,T2(w̃). It means they are irreducible and have the same dimension. So it

is enough to prove that Zt is irreducible.
Let t = (ν, θ, ν ′). Let Oν,θ be an orbit in N × V corresponding to the pair (ν, θ), i.e.

the set of all (u, v) ∈ N ×V such that the type of u is equal to ν and the type of u|V/(k[u]·v)

is equal to θ. We have the natural pojection Zt → Oν,θ. The fiber of this map over a
point (u, v) is isomorfic to the set of v∗ ∈ V ∗ such that u + v ⊗ v∗ ∈ Oν where Oν ⊂ N .
One can check that this subset is an open subset of an affine subspace of V ∗. So the fibers
of this projection are irreducible. Besides, this bundle is homogeneous. Since the orbit
Oν,θ is irreducible, we obtain that Zt is irreducible. �

Remark 1. Instead of using the formula (14), one can directly compute the dimension
of the sets Y t,T1,T2, showing that dimY t,T1,T2 = dimY , which amounts to proving the
equation

dimZt = N2 − n(ν)− n(ν ′)

where t = (ν, θ, ν ′), and n(ν) =
∑

i≥1(i− 1)νi.

3.4. Notation. We will call the map w̃ 7→ (t(w̃), T1(w̃), T2(w̃)) constructed in 3.3 the
mirabolic RSK correspondence and denote it by RSKmir.
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3.5. The description of mirabolic RSK correspondence. We are going to give a
combinatorial description of mirabolic RSK correspondence defined in Proposition 1. Let
w̃ = (w, β) ∈ RB. We will construct step by step a standard Young tableau. Besides we
will need a separate row of infinite length (denote it by r@) consisting originally from the
symbols “@”. We assume that “@” is greater than all the numbers from 1 to N .

We will run next procedure successively for i = 1, 2, . . . ,N :
1a. If i ∈ β then insert w(i) into the tableau T@ (originally empty) according to

the standard row bumping rule of the RSK algorithm described in [8] ( The tableau T@

changes as the next element is inserted).
1b. If i /∈ β then insert first w(i) into r@ instead of the least element greater than

w(i), and then insert the element removed from r@ by replacing into tableau T@ via row
bumping algorithm (see [8].)

2. After all the elements w(1), . . . , w(N) are inserted, we should insert the elements of
r@ successively via standard row bumping algorithm.

3a. After that we construct T2(w̃) from the tableau T@ by throwing out all the symbols
“@”.

3b. T1(w̃) is defined as the standard tableau where number “i” stands in the cell that
was added into T@ at the i-th step.

3c. Finally, t(w̃) = (ν, θ, ν ′) where ν = Sh(T1(w̃)); ν ′ = Sh(T2(w̃)); θ = (Sh(T@
∗ ))−

and we have denoted
Sh - the operation of taking the shape of a tableau;
()− - the operation of removing of the first part of a partition;
T@
∗ - the tableau T@ obtained at the last step of the algorithm.

Let us illustrate the above construction by the following example.

3.6. An example. Let N = 10, w = 7, 2, 5, 1, 6, 9, 3, 8, 10, 4; β = {1, 2, 3, 4, 7}. The
tableau T@ and the row r@ obtained at the i-th algorithm step will be denoted as T@

i and
r@i respectively. So:



MIRABOLIC ROBINSON-SHENSTED-KNUTH CORRESPONDENCE 9

1. T@
1 = 7 r@1 = @ @ . . .

2. T@
2 = 2

7
r@2 = @ @ . . .

3. T@
3 = 2 5

7
r@3 = @ @ . . .

4. T@
4 = 1 5

2
7

r@4 = @ @ . . .

5. T@
5 = 1 5 @

2
7

r@5 = 6 @ @ . . .

6. T@
6 = 1 5 @ @

2
7

r@6 = 6 9 @ @ . . .

7. T@
7 = 1 3 @ @

2 5
7

r@7 = 6 9 @ @ . . .

8. T@
8 = 1 3 9 @

2 5 @
7

r@8 = 6 8 @ @ . . .

9. T@
9 = 1 3 9 @ @

2 5 @
7

r@9 = 6 8 10 @ @ . . .

10. T@
10 = 1 3 6 @ @

2 5 9
7 @

r@10 = 4 8 10 @ @ . . .

11. 1 3 4 @ @
2 5 6
7 9
@

1 3 4 8 @
2 5 6 @
7 9
@

1 3 4 8 10
2 5 6 @ @
7 9
@

1 3 4 8 10 @ @. . .
2 5 6 @ @
7 9
@

= T@
∗

12. T1(w̃) = 1 3 5 6 9
2 7 8
4 10

T2(w̃) = 1 3 4 8 10
2 5 6
7 9

As result we have ν = Sh(T1(w̃)) = (5, 3, 2); ν ′ = Sh(T2(w̃)) = (5, 3, 2); θ =
(Sh(T@

∗ ))− = (∞, 5, 2, 1)− = (5, 2, 1). Note that coincidence of ν and ν ′ is purely acci-
dental.
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Theorem 2. For any w̃ ∈ RB the triple (t(w̃), T1(w̃), T2(w̃)) obtained by the mirabolic
algorithm described in 3.5 coincides with the triple (t(w̃), T1, T2) defined in 3.3.

Proof. Consider colored permutation w̃+ ∈ RB3N defined by the formulas

w̃+ = (w+, β+)

w+(i) =





i+ 2N if i ≤ N
w(i −N) +N if N < i ≤ 2N

i− 2N if i > 2N

β+ = {i+N |i ∈ β}
Consider a general point x ∈ Yw̃+, x = (F1, F2, u1, u2, v, v

∗). Denote by S the anni-
hilator of k[u∗1] · v∗. We are going to describe the relative position of flags F1 ∩ S and
F2 ∩ S.

3.7. The relative position of flags F1 ∩ S and F2 ∩ S. Define 2 sequences of subsets
{γm} and {δm} (m ≥ 1) inductively as follows:

1. γ1 = {1, . . . , 3N} \ β+.
2. δm consists of all i ∈ γm such that there exists no j ∈ γm satisfying both inequalities

j < i and w+(j) < w+(i).
3. γm+1 = γm \ δm.
It is easy to check that δm 6= ∅ iff 1 ≤ m ≤ N , moreover, the minimal element

of δm is equal to m and the maximal one is equal to m + 2N . Define a permutation
w′

1 : {N + 1, . . . , 3N} → {N + 1, . . . , 3N} as follows:

w′
1(i) =

{
w+(i) if i ∈ β+

w+(j), where j = max{l ∈ δm|l < i} if i ∈ δm
Lemma 3. The flags F1 ∩ S and F2 ∩ S are in relative position w1.

Proof. Choose a basis e1, . . . , e3N of V+ such that F1,i = 〈e1, . . . , ei〉; F2,j =
〈ew+(1), . . . , ew+(j)〉. Denote by {e∗i } the dual basis. Then by sufficiently general choice of
the point x and the basis {ei} we will have (u∗)

mv∗ =
∑

i∈γm−1

am,ie
∗
i where the coefficients

am,i 6= 0. Note that the space S is the intersection of kernels of functionals (u∗)mv∗,
where 0 ≤ m ≤ N − 1. Hence it is transversal to the spaces F1,N and F2,N . Therefore
i-dimensional subspaces of the flags F1 ∩ S and F2 ∩ S have a form F1,i+N ∩ S and
F2,i+N ∩ S.

Denote by ri,j(w
′
1) the number of all i′ such that i′ ≤ i and w′

1(i
′) ≤ j. Then to prove the

lemma we have to show that dimF1,i ∩ F2,j ∩ S = ri,j(w
′
1) for any i, j ∈ {N + 1, . . . , 3N}.

Define ri,j(w+) in the same way. Then dimF1,i ∩ F2,j = ri,j(w+). Denote by Ri,j the set
of all i′ ≤ i such that w+(i′) ≤ j. Then F1,i ∩ F2,j has a basis {ei′} where i′ ∈ Ri,j.

Note that if m ≤ m′ and δm ∩ Ri,j 6= ∅ then δm′ ∩ Ri,j 6= ∅, so we can find ki,j ≥ 0
such that δm ∩ Ri,j 6= ∅ iff m ≤ ki,j. Then (u∗)mv∗|F1,i∩F2,j 6= 0 iff m ≤ ki,j . More-
over, for m = 1, . . . , ki,j these functionals are linearly independent. By this reason the
space F1,i ∩ F2,j ∩ S being the intersection of kernels of these functionals has dimension
dimF1,i

⋂
F2,j

⋂
S = dimF1,i

⋂
F2,j − ki,j = ri,j(w+)− ki,j.
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It remains to prove that ri,j(w+)− ki,j = ri,j(w
′
1). We have the following equalities:

Ri,j(w+) = (Ri,j(w+) ∩ β+)
⋃

(
N⋃
m=1

Ri,j(w+) ∩ δm);

Ri,j(w
′
1) = (Ri,j(w

′
1) ∩ β+)

⋃
(
N⋃
m=1

Ri,j(w
′
1) ∩ δm).

From the definition of w′
1 we obtain Ri,j(w

′
1) ∩ β = Ri,j(w+) ∩ β. Besides,

in the case m > ki,j we have Ri,j(w
′
1) ∩ δm = Ri,j(w+) ∩ δm = ∅ ;

in the case m ≤ ki,j we have Ri,j(w
′
1) ∩ δm = Ri,j(w+) ∩ δm \ {im}, where im is the

minimal element of Ri,j(w+) ∩ δm.
This implies that the set Ri,j(w

′
1) can be obtained from the set Ri,j(w+) by removing the

elements i1, . . . , iki,j
, whence we get the required equality: ri,j(w

′
1) = ri,j(w+)− ki,j. �

3.8. Let, as before, x = (F1, F2, u1, u2, v, v
∗) be a general point of variety Yw̃+;

S = (k[u∗1]v
∗)⊥. Let u = u1|S = −u2|S , and let T ′

1 and T ′
2 be the standard tableaux such

that F1 ∩ S ⊂ Flu,T ′

1
; F2 ∩ S ⊂ Flu,T ′

2
.

Lemma 4. One can make the flags F1 ∩ S and F2 ∩ S to be any points of varieties Flu,T ′

1

and Flu,T ′

2
by an appropriate choice of a point x.

Proof. Consider any FS1 ∈ Flu,T ′

1
and FS2 ∈ Flu,T ′

2
and let the flags F ′

1, F
′
2 be

defined (for k = 1, 2) as follows:

{
F ′
k,i = Fk,i if i ≤ N
F ′
k,i = FSk,i−N + Fk,N if i > N

Then x′ = (F ′
1, F

′
2, u1, u2, v, v

∗) ∈ Y . Note that the correspondence (F ′
1, F

′
2) 7→ x′ defines

a map f : Flu,T ′

1
×Flu,T ′

2
→ Y .

Since Flu,T ′

1
×Flu,T ′

2
is irreducible, the image of f belongs to one irreducible component

of Y . As this image contains the point x, it lies in Yw̃+. Finally, as FS1 and FS2 are
arbitrary points of Flu,T ′

1
and Flu,T ′

2
, replacing x by x′ proves the lemma. �

3.9. According to Lemma 3, the relative position of F1 ∩ S and F2 ∩ S is given by the
permutation w1, so using the result of Spaltenstein ([17]), we see that the pair T ′

1, T
′
2

corresponds to w1 by the classical RSK correspondence.
Now note that the spaces F1,2N and F2,2N are invariant with respect to both operators

u1 and u2. Let V = F1,2N ∩ F2,2N . Then a sixtuple (F1 ∩ V, F2 ∩ V, u1|V , u2|V , v, v∗|V )
is a general point of variety Yw̃. Let (t(w̃), T1(w̃), T2(w̃)) be the triple defined in 3.3 and
t(w̃) = (ν, θ, ν ′). Then F1 ∩ V ∈ Flu1|V ,T1(w̃) , F2 ∩ V ∈ Flu2|V ,T1(w̃) and θ is the type of
the nilpotent u1|V/k[u1]v.

Lemma 5. The tableaux T1(w̃) and T2(w̃) are obtained of the tableaux T ′
1 and T ′

2 by
removing the numbers N + 1, . . . , 2N .

Proof. By the reason of symmetry, it suffices to prove the lemma for T1(w̃) which we will
denote by T for short. Recall that T ′

1 is defined by the condition F1 ∩ S ⊂ Flu1|S ,T
′

1
. So

denoting by T̃1 the tableau obtained from T ′
1 by removing the numbers greater than N ,

we have

F1 ∩ S ∩ F1,2N ∈ Flu1|S∩F1,2N
,T̃1
.
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Note that the spaces V and S ∩ F1,2N are both complementary to F1,N inside F1,2N .
Therefore they can be identified with F1,2N/F1,N . Under this identification the operators
u1|V and u1|S∩F1,2N

go to the same operator u1|F1,2N /F1,N
. Similarly, the flags F1 ∩ V and

F1 ∩ S ∩ F1,2N go to the same flag (F1 ∩ F1,2N )/F1,N . From this we obtain that

(F1 ∩ F1,2N )/F1,N ∈ Flu1|F1,2N /F1,N
,T1

and (F1 ∩ F1,2N )/F1,N ∈ Flu1|F1,2N /F1,N
,T̃1
.

Now F1 being a general point of a certain component of the variety Flu1 we obtain that

T1 = T̃1. �

Lemma 6.

θ = (Sh(T ′
1))− = (Sh(T ′

2))−.

Proof. By definition of the tableaux T ′
1 and T ′

2, their shape coincides with the type of
nilpotent u = u1|S = u2|S . On the other hand, θ is the type of u1|V/k[u1]v. Define
L := k[u]v and consider the space D = (F1,N + F2,N ) ∩ S + L. It is invariant under u,
moreover u|D has only one Jordan block (it can be checked directly). Besides, D ∩ V = L
and D + V = S. Therefore u|V/L has the same type as u|S/D. Define d := dimD. Then
from the equalities S = D+ V, dimV = N, dimS = 2N , it follows d ≥ N . So d is the
least power of u vanishing on S. Hence, the type of u|S/D is obtained from the type of u|S
by removing the maximal part of the partition. �

3.10. The completion of proof of Theorem 2. Let (vc, θc, (ν ′)c, T c1 , T
c
2 ) be the result

of application to w̃ of the algorithm described in 3.5. We have to prove that this quintuple
coincides with (v(w̃), θ(w̃), ν ′(w̃), T1(w̃), T2(w̃)).

Note that the result of application of algorithm 3.5 will not change if instead of infinite
row of symbols “@” we will take finite sequence N +1, . . . , 2N . Then i+N ∈ δm iff at the
i-th step of the algorithm w(i) is being inserted into the m-th position of r@. In this case
w1(i) is the number inserted into T@ at the i-th step of the algorithm. Hence, if we apply
to w1 the classical RSK algorithm and after that throw out from the tableaux T1(w1) and
T2(w1) all the numbers greater than N then we obtain the same pair of tableaux as the
pair T c1 and T c2 obtained by the algorithm 3.5.

Moreover, the partition θc has the form θc = (Sh(T1(w1)))−. We have proved above
that

T1(w1) = T ′
1; T2(w1) = T ′

2; θ = (Sh(T ′
1))−.

In view of Lemma 5 we obtain

T c1 = T1(w̃); T c2 = T ′
2(w̃) and θc = θ(w̃).

The proof of Theorem 2 is completed. �

4. Hecke algebra and mirabolic bimodule

4.1. Let Σ be a finite set and E be a vector space over C with basis {eα}α∈Σ. Then the
algebra End(E) of all linear operators on E can be described as the algebra of C-valued
functions on Σ× Σ with the multiplication given by convolution:

(f ∗ g)(α, β) =
∑

γ∈Σ

f(α, γ)g(γ, β)
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If a finite group G acts on Σ then it also acts on E and End(E). Denote by H =
EndG(E) ⊂ End(E) the algebra of G-invariants in End(E). It consists of all functions on
Σ× Σ that are constant on each G-orbit.

Now let k = Fq be a finite field of q elements. Let V,X, Y be as in the previous section.
Let Σ be the set of k-points of Fl(V ) and G = GL(V ). Then the algebra H from the
previous paragraph is called Hecke algebra. It has a basis consisting of characteristic
functions of orbits. Denote by Tw the characteristic function of Ωw considered as an
element of H. Now consider the vector space R of G-invariant C-valued functions on X(k)
where X = Fl(V ) × Fl(V ) × V . It has a natural structure of H-bimodule. Namely, if
f ∈ H, g ∈ R then

(f ∗ g)(F1, F2, v) =
∑

F∈[Fl(V )](k)

f(F1, F )g(F,F2, v),

(g ∗ f)(F1, F2, v) =
∑

F∈[Fl(V )](k)

g(F1, F, v)f(F,F2).

If w̃ ∈ RB, let Tw̃ ∈ R denote the characteristic function of the corresponding orbit
Ωw̃ ⊂ X. Note that the involutions (F1, F2)↔ (F2, F1) and (F1, F2, v)↔ (F2, F1, v) induce
anti-automorphisms of the algebraH and the bimoduleR. These anti-automorphisms send
Tw to Tw−1 and Tw̃ to Tw̃−1 where w̃−1 = (w−1, w(β)) for w̃ = (w, β).

4.2. Explicit formulas for the action of H in R. We are now going to compute
the H-action on R in the basis {Tw̃}. It is known that the algebra H is generated by the
elements Tsi where si = (i, i+1) is the elementary transposition. So, it suffices to compute
TsiTw̃ and Tw̃Tsi . We will compute only Tw̃Tsi , since the other product can be obtained
by applying the above anti-automorphisms.

Proposition 2. Let w̃ = (w, β) ∈ RB and let s = si ∈ SN , i ∈ {1, . . . ,N − 1}.
Denote w̃s = (ws, s(β)) and w̃′ = (w, β △ {i + 1}). Let σ = σ(w̃) and σ′ = σ(w̃s) be

given by (6). Then

(8) Tw̃Ts =





Tw̃s if ws > w and i+ 1 6∈ σ′,

Tw̃s + T(w̃s)′ if ws > w and i+ 1 ∈ σ′,

Tw̃
′ + Tw̃

′
s if ws < w and β ∩ ι = {i},

(q − 1)Tw̃ + qTw̃s if ws < w and i 6∈ σ,

(q − 2)Tw̃ + (q − 1)(Tw̃
′ + Tw̃s) if ws < w and ι ⊂ σ

where ι = {i, i + 1}.
4.3. Tate sheaves. It is well-known that H is the specialization under q 7→ q of a
Z[q,q−1]-albebra H. The formulas (8) being polynomial in q, we may (and will) view R
as the specialization under q 7→ q of a Z[q,q−1]-bimodule R over the Z[q,q−1]-algebra
H. We consider a new variable v, v2 = q, and extend the scalars to Z[v,v−1] : H :=
Z[v,v−1]⊗Z[q,q−1] H; R := Z[v,v−1]⊗Z[q,q−1] R.

Recall the basis {Hw := (−v)−ℓ(w)Tw} of H (see e.g. [16]), and the Kazhdan-Lusztig

basis {H̃w} (loc. cit.); in particular, for a simple transposition s, H̃s = Hs − v−1. For

w̃ ∈ RB, we denote by ℓ(w̃) the difference dim(Ωw̃)−n, where n := N(N−1)
2 = dim(Fl(V )).
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We introduce a new basis {Hw̃ := (−v)−ℓ(w̃)Tw̃} of R. In this basis the right action of the

Hecke algebra generators H̃s takes the form:

Proposition 3. Let w̃ = (w, β) ∈ RB and let s = si ∈ SN , i ∈ {1, . . . ,N − 1}. Denote
w̃s = (ws, s(β)) and w̃′ = (w, β△{i+ 1}). Let σ = σ(w̃) and σ′ = σ(w̃s) be given by (6).
Then

(9) Hw̃H̃s =






Hw̃s − v−1Hw̃ if ws > w and i+ 1 6∈ σ′,

Hw̃s − v−1H(w̃s)′ − v−1Hw̃ if ws > w and i+ 1 ∈ σ′,

Hw̃
′ − v−1Hw̃ − v−1Hw̃

′
s if ws < w and β ∩ ι = {i},

Hw̃s − vHw̃ if ws < w and i 6∈ σ,

(v−1 − v)Hw̃ + (1− v−2)(Hw̃
′ +Hw̃s) if ws < w and ι ⊂ σ

where ι = {i, i + 1}.
It is well known that H is the Grothendieck ring (with respect to convolution) of the

derived constructible G-equivariant category of Tate Weil Ql-sheaves on Fl(V ) × Fl(V ),
and multiplication by v corresponds to the twist by Ql(−1

2) (so that v has weight 1),

see e.g. [4]. In particular, Hw is the class of the shriek extension of Ql[ℓ(w) + n]( ℓ(w)+n

2 )

from the corresponding orbit, and H̃w is the selfdual class of the Goresky-MacPherson

extension of Ql[ℓ(w) + n]( ℓ(x)+n

2 ) from this orbit. Similarly, we will prove that R is the

Grothendieck group of the derived constructible G-equivariant category of Tate Weil Ql-
sheaves on X, and H-bimodule structure is given by convolution. In particular, Hw̃ is the

class of the star extension of Ql[ℓ(w̃)+n]( ℓ(w̃)+n

2 ) from the orbit Ωw̃ ⊂ X. We will denote by

j!∗Ql[ℓ(w̃)+n]( ℓ(w̃)+n

2 ) the selfdual Goresky-MacPherson extension of Ql[ℓ(w̃)+n]( ℓ(w̃)+n

2 )

from Ωw̃ ⊂ X, and we will denote by H̃w̃ its class in the Grothendieck group.
Recall that a G-equivariant constructible Weil complex F on X is called Tate if any

cohomology sheaf of its restriction i∗w̃F and corestriction i!w̃F to any orbit Ωw̃ admits a

filtration with successive quotients of the form Ql(m), m ∈ 1
2Z. If for any w̃ ∈ RB the

sheaf j!∗Ql[ℓ(w̃) + n]( ℓ(w̃)+n

2 ) is Tate, then the shriek extension j!Ql[ℓ(w̃) + n]( ℓ(w̃)+n

2 ) is
Tate as well (see Remark between Lemmas 4.4.5 and 4.4.6 of [4]). Note also that the
G-equivariant geometric fundamental group of any orbit Ωw̃ is trivial. Hence the classes

Hw̃ = [j!Ql[ℓ(w̃) + n]( ℓ(w̃)+n

2 )] do form a Z[v,v−1]-basis of the Grothendieck group of
G-equivariant Tate sheaves on X, and this Grothendieck group is isomorphic to R.

In order to prove the Tate property of j!∗Ql[ℓ(w̃)+n]( ℓ(w̃)+n

2 ), we need to study certain

analogues of Demazure resolutions of the orbit closures Ωw̃.

4.4. Demazure type resolutions. We consider the elements w̃i = (w, βi) ∈ RB such
that w = id (the identity permutation), and βi = {1, . . . , i}, where i = 0, . . . ,N . We set

H̃w̃i :=
∑

0≤j≤i(−v)j−iHw̃j . This is the class of the selfdual (geometrically constant) IC
sheaf on the closure of the orbit Ωw̃i .

We fix k (0 ≤ k ≤ N), and a pair of sequences i1, . . . , ir and j1, . . . , js of integers

between 1 and N − 1. Let S = Sj1,...,js;ki1,...,ir
be a variety of collections of flags and vectors

(F0, . . . , Fr, F
′
0, . . . , F

′
s, v) such that:

1. (Fr, F
′
0, v) ∈ Ωw̃k

;
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2. (Fp−1, Fp) ∈ Ωsip
for any p ∈ {1, . . . , r};

3. (F ′
q−1, F

′
q) ∈ Ωsjq

for any q ∈ {1, . . . , s}.
In other words,

S = Ωsi1
×

Fl(V )
. . .×

Fl(V )
Ωsir

×
Fl(V )

Ωw̃k
×

Fl(V )
Ωsj1

×
Fl(V )

. . .×
Fl(V )

Ωsjs

Consider a map φ = φj1,...,jsi1,...,ir
: Sj1,...,js;ki1,...,ir

→ X which takes F0, . . . , Fr, F
′
0, . . . , F

′
s to

(F0, F
′
s, v).

Proposition 4. For any w̃ ∈ RB there exist i1, . . . , ir; j1, . . . , js and k such that:
a) φ(S) = Ωw̃ , moreover φ is an isomorphism over Ωw̃.
b) The sheaf φ∗(Ql) is Tate.

Proof. a) We proceed by induction in ℓ(w̃) = dim Ωw̃ − n. Assume the proposition 4 is
true for any w̃′ such that ℓ(w̃′) < ℓ(w̃).

Let w̃ = (w, β). If w = id then w̃ = w̃k for some k. We choose i1, . . . , ir and j1, . . . , js to
be the empty sequences. Then the map φ is an embedding Ωw̃ →֒ X, and the proposition
is true. Otherwise (w 6= id) it is easy to show that either wsi < w and w̃si = (wsi, si(β)) ∈
RB, or siw < w and (siw, β) ∈ RB. Without loss of generality we can restrict ourselves
to the first case (the second one is obtained replacing w̃ by w̃−1 = (w−1, w(β)) ).

Let S′ = Sj1,...,js;ki,i1,...,ir
, φ′ = φj1,...,jsi,i1,...,ir

. Then

(10) S′ = Ωsi ×Fl(V )
S.

By the induction hypothesis, S contains an open dense set mapping isomorphically by φ
onto Ωw̃si . It follows that a map Ωs×Fl(V )

Ωw̃si → X has an image lying in Ωw̃ , moreover,

this map is an isomorphism over Ωw̃. According to (10), S′ contains an open dense subset
isomorphic to Ωsi ×Fl(V )

Ωw̃si , hence φ′(S′) = Ωw̃ , and φ−1(Ωw̃) is isomorphic to Ωw̃.

b) We will prove by induction that any fiber of φ is paved by the pieces isomorphic to
Ak ×Gn

m. Moreover, the union of pieces constructed at each step is a closed subvariety of
the fiber.

If r = s = 0 then any nonempty fiber is just a point, and the statement is obvious.
Otherwise without loss of generality we can assume r > 0.

Let S = Sj1,...,js;ki1,i2,...,ir
and S′ = Sj1,...,js;ki2,...,ir

. We have a commutative diagram:

(11) S = Ωsi1
×

Fl(V )
S′ π̃ //

φ
''NNNNNNNNNNNN

Ωsi1
× Fl(V )× V

ψ=pr1×idFl(V )×idV
pp

p

xxppppp

X

where π̃(F0, . . . , Fr, F
′
1, . . . , F

′
s) = ((F0, F1), F

′
s, v).

It is easy to see that the fibers of the map ψ are isomorphic to P1. For each point x ∈ X
we obtain the corresponding map π : φ−1(x) → ψ−1(x) ∼= P1. We have the following
commutative diagram, whose middle part coincides with diagram 11:
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(12) φ−1(x)
π

//

$$IIIIIIIIIIIIIIIIIIIIII� _

��

ψ−1(x) ∼= P1

zzuuuuuuuuuuuuuuuuuuuuuu
� _

��

x
� _

��

S = Ωsi1
×

Fl(V )
S ′ π̃ //

φ

%%JJJJJJJJJJJJJJJJJJJJJ

projection

��

Ωsi1
× Fl(V )× V

pr2×idFl(V )×idV

��

ψ=pr1×idFl(V )×idV
tttttttt

yytttttttttt

X

S ′
φ′

// X

All the 4 squares in this diagram are Cartesian.
Denote by κ : ψ−1(x)→ X the composition of maps from the commutative diagram 12.

This map is an embedding.
For each point y ∈ ψ−1(x) we have π−1(y) ∼= (φ′)−1(κ(y)). By the induction hypothesis,

all the fibers of φ′ can be decomposed into pieces of required form. If x = (F,F ′, v) then
the image L of the map κ consists of triples (F,F ′′, v) such that (F ′, F ) ⊂ Ωsi . For
x′ ∈ X the fiber (φ′)−1(x′) depends only on the orbit Ωũ which contains x′. The line L
can intersect 2 or 3 such orbits; one intersection is open in L, and any other intersection
is just one point.

Let U = L
⋂

Ωũ be the intersection open in L. Since all the fibers of π admit a required
decomposition, it is enough to construct the decomposition of the set π−1(U ′) ∼= φ−1(U)
where U ′ = κ−1(U) ∼= U . This follows from the fact that the bundle (φ′)−1(U) → U is
trivial.

Indeed, in this case for any x′ ∈ U we have φ′−1(U) ∼= U × (φ′)−1(x′), because φ′−1(x′)
admits the required decomposition, and U is isomorphic to either A1 or Gm.

It remains to prove the triviality of the bundle (φ′)−1(U) → U . Note that the bundle
S′ → X is GL(V )-equivariant. Choose a point x′ ∈ U and consider a map GL(V ) → X,
given by g → g · x′. Then the induced bundle S ×X GL(V ) → GL(V ) is trivial, so it is
enough to prove that there exists the dotted arrow in the diagram
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(13) U
� � //

##F
F

F
F

F X

GL(V )
·x′

;;wwwwwwwww

This can be checked directly.
So the proof of proposition 4 is finished.

�

Corollary 2. Bimodule R is generated by the elements ei = Tw̃i.

Proof. We prove by induction on ℓ(w̃) that Tw̃ ∈
∑

iHeiH.
Choose i1, . . . , ir, j1 . . . , js and k as in Proposition 4. Then

Tjs · . . . · Tj1 · Tw̃k
· Tir · . . . · Ti1 = Tw̃ +

∑

ũ<w̃

aũTũ

where aũ ∈ Z[v,v−1], and ũ < w̃ means Ωũ ⊂ Ωw̃. The left hand side of this equality
belongs to HekH (recall that ek = Tw̃k

). Besides, by the induction hypothesis, Tũ ∈∑
iHeiH for each ũ < w̃. Hence,

∑
ũ aũTũ ∈

∑
iHeiH.

From this we can conclude that Tũ ∈
∑

iHeiH. �

Corollary 3. For any w̃ ∈ RB, the sheaf j!∗Ql[ℓ(w̃) + n]( ℓ(w̃)+n

2 ) is Tate.

Proof. Follows from Proposition 4.b) by the Decomposition Theorem. �

Corollary 4. The Grothendieck group of the derived constructible G-equivariant cate-
gory of Tate Weil Ql-sheaves on X is isomorphic to R as an H-bimodule with respect to
convolution.

4.5. Duality and the Kazhdan-Lusztig basis of R. Recall the involution (denoted

by h 7→ h) of H which takes v to v−1 and H̃w to H̃w. It is induced by the Grothendieck-
Verdier duality on Fl(V )× Fl(V ). We are going to describe the involution on R induced
by the Grothendieck-Verdier duality on X.

Recall the elements w̃i = (w, βi) ∈ RB such that w = id (the identity permutation),

and βi = {1, . . . , i}, where i = 0, . . . ,N . We set H̃w̃i :=
∑

0≤j≤i(−v)j−iHw̃j . This is the

class of the selfdual (geometrically constant) IC sheaf on the closure of the orbit Ωw̃i .

Proposition 5. a) There exists a unique involution r 7→ r on R such that H̃w̃i
= H̃w̃i

for any i = 0, . . . , N , and hr = hr, and rh = rh for any h ∈ H and r ∈ R.
b) The involution in a) is induced by the Grothendieck-Verdier duality on X.

Proof. The uniqueness in a) follows since R is generated as an H-bimodule by the set

{H̃ w̃i , i = 0, . . . , N}, according to Corollary 2. Now the Grothendieck-Verdier duality on
X clearly induces the involution on R satisfying a); whence the existence and b). �

Now let w̃1 < w̃2 stand for the adjacency Bruhat order on RB described combinatorially
in [14], section 1.2.
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Proposition 6. a) For each w̃ ∈ RB there exists a unique element H̃w̃ ∈ R such that

H̃w̃ = H̃w̃, and H̃w̃ ∈ Hw̃ +
∑

ỹ<w̃ v−1Z[v−1]Hỹ.

b) For each w̃ ∈ RB the element H̃w̃ is the class of the selfdual G-equivariant IC-sheaf

with support Ω̄w̃. In particular, for w̃ = w̃i, the element H̃w̃i is consistent with the notation
introduced before Proposition 5.

Proof. a) is a particular case of [12], Lemma 24.2.1.

b) We already know that Hw̃ is the class of j!Ql[ℓ(w̃) + n]( ℓ(w̃)+n

2 ), and j!∗Ql[ℓ(w̃) +

n]( ℓ(w̃)+n

2 ) is Tate. Now b) follows from the Beilinson-Bernstein-Deligne-Gabber purity
theorem by the standard argument (see e.g. [3], section 6). �

We conjecture that the sheaves j!∗Ql[ℓ(w̃) + n]( ℓ(w̃)+n

2 ) are pointwise pure. The parity
vanishing of their stalks, and the positivity properties of the coefficients of the transition
matrix from {Hw̃} to {H̃ w̃} would follow.

4.6. The structure of the H-module R. It is known that the algebra H⊗Z[v,v−1]Q(v)
is isomorphic to the group algebra of symmetric group Q(v)[SN ]. Hence, the isomorphism
classes of irreducible modules over H⊗Z[v,v−1] Q(v) are indexed by the set of partitions of
N . We denote by Vν the irreducible module corresponding to a partition ν.

Proposition 7. H ⊗Z[v,v−1] Q(v)-bimodule R⊗Z[v,v−1] Q(v) has the following decompo-
sition into irreducible bimodules:

(14) R⊗Z[v,v−1] Q(v) =
⊕

(ν̃,θ̃,ν̃′)∈T

V ∗
ν ⊗Q(v) Vν′

where the sum is taken over all the triples of partitions ν, θ, ν ′ such that |ν| = |ν ′| = N
and for any i ≥ 1 we have νi ≥ θi ≥ νi − 1; ν ′i ≥ θi ≥ ν ′i − 1.

Proof. Choose a finitely generated Z[v,v−1]-algebra A ⊂ Q(v) such that H⊗Z[v,v−1] A is
isomorphic to a direct sum of matrix algebras over A, so that Vν is defined over A. Then
it suffices to prove that this isomorphism holds after the specialization · ⊗A C which takes
v 7→ √q where q is a prime power such that A 6∋ (v2 − q)−1. In this case the left hand
side of formula (14) can be interpreted as

EndP (k)(E)
⊕
H⊗Z[v,v−1] C

where P (k) ⊂ GLN is the stabilizer of v 6= 0, and E is the vector space introduced in
subsection 4.1. According to [18], Theorem 13.5.a), the irreducible components of P (k)-
module E are indexed by partitions θ with |θ| ≤ N . We denote by Wθ the irreducible
representation of P (k) indexed by θ. Denote by Uν the irreducible unipotent represen-
tation of G(k) indexed by ν. Then the restriction of Uν to P (k) is a direct sum of the
representations Wθ (with multiplicity one) for all θ such that νi ≥ θi ≥ νi − 1 for any i
and θ 6= ν.

As a representation of the group G(k), E admits a decomposition as follows:

E =
⊕

ν

Uν ⊗ Vν
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(Here G(k) acts on Vν trivially). Therefore, as a representation of P (k), E can be written
in the form

E =
⊕

νi≥θi≥νi−1
ν 6=θ

Wθ ⊗ Vν

It follows that

EndP (k)(E) =
⊕

(ν̃,θ̃,ν̃′)∈T

′ V ∗
ν ⊗ V ′

ν

where the sum
⊕′ is the same as in formula (14), but the case ν = θ = ν ′ is excluded.

Besides, we have H ⊗Z[v,v−1] C =
⊕

ν V
∗
ν ⊗ Vν . Adding these equalities, we obtain the

required result.
�

5. Bimodule KL cells

5.1. Consider all possible subbimodules of bimodule R spanned by subsets of basis H̃w̃.
We say that two coloured permutation w̃ and w̃′ belong to the same Kazhdan-Lusztig
bimodule cell if for each such subbimoduleM we have H̃w̃ ∈M⇐⇒ H̃ ′

w̃ ∈M. If instead
of subbimodules we consider left or right submodules then we obtain the definition of left
and right Kazhdan-Lusztig cells.

For N = 3, a big part (for β nonempty) of RB is depicted in [14] 1.3
with the help of Latin alphabet. It is a union of 13 two-sided KL cells:
{max}, {z, u}, {y, o, p, h}, {x, t}, {v,w,m, n}, {s, i, k, b}, {r, g}, {q, f}, {l, c},
{j, d}, {e}, {a}, {min}. We take this opportunity to add two order relations missing in
loc. cit.: c⋖ l, r ⋖ v.

Conjecture 1. The bimodule KL cells coincide with the two-sided microlocal cells.

We are only able to prove an inclusion in one direction, see Theorem 3 below. First we
have to formulate and prove a few lemmas.

5.2. Consider the projection π′i : Y → Fl(i)(V )×Fl(V )× V ×N ×N × V ∗ where Fl(i)(V )
is the variety of flags consisting of subspaces of V which have dimensions 0, . . . , i− 1, i +
2, . . . , N . This projection sends a point (F1, F2, v, u1, u2, v

∗) to (F̃1, F2, v, u1, u2, v
∗) where

F̃1 is obtained from F1 by deleting the subspaces of dimensions i, i+ 1. Let Yi = π′i(Y ).
Besides, for each i ∈ {1, . . . ,N − 1} consider the set Φi ⊂ RB defined as follows:

(w, β) ∈ Φi iff for a general (F1, F2, v, u1, u2, v
∗) ∈ Yw,β we have u1|F1,i+1/F1,i−1

= 0.

Denote by si = (i, i + 1) the elementary transposition.

Lemma 7. a) Let (w, β) ∈ RB, i ∈ {1, . . . ,N − 1}. Then (w, β) ∈ Φi iff w(i) > w(i+ 1)
and β ∩ {i, i + 1} 6= {i}.

b) Let (w, β) and (w′, β′) be distinct colored permutations. Then π′i(Yw,β) = π′i(Yw′,β′)
iff w(j) = w′(j) when j ∈ {1, . . . ,N} \ {i, i + 1, i+ 2},
β △ β′ := (β \ β′) ∪ (β′ \ β) ⊂ {i, i + 1, i+ 2}, and one of the following conditions is sat-
isfied up to interchanging (w, β) and (w′, β′):
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1. w(i) < w(i + 2) < w(i+ 1),
β ∩ {i, i+ 1, i + 2} ∈ {∅, {i}, {i, i + 2}, {i, i + 1, i + 2}},
w′ = wsi, β

′ = si(β);
2. w(i+ 2) < w(i) < w(i+ 1),
β ∩ {i, i+ 1, i + 2} ∈ {∅, {i+ 2}, {i, i + 2}, {i, i + 1, i+ 2}},
w′ = wsi+1, β

′ = si+1(β);
3. w(i+ 2) < w(i+ 1) < w(i), β ∩ {i, i + 1, i+ 2} = {i, i + 2},
w′ = wsi+1, β

′ = si+1(β);
4. w(i+ 2) < w(i) < w(i+ 1), β ∩ {i, i + 1, i+ 2} = {i},
w′ = wsi, β

′ = si(β);
5. w(i+ 2) < w(i+ 1) < w(i), β ∩ {i, i + 1, i+ 2} = {i},
w′ = w, β′ = β ∪ {i+ 1}.

Proof. a) Let {ei} be a basis of V and x = (F1, F2, v) ∈ Ωw,β be the element given
by (3), (4), (7). We must find the conormal space N∗

xΩw,β ⊂ T ∗
xX. It is isomorphic to the

space of triples (u1, u2, v
∗) such that uk is a nilpotent preserving Fk and u1+u2+v⊗v∗ = 0.

Let

(15) uk =

N∑

i,j=1

(uk)i,jEi,j, v∗ =

N∑

i=1

cie
∗
i

where Ei,j is defined by (5) and e∗i is the basis dual to ei. Then the last relation is
equivalent to the fact that the following conditions are satisfied:





ci = 0 for i ∈ β;

(u1)i,j = −(u2)i,j for i, j ∈ β or i, j 6∈ β;

(uk)i,j = 0 for i 6∈ β, j ∈ β;

(u1)i,j + (u2)i,j = −cj for i ∈ β, j 6∈ β, i < j, w(i) < w(j);

(u1)i,j = −cj , (u2)i,j = 0 for i ∈ β, j 6∈ β, w(i) > w(j);

(u1)i,j = 0, (u2)i,j = −cj for i ∈ β, j 6∈ β, i > j.

If we substitute j = i+ 1, we obtain the statement a) of the lemma.

b) Note that the fiber (π′i)
−1(ỹ) over an arbitrary point ỹ = (F̃1, F2, v,

u1, u2, v
∗) ∈ Yi is isomorphic to the variety of full flags in the 3-dimensional space

F1,i+2/F1,i−1 fixed by u1,i = u1|F̃1,i+2/F̃1,i−1
. The structure of this variety depends on the

type of u1,i. There are three possibilities for this type: (3), (2, 1) and (1, 1, 1). Denote
W = π′i(Yw,β), W

′ = π′i(Yw′,β′). Since π′i is proper, W and W ′ are closed. Suppose
W = W ′. This means that for a general point ỹ ∈ W the fiber (π′i)

−1(ỹ) is reducible,
so the type of u1,i equals (2, 1). Such fiber has a form of a union of two intersecting
projective lines:

(π′i)
−1(ỹ) = l1(ỹ) ∪ l2(ỹ);

l1(ỹ) = {(F1, F2, v, u1, u2, v
∗) ∈ (π′i)

−1(ỹ) | F1,i/F1,i−1 = imu1,i};
l2(ỹ) = {(F1, F2, v, u1, u2, v

∗) ∈ (π′i)
−1(ỹ) | F1,i+1/F1,i−1 = keru1,i}.
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Let U ⊂ W be the set of all ỹ ∈ W such that the type of u1,i equals (2, 1). It is an open
dense subset in W . Consider the sets Uk =

⋃
ỹ∈U lk(ỹ). The set U1∪U2 = (π′i)

−1(U) is an

open subset of (π′i)
−1(W ). Since U1 ∪ U2 ⊂ Yw,β ∪ Yw′,β′ and Uk are irreducible, we must

have either Yw,β = U1, Yw′,β′ = U2 or Yw,β = U2, Yw′,β′ = U1. Without loss of generality,
we can assume that we have the first case. Then it is easy to see that (w, β) ∈ Φi+1 \Φi,
(w′, β′) ∈ Φi \Φi+1.

Conversely, if (w, β) ∈ Φi \ Φi+1 (resp. (w, β) ∈ Φi+1 \ Φi) then the type of u1,i for a

general ỹ ∈ W is (2, 1). Therefore, we have Yw,β = U1 (resp. Yw,β = U2). So, there exists
exactly one (w′, β′) ∈ Φi+1 \Φi (resp. (w, β) ∈ Φi \ Φi+1) such that π′i(Yw,β) = π′i(Yw′,β′).

It is clear that the condition (w, β) ∈ Φi+1 \ Φi is equivalent to the fact that the first
two parts of one of the conditions of the lemma are satisfied. So, we must prove that if
(w′, β′) is given by the last two equations of this condition then we have W = W ′. Choose
a general y ∈ Yw,β and let ỹ = π′i(y). Since (w, β) ∈ Φi+1 \Φi, we have y ∈ l1(ỹ). We must
prove that l2(ỹ) ⊂ Yw′,β′ . Let y = (F1, F2, v, u1, u2, v

∗) be given by (3), (4), (7) and (15)
for some basis {ei}.

First suppose the condition 1 of the lemma is satisfied. Then we have a := (u1)i,i+1 6= 0,
b := (u1)i,i+2 6= 0, (u1)i+1,i+2 = 0. So,

ker u1,i = 〈ei, bei+1 − aei+2〉 mod F1,i−1.

Consider the space F ′
1,i+1 such that F ′

1,i+1/F1,i−1 = ker u1,i. Then

F ′
1,i+1 = g · F1,i+1 where g = id− (a/b)Ei+2,i+1 ∈ GL(V ).

A general point y1 ∈ l2(ỹ) has a form y1 = (F ′′
1 , F2, v, u1, u2, v

∗) where F ′′
1,i+1 = F ′

1,i+1 and

F ′′
1,j = F1,j for j 6= i, i + 1. If F ′′

1 6= g · F1 then F ′′
1 = ghsi · F1 where h = id + cEi,i+1 for

some c ∈ k, and si ∈ GL(V ) is given by siej = esi(j).

Denote g′ = ghsi. Let y′1 = (g′)−1 · y1. Then

y′1 =
(
F1, (g′)−1 · F2, (g′)−1 · v, (Ad(g′)−1) · u1, (Ad(g′)−1) · u2, (g′)∗v∗

)

Note that g and h preserve F2, so we have

(g′)−1 · F2 = sih
−1g−1 · F2 = si · F2

Therefore (g′)−1F2,j = 〈ew′(1), . . . , ew′(j)〉 for all j. Further,

(g′)−1v =
∑

j∈β

djsiej =
∑

j∈β′

dsi(j)ej

where dj ∈ k and dj 6= 0 for general a, b, c. This implies that y′1 ∈ N∗Ωw′,β′ ⊂ Yw′,β′ .
Hence y1 = g′ · y′1 ∈ Yw′,β′ . Thus any general point y1 ∈ l2(ỹ) lies in Yw′,β′ . Therefore
l2(ỹ) ⊂ Yw′,β′ . QED.

Other cases can be considered in a similar way. �

5.3. For each (w, β) ∈ RB there exists at most one (w′, β′) ∈ RB such that conditions of
the above lemma are satisfied. We will denote it by (w′, β′) = Ki(w, β).

Lemma 8. Let W = π(Yw,β) be the image of an irreducible component of Y . Choose
an open dense subset U ⊂ W such that the type λ of the nilpotent u1 is the same for all
points of U . Consider the set CW = {(w′, β′) ∈ RB | π(Yw′,β′) = W}. There exists a
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natural bijection τW : CW → St(λ) such that for each p0 ∈ U and (w′, β′) ∈ CW we have
Yw′,β′ ∩ π−1(p0) = Flu1,τW (w′,β′)×{p0}.
Proof. For each T ∈ St(λ) consider the set

(16) UT =
⋃

p∈U

(
Flu1(p),T ×{p}

)
⊂ π−1(U) ⊂ Y.

We have
⋃
T∈St(λ) UT = π−1(U). The sets UT are irreducible components of π−1(U). Note

that the equation π(Yw′,β′) = W is equivalent to the fact that Yw′,β′ dominates W (we

use that π is proper). In this case Yw′,β′ must coincide with UT for some T . In particular,

Yw,β = UT0 for some T0 ∈ St(λ). Since dimUT = dimUT0 = dimYw,β = dimY for each

T ∈ St(λ), each UT is an irreducible component of Y such that π(UT ) = W . So, we have a
one-to-one correspondence between the sets CW and St(λ). Obviously, this correspondence
can be described as in the statement of the lemma. �

5.4. Let πi : Fl(V ) → Fl(i)(V ) be the natural projection. For each i ∈ {1, . . . ,N − 1}
consider the set Φ′

i ⊂ St(λ) defined as follows: T ∈ Φ′
i iff for a general F ∈ Flu1,T we have

u1|Fi+1/Fi−1
= 0.

Lemma 9. a) Let T ∈ St(λ). Then T ∈ Φ′
i ⇐⇒ ri(T ) < ri+1(T ) ⇐⇒ ci(T ) ≥ ci+1(T )

where ri(T ) (resp. ci(T )) stands for the number of row (resp. column) in T containing i.
b) Let T, T ′ ∈ St(λ) and T 6= T ′. Then πi(Flu1,T ) = πi(Flu1,T ′) iff one of the following

conditions is satisfied up to interchanging T and T ′ :
1.2 ri+2(T ) ≤ ri(T ) < ri+1(T ) and T ′ is obtained from T by interchanging i+ 1 and i+ 2.
2.3 ri(T ) < ri+2(T ) ≤ ri+1(T ) and T ′ is obtained from T by interchanging i and i+ 1.

Proof. a) This statement is equivalent to Lemma 5.11 in [17].
b) Arguments similar to those used in the proof of Lemma 7 b) show that we can

define an involution K ′
i : Φ′

i △ Φ′
i+1 → Φ′

i △ Φ′
i+1 such that K ′

i(Φ
′
i \ Φ′

i+1) = Φ′
i+1 \ Φ′

i

and such that a pair of tableaux T 6= T ′ ∈ St(λ) satisfies πi(Flu1,T ) = πi(Flu1,T ′) iff
T ∈ Φ′

i△Φ′
i+1 and T ′ = K ′

i(T ). Thus we must prove that this involution can be described
by the conditions 1, 2 of the lemma.

Suppose T ∈ Φ′
i \ Φ′

i+1 and T ′ = K ′
i(T ) ∈ Φ′

i+1 \ Φ′
i. Then the first part of one of the

conditions 1, 2 must be satisfied, and we must prove that T ′ is given by the second part.
The equation πi(Flu1,T ) = πi(Flu1,T ′) implies that for j ∈ {0, . . . ,N} \ {i, i + 1} and for
general F ∈ Flu1,T and F ′ ∈ Flu1,T ′ the types of u1|Fj and u1|F ′

j
are the same. This means

that T and T ′ can differ only in the position of i, i+ 1, i+ 2.
Moreover, choose a general point F̃ ∈ πi(Flu1,T ). Let lk(F̃ ) (k = 1, 2) be two irreducible

components of π−1
i (F̃ ) defined similarly to the proof of Lemma 7 b), and let F ′, F ′′ be

general points of l1(F̃ ), l2(F̃ ) respectively. Then F ′ (resp. F ′′) is a general point of Flu1,T ′

(resp. Flu1,T ). In particular, F ′ ∈ FlT
′

u1
, F ′′ ∈ FlTu1

. Let l1(F̃ ) ∩ l2(F̃ ) = {F1}, and let T1

be the tableau such that F1 ∈ FlT1
u1

. Then we obtain that T (resp. T ′) can differ from T1

only in the position of i and i+ 1 (resp. i+ 1 and i+ 2).

2the condition ri+2(T ) ≤ ri(T ) < ri+1(T ) is equivalent to ci+2(T ) > ci(T ) ≥ ci+1(T ).
3the condition ri(T ) < ri+2(T ) ≤ ri+1(T ) is equivalent to ci(T ) ≥ ci+2(T ) > ci+1(T ).
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If T satisfies the first part of the condition 2 of the lemma, the last condition and the
conditions T ∈ Φ′

i \ Φ′
i+1 and T ′ ∈ Φ′

i+1 \ Φ′
i imply the desired statement.

If the first part of the condition 1 is satisfied, there is another a priori possible case:




ri(T1) < ri+1(T1) < ri+2(T1)

ci(T1) > ci+1(T1) > ci+2(T1)

T is obtained from T1 by interchanging i and i+ 1

T ′ is obtained from T1 by interchanging i+ 1 and i+ 2

In this case consider the tableau T ′′ obtained from T by interchanging i+ 1 and i+ 2. If
we apply the above argument to the pair K ′

i(T
′′), T ′′ instead of T, T ′, we will obtain that

K ′
i(T

′′) = T , contradicting K ′
i(T

′) = T . So, the lemma is proved. �

5.5. For each T ∈ St(λ) there exists at most one tableau T ′ satisfying the conditions of
Lemma 9. Denote it by T ′ = K ′

i(T ).

Lemma 10. Let W be the image of an irreducible component of Y under the map π. Then
for each i ∈ {1, . . . , N − 1} we have τW (Φi ∩ CW ) ⊂ Φ′

i and for each i ∈ {1, . . . ,N − 2}
we have τW ◦Ki = K ′

i ◦ τW .

Proof. In the proof of Lemma 8 we have shown that for each (w, β) ∈ CW we have
Yw,β = UT where T = τW (w, β) ∈ St(λ). Now the first inclusion follows immediately from
the definition of Φi and Φ′

i. Let us prove the second equation. Suppose (w′, β′) = Ki(w, β).

Let π̃i : Yi → Ỹ be the projection satisfying π̃i ◦ π′i = π. Then

W = π(Yw,β) = π̃i(π
′
i(Yw,β)) = π̃i(π

′
i(Yw′,β′)) = π(Yw′,β′)

So, (w′, β′) ∈ CW . Denote T = τW (w, β), T ′ = τW (w′, β′). Then for each p0 ∈ U we have

πi(Flu1(p0),T ) = πi(Yw,β ∩ π−1(p0)) = π′i(Yw,β) ∩ π̃−1
i (p0)

and the same for T ′. The equation (w′, β′) = Ki(w, β) means that π′i(Yw,β) = π′i(Yw′,β′)
and (w, β) 6= (w′, β′). Taking the intersection with π−1(p0), we get πi(Flu1,T ) = πi(Flu1,T ′)
and T 6= T ′ (this inequality follows from the fact that τW is bijective).

So, we get T ′ = K ′
i(T ). �

5.6. We write down the action of Hecke algebra generators on bimoduleR in the Kazhdan-
Lusztig basis H̃w̃. For i ∈ {1, . . . ,N − 1}, recall the subset Φi ⊂ RB introduced in 5.2.

Let w̃, w̃′ ∈ RB and w̃′ < w̃. Consider the restriction IC(Ωw̃)|Ωw̃′
of the IC-sheaf

of Ωw̃ to Ωw̃′ . It is a constant Tate complex on Ωw̃′ concentrated in cohomological
degrees less than −n − ℓ(w̃′). We denote by µ(w̃′, w̃) = µ(w̃, w̃′) the dimention

dimH−n−ℓ(w̃′)−1(IC(Ωw̃)x) where x ∈ Ωw̃′ .

Proposition 8. For any w̃ ∈ RB and i ∈ 1, . . . ,N − 1 we have

H̃w̃ · H̃si =





−(v−1 + v)H̃ w̃, if w̃ ∈ Φi

H̃w̃∗si +
∑
w̃′<w̃
w̃′∈Φi

µ(w̃′, w̃)H̃ ′
w̃ if w̃ /∈ Φi
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Proof. By definition, H̃w̃ is the class of the IC-sheaf of the orbit closure Ωw̃ , H̃w̃ =

[IC(Ωw̃)]. Therefore H̃w̃ · H̃si is the class of the direct image of the IC-sheaf under the
map ψ : S = Ωsi ×Fl(V )

Ωw̃ → X. If w̃ ∈ Φi then the image of this map coincides with Ωw̃

and all its fibers are isomorphic to P1, hence we obtain the required formula. If w̃ /∈ Φi

then im(ψ) = Ωw̃∗s (s = si) and all the fibers of ψ are isomorphic either to P1 or to
a point. We claim that the direct image of the IC-sheaf under the map ψ is perverse.
Indeed, pick an orbit Ωw̃′ inside Ωw̃∗s. We need to show that ψ∗(IC(S))|Ωw̃′

is concentrated

in degrees ≤ −n − ℓ(w̃′). Let x ∈ Ωw̃′ and Q = ψ−1(x). Then we have ψ∗(IC(S))x =
RΓ(Q, IC(S)|Q). If w̃′ = w̃ ∗ s then Q is a point and RΓ(Q, IC(S)|Q) = Ql[n + ℓ(w̃′)]. If
Q is a point but w̃′ 6= w̃ ∗ s then the properties of IC-sheaf imply that Hm(IC(S)|Q) = 0
for m ≥ −n− ℓ(w̃′).

Otherwise, if Q ∼= P1 (this happens if and only if w̃′ ∗ s < w̃), let U = Q ∩ φ−1(Ωw̃′∗s)
where φ : S → Ωw̃ is the projection to the second factor. Then U is open and dense
in Q, and IC(S)|U is constant. The complex IC(S)|U is concentrated in degrees ≤
−n − ℓ(w̃′) − 2, and IC(S)|Q\U is concentrated in degrees ≤ −n − ℓ(w̃′) − 1. From

this we obtain that Hm(IC(S)|Q) = 0 for m > −n−ℓ(w̃′) and dimH−n−ℓ(w̃′)(IC(S)|Q) =

dimH−n−ℓ(w̃′)−2(IC(S)x′) where x′ ∈ U . Note that if we identify U with φ(U), we have
IC(S)|U = IC(Ωw̃)|φ(U)[1]. Besides φ(U) ⊂ Ωw̃′∗s. If w̃′ /∈ Φi then w̃′ ∗ s > w̃′, and

therefore dimH−n−ℓ(w̃′)−2(IC(S)x′) = dimH−n−ℓ(w̃′∗s)(IC(Ωw̃)φ(x′)) = 0. If w̃′ ∈ Φi then

w̃′ ∗ s = w̃′, and therefore dimH−n−ℓ(w̃′)−2(IC(S)x′) = dimH−n−ℓ(w̃∗s)−1(IC(Ωw̃)φ(x′)) =
µ(w̃′ ∗ s, w̃) = µ(w̃′, w̃). So we get

dimHm(ψ∗(IC(S))x) = dimHm(IC(S)|Q) = 0 if m > −n− ℓ(w̃′);

dimH−n−ℓ(w̃′)(ψ∗(IC(S))x) = dimH−n−ℓ(w̃′)(IC(S)|Q) =





1 if w̃′ = w̃ ∗ s;
µ(w̃′, w̃) if w̃′ < w̃ and w̃ ∈ Φi;

0 otherwise.

Now, taking in account that ψ∗(IC(S)) is selfdual, we obtain the desired decomposition.
�

Remark 2. Note that Proposition 8 implies that the bimodule R arises from a certain
SN ×S0

N -graph Γmir in the terminology of [10], where S0
N
∼= SN is the opposed group

to SN , i. e. S0
N = {g0, g ∈ SN} with multiplication given by g0h0 = (hg)0. The set of

vertices of Γmir is RB; the labels Iw̃ are defined by Iw̃ = { s0i | w̃ ∈ Φi } ∪ { si | w̃−1 ∈
Φi }; the edges are {w̃, w̃′} such that w̃′ < w̃, µ(w̃′, w̃) 6= 0 and Iw̃ 6= Iw̃′ ; finally, the
multiplicities are µ(w̃, w̃′).

5.7. One-sided microlocal cells. Let W = π(Yw̃) (w̃ ∈ RB) be the image of an
irreducible component of Y . We define the right microlocal cell corresponding to W as
the set CW described in Lemma 8. We define a left microlocal cell as the image of a right
microlocal cell under the involution w̃ 7→ w̃−1. In terms of bijection RSKmir introduced
in 3.4, two-sided microlocal cells are given by condition t(w̃) = const. The left microlocal
cells are given by conditions t(w̃) = const and T1(w̃) = const , and the right microlocal
cells are given by conditions t(w̃) = const and T2(w̃) = const. Each two-sided microlocal
cell is a union of left microlocal cells and of right microlocal cells as well; moreover, each left
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microlocal cell and right microlocal cell inside the same two-sided microlocal cell intersect
exactly in one element. Two-sided microlocal cells are the minimal subsets which are
unions of both left and right microlocal cells.

Now recall that t(w̃) = (ν, θ, ν ′) =: (ν(w̃), θ(w̃), ν ′(w̃)).

Theorem 3. a) Each left (right, two-sided) microlocal cell is contained in a left (resp.
right, bimodule) Kazhdan-Lusztig cell.

b) Conversely, for w̃1, w̃2 in the same left (right, bimodule) Kazhdan-Lusztig cell, we
have ν(w̃1) = ν(w̃2) (resp. ν ′(w̃1) = ν ′(w̃2), resp. ν(w̃1) = ν(w̃2) and ν ′(w̃1) = ν ′(w̃2)).

Proof. It suffices to prove the theorem for one-sided cells and, by the reason of symmetry,
only for right-handed ones. Let us formulate the following auxiliary proposition.

Proposition 9. Two elements w̃, w̃′ lie in the same right microlocal cell iff there is a
sequence w̃ = w̃1, w̃2, . . . , w̃m = w̃′ such that for each j = 1, . . . ,m − 1 there is i ∈
{1, . . . , N − 2} such that w̃j+1 = Ki(w̃j) (see 5.3).

Proof. It is easy to see from the definition of operations Ki that if w̃′ = Ki(w̃) then
w̃ and w̃′ lie in the same right microlocal cell. This implies the “only if” direction.
Conversely, let w̃ and w̃′ lie in a microlocal cell corresponding to W . Consider the bijection
τW : CW → St(λ) of Lemma 8. In view of Lemma 10 it suffices to prove that any
2 standard Young tableaux of the same shape can be obtained from each other by a
successive application of operations K ′

i.
It can be checked directly. �

It is easy to check that if w̃′ = Ki(w̃) then, up to permutation of w̃ and w̃′, we have
w̃ ⋖ w̃′, moreover 




w̃′ = w̃ ∗ si
w̃ ∈ Φi+1

w̃′ /∈ Φi+1

or





w̃′ = w̃ ∗ si+1

w̃ ∈ Φi

w̃′ /∈ Φi

Observe that if w̃ < w̃′ and ℓ(w̃′) = ℓ(w̃) + 1 then µ(w̃, w̃′) = 1, so, taking in account
Proposition 8, it follows that if w̃′ = Ki(w̃) then w̃′ and w̃ lie in the same right Kazhdan-
Lusztig cell. Therefore, in view of Proposition 9, each microlocal cell lies in a Kazhdan-
Lusztig cell. So the proof of Theorem 3.a) is finished.

For the proof of b), we can realize the H-bimodule R in the Grothendieck group of G-
equivariant Hodge D-modules on X. Then we have the functor of singular support from
the category of G-equivariant Hodge D-modules on X to the category of G-equivariant
coherent sheaves on T ∗X supported on Y . Similarly, we have the functor of singular
support from the category of G-equivariant Hodge D-modules on Fl(V ) × Fl(V ) to the
category of G-equivariant coherent sheaves on the Steinberg variety of G. These functors
are compatible with the convolution action. Thus if ICw̃1 is a direct summand of the
convolution of ICw̃2 with ICw, and ( 1u1,

1u2,
1v, 1v∗) (resp. ( 2u1,

2u2,
2v, 2v∗)) is

a general element in the conormal bundle to Ωw̃1 (resp. Ωw̃2), then 1u1 must lie in the
closure of G-orbit of 2u1 (and similarly, 1u2 must lie in the closure of G-orbit of 2u2). The
proof of b) is completed. �



26 ROMAN TRAVKIN

5.8. Fourier duality. In this subsection we will write X(V ), Y (V ),Ωw̃(V ), . . . instead
of X,Y,Ωw̃, . . . to emphasize the dependence on V . All the statements in this subsection
are straightforward and left to the reader as an exercise.

Note that we have a canonical isomorphism Y (V ) ∼= Y (V ∗), (F1, F2, v, u1, u2, v
∗) 7→

(F ∗
1 , F

∗
2 , v

∗, u∗1, u
∗
2, v). Therefore we get a bijection between the sets of their irreducible

components, which gives rise to an involution F on RB.

Proposition 10. For any w̃ = (w, β) ∈ RB we have F(w̃) = (w0ww0, {1, . . . ,N}\w0(β))
where w0 ∈ SN is the longest element, i. e. w0(i) = N + 1− i. �

Further, we have an isomorphism ψ : Z(V )
∼→ Z(V ∗). It carries images of irreducible

components of Y (V ) to images of irreducible components of Y (V ∗), therefore ψ(Zt(V )) =
Zt∗(V

∗) for some t∗ ∈ T.

Proposition 11. If t = (ν, θ, ν ′) ∈ T then t∗ = (ν, θ∗, ν ′) where θ∗i = min{νi, ν ′i} +
max{νi+1, ν

′
i+1} − θi. �

Proposition 12. If RSKmir(w̃) = (t, T1, T2) then RSKmir(F(w̃)) = (t∗, T ∗
1 , T

∗
2 ) where t∗

is the same as in Proposition 11, and T ∗
1 , T ∗

2 are conjugate tableaux to T1, T2 (see [8]
for the definition). Besides, the partition θ∗(w̃) = θ(F(w̃)) is the shape of the tableau T@

N
from 3.5 with all @’s removed. �

Corollary 5. The involution F on RB carries left, right, and two-sided microlocal cells
to left, right, and two-sided microlocal cells, respectively. �

Now consider the Fourier-Deligne transform FD from the derived constructible G-
equivariant category of Ql-sheaves on X(V ) = Fl(V ) × Fl(V ) × V to the derived con-
structible G-equivariant category of Ql-sheaves on X(V ∗) = Fl(V ∗) × Fl(V ∗) × V ∗ ∼=
Fl(V )×Fl(V )×V ∗. It gives rise to an involution F on R which is compatible with the au-
tomorphism of the algebra H induced by conjugation with w0 on the Coxeter group SN . It
carries G-equivariant IC-sheaves on X(V ) to G-equivariant IC-sheaves on X(V ∗). There-
fore we obtain the following

Proposition 13. For any w̃ ∈ RB we have F(H̃w̃) = H̃F(w̃). �

Corollary 6. The involution F on RB carries left, right, and bimodule Kazhdan-Lusztig
cells to left, right, and bimodule Kazhdan-Lusztig cells, respectively. �

5.9. Relation to mirabolic character sheaves. Recall the definition of unipotent
mirabolic character sheaves on GL(V )×V , cf. [6] 5.4 and [7] 5.2. We consider the following
diagram of GL(V )-varieties and GL(V )-equivariant maps:

GL(V )× V pr←− GL(V )× Fl(V )× V f−→ Fl(V )× Fl(V )× V.
In this diagram, the map pr is given by pr(g, x, v) := (g, v), while the map f is given by
f(g, x, v) := (gx, x, v). The group GL(V ) acts diagonally on all the product spaces in this
diagram, and acts on itself by conjugation.

The functor CH from the constructible derived category of l-adic sheaves on Fl(V ) ×
Fl(V )×V to the constructible derived category of l-adic sheaves on GL(V )×V is defined
as CH := pr!f

∗. Now let F be a GL(V )-equivariant perverse sheaf on Fl(V )× Fl(V )× V .
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The irreducible perverse constituents of CHF are called unipotent mirabolic character
sheaves on GL(V )× V . Clearly, this definition is a direct analogue of Lusztig’s definition
of character sheaves.

Recall the following examples of unipotent mirabolic character sheaves (see [6] 5.4).

For M ≤ N let X̃N,M be a smooth variety of triples (g, F•, v) where g ∈ GL(V ), and
F• ∈ Fl(V ) is a complete flag preserved by g, and v ∈ FM . We have a proper morphism

πN,M : X̃N,M → GL(V ) × V (forgetting F•) with the image XN,M ⊂ GL(V )× V formed
by all the pairs (g, v) such that dim〈v, gv, g2v, . . .〉 ≤ N −M . According to Corollary 5.4.2
of loc. cit., we have

(πN,M )∗IC(X̃N,M ) ≃
|λ|=N−M⊕

|µ|=M

Lµ ⊗ Lλ ⊗Fλ,µ

for certain unipotent mirabolic character sheaves Fλ,µ supported on XN,M , and Lλ, resp.
Lµ, is an irreducible representation of SN−M , resp. SM .

We conjecture the following formula for the class of CHH̃w̃ in the K-group of unipotent
mirabolic Weil sheaves.

Conjecture 2. CHH̃w̃ =
∑

|λ|+|µ|=N fλ,µ(H̃w̃)[Fλ,µ] where fλ,µ is a functional R →
Z[v,v−1] such that fλ,µ(hr) = fλ,µ(rh) for any r ∈ R, h ∈ H. Moreover, in the de-
composition (14) of Proposition 7, fλ,µ vanishes on all the summands except for V ∗

ν ⊗ Vν
corresponding to (ν̃, θ̃, ν̃) ∈ T where Υ(λ, µ) = (ν, θ).

5.10. Asymptotic bimodule. For a partition ν of N , let cν ⊂ SN be the corresponding

two-sided KL cell. Let a(cν) = aν = N2−N−nν := N2−N
2 −∑

i≥1(i−1)νi be its a-function.

For multiplication in H we have H̃w · H̃y =
∑

z∈SN
mw,y,zH̃z, for mw,y,z ∈ Z[v,v−1]. If

w, y, z ∈ cν then, according to Lusztig, the degree of mw,y,z is less than or equal to aν . Let
γw,y,z ∈ Z be the coefficient of vaν in mw,y,z. Lusztig’s asymptotic ring Jν is defined as a
ring with a basis {tw, w ∈ cν} and multiplication tw · ty =

∑
z∈cν

γw,y,ztz. By the classical
RSK algorithm, cν is in bijection with the set of pairs of standard tableaux {(T1, T2)}
of shape ν. According to [11] 3.16.b), the ring Jν with basis {tw} is isomorphic to the
matrix ring MatSt(ν) with the basis of elementary matrices {eT1,T2}, so that tw goes to
eT1,T2 where (T1, T2) are constructed from w by the classical RSK algorithm.

Now for a pair of partitions ν ⊃ θ we consider the corresponding bimodule KL cell
cν⊃θ⊂ν ⊂ RB. For w̃ ∈ RB, and y ∈ SN we have H̃w̃ · H̃y =

∑
z̃∈RBmw̃,y,z̃H̃ z̃, and

H̃y ·H̃ w̃ =
∑

z̃∈RBmy,w̃,z̃H̃ z̃. We conjecture that for w̃, z̃ ∈ cν⊃θ⊂ν , and y ∈ cν , the degrees
of mw̃,y,z̃ and my,w̃,z̃ are less than or equal to aν . We denote by γy,w̃,z̃ the coefficient of
vaν in my,w̃,z̃, and we denote by γw̃,y,z̃ the coefficient of vaν in mw̃,y,z̃. We define the
asymptotic bimodule Jν⊃θ⊂ν over Jν as a bimodule with a basis {tw̃, w̃ ∈ cν⊃θ⊂ν} and
the action tw̃ · ty =

∑
z̃∈cν⊃θ⊂ν

γw̃,y,z̃tz̃, and ty · tw̃ =
∑

z̃∈cν⊃θ⊂ν
γy,w̃,z̃tz̃.

Conjecture 3. The based bimodule Jν⊃θ⊂ν , {tw̃, w̃ ∈ cν⊃θ⊂ν} is isomorphic to the based
regular bimodule MatSt(ν), {eT1,T2}, so that tw̃ goes to eT1,T2 where (T1, T2) are constructed
from w̃ by the mirabolic RSK algorithm.
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