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ABSTRACT. The set of orbits of GL(V') in FI(V)x FI(V)xV is finite, and is parametrized
by the set of certain decorated permutations in a work of Magyar, Weyman, Zelevinsky.
We describe a Mirabolic RSK correspondence (bijective) between this set of decorated
permutations and the set of triples: a pair of standard Young tableaux, and an extra
partition. It gives rise to a partition of the set of orbits into combinatorial cells. We prove
that the same partition is given by the type of a general conormal vector to an orbit. We
conjecture that the same partition is given by the bimodule Kazhdan-Lusztig cells in the
bimodule over the Iwahori-Hecke algebra of GL(V') arising from FI(V) x FI(V) x V. We
also give conjectural applications to the classification of unipotent mirabolic character
sheaves on GL(V) x V.

1. INTRODUCTION

1.1. Let v € V be a nonzero vector in an N-dimensional vector space over a field k. The
stabilizer Py of v in GLy = GL(V) is called a mirabolic subgroup of GLy. The special
properties of the pair Py C GLy are among the principal reasons why the representation
theory of GLy is in many respects simpler than that of the other reductive groups over k
(see e.g. [2], [9]). One more remarkable feature of the pair Py C GLy was discovered by
P. Etingof and V. Ginzburg a few years ago. Namely, the quantum Hamiltonian reduction
of the differential operators on GLy with respect to Py is isomorphic to the spherical
trigonometric Cherednik algebra Hy (see e.g. [5]); equivalently, the quantum Hamiltonian
reduction of the differential operators on GLy xV with respect to GLy is isomorphic to
Hpy. Thus one is led to study the D-modules on GLy xV whose quantum Hamiltonian
reduction lies in the category O for Hy (see [6]). The corresponding perverse sheaves are
called mirabolic character sheaves; they are close relatives of Lusztig’s character sheaves
(see e.g. [13]). The present work is a first step towards a classification of mirabolic character
sheaves.

1.2. According to Lusztig’s classification of character sheaves, the set of isomorphism
classes of unipotent character sheaves on a reductive group G is partitioned into cells,
which correspond bijectively to special unipotent classes in G. For G = GLy, each unipo-
tent class is special, and each cell contains a unique character sheaf; thus the unipotent
character sheaves are classified by their (nilpotent) singular supports, so they are num-
bered by partitions of V.

Finally, recall that the cells in question are the two-sided Kazhdan-Lusztig cells of
the finite Hecke algebra Hy. If FI(V) stands for the flag variety of GL(V'), then Hy
is the Grothendieck ring of the constructible GL(V')-equivariant mixed Tate complexes
on FI(V) x FI(V) (multiplication given by convolution). The two-sided cells arise from
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the two-sided ideals spanned by the subsets of the Kazhdan-Lusztig basis (formed by
the classes of Goresky-MacPherson sheaves). This basis is numbered by the symmetric
group Gy, and its partition into two-sided cells is given by the Robinson-Shensted-Knuth
algorithm, see [10]. A GL(V)-orbit in FI(V)) x FI(V) numbered by w € Sy lies in a
two-sided cell M iff a general conormal vector to the orbit is a nilpotent element of type A,
see [17].

1.3. The starting point of our work is a classification of GL(V')-orbits in N'x V where N is
the nilpotent cone in End(V') (it was independently obtained by P. Achar and A. Henderson
in [1]). We prove (see section 2.2) that the set of orbits is in a natural bijection with the
set P of pairs of partitions (v,6) such that |v| = N, and v D 0, that is v; > 0; > v
for any ¢ > 1. Note that P arises also in Zelevinsky’s classification of restrictions of
unipotent irreducible representations of GLy (IF,) to Pn(F,) (see [18], Theorem 13.5), and
this coincidence is not accidental.

A conormal vector to a GL(V)-orbit in F1(V') x F1(V) x V' lies in the variety Z of quadru-
ples (u1,u2,v,v*) where v € V, and v* € V* and uj,us are nilpotent endomorphisms of
V such that u; + ugs + v ® v* = 0. The set of orbits of GL(V') in Z is infinite, and Z is
reducible (it has N + 1 irreducible components of dimension N?) but we define in 3.2 a
collection of closed irreducible subvarieties of Z numbered by the triples (v D 6 C V') of
partitions such that |v| = |[v/| = N. These subvarieties are the images of the closures of
the conormal bundles to GL(V')-orbits in F1(V) x F1(V) x V; they are mirabolic analogues
of the nilpotent orbit closures in N

The Hecke algebra H acts by the right and left convolution on the Grothendieck group
of the constructible GL(V')-equivariant mixed Tate complexes on F1(V) xF1(V) x V; we will
denote this bimodule by Ry. It comes equipped with a Kazhdan-Lusztig basis numbered
by the finite set RBy of GL(V)-orbits in F1(V) xF1(V) x V', described in [15] (see also [14]).
Thus we can define a partition of RBy into bimodule KL cells. In this note we define an
analogue of the RSK algorithm which is conjectured to be connected with these bimodule
cells. Our mirabolic RSK correspondence (see subsection 3.5) is a bijection between the
set RBy of colored permutations of {1,..., N}, and the set of triples {(71,7%,0)} where
Ty (resp. T») is a standard tableau of the shape v (resp. /) where |v| = [v/| = N, and 6
is another partition such that v > 6 C v/

We conjecture that the colored permutations w,w’ € RBy lie in the same bimodule
KL cell iff the output of the mirabolic RSK algorithm on w, %’ gives the same partitions:
v(w) = v(w'), vV (w) = v'(0'), 8(w) = (') (see Theorem 3 for a partial result in this
direction). An equivalent form of the conjecture states that the H y-subquotient bimodules
of Ry supported by the bimodule KL cells are irreducible (cf. Proposition 7). We also
define a partition of RBy into microlocal two-sided cells according to the type of a general
conormal vector to the corresponding orbit. We prove that the colored permutations
w,w € RBy lie in the same microlocal two-sided cell iff the output of the mirabolic RSK
algorithm on w, W’ gives the same partitions v D 6 C /' (see Theorem 2). In subsection 5.8
we describe combinatorially the involution F on RBpy arising from the Fourier-Deligne
transform from the category of GL(V)-equivariant sheaves on F1(V)) x FI(V) x V to the
category of GL(V')-equivariant sheaves on F1(V*) x F1(V*) x V*. In subsection 5.9 we give
a conjectural application to the classification of unipotent mirabolic character sheaves. In
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subsection 5.10 we formulate a conjecture on the structure of the asymptotic bimodule
over Lusztig’s asymptotic ring J for diagonal bimodule KL cells: those corresponding to
triples v D 0 C v (that is, v = /).

1.4. Let us emphasize that almost all arguments and constructions in the paper are of
elementary combinatorial and linear algebraic nature. For instance, even though the bi-
module Ry over the Hecke algebra Hpy is of geometric origin, it is described explicitly
in Propositions 2 and 3. The Kazhdan-Lusztig basis of Ry is defined by an inductive
combinatorial algorithm, similarly to the Kazhdan-Lusztig basis of Hy. Only the descrip-
tion of the W-graph of the Hy-bimodule Ry in Proposition 8 does rely on geometric
considerations.

1.5. Acknowledgments. I am grateful to P. Achar and A. Henderson for sending me
their preprint [1] where our Theorem 1 is proved independently (as Proposition 2.3). T am
indebted to M. Finkelberg for posing the problem, numerous valuable discussions and help
in editing the paper. I am thankful to Independent University of Moscow for education,
financial support and various help. I thank P. Etingof for creating the ideal conditions for
my work.

2. GL(V)-ORBITS IN N x V

2.1. The following Theorem essentially goes back to J. Bernstein, who proved in [2], sec-
tion 4.2, the finiteness of the set of Pn-orbits in the nilpotent cone of gly. It was inde-
pendently proved by P. Achar and A. Henderson ( [1], Proposition 2.3).

Theorem 1. Let N C gl(V') be the nilpotent cone. There is a one-to-one correspondence
between GL(V')-orbits in N x V' and pairs of partitions (A, u) such that |\ + |u] = D N +
S ui = N. Furthermore, if a pair (u,v) € N XV belongs to the orbit corresponding to the
pair (A, p) then the type of u is equal to X+ pu = (A1 + p1, Aa + po,...) .

Proof. Given a pair (A, p) such that |A\| + || = N, we will construct the pair (u,v) in

the following way. Let v = A + p and w be a nilpotent of type v. Denote by D, the set

of boxes of the Young diagram v, i.e. D, = {(i,5) | 1 < j < v;}. Choose a basis e; ;

((4,4) € D) such that ue; ; = e; j—1 for 2 < j <wv; and ue;; = 0. Let v = )" e; \, where
(2

we put e; 9 = 0.

The inverse correspondence is obtained as follows. Let (u,v) € N x V. Denote by Z(u)
the centralizer of u in the algebra End(V'). Let v be the type of u and A be the type of
u|z(uy and p be the type of uly)z ()

Let us prove that these two correspondences are mutually inverse. We will need the
following lemma.

Lemma 1. Let A C End(V') be an associative algebra with identity and A* the multiplica-
tive group of A. Suppose the A-module V' has finitely many submodules. Then A*-orbits
in 'V are in one-to-one correspondence with these submodules. Namely, each A*-orbit has

the form Qg := S\ U s where S is an A*-submodule of V.
submodules S' ¢ S
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Proof. 1t is clear that the sets g give us a decomposition of V' into a union of locally closed
subvarieties. So, we must prove that two points v,v’ € V belong to the same A*-orbit iff
they belong to the same g, i. e. they generate the same A-submodule S = Av = Av'. If
v and v’ belong to the same A*-orbit then v/ = av for some a € A* and Av = Aav = Av'.
Conversely, let v,v" € Qg for some S, so that Av = Av' = S. It is easy to see that AXv
and A*v" are constructible dense subsets of S. This implies that A*v N A*v # & and
therefore A%v = AXv'. O

2.1.1. Let us deduce the theorem from the lemma. Fix a partition v of N. Consider all
the GL(V)-orbits in N x V consisting of points (u, v) where u has the type v. These orbits
correspond to GL(V'),-orbits in V' where GL(V'),, is the stabilizer of u in GL(V). Note
that GL(V),, = (Z(u))*. According to the lemma it suffices to prove that V has finitely
many Z(u)-submodules and find all these submodules. Consider V' as a k[t]-module where
t acts by w. This module is isomorphic to € k[t]/(t"ik[t]). Let V; = k[t]/(t"k[t]) C V be

(2
the the i-th direct summand of this sum. For each i let {e; ; };’;1 be a basis of V; such that
ue;;j =e€;j—1 (j > 2) and ue; ;1 = 0. We can write

Z(u) = Endyy (V @Homk[t Vi, Vir) EBk INGESE2IN)

Let a;  be a generator of the k[t]-module Homy(V;, Vi) C Endyp (V) given by
a; 1€ j = 5i,i1e,-/,(j_max{o,yi_,,i,}) (we put e; ; = 0 for j <0).

Now let S be a Z(u)-submodule of V. Sinse S is invariant under a;; for all ¢, S has a
form S = @, S; where S; C V;. Further since S invariant under v € Z(u) all the S; have
the form w*'V;. Put \; = v; — p;. The invariance of S under all a; ;s is equivalent to the
fact that A and p are partitions, i.e. Ay > Ao > ... and puy > po > .... So we have shown
that Z(u)-submodules of V are in one-to-one correspondence with pairs of partitions (A, u)
such that A 4+ g = v. An application of Lemma 1 concludes the proof of the theorem. [

2.2. Comparison with Zelevinsky’s parametrization. A. Zelevinsky considers
n [18], Theorem 13.5.a) the set 3 of isomorphism classes of pairs (U, W) where U is an
irreducible unipotent complex representation of the finite group GLy(F,), and W is an
irreducible constituent of the restriction of U to the mirabolic subgroup Py(F,). He
constructs a natural bijection between 3 and the set B of pairs of partitions (v,6) such
that |v| = N, and 7; — 1 < HNJ < vj for all j (this is equivalent to v; > 6; > v;44 for all 7).
The following Proposition-Construction establishes a natural bijection between ‘B, and
the set of pairs of partitions (A, ) such that |A| + |u| =

Proposition-Construction 1. Let v be a partition and U the conjugate partition so that
v; > j <= j >i. There exists a natural one-to-one correspondence between pairs (A, )

of partitions such that X + p = v, and partitions 0 such that v; —1 < 0; < ©; for all j
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(this is equivalent to v; > 0; > v;y1 for all i). This correspondence is given by

(1) i = Niv1 + i
/\izz(yk—ek) =v;—0i+vig1— ...,
k=i
&) -
”’:Z(ek—%ﬂ) =60, — Vg1 +60ip1— ...
k=i

Proof. Tt is easy to see that equations (1) and (2) give mutually inverse correspondences.
U

We will denote the above correspondence by (v,0) = T(\, p), (A, p) = Z(v,6).

Corollary 1. A pair (u,v) lies in an orbit (N x V) u) such that (X, u) = Z(v,0) iff the
Jordan type of u is v, and the Jordan type of uly )iy uvuv,.) 5 0-

Proof is obvious from the construction. O

3. GL(V)-orBIiTS IN FI(V) x FI(V) x V

3.1. Let (F1, Fy,v) € FI(V) x FI(V)) x V. Consider the orbit GL(V) - (F}, Fa,v). If v =10
then this orbit lies in F1(V') x F1(V) x{0}. Such orbits can be parametrized by permutations
of N elements. Otherwise, if v # 0 the orbit is preimage of an orbit in FI(V) xF1(V') xP(V).
This follows from the fact that if ¢ € k* then the element (Fy, F5, cv) can be obtained
from (Fy, F,v) by the action of the scalar operator ¢ -id € GL(V'). Such orbits are in
one-to-one correspondence with pairs (w, o) where w € S is a permutation and o is non-
empty, decreasing subsequence of w (see [15]). So GL(V)-orbits in F1(V') x FI(V) x V are
indexed by pairs (w, o) where w € Sy and o is a decreasing subsequence of w (possibly
empty). We will give another proof of this fact in the following lemma.

Lemma 2. There is a one-to-one correspondence between GL(V')-orbits in F1(V) x F1(V') x
V' and pairs (w,0) where w € Sy and o C {1,2,...,N} such that if i,j € o and i < j
then w(i) > w(j). These orbits can be also indexed by pairs (w, ) where 3 C {1,2,...,N}
is a subset such that if i € {1,...,N}\ 0 and j € (3 then either i > j or w(i) > w(j).

We denote by RB the set of such pairs (w,3). We think of elements of RB as of
words colored in two colors: red and blue. Namely, if (w, 3) € RB we consider the word
w(1)...w(N) and paint w(i) in blue if i € 3, and we paint it in red if i ¢ .

Proof. For each w € Gy let , be the corresponding GL(V)-orbit in F1(V) x FI(V).
Namely, (F1, Fy) € Q,, iff there exists a basis {e;} of V such that

(3) Fii={(e1,...,e)
(4) F2,j = (ew(l)a cee ew(j)>

Consider all the GL(V)-orbits in F1(V') x FI(V') x V consisting of such points (Fy, Fy,v)
that (F1, Fy) € Q,, where w is fixed. Fix a pair (Fy, Fy) € Q,, and let H be its stabilizer
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in GL(V). Then these orbits correspond to H-orbits in V. Let Ay C End(V) (k = 1,2)
be the subalgebra defined by

a €A, = Vi a(F;m-) - Fk,i'

Denote A = A1 N As. Then H = A* and we can apply Lemma 1.
Let {e;} be a basis satisfying (3) and (4) and E; ; the operator given by

(5) E@jﬁj/ = 5]'7]'/62'.

Then
A= P kEg
i<i!
w(i)<w(i’)
Now it is easy to see that all the A-submodules in V' have the form S(3) := P, ke;
where ( satisfies the condition of the lemma. So, applying Lemma 1 proves the second
part of the lemma. We will denote by €, g the orbit in FI(V') x FI(V') x V' corresponding
to (w, ).
For each (w,3) € RB let

(6) o=o(w)={iep[Vj(j>i)&w(i)>w()=j¢Pp}
It is easy to see that (w, 3) and (w, o) can be reconstructed from each other. So the lemma
is proved. O

Note that €2, g consists of such triples (Fi, F»,v) that there exists a basis {e;} satisfy-
ing (3), (4) and such that?

(7) ’U:ZEZ‘.

i€l

3.2. X,Y,Z and two-sided microlocal cells. We denote F1(V) x FI(V) x V by X,
and consider the cotangent bundle T*X. It can be described as the variety of sextuples
(Fy, Fy,v,uq,u9,v*) € T*(X) where (Fy, Fa,v) € X, u; (i = 1,2) are nilpotent operators
on V', u; preserves F; and v* € V*. The moment map 7*X — gl(V)* = gl(V) sends a
point (Fy, Fy, v, uq,ug,v*) € T*(X) to the sum u; +us +v®@v*. The preimage Y of 0 under
this map is the union of conormal bundles of GL(V)-orbits in X. So all the irreducible
components of Y have the form Y,, , = N*(Q,, ,. We determine the type of u; for a general
point of N*(y, ,.

Now consider the projection 7: Y — FI(V) x V x N x N x V* (Fy, Fy,v,uy, ug, v*) —
(F,v,u1,u2,v*). Let Y = n(Y). The preimage of a point (Fy,v,u;,us,v*) € Y is
isomorphic to the variety Fl,, (V) of full flags fixed by u;. This variety is known to be
pure-dimensional and the set of its irreducible components can be identified with the set
St(\) of standard tableaux of the shape A where X is the type of u;. Namely, for each
T € St(A) the corresponding irreducible component Fl,, 7 of Fl,, (V') is defined as follows.
Let A®)(T)) be the shape of the subtableau of T formed by numbers 1,...,i. Then Fl,, 7
is the closure of the set Flg1 of all F € Fl,, (V) such that u1|r, has the type A (T).

IThis formula is different from the one in [15]: v = 3

i€0 Ci.
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Let Z be the variety of quadruples (u1,usz,v,v*), where (uj,uz) € N, v € V, v* € V*
and uq + ug +v ®v* = 0. Then we have a projection 7 : Y — Z. We say that w, %’ € RB
belong to the same two-sided microlocal cell if 7(Yy) = m(Yg). We denote by B the set
of pairs of partitions (v,6) such that |[v| = N and v; > 0; > v;41 for each i > 1. Further,
denote by T the set of triples of partitions (v, 8, 2') such that (v,0) € B and (¢/,0) € B. For
any t = (v,0,7') € T denote by Z* the set of quadruples (u1,us2,v,v*) € Z such that the
types of u1, uz and u1|y k[, )y are equal to v, V' and 6 respectively (it is easy to check that
for each quadruple (u1,uz2,v,v*) € Z we have k[u1]v = k[uz]v and u1|y kw10 = v2lv/kju]v)-
3.3. We fix w € RB. Let y be a general point of variety Y3 = N*(Qyz). We take
t =t(w) = (v,0,) € T such that 7(y) € Z*. We consider the standard Young tableaux
Ty = T1(w) € St(v) and Ty = Th(w) € St(v') such that Fi(y) € Fl,, 1, (i =1,2).

Proposition 1. The map w +— (t(w),T1(w), To(w)) realizes a one-to-one correspondence
between RB and the set of triples (t,T1,T3) such that t = (v,0,0') € T, Ty € St(v), Ty €
St(v'). Moreover w and w' belong to the same two-sided microlocal cell iff t(w) = t(w').

Proof. Denote by Y7172 the set of points y € Y such that m(y) € Z* and Fj(y) €
Fl,, 7,(V'). These sets are locally closed, disjoint, and Y is their union. We claim that all
of them are open subsets of irreducible components of Y. We will use the formula (14)
(see page 18) whose proof does not use the proposition we are proving. (See also Remark 1
below.) Note that the number of the sets Y7172 coincides with the number of irreducible
components of Y. This follows from the fact that the number of these sets is equal to the
rank of the right hand side of the formula (14), and this rank coincides with the cardinality
of RB, i.e. with the number of irreducible components of Y. Therefore, if all these sets
are irreducible then their closures must be irreducible components of U. In this case we
obtain a bijection of required form. Hence it is enough to prove that the sets Yt71.12
are irreducible. Note that all the fibers of the projection Y*Y1: 72 — Zt have the form
Fly, 7 (@) X Flu, 1 (). It means they are irreducible and have the same dimension. So it
is enough to prove that Zt is irreducible.

Let t = (v,0,1). Let O, ¢ be an orbit in /' x V corresponding to the pair (v,6), i.e.
the set of all (u,v) € N'x V such that the type of u is equal to v and the type of u|y/(k[u-)
is equal to 6. We have the natural pojection Z* — O, . The fiber of this map over a
point (u,v) is isomorfic to the set of v* € V* such that u + v ® v* € O, where O, C N.
One can check that this subset is an open subset of an affine subspace of V*. So the fibers
of this projection are irreducible. Besides, this bundle is homogeneous. Since the orbit
O, is irreducible, we obtain that Z*t is irreducible. ]

Remark 1. Instead of using the formula (14), one can directly compute the dimension
of the sets Y*T1 72 showing that dim Y+ "2 = dimY’, which amounts to proving the
equation

dim Z* = N? — n(v) — n(v/)
where t = (v,0,7'), and n(v) = >, (i — Dv;.

3.4. Notation. We will call the map @ — (t(w),T1(w),To(w)) constructed in 3.3 the
mirabolic RSK correspondence and denote it by RSK;;.
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3.5. The description of mirabolic RSK correspondence. We are going to give a
combinatorial description of mirabolic RSK correspondence defined in Proposition 1. Let
w = (w, ) € RB. We will construct step by step a standard Young tableau. Besides we
will need a separate row of infinite length (denote it by r®) consisting originally from the
symbols “@Q”. We assume that “@” is greater than all the numbers from 1 to N.

We will run next procedure successively for ¢ = 1,2,... N :

la. If i € B then insert w(i) into the tableau T® (originally empty) according to
the standard row bumping rule of the RSK algorithm described in [8] ( The tableau 7©
changes as the next element is inserted).

1b. If i ¢ B then insert first w(i) into 7© instead of the least element greater than
w(i), and then insert the element removed from 7@ by replacing into tableau T© via row
bumping algorithm (see [8].)
2. After all the elements w(1),...,w(N) are inserted, we should insert the elements of
successively via standard row bumping algorithm.
3a. After that we construct T (1) from the tableau T by throwing out all the symbols
LL@”.

3b. Ti(w) is defined as the standard tableau where number “i” stands in the cell that
was added into T® at the i-th step.

3c. Finally, t(w) = (v,0,v') where v = Sh(T1(@)); v/ = Sh(Ty(w)); 6 = (Sh(T2))_
and we have denoted

Sh - the operation of taking the shape of a tableau;

()— - the operation of removing of the first part of a partition;

T2 - the tableau T® obtained at the last step of the algorithm.

r@

Let us illustrate the above construction by the following example.

3.6. An example. Let N = 10, w = 7,2,5,1,6,9,3,8,10,4; 8 = {1,2,3,4,7}. The

tableau T and the row r® obtained at the i-th algorithm step will be denoted as 7;* and

ri@ respectively. So:
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L Te= 7 rf= @ @
2. T = 2 r$ = Q@ @
7
3. IT9= 25 rg = @ @
7
4. Tg= 15 rf= @ @
2
7
5 T8 = 1 5 @ r$= 6 @ @
2
7
6. T¢d= 15 @ Q@ ré$= 6 9 @ @
2
7
7.7%= 13 @ @ r#= 6 9 @ @
2 5
7
8. T¢= 13 9 @ r$= 6 8 @ @
2 5 @
7
9. T¢= 1 3 9 @ @ = 6 8 10 @ @
2 5 @
7
10. 9= 13 6 @ @ rp= 4 8 10 @ @
2 5 9
7 Q@

1. 134 @@ 134 8@ 134 810 134 810 @ @
2 5 6 2 56 @ 256 @@ 256 @ @
79 79 79 79
@ Q Q @

12 Ty(w)= 1 3 5 6 9 Ty(w)= 1 3 4 8 10

2 7 8 2 5 6
4 10 79

As result we have v = Sh(T1(w)) = (5,3,2); ' = Sh(Tx(w)) = (5,3,2); 0 =
(Sh(T2))_- = (00,5,2,1)_ = (5,2,1). Note that coincidence of v and v/ is purely acci-
dental.
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Theorem 2. For any w € RB the triple (t(w), T (w), To(w)) obtained by the mirabolic
algorithm described in 3.5 coincides with the triple (t(w),T1,T») defined in 3.3.

Proof. Consider colored permutation w4 € RBsy defined by the formulas

Wy = (wg,B4)
1+ 2N if <N
wi(i) = w(—N)+N if N<i<2N
1—2N if i>2N

B+ ={i+Nliep}

Consider a general point x € Yy,, x = (F1,F2,u1,u2,v,v*). Denote by S the anni-
hilator of k[uj] - v*. We are going to describe the relative position of flags F1 NS and
KNS

3.7. The relative position of flags I} NS and F5 N S. Define 2 sequences of subsets
{vm} and {6,,} (m > 1) inductively as follows:

Loy ={L,...,3N}\ By

2. Oy, consists of all ¢ € ~,, such that there exists no j € v, satisfying both inequalities
Jj <iand wy(j) < wy(i).

3. Ym+1 = Ym \ Om.

It is easy to check that §,, # @ iff 1 < m < N, moreover, the minimal element
of 6., is equal to m and the maximal one is equal to m + 2N. Define a permutation

w) {N+1,....3N} - {N +1,...,3N} as follows:
! w4(j), where j = max{l € 0,,|l <i} if i€y

Lemma 3. The flags F1 NS and F5, NS are in relative position wy.

Proof. Choose a basis ej,...,esy of Vi such that Fi; = (er,...,e); Fp; =
(€wy(1)s- -+ €w, (j))- Denote by {ef} the dual basis. Then by sufficiently general choice of
the point  and the basis {e;} we will have (u,)™v* = >  anm €] where the coefficients
1€Ym—1
am; 7 0. Note that the space S is the intersection of kernels of functionals (u*)"v*,
where 0 < m < N — 1. Hence it is transversal to the spaces Fi n and F5 y. Therefore
i-dimensional subspaces of the flags F1 NS and F>, N S have a form Fj;ny NS and
Foinns.

Denote by r; j(w]) the number of all i’ such that i' < ¢ and w} (i') < j. Then to prove the
lemma we have to show that dim Fy ; N F5; NS = r; j(w]) for any ¢,j € {N+1,...,3N}.
Define r; j(wy) in the same way. Then dim Fy ; N F5; = 75 j(w4). Denote by R; ; the set
of all ¢ < such that w, (/) < j. Then Fj; N Fy; has a basis {e;} where ¢ € R; ;.

Note that if m < m/ and 6,, N R;; # @ then 4,y N R; ; # @, so we can find k; ; > 0
such that 6, N R;; # @ iff m < k;j. Then (u*)"v*|m nr,; # 0 iff m < k; ;. More-
over, for m = 1,...,k; ; these functionals are linearly independent. By this reason the
space F1; N I3 ; NS being the intersection of kernels of these functionals has dimension
dimFLi an’j nS == dimFLi nFQJ — k‘i,j == T‘Z’J(ZU_F) — k‘i,j.
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It remains to prove that r; j(wy) — k; j = ri j(w]). We have the following equalities:

Rij(wy) = (Rij(wy) N B)UCU Rijlwy) Ndm);

N
U
m=1
N
Rij(wy) = (Ri(wy) N B4) UC U1 Rij(wy) N om).
it
From the definition of w] we obtain R; j(w}) N B = R; j(wy) N 3. Besides,
in the case m > k; j we have R; j(w}) Ndy = R j(wy) Nom =2
in the case m < k;; we have R; j(w]) Ndom = R;j(wy) N om \ {im}, where iy, is the
minimal element of R; j(wy) N 6y,.
This implies that the set R; j(w)) can be obtained from the set R; j(w ) by removing the
elements i1, ..., i, ;, whence we get the required equality: r; j(w}) = r;j(wy) — kij. O

3.8. Let, as before, x = (F, Fp,ui,u2,v,v*) be a general point of variety Yg,;
S = (k[ui]v*)*t. Let u = ui|s = —uals, and let T} and T} be the standard tableaux such
that Fi NS C Flel/; KNS c Flu,Té-

Lemma 4. One can make the flags F1 NS and F» NS to be any points of varieties Flu;pl/
and F1u7T2/ by an appropriate choice of a point x.

Proof. Consider any F? ¢ Fl, 7 and Fy ¢ Fl,; and let the flags F{,F; be
Flgl = F; ifi<N
F,=F, y+Fy ifi>N

Then 2’ = (F{, F}, u1,us,v,v*) € Y. Note that the correspondence (Fy, Fj) — z’ defines
amap f:Fl, rn xFl, 7y = Y.

Since Fl, ;< Fl, 1; is irreducible, the image of f belongs to one irreducible component

defined (for k = 1, 2) as follows: {

of Y. As this image contains the point z, it lies in Yy, . Finally, as Fls and FQS are
arbitrary points of Fle{ and F 1u7T2/, replacing x by 2’ proves the lemma. O

3.9. According to Lemma 3, the relative position of £1 NS and F» N .S is given by the
permutation wy, so using the result of Spaltenstein ([17]), we see that the pair T7,T5
corresponds to wy by the classical RSK correspondence.

Now note that the spaces Fion and Fhon are invariant with respect to both operators
up and up. Let V = F1on N Faan. Then a sixtuple (Fy NV, F> NV, ui|v, usly,v,v*|v)
is a general point of variety Yy. Let (t(w),T1(w),To(w)) be the triple defined in 3.3 and
t(w) = (v,0,). Then FiNV € Fly, |, ny@) » F2 NV € Fly, |, 1 () and 6 is the type of
the nilpotent w1y /kju,]v-

Lemma 5. The tableauz Ti(w) and Th(w) are obtained of the tableauz T| and T} by
removing the numbers N +1,...,2N.

Proof. By the reason of symmetry, it suffices to prove the lemma for 77 (w) which we will
denote by T for short. Recall that 77 is defined by the condition Fy NS C Fl, &1} SO
denoting by Tj the tableau obtained from T | by removing the numbers greater than N,
we have

FlﬁSﬁFLgNEFI o

u1lsnry on 11
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Note that the spaces V and S N Fjan are both complementary to Fy n inside Fjan.
Therefore they can be identified with Fj on/F; n. Under this identification the operators
urly and ui|snm ,y g0 to the same operator ui|p, ,/r - Similarly, the flags F1 NV and
FyNSNFian go to the same flag (F1 N Fyon)/F1 v. From this we obtain that

(Fl N F172N)/F17N € F1u1|F1,2N/F1,N7T1 and (Fl N F172N)/F17N € Flul\Fl - le .

Now Fj being a general point of a certain component of the variety Fl,, we obtain that
Ty =T. O

Lemma 6.

6 = (Sh(T}))- = (Sh(T3))-.

Proof. By definition of the tableaux 7] and T3, their shape coincides with the type of
nilpotent u = wu1|s = wuz|s. On the other hand, ¢ is the type of u1|y/yju,],- Define
L := k[u]v and consider the space D = (Fy x + F5n) NS + L. It is invariant under u,
moreover u|p has only one Jordan block (it can be checked directly). Besides, DNV = L
and D +V = S. Therefore u|y,;, has the same type as u|g/p. Define d := dim D. Then
from the equalities S =D +V, dimV =N, dimS = 2N, it follows d > N. So d is the
least power of u vanishing on S. Hence, the type of u|g/p is obtained from the type of u|s
by removing the maximal part of the partition. ([l

3.10. The completion of proof of Theorem 2. Let (v¢, 0, (V)¢ TF,T5) be the result
of application to w of the algorithm described in 3.5. We have to prove that this quintuple
coincides with (v(w), 8(w), v (w), Ty (W), To(w)).

Note that the result of application of algorithm 3.5 will not change if instead of infinite
row of symbols “@Q” we will take finite sequence N +1,...,2N. Then i+ N € §,, iff at the
i-th step of the algorithm w(i) is being inserted into the m-th position of r®. In this case
w1 (7) is the number inserted into T at the i-th step of the algorithm. Hence, if we apply
to wy the classical RSK algorithm and after that throw out from the tableaux 77 (w;) and
T5(wq) all the numbers greater than N then we obtain the same pair of tableaux as the
pair TT and T3 obtained by the algorithm 3.5.

Moreover, the partition 6¢ has the form 0° = (Sh(71(w1)))—. We have proved above
that

Ti(wi) =T7; To(wi) =Ty 0= (Sh(I7))-.
In view of Lemma 5 we obtain
Tf =Ty(w); T =Ts(w) and 0°=0(wm).

The proof of Theorem 2 is completed. O

4. HECKE ALGEBRA AND MIRABOLIC BIMODULE

4.1. Let X be a finite set and E be a vector space over C with basis {e4}aex. Then the
algebra End(E) of all linear operators on E can be described as the algebra of C-valued
functions on ¥ x 3 with the multiplication given by convolution:

(f*9)(e,8) = fla,7)g(v,B)

YEX
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If a finite group G acts on X then it also acts on F and End(FE). Denote by H =
Endg(F) C End(E) the algebra of G-invariants in End(F). It consists of all functions on
3 x ¥ that are constant on each G-orbit.

Now let k = FF, be a finite field of g elements. Let V, X,Y be as in the previous section.
Let ¥ be the set of k-points of FI(V) and G = GL(V). Then the algebra H from the
previous paragraph is called Hecke algebra. It has a basis consisting of characteristic
functions of orbits. Denote by T, the characteristic function of {2, considered as an
element of H. Now consider the vector space R of G-invariant C-valued functions on X (k)
where X = FI(V) x FI(V) x V. It has a natural structure of H-bimodule. Namely, if
f € H,g € R then

(fxg)(F, Fo,0) = Y f(F, F)g(F, Fy,v),
Fe[FI(V)](k)
(g*f)(FlvF%’U): Z g(FlyFa’U)f(F7F2)‘

Fe[F1(V)](k)

If @ € RB, let Tz € R denote the characteristic function of the corresponding orbit
Qg C X. Note that the involutions (Fy, Fy) < (Fy, Fy) and (Fy, Fy,v) < (F3, F1,v) induce
anti-automorphisms of the algebra H and the bimodule R. These anti-automorphisms send
Ty to Ty—1 and Ty to Tjy—1 where w1 = (w™t, w(B)) for @ = (w, ).

4.2. Explicit formulas for the action of H in R. We are now going to compute
the H-action on R in the basis {T;3}. It is known that the algebra H is generated by the
elements T, where s; = (7,i+1) is the elementary transposition. So, it suffices to compute
T,, Ty and TyTs,. We will compute only Ti3T,, since the other product can be obtained
by applying the above anti-automorphisms.

Proposition 2. Let w = (w,3) € RB and let s =s; € Sy, i€ {1,...,N —1}.

Denote ws = (ws,s(8)) and @' = (w,B A {i +1}). Let 0 = o(w) and o’ = o(ws) be
given by (6). Then

Tis ifws>wandi+1¢ o,
Tps + Tiwsy if ws >wandi+1 €0’

(8) TeTs = Tgr + T if ws <w and BgNe={i},
(¢ — DTs + qTas if ws <w and i € o,

(—2)Ts+(q—1)Tw +Tps) fws<wand:eCo
where v = {i,i + 1}.

4.3. Tate sheaves. It is well-known that H is the specialization under q — ¢ of a
7Z|q,q " ']-albebra H. The formulas (8) being polynomial in ¢, we may (and will) view R
as the specialization under q + ¢ of a Z[q, q!]-bimodule R over the Z[q, q~']-algebra
H. We consider a new variable v, v2 = q, and extend the scalars to Z[v,v~'] : H :=
Zv,v!] Rzq,q-1) H; R:= Zv,v!] ®7(q.q-1] R-

Recall the basis {H,, = (—v) 4T} of H (see e.g. [16]), and the Kazhdan-Lusztig
basis {H,} (loc. cit.); in particular, for a simple transposition s, Hy = H, — v—!. For
w € RB, we denote by £(w) the difference dim(£23) —n, where n := N(Azf_l) = dim(FL(V)).
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We introduce a new basis {Hy = (—v) ") T3} of R. In this basis the right action of the
Hecke algebra generators Hg takes the form:

Proposition 3. Let w = (w,3) € RB and let s = s; € Sy, i € {1,...,N — 1}. Denote
ws = (ws, s(08)) and W' = (w, BA{i+1}). Let 0 = o(w) and o’ = o(ws) be given by (6).
Then

Hyps — v 'Hy ifws>wandi+1¢ o,
st—v_lH(u;S)/ —v lHg ifws>wandi+ 1€,

(9) HiH,={ Hy — v 'Hgz — v 1 Hgs if ws <wand SN ={i},
Hzs — vHy if ws <w and i € o,

(v1—v)Hg + (1 —v %) (Hg + Hgs) ifws<wand:Co
where v = {i,i + 1}.

It is well known that M is the Grothendieck ring (with respect to convolution) of the
derived constructible G-equivariant category of Tate Weil Q;-sheaves on F1(V) x FI(V),

and multiplication by v corresponds to the twist by Q;(—1) (so that v has weight 1),

see e.g. [4]. In particular, H,, is the class of the shriek extension of Q;[¢(w) + n](%)

from the corresponding orbit, and H,, is the selfdual class of the Goresky-MacPherson

extension of Q;[¢(w) + n](@) from this orbit. Similarly, we will prove that R is the

Grothendieck group of the derived constructible G-equivariant category of Tate Weil Q;-
sheaves on X, and H-bimodule structure is given by convolution. In particular, Hy is the

class of the star extension of Q;[¢(w)+n] (W) from the orbit Q. C X. We will denote by

71«Qu () +n] (@ ) the selfdual Goresky-MacPherson extension of Q;[¢(w0)+n] (@ )

from Qg C X, and we will denote by H its class in the Grothendieck group.

Recall that a G-equivariant constructible Weil complex F' on X is called Tate if any
cohomology sheaf of its restriction ij;F' and corestriction z'mF to any orbit 25 admits a
filtration with successive quotients of the form Q;(m), m € %Z. If for any @w € RB the

sheaf i, Q[((w) + n](%) is Tate, then the shriek extension jiQ;[¢(w) + n](%) is
Tate as well (see Remark between Lemmas 4.4.5 and 4.4.6 of [4]). Note also that the

G-equivariant geometric fundamental group of any orbit {25 is trivial. Hence the classes
Hy = [HQe(w) + n](@)] do form a Z[v,v~1]-basis of the Grothendieck group of
G-equivariant Tate sheaves on X, and this Grothendieck group is isomorphic to R.

In order to prove the Tate property of jg*@l [0(w)+ n](%), we need to study certain

analogues of Demazure resolutions of the orbit closures ;.

4.4. Demazure type resolutions. We consider the elements w; = (w, 5;) € RB such
that w = id (the identity permutation), and 5; = {1,...,i}, where i = 0,..., N. We set
Hg, = > o< jgi(—v)j “"Hg,. This is the class of the selfdual (geometrically constant) IC
sheaf on the closure of the orbit Q,.

We fix & (0 < k < N), and a pair of sequences i1,...,%, and ji,...,js of integers
between 1 and N — 1. Let S = Sfllfjk be a variety of collections of flags and vectors
(Fo,...,Fr Fy, ..., Fl v) such that:

1. (Fr,Fé,’U) Eﬁﬁ,k;
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2. (Fp,Fp) € ﬁsip for any p € {1,...,r};
3. (Fy_y, Iy € ﬁsjq for any ¢ € {1,...,s}.
In other words,

S=Q

Siq ><Fl(v) XFI(V) Qsir ><Fl(V) Q@k ><Fl(v) Qsjl ><Fl(v) XFI(V) Qsjs
3 _ jly"'?j . jl,"'7js§k3 3 / /
Consider a map ¢ = e Si17---7ir- — X which takes Fy,...,F., Fy, ..., F; to
!
(Fo,FS,U).

Proposition 4. For any w € RB there exist i1,...,ir;J1,...,Js and k such that:
a) ¢(S) = g, moreover ¢ is an isomorphism over Qg .
b) The sheaf ¢.(Q;) is Tate.

Proof. a) We proceed by induction in () = dim Qg4 — n. Assume the proposition 4 is
true for any @’ such that (@) < £().

Let w = (w, ). If w = id then w = wy, for some k. We choose i1, ..., and j1,. .., js to
be the empty sequences. Then the map ¢ is an embedding €2; <— X, and the proposition
is true. Otherwise (w # id) it is easy to show that either ws; < w and ws; = (ws;, s;(3)) €
RB, or s;w < w and (s;w, 3) € RB. Without loss of generality we can restrict ourselves
to the first case (the second one is obtained replacing @ by @~ = (w=!, w(B)) ).

Let § = Glirdsik gf — gliseads  Then

8481, eslp 1301 e eylp

(10) S = Q4 X S

FI(v) ~*

By the induction hypothesis, S contains an open dense set mapping isomorphically by ¢
onto s,. It follows that a map € X gy Qgs, — X has an image lying in Q, moreover,
this map is an isomorphism over Q3. According to (10), S’ contains an open dense subset
isomorphic to s, X,y Qas,, hence ¢' (') = Qg, and ¢~ 1(Qy) is isomorphic to Q.

b) We will prove by induction that any fiber of ¢ is paved by the pieces isomorphic to
AF x GJ'. Moreover, the union of pieces constructed at each step is a closed subvariety of
the fiber.

If r = s = 0 then any nonempty fiber is just a point, and the statement is obvious.
Otherwise without loss of generality we can assume r > 0.

Let S = Sfll i ’]S%T. and S = ngl’ ’Z-]:’ . We have a commutative diagram:
3029000y yeoos

siy Xy S Qs x FI(V) x V

b=pr1 xidFl(/V) xidy
¢ /
X

where 7(Fy,...,F., F|,...,Fl) = ((Fo, F1), F.,v).

(11) S =0

It is easy to see that the fibers of the map 1) are isomorphic to P!. For each point z € X
we obtain the corresponding map 7 : ¢~(z) — ¥ ~'(z) = P'. We have the following
commutative diagram, whose middle part coincides with diagram 11:
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(12) ¢~ () s Y (z) =P
X
S=Q Xy, S i Q. xFI(V) xV
o P=pry XidFl(V) Xidy
projection praXidp (v Xidy
X
! X
S &

All the 4 squares in this diagram are Cartesian.

Denote by » : ~!(z) — X the composition of maps from the commutative diagram 12.
This map is an embedding.

For each point y € 1~ (z) we have 7~ 1(y) = (¢') ! (5(y)). By the induction hypothesis,
all the fibers of ¢/ can be decomposed into pieces of required form. If z = (F, F’,v) then
the image L of the map » consists of triples (F,F”, v) such that (F',F) C Q. For
x’ € X the fiber (¢/)~!(2’) depends only on the orbit €z which contains 2’. The line L
can intersect 2 or 3 such orbits; one intersection is open in L, and any other intersection
is just one point.

Let U = L be the intersection open in L. Since all the fibers of 7 admit a required
decomposition, it is enough to construct the decomposition of the set 7= (U’) & ¢—1(U)
where U’ = »—1(U) = U. This follows from the fact that the bundle (¢')~}(U) — U is
trivial.

Indeed, in this case for any 2’ € U we have ¢'"1(U) 2 U x (¢')~*(2'), because ¢'~*(z')
admits the required decomposition, and U is isomorphic to either Al or G,,.

It remains to prove the triviality of the bundle (¢/)~!(U) — U. Note that the bundle
S" — X is GL(V)-equivariant. Choose a point ' € U and consider a map GL(V) — X,
given by g — ¢ - 2/. Then the induced bundle S x, GL(V) — GL(V) is trivial, so it is
enough to prove that there exists the dotted arrow in the diagram
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This can be checked directly.
So the proof of proposition 4 is finished.

Corollary 2. Bimodule R s generated by the elements e; = Ty, .
Proof. We prove by induction on ¢(w) that Ty € >, He;/H.

Choose i1,...,4r,41-..,7s and k as in Proposition 4. Then
Ty, Ty Ta To oo Ty =To+ Y aaTa
@<

where a; € Z[v,v7!], and @& < @ means Q; C Qz. The left hand side of this equality
belongs to HeiH (recall that e, = Ty, ). Besides, by the induction hypothesis, T; €
>; HeiH for each @ < w. Hence, Y - azTs € >, He;/H.

From this we can conclude that T € ZZ He, H. O

Corollary 3. For any w € RB, the sheaf §,.Q;[¢(w) + n](é(w;rn) is Tate.

Proof. Follows from Proposition 4.b) by the Decomposition Theorem. O

Corollary 4. The Grothendieck group of the derived constructible G-equivariant cate-
gory of Tate Weil Q;-sheaves on X is isomorphic to R as an H-bimodule with respect to
convolution.

4.5. Duality and the Kazhdan-Lusztig basis of R. Recall the involution (denoted
by h + h) of H which takes v to v—! and H,, to H,. Tt is induced by the Grothendieck-
Verdier duality on F1(V') x F1(V'). We are going to describe the involution on R induced
by the Grothendieck-Verdier duality on X.

Recall the elements w; = (w,3;) € RB such that w = id (the identity permutation),
and B; = {1,...,i}, where i =0,..., N. We set sz = Zogjgi(_")j_inj' This is the
class of the selfdual (geometrically constant) IC sheaf on the closure of the orbit Q,.

Proposition 5. a) There exists a unique involution r — T on R such that Eﬁu = Ewl
for anyi=0,...,N, and hr = h¥, and rh =Th for any h € H and r € R.
b) The involution in a) is induced by the Grothendieck- Verdier duality on X.

Proof. The uniqueness in a) follows since R is generated as an H-bimodule by the set
{E @, ©=0,...,N}, according to Corollary 2. Now the Grothendieck-Verdier duality on
X clearly induces the involution on R satisfying a); whence the existence and b). O

Now let w1 < w9 stand for the adjacency Bruhat order on RB described combinatorially
in [14], section 1.2.
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Eroposition 6. a) For each w € RB there exists a unique element Hg € R such that
Em = Hyg, and Hy € Hg + ZQQI; V_lZ[v_l]Hg.
b) For each w € RB the element Hy is the class of the selfdual G-equivariant 1C-sheaf

with support Qg. In particular, for @ = w;, the element H g, is consistent with the notation
introduced before Proposition 5.

Proof. a) is a particular case of [12], Lemma 24.2.1.

b) We already know that Hy is the class of jQ;[¢(w) + n](%), and i, Q[0(w) +

n](@) is Tate. Now b) follows from the Beilinson-Bernstein-Deligne-Gabber purity

theorem by the standard argument (see e.g. [3], section 6). O
We conjecture that the sheaves ji.Q;[¢(w) + n](%) are pointwise pure. The parity
vanishing of their stalks, and the positivity properties of the coefficients of the transition

matrix from {Hg} to {Hg} would follow.

4.6. The structure of the H-module R. It is known that the algebra H ®zf, -1 Q(V)
is isomorphic to the group algebra of symmetric group Q(v)[&y]. Hence, the isomorphism
classes of irreducible modules over H ®z,, 1) Q(v) are indexed by the set of partitions of
N. We denote by V,, the irreducible module corresponding to a partition v.

Proposition 7. H @z, v-1) Q(v)-bimodule R @z, 1) Q(v) has the following decompo-
sition into irreducible bimodules:

(14) R @z Q)= PV @gm Vo
(7,0,0')€T
where the sum is taken over all the triples of partitions v,0,V such that |v| = |V/| = N

and for any i > 1 we have v; > 0; > v; —1; v, > 6; > v| — 1.

Proof. Choose a finitely generated Z[v,v~!]-algebra A C Q(v) such that H Qzv,v-1] A is
isomorphic to a direct sum of matrix algebras over A, so that V,, is defined over A. Then
it suffices to prove that this isomorphism holds after the specialization - ® 4 C which takes
v — ,/q where ¢ is a prime power such that A % (v2 — ¢)~%. In this case the left hand
side of formula (14) can be interpreted as

Endp(k) (E) @ H ®Z[V,v*1} (C

where P(k) C GLy is the stabilizer of v # 0, and E is the vector space introduced in
subsection 4.1. According to [18], Theorem 13.5.a), the irreducible components of P(k)-
module E are indexed by partitions 6 with |#] < N. We denote by Wy the irreducible
representation of P(k) indexed by 6. Denote by U, the irreducible unipotent represen-
tation of G(k) indexed by v. Then the restriction of U, to P(k) is a direct sum of the
representations Wy (with multiplicity one) for all 6 such that v; > 6; > v; — 1 for any @
and 0 # v.
As a representation of the group G(k), E admits a decomposition as follows:

E:EBU,,@VV
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(Here G(k) acts on V,, trivially). Therefore, as a representation of P(k), E can be written
in the form

It follows that
/ ES !
Endpgy(E) = € ' VeV,

where the sum @' is the same as in formula (14), but the case v = 6 = v/ is excluded.
Besides, we have H ®z[yy-1] C = @D,V ®V,. Adding these equalities, we obtain the
required result.

O

5. BiIMODULE KL CELLS

5.1. Consider all possible subbimodules of bimodule R spanned by subsets of basis Hy.
We say that two coloured permutation w and '’ belong to the same Kazhdan-Lusztig
bimodule cell if for each such subbimodule M we have Hy € M <= H' € M. If instead
of subbimodules we consider left or right submodules then we obtain the definition of left
and right Kazhdan-Lusztig cells.

For N = 3, a big part (for § nonempty) of RB is depicted in [14] 1.3
with the help of Latin alphabet. It is a wunion of 13 two-sided KL cells:
{max}, {Z, ’LL}, {y7 o,D, h}7 {l‘, t}7 {U7 w, m, ’I’L}, {57 iv ka b}v {Tv 9}7 {Q7 f}7 {la C}a
{j,d}, {e}, {a}, {min}. We take this opportunity to add two order relations missing in
loc. cit: c<l, r<w.

Conjecture 1. The bimodule KL cells coincide with the two-sided microlocal cells.

We are only able to prove an inclusion in one direction, see Theorem 3 below. First we
have to formulate and prove a few lemmas.

5.2. Consider the projection 7}: ¥ — FIO(V) x FI(V) x V x N x N x V* where F1)(V)
is the variety of flags consisting of subspaces of V' which have dimensions O,...,7i — 1,7 +
2,...,N. This projection sends a point (Fi, Fs, v, uy, ug,v*) to (F’l,Fg,v,ul,UQ,v*) where
Fy is obtained from F} by deleting the subspaces of dimensions 4,7 + 1. Let ¥; = (V).

Besides, for each i € {1,...,N — 1} consider the set ®; C RB defined as follows:
(w,3) € @; iff for a general (Fi,Fh,v,ur,u2,v*) € Y, 5 we have wilp ., ,/r, , = 0.
Denote by s; = (i, 4+ 1) the elementary transposition.

Lemma 7. a) Let (w,3) € RB,i € {1,...,N —1}. Then (w,() € ®; iff w(i) > w(i + 1)
and N {i, i+ 1} # {i}.

b) Let (w,B) and (w', ") be distinct colored permutations. Then m,(Yy ) = (Y )
iff w(j) =w'(j) when j € {1,...,N}\{i,i +1,i+ 2},
BAB = (B\F)U (B \B) C{i,i+1,i+ 2}, and one of the following conditions is sat-
isfied up to interchanging (w, ) and (w',3):
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1ow(i) <w(i+2) <w(+1),
BOiri+1,i+2} € (o, {ih {ii + 21 {00 + L+ 2}},
w' = ws;, B = si(B);
2. w(i+2) <w() <w(i+1),
B0 {iyi+1i+2) € {2, i+ 21, i + 21, i + 1+ 2))
w = wsiy1, B = sit1(6);
3 w(i+2) <w(i+1) <w(i), fO0 i+ 1i+2) = {ii+2),
’lU,—’lUSH_l, _82+1( )a
4. w(i+2) <w() <w(+1), gn{i,i+1,i+2} = {i},
w' =ws;, B = si(0);
(i+2) <w(+1) <w(@), Bn{ii+ 1,7+ 2} = {i},
w =w, f = BU{i+1}.

Proof. a) Let {e;} be a basis of V and « = (Fi,Fp,v) € Q43 be the element given
by (3), (4), (7). We must find the conormal space N3, 3 C T X. It is isomorphic to the
space of triples (uq, u2,v*) such that uy is a nilpotent preserving Fy and uj +us+v®@v* = 0.
Let

ot
S

N

N
(15) up =Y (u)ij B, Z

ij=1
where F;; is defined by (5) and e is the basis dual to e;. Then the last relation is
equivalent to the fact that the following conditions are satisfied:

¢ =0 for i € G

(u1)ij = —(u2)i; fori,jepori,jégp;

(ug)ij =0 fori g (3, j €p,

(w)ij + (u2)ij = —¢; forie B, j &8, i<y, wi) <w(j);
(u1)ij = —¢j, (u2)ij =0 forief, j&pB, wi)>w(j);
(u1)ij =0, (u2)i; =—c; foriep, j&pB, i>3].

If we substitute j =i + 1, we obtain the statement a) of the lemma.

b) Note that the fiber (a})~'(j) over an arbitrary point § = (F},Fy,v,
uy,uz,v*) € Y; is isomorphic to the variety of full flags in the 3-dimensional space
Fiivo/F1 -1 fixed by u1; = ullﬁl,i+2/ﬁl,i—1' The structure of this variety depends on the
type of u; ;. There are three possibilities for this type: (3), (2,1) and (1,1,1). Denote
W = m(Yyg), W = 7(Yy p). Since m, is proper, W and W' are closed. Suppose
W — W'. This means that for a general point § € W the fiber (7})~1(f) is reducible,
so the type of u;; equals (2,1). Such fiber has a form of a union of two intersecting

projective lines:
(7)) ' (@) =
L(y) = {(F1, Fo,v,u1,u2,v") € (7
( ) {(F17F27U7u17u277]*)€(ﬂ'

() Ula(9);
D7) | Fri/Frioi = imug )
) @) | Fiip1/Frio1 = kerug ;).



MIRABOLIC ROBINSON-SHENSTED-KNUTH CORRESPONDENCE 21

Let U C W be the set of all § € W such that the type of u;; equals (2,1). It is an open
dense subset in W. Consider the sets Uy = (UJ;crr Ix(9). The set Uy UUz = (7))~1(U) is an
open subset of (7})~1(W). Since Uy UUs C Yy, U Yy g and Uy are irreducible, we must
have either Y, 3 = Uy, Y g = U, or Yup= Us, Y g = U,. Without loss of generality,
we can assume that we have the first case. Then it is easy to see that (w, ) € ®;11 \ @5,
(w’, ﬂ/) € P, \ (I)H—l'

Conversely, if (w,3) € ®; \ ®;11 (resp. (w, ) € ®;y1 \ ®;) then the type of u;; for a
general § € W is (2,1). Therefore, we have Y, 3 = U; (resp. Yy, 3 = Us). So, there exists
exactly one (w',8") € ®ip1\ ; (resp. (w,B) € ®; \ ®i41) such that 7} (Y, ) = 7, (Y g)-

It is clear that the condition (w, ) € ®;41 \ ®; is equivalent to the fact that the first
two parts of one of the conditions of the lemma are satisfied. So, we must prove that if
(w', 3") is given by the last two equations of this condition then we have W = W’. Choose
a general y € Y, 3 and let § = ) (y). Since (w, ) € ®ijt1\ ®;, we have y € [;(g). We must
prove that lo(§) C Yy g. Let y = (Fi, Fa,v,u1,u2,v*) be given by (3), (4), (7) and (15)
for some basis {e; }.

First suppose the condition 1 of the lemma is satisfied. Then we have a := (u;); 41 # 0,
b= (u1)iiy2 # 0, (u1)iy1,i42 = 0. So,

ker Ui, = (62', bei+1 - aei+2> mod F17Z'_1.
Consider the space F1’7Z~+1 such that F1’7i+1/F1,2-_1 = keruy ;. Then
Fii41 =9 Fiip1 where g = id — (a/b)Eji12,41 € GL(V).

A general point y1 € I2(9) has a form yy = (FY, F2,v,u1,u2,v*) where F{’, | = F[ ., and
FY'; = Fyjfor j #i,i+ 1. If F{' # g- Iy then FY' = ghs; - F} where h = id + cE} ;41 for
some c € k, and s; € GL(V) is given by sie; = e, ;).
Denote ¢’ = ghs;. Let y} = (¢')~! - y1. Then
vi=(Fr, (9)7" B ()7 v, (Ad(g)7TH) -, (Ad(g)7h) -z, (9)"0%)

Note that g and h preserve F5, so we have

(@) F=shlg =5 F
Therefore (¢/) 1 Fy j = (€w(1)s - -+ €ur(j)) for all j. Further,

(9) o= disie; =Y dype

JEB JER

where d; € k and d; # 0 for general a,b,c. This implies that 3} € N*Qu g C Yy .
Hence y1 = ¢ -y} € Y g. Thus any general point y; € lo(y) lies in Y, g. Therefore

lg(g) C Yw/ﬂ/. QED
Other cases can be considered in a similar way. O

5.3. For each (w,3) € RB there exists at most one (v, 3') € RB such that conditions of
the above lemma are satisfied. We will denote it by (v', 3') = K;(w, 3).

Lemma 8. Let W = (Y, 3) be the image of an irreducible component of Y. Choose
an open dense subset U C W such that the type A of the nilpotent uq is the same for all
points of U. Consider the set Cw = {(v', ') € RB | n(Yy g) = W}. There exists a
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natural bijection Ty : Cyw — St(X) such that for each pg € U and (w',3") € Cw we have
Yw/ﬂ' N 7T_l(p(]) = Flul,'rw(w’,ﬁ’) X{pO}'

Proof. For each T' € St(\) consider the set

(16) Ur = |J (Flyypyr x{p}) c o '(U) C Y-
peU

We have Urpegyn) Ur = 771(U). The sets Ur are irreducible components of 7=(U). Note
that the equation 7(Y,y g) = W is equivalent to the fact that Y, g dominates W (we
use that 7 is proper). In this case Y, g must coincide with Ur for some T. In particular,
Yuw,p = Up, for some Ty € St(A). Since dimUp = dim Uy, = dimY,, 3 = dimY for each
T € St(\), each Uy is an irreducible component of Y such that 7(Ur) = W. So, we have a
one-to-one correspondence between the sets Cy and St(A). Obviously, this correspondence
can be described as in the statement of the lemma. O

5.4. Let m;: FI(V) — F1¥(V) be the natural projection. For each i € {1,...,N — 1}
consider the set ®, C St(\) defined as follows: T € @/ iff for a general F' € Fl,, r we have

ul‘Fi+1/Fi71 =0.

Lemma 9. a) Let T € St(A). Then T € @, <= ri(T) <rip1(T) <= (T) > ¢i1(T)

where r;(T) (resp. ¢;(T)) stands for the number of row (resp. column) in T containing i.
b) Let T, T" € St(\) and T # T'. Then mi(Fly, v) = mi(Fly, 1) iff one of the following

conditions is satisfied up to interchanging T and T :

1.2 rio(T) < 7i(T) < 7i:1(T) and T' is obtained from T by interchanging i +1 and i+ 2.

2.3 7{(T) < ripa(T) < 1ri41(T) and T' is obtained from T by interchanging i and i+ 1.

Proof. a) This statement is equivalent to Lemma 5.11 in [17].

b) Arguments similar to those used in the proof of Lemma 7 b) show that we can
define an involution Kj: ®; A ®; , — ®; A & , such that Kj(®]\ ®;, ;) = @ ; \ ®;
and such that a pair of tableaux T' # T' € St(\) satisfies m;(Fl,, 7) = mi(Fl,, 1) iff
T e®,A®;, , and T" = K{(T). Thus we must prove that this involution can be described
by the conditions 1, 2 of the lemma.

Suppose T' € ®;\ @, and T’ = K/(T) € @, \ ®;. Then the first part of one of the
conditions 1, 2 must be satisfied, and we must prove that T” is given by the second part.
The equation m;(Fl,, ) = mi(Fl,, 77) implies that for j € {0,..., N} \ {i,7 + 1} and for
general I’ € Fl,, r and F' e Fl,, 1/ the types of ullpj and Ul’FJ{ are the same. This means
that T' and 7" can differ only in the position of i, i 41, i + 2.

Moreover, choose a general point F' € m;(Fl,, 7). Let {x(F') (k = 1,2) be two irreducible
components of 7; *(F) defined similarly to the proof of Lemma 7 b), and let F', F” be

general points of [; (F),l(F) respectively. Then F’ (resp. F”) is a general point of Fl,, 7
(resp. Fly, 7). In particular, F’ € FIT' | F" ¢ FIZ . Let ly(F) Ni(F) = {F}, and let T}

uy?

be the tableau such that F} € Flg} Then we obtain that 7" (resp. T7”) can differ from T}
only in the position of ¢ and i+ 1 (resp. i + 1 and ¢ + 2).

2the condition 7i42(T) < r4(T) < ri1(T) is equivalent to ¢;yo(T) > ¢;(T) > cip1(T).
3the condition 7(T) < riya(T) < riv1(T) is equivalent to ¢;(T) > cira(T) > ciy1(T).
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If T satisfies the first part of the condition 2 of the lemma, the last condition and the
conditions T € ®;\ ®; ; and T" € ®;_; \ @] imply the desired statement.
If the first part of the condition 1 is satisfied, there is another a priori possible case:

ri(T1) < riga(Th) < riga(Th)

c¢i(T1) > ciy1(Th) > civ2(Th)

T is obtained from 77 by interchanging i and ¢ + 1

T’ is obtained from 7 by interchanging i + 1 and 7 + 2

In this case consider the tableau T” obtained from T by interchanging ¢ + 1 and 7 + 2. If
we apply the above argument to the pair K/(T"),T" instead of T, T", we will obtain that
K/(T") =T, contradicting K/(T") = T. So, the lemma is proved. O

5.5. For each T' € St(\) there exists at most one tableau 7" satisfying the conditions of
Lemma 9. Denote it by 7" = K/(T).

Lemma 10. Let W be the image of an irreducible component of Y under the map w. Then
for each i € {1,...,N — 1} we have 7w (®; N Cyw) C @, and for each i € {1,...,N — 2}
we have Ty o K; = K/ o Tyy.

Proof. In the proof of Lemma 8 we have shown that for each (w,3) € Cw we have
Y g = Ur where T' =ty (w, §) € St(A\). Now the first inclusion follows immediately from
the definition of ®; and ®!. Let us prove the second equation. Suppose (v, 5') = K;(w, 3).
Let 7;: ¥; — Y be the projection satisfying 7; o 7, = w. Then

W =7(Y,p) = 7i(7i(Yu,p)) = 7i(m(Yur 7)) = 7(Yar p)
So, (w',3") € Cw. Denote T' = 1w (w, ), T = rw(w', 3’). Then for each py € U we have
7i(Fluy (poy. 1) = i(Yao,s 0V (p0)) = i (Yao,5) N 75 (po)
and the same for 7”. The equation (v, ") = K;(w, ) means that «}(Yy, g) = 7/ (Y )
and (w, 3) # (w',3'). Taking the intersection with 71 (p), we get m;(Fl,, ) = m;(Fl,, 1)

and T # T’ (this inequality follows from the fact that 7y is bijective).
So, we get T" = K/(T). O

5.6. We write down the action of Hecke algebra generators on bimodule R in the Kazhdan-
Lusztig basis Hg. For i € {1,..., N — 1}, recall the subset ®; C RB introduced in 5.2.
Let w,w' € RB and w' < w. Consider the restriction IC(Qy)la,, of the IC-sheaf
of Qg to Q. It is a constant Tate complex on Qg4 concentrated in cohomological
degrees less than —n — ¢(w'). We denote by p(@',w) = wp(w,w") the dimention

dim H—2=4@)=1(1C(Qg),) where z € Q.

Proposition 8. For any w € RB andi € 1,...,N — 1 we have

— (v 4+ v)Hg, if e d
W' <w

w' eP;
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Proof. By definition, Hy is the class of the IC-sheaf of the orbit closure Qgp, Hg =
[IC(Qg)]. Therefore Hy - H s; 1s the class of the direct image of the IC-sheaf under the
map Y: S = ﬁsi X g1v) Qs — X. If W € ®; then the image of this map coincides with Qg
and all its fibers are isomorphic to P!, hence we obtain the required formula. If @ ¢ ®;
then im(¢)) = Qgss (s = s;) and all the fibers of 1 are isomorphic either to P! or to
a point. We claim that the direct image of the IC-sheaf under the map v is perverse.
Indeed, pick an orbit Qg inside Q.. We need to show that 1, (IC(S))|q,, is concentrated
in degrees < —n — £(@'). Let z € Qg and Q = ¥~ !(x). Then we have 1, (IC(S)), =
RU(Q,IC(S)|q). If @' = x s then Q is a point and RI'(Q,IC(S)|g) = Q;[n + £(@')]. If
@ is a point but @' # W * s then the properties of IC-sheaf imply that H™(IC(S)|g) =0
for m > —n — 4(0').

Otherwise, if Q = P! (this happens if and only if @' * s < @), let U = Q N ¢~ ( Q)
where ¢: S — Qg is the projection to the second factor. Then U is open and dense
in @, and IC(S)|y is constant. The complex IC(S)|y is concentrated in degrees <
—n — {(w') — 2, and IC(S)|g\v is concentrated in degrees < —n — £(@') — 1. From
this we obtain that H™(IC(S)|g) = 0 for m > —n—£(@') and dim H*~“)(1C(S)|q) =
dim H—2~4®)=2(1C(S),/) where 2/ € U. Note that if we identify U with ¢(U), we have
IC(S)ly = IC(Qa)|pwn[1]. Besides ¢(U) C Qurus. If @' ¢ ®; then @' x s > @', and
therefore dim H~"~4®)-2(1C(S),/) = dim H‘“_Z(W*s)(IC(ﬁw)¢(x/)) =0. If &' € ®; then
W' x5 = 1/, and therefore dim H—2~4®)=2(1C(S),/) = dim H‘“_Z(’I’*S)_l(IC(ﬁw)(b(x/)) =
w(w' * s,w) = p(w',w). So we get

dim H" (. (IC(S)),) = dim H™(IC(S)|g) =0 if m > —n — £(d');

1 if W' =wx*s;
dim H ™2~ (4, (1C(S)),) = dim H2~@)(1C(8)|g) = { p(@, %) if &' < @ and @ € ®;;
0 otherwise.

Now, taking in account that 1, (IC(S)) is selfdual, we obtain the desired decomposition.
O

Remark 2. Note that Proposition 8 implies that the bimodule R arises from a certain
Gy X 69V—graph [ mir in the terminology of [10], where 6?\, = Gy is the opposed group
to Gy, i. e. 8% = {¢°, g € &n} with multiplication given by g°h® = (hg)?. The set of
vertices of 'y is RB; the labels I; are defined by Iy = {s? | @ € ®;} U {s; | 0w ! €
®,; }; the edges are {w,w'} such that @' < w, p(w',w) # 0 and Iy # Iz; finally, the
multiplicities are p(w,a’).

5.7. One-sided microlocal cells. Let W = 7n(Yy) (@ € RB) be the image of an
irreducible component of Y. We define the right microlocal cell corresponding to W as
the set Cyy described in Lemma 8. We define a left microlocal cell as the image of a right
microlocal cell under the involution @ +— @w~'. In terms of bijection RSK,;, introduced
in 3.4, two-sided microlocal cells are given by condition t(w) = const. The left microlocal
cells are given by conditions t(w) = const and T} (w) = const , and the right microlocal
cells are given by conditions t(w) = const and T»(w) = const. Each two-sided microlocal

cell is a union of left microlocal cells and of right microlocal cells as well; moreover, each left
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microlocal cell and right microlocal cell inside the same two-sided microlocal cell intersect
exactly in one element. Two-sided microlocal cells are the minimal subsets which are
unions of both left and right microlocal cells.

Now recall that t(w) = (v,0,v) =: (v(w),8(w), V' (0)).

Theorem 3. a) Each left (right, two-sided) microlocal cell is contained in a left (resp.
right, bimodule) Kazhdan-Lusztig cell.

b) Conversely, for wi,wy in the same left (right, bimodule) Kazhdan-Lusztig cell, we
have v(wy1) = v(ws) (resp. V(1) = V' (w2), resp. v(i) = v(wy) and V' (1) = v'(w2)).

Proof. 1t suffices to prove the theorem for one-sided cells and, by the reason of symmetry,
only for right-handed ones. Let us formulate the following auxiliary proposition.

Proposition 9. Two elements w,w' lie in the same right microlocal cell iff there is a
sequence W = Wi, W,..., W, = W such that for each j = 1,...,m — 1 there is i €
{1,...,N — 2} such that Wj;1 = K;(w;) (see 5.3).

Proof. Tt is easy to see from the definition of operations K; that if @' = K;(w) then
w and @’ lie in the same right microlocal cell. This implies the “only if” direction.
Conversely, let @ and @’ lie in a microlocal cell corresponding to W. Consider the bijection
w : Cw — St(A\) of Lemma 8. In view of Lemma 10 it suffices to prove that any
2 standard Young tableaux of the same shape can be obtained from each other by a
successive application of operations K.

It can be checked directly. O

It is easy to check that if W' = K;(w) then, up to permutation of w and @', we have
W < W', moreover

W =w*s; W =W * si11
w € (I)i—i-l or w E P,

~/ ~/

W' ¢ Pipq W' ¢

Observe that if w < @' and ¢(@') = ¢(w) + 1 then u(w, ") = 1, so, taking in account
Proposition 8, it follows that if @ = K;(w) then @' and w lie in the same right Kazhdan-
Lusztig cell. Therefore, in view of Proposition 9, each microlocal cell lies in a Kazhdan-
Lusztig cell. So the proof of Theorem 3.a) is finished.

For the proof of b), we can realize the H-bimodule R in the Grothendieck group of G-
equivariant Hodge D-modules on X. Then we have the functor of singular support from
the category of G-equivariant Hodge D-modules on X to the category of G-equivariant
coherent sheaves on T*X supported on Y. Similarly, we have the functor of singular
support from the category of G-equivariant Hodge D-modules on F1(V)) x F1(V') to the
category of G-equivariant coherent sheaves on the Steinberg variety of G. These functors
are compatible with the convolution action. Thus if ICy, is a direct summand of the
convolution of ICyg, with ICy, and ( 'uy, ‘ug, ‘v, v*) (vesp. ( 2u1, 2ug, v, 2v*)) is
a general element in the conormal bundle to Qg, (resp. €g,), then u; must lie in the
closure of G-orbit of 2u; (and similarly, 'us must lie in the closure of G-orbit of us). The
proof of b) is completed. O
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5.8. Fourier duality. In this subsection we will write X (V),Y (V),Qz(V),... instead
of X,Y,Qg,... to emphasize the dependence on V. All the statements in this subsection
are straightforward and left to the reader as an exercise.

Note that we have a canonical isomorphism Y (V) = Y(V*), (Fy, Fa,v,uy, ug, v*) —
(Ff, Fy,v*,uf,us,v). Therefore we get a bijection between the sets of their irreducible
components, which gives rise to an involution F on RB.

Proposition 10. For any w = (w, 3) € RB we have F(0) = (wowwq, {1,..., N} \wo(5))
where wy € Sy is the longest element, i. e. wo(i) = N + 1 —1. O

Further, we have an isomorphism : Z(V) = Z(V*). It carries images of irreducible
components of Y (V') to images of irreducible components of Y (V*), therefore ¢)(Z¢(V)) =
Zg«(V*) for some t* € T.

Proposition 11. If t = (v,0,v) € T then t* = (v,0*,V) where 0 = min{v;, v} +
max{viy1,v{ 1} — b;. O

Proposition 12. If RSKy(w) = (t,71,1) then RSKy,i:(F(w)) = (t*, 15, T5) where t*
is the same as in Proposition 11, and T}, Ty are conjugate tableaux to Ty, To (see [§]
for the definition). Besides, the partition 6* () = 0(F(w)) is the shape of the tableau T
from 8.5 with all @’s removed. O

Corollary 5. The involution F on RB carries left, right, and two-sided microlocal cells
to left, right, and two-sided microlocal cells, respectively. O

Now consider the Fourier-Deligne transform FD from the derived constructible G-
equivariant category of Q;-sheaves on X (V) = FI(V) x FI(V) x V to the derived con-
structible G-equivariant category of Q;-sheaves on X (V*) = F1(V*) x FI(V*) x V* =
F1(V)) x F1(V') x V*. It gives rise to an involution F on R which is compatible with the au-
tomorphism of the algebra H induced by conjugation with wg on the Coxeter group &y. It
carries G-equivariant /C-sheaves on X (V') to G-equivariant /C-sheaves on X (V*). There-
fore we obtain the following

Proposition 13. For any w € RB we have F(EU;) = EF(U;). ([l

Corollary 6. The involution F on RB carries left, right, and bimodule Kazhdan-Lusztig
cells to left, right, and bimodule Kazhdan-Lusztig cells, respectively. O

5.9. Relation to mirabolic character sheaves. Recall the definition of unipotent
mirabolic character sheaves on GL(V) x V| cf. [6] 5.4 and [7] 5.2. We consider the following
diagram of GL(V')-varieties and GL(V')-equivariant maps:

GL(V) x V <&~ GL(V) x FI(V) x V —L FI(V) x FI(V) x V.

In this diagram, the map pr is given by pr(g,z,v) := (g,v), while the map f is given by
flg,z,v) := (gz,z,v). The group GL(V) acts diagonally on all the product spaces in this
diagram, and acts on itself by conjugation.

The functor CH from the constructible derived category of [-adic sheaves on F1(V') x
F1(V') x V to the constructible derived category of l-adic sheaves on GL(V') x V' is defined
as CH := prif*. Now let F be a GL(V)-equivariant perverse sheaf on FI(V') x FI(V) x V.
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The irreducible perverse constituents of CHF are called unipotent mirabolic character
sheaves on GL(V') x V. Clearly, this definition is a direct analogue of Lusztig’s definition
of character sheaves.

Recall the following examples of unipotent mirabolic character sheaves (see [6] 5.4).
For M < N let Xy s be a smooth variety of triples (g, Fu,v) where g € GL(V), and
F, € F1(V) is a complete flag preserved by g, and v € Fj;. We have a proper morphism
N Xna — GL(V) x V (forgetting F,) with the image Xx.3s € GL(V) x V formed
by all the pairs (g, v) such that dim(v, gv, g?v,...) < N — M. According to Corollary 5.4.2
of loc. cit., we have

A|l=N—M

(TN ) IC(Ena) = D Lu®Lr® Fay
lul=M

for certain unipotent mirabolic character sheaves F) , supported on Xy a7, and Ly, resp.
L, is an irreducible representation of Sy _ s, resp. Syy.

We conjecture the following formula for the class of CHH  in the K-group of unipotent
mirabolic Weil sheaves.

Conjecture 2. CHH; = 2o+l =N A (H @) Faul where fr, is a functional R —
Z[v,v7Y such that fx,(hr) = fru(rh) for any r € R, h € H. Moreover, in the de-
composition (14) of Proposition 7, fx , vanishes on all the summands except for V.; @V,
corresponding to (7,0,7) € T where T(\, p) = (1, 6).

5.10. Asymptotic bimodule. For a partition v of N, let ¢, C Gy be the corresponding
two-sided KL cell. Let a(c,) = a, = N>~ N—n,, = N22_N —>_i>1(i—1)v; be its a-function.
For multiplication in H we have H,, -Ey = ZZESN mw,%zﬁz, for my .. € Zlv,v71]. If
w,y, 2 € ¢, then, according to Lusztig, the degree of m,, , . is less than or equal to a,. Let
Yw,y,= € Z be the coefficient of v® in my,, .. Lusztig’s asymptotic ring J, is defined as a
ring with a basis {t,,, w € ¢, } and multiplication t,,-t, = > c. Yuy,-t.- By the classical
RSK algorithm, ¢, is in bijection with the set of pairs of standard tableaux {(71,75)}
of shape v. According to [11] 3.16.b), the ring J,, with basis {f,,} is isomorphic to the
matrix ring Matg () with the basis of elementary matrices {er, 1,}, so that t,, goes to
er,, 1, where (T1,T3) are constructed from w by the classical RSK algorithm.

Now for a pair of partitions v O 6 we consider the corresponding bimodule KL cell
¢y50cy C RB. For @ € RB, and y € Gy we have Hg - Hy = > - pp My s Hz, and
H Hw = ZzeRB My ZH We conjecture that for w, Z € ¢,~gcy, and y € ¢, the degrees
of Mg,y and my 5z are less than or equal to a,. We denote by 7,.,; the coefficient of
v® in my 5.z, and we denote by 74,45 the coefficient of v® in mg, 3. We define the
asymptotic bimodule J,~g, over J, as a bimodule with a basis {tg, @ € c,~g9c,} and
the action ty - t, = ZEEcugecy Yiry,ztz, and ty -ty = 22601@@@ Vy,i,5tz-

Conjecture 3. The based bimodule J,~gcy,{ts, W € cu~acy} is isomorphic to the based
regular bimodule Matgy(,y, {er; 1, }, so that ty goes to er, 1, where (T1,Ts) are constructed
from w by the mzmbolzc RSK algorithm.
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