MIRABOLIC AFFINE GRASSMANNIAN AND CHARACTER
SHEAVES

MICHAEL FINKELBERG, VICTOR GINZBURG AND ROMAN TRAVKIN

ABSTRACT. We compute the Frobenius trace functions of mirabolic character sheaves
defined over a finite field. The answer is given in terms of the character values of general
linear groups over the finite field, and the structure constants of multiplication in the
mirabolic Hall-Littlewood basis of symmetric functions, introduced by Shoji.
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1. INTRODUCTION

1.1. This note is a sequel to [13]. We make a free use of notations and results thereof.
Our goal is to study the mirabolic character sheaves introduced in [3]. According to
Lusztig’s results, the unipotent character sheaves on GLy are numbered by the set of
partitions of N. For such a partition A we denote by F) the corresponding character
sheaf. If the base field is k = [F, the Frobenius trace function of a character sheaf J on a
unipotent class of type u is WK ,\,u(q_l) where K ,, is the Kostka-Foulkes polynomial,
and n(p) = 2221(1' — 1), see [4].

Let V = k¥, so that GLy = GL(V). For a pair of partitions (), ) such that
|A| + |u] = N the corresponding unipotent mirabolic character sheaf Fy , on GL(V) x V'
was constructed in [3]. On the other hand, the GLy-orbits in the product of the unipo-
tent cone and V are also numbered by the set of pairs of partitions (N, ') such that
IN| 4+ |¢/| = N (see [13]). In Theorem 2 we compute the Frobenius trace function of a
mirabolic character sheaf F) , on an orbit corresponding to (X, 4/). The answer is given
in terms of certain polynomials Iy ,/)(x ), the mirabolic analogues of the Kostka-Foulkes
polynomials introduced in [11]. More generally, in 5.4 we compute the Frobenius trace
functions (on any orbit) of a wide class of Weil mirabolic character sheaves. These trace
functions form a basis in the space of GLy (F,)-invariant functions on GLy (FF,) x IE‘(]IV , and
we conjecture that the above class of sheaves exhausts all the irreducible G,,-equivariant
Weil mirabolic character sheaves. This would give a positive answer to a question of
G. Lusztig.
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Recall that the Kostka-Foulkes polynomials are the matrix coefficients of the transition
matrix from the Hall-Littlewood basis to the Schur basis of the ring A of symmetric func-
tions. Similarly, the polynomials II(y ,)(x ) are the matrix coefficients of the transition
matrix from a certain mirabolic Hall-Littlewood basis of A ® A (introduced in [11]) to the
Schur basis, see 4.2. Recall that A is isomorphic to the Hall algebra [7] whose natural basis
goes to the basis of Hall-Littlewood polynomials. Similarly, A ® A is naturally isomorphic
to a certain mirabolic Hall bimodule over the Hall algebra, and then the natural basis of
this bimodule goes to the mirabolic Hall-Littlewood basis, see section 4. The structure
constants of this basis, together with Green’s formula for the characters of GLy (F,), enter
the computation of the Frobenius traces of the previous paragraph.

The Hall algebra is also closely related to the spherical Hecke algebra H*P! of GLy (the
convolution algebra of the affine Grassmannian of GLy). Similarly, the mirabolic Hall
bimodule is closely related to a certain spherical mirabolic bimodule over H®P" | defined in
terms of convolution of the affine Grassmannian and the mirabolic affine Grassmannian,
see section 3. The geometry of the mirabolic affine Grassmannian is a particular case of
the geometry of the mirabolic affine flag variety studied in section 2. Both geometries are
(mildly) semiinfinite.

Thus all the results of this note are consequences of a single guiding principle which may
be loosely stated as follows: the mirabolic substances form a bimodule over the classical
ones; this bimodule is usually free of rank one.

However, the affine mirabolic bimodule R*f over the affine Hecke algebra H*T is not
free (see Remark 1). Recall that H*f can be realized in the equivariant K-homology of
the Steinberg variety. It would be very interesting to find a similar realization of R,

1.2. Acknowledgments. We are indebted to G. Lusztig for his question about classifi-
cation of mirabolic character sheaves over a finite field. We are obliged to P. Achar and
A. Henderson for sending us their preprint [1], and bringing [11] to our attention. It is
a pleasure to thank V. Lunts for his hospitality during our work on this project. M.F.
is also grateful to the Université Paris VI and IAS for the hospitality and support; he
was partially supported by the Oswald Veblen Fund, CRDF award RUM1-2694, and the
ANR program “GIMP”, contract number ANR-05-BLAN-0029-01. The work of V.G. was
partially supported by the NSF grant DMS-0601050.

2. MIRABOLIC AFFINE FLAGS

2.1. Notations. We set F = k((¢)), O = k[[t]]. Furthermore, G = GL(V), and Gy =
G(F), Go = G(O). The affine Grassmannian Gr = Gg/Ggo. We fix a flag F, € FI(V),
and its stabilizer Borel subgroup B C Gj it gives rise to an Iwahori subgroup I C Go.

The affine flag variety F1 = Gg/I. Weset V=F®,V,and V =V —{0}, and P = V /k*.

It is well known that the Gg-orbits in F1 x Fl are numbered by the affine Weyl group
&4 formed by all the permutations w of Z such that w(i + N) = w(i) + N for any i € Z
(periodic permutations). Namely, for a basis {e1,...,enx} of V we set e;1nj =t 7e;, i €
{1,...,N}, j € Z; then the following pair (F}}, F2?) of periodic flags of O-sublattices in V
lies in the orbit Q,, C F1 x F1:
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(1) Fkl = <ek7 €k—1,Ck—2; - - '>7 FI? = <ew(k)7 Cuw(k—1) Cw(k—2)s - - >
(it is understood that e, ex_1,ex_2,... is a topological basis of Fkl)

Following [13], Lemma 2, we define RB*T as the set of pairs (w, 3) where w € Gﬁ, and
(B C Z such that if i € Z — 3, and j € 3, then either i > j or w(i) > w(j); moreover, any
1 < 0 lies in B, and any j > 0 lies in Z — (3.

2.2. Gp-orbits in F1 x F1 x P. The following proposition is an affine version of [9] 2.11.
Proposition 1. There is a one-to-one correspondence between the set of Gg-orbits in
Fl1 x F1 x V (equivalently, in F1 x F1 x P) and RBt.

Proof. The argument is entirely similar to the proof of Lemma 2 of [13]. It is left to the
reader. We only mention that a representative of an orbit corresponding to (w, ) is given
by (F}, F2 v) where (F}, F2?) are as in (1), and v = > kep €k (note that this infinite sum
makes sense in V). O

2.3. The mirabolic bimodule over the affine Hecke algebra. Let k = [, a finite
field with ¢ elements. Then the affine Hecke algebra of G is the endomorphism algebra of
the induced module H*! := Endg, (IndIGr F 7). Tt has the standard basis {T},, w € &3},

and the structure constants are polynomial in ¢, so we may and will view H*% as the
specialization under q +— ¢ of a Z[q,q " ']-algebra H*!. Clearly, H = Endg, (Indf A
coincides with the convolution ring of Gg-invariant functions on F1 x FL

It acts by the right and left convolution on the bimodule R of Gg-invariant functions

on F1 x Fl x V. For @ € RB™ let Ty € R* stand for the characteristic function of the

corresponding orbit in F1 x F1 x V. Note that the involutions (F}, F2) « (F2, F}) and
(Fl,F2,v) < (F2, F},v) induce anti-automorphisms of the algebra H* and the bimodule

of Gg-invariant functions on F1 x F1 x V. These anti-automorphisms send T, to T,,—1
and Ty to Ty—1 where w1 = (w™t, w(B)) for w = (w, B).

We are going to describe the right action of H* on the bimodule R in the basis
{Ty, w € RB*} (and then the formulas for the left action would follow via the above
anti-automorphisms). To this end recall that H aff j5 generated by Tsyyoo., Ty N,TTil where
T, is the characteristic function of the orbit formed by the pairs (F}, F2) such that
Fj1 #+ sz iff j =4 (mod N); and 7(k) = k+ 1, k € Z. Evidently, TzT=" = Ty+1) Where
w[+£1] is the shift of w by 1. The following proposition is an affine version of Proposition 2
of [13], and the proof is straightforward.

Proposition 2. Let @ = (w,3) € RB™ and let s = s; € &3, i € {1,...,N}. Denote

ws = (ws, s(B)) and W' = (w,B A {i+1}). Let 0 = o(w) and o' = o(ws) be given by the
formula (6) of [13]. Then

Ty ifws>wandi+1¢ o,
Tas + Tiwsy ifws>wandi+1E€ o,

(2) TaTs = § Tgr + T s if ws <w and N = {i},
(¢— DTw + qTws ifws <wandi¢o,

(¢—2)To+(q— 1) Ty +Tws) fws<wandtCo



4 MICHAEL FINKELBERG, VICTOR GINZBURG AND ROMAN TRAVKIN

where v = {i,i + 1}.

2.4. Modified bases. The formulas (2) being polynomial in ¢, we may (and will) view
the H*-bimodule R* as the specialization under q — ¢ of the Z[q,q~!]-bimodule Raff
over the Z[q,q !]-algebra H*f. We consider a new variable v, v2 = q, and extend the
scalars to Z[v, vl . HM .= Z[v, v @g1q -1) H; R = ZIv, v @7/ -1 R
Recall the basis {Hy, := (—v) " “T,} of HF (see e.g. [12]), and the Kazhdan-Lusztig
basis {H,} (loc. cit.); in particular, for s; (i = 1,...,N), Hy, = H,, —v~'. For & =
(w,3) € RB™, we denote by £() the sum f(w) + £(8) where £(w) is the standard
length function on &3, and ¢(3) = #(8 \ {~N}) — #({-N} \ 8). We introduce a new
basis {Hg := (—v) ") Tz} of R, In this basis the right action of the Hecke algebra

generators H,, takes the form:

Proposition 3. Let & = (w,3) € RB and let s = s; € G, i € {1,...,N}. Denote
ws = (ws, s(8)) and @' = (w,B A {i+1}). Let 0 = o(w) and o’ = o(ws) be given by the
formula (6) of [13]. Then

Hgs — v 'Hg ifws>wandi+1¢ o,
Hgs — vflﬂ(fus)/ — v lHg ifws>wandi+1€o,

(3) HgHy={ Hy —v 'Hg —v "Hg, if ws < w and N = {i},
Hgs —vHg if ws <w and i & o,

(v '—vHs+ (1 —-v ) (Hy + Hgs) ifws<wand:Co
where v = {i,i + 1}.

2.5. Generators. We consider the elements w; ; = (77, 3;) € RB*! such that w = 77
(the shift by j), and 5; = {i,i — 1,i — 2,...}, for any i,j € Z. The following lemma is
proved exactly as Corollary 2 of [13].

Lemma 1. R s generated by {W;j, i,j €Z} as a H _bimodule.

Remark 1. Let Pp C Gpg be the stabilizer of a vector v € \O/' One can
see easily that R |,_, is isomorphic to Endp, (IndIG FZ) as a bimodule over
H|,_, = Endg, (IndIGrF Z). Let Zz*1 c 3o stand for the center of H?. TLet Z2
stand for the field of fractions of Z?T. Let 3 = 3 ® .4 Z2. It is known that

HM ~ Maty1(Q) ®g Z2. Let R = ZM © 6 R @ 00 Z2. Then it follows from the

loc loc* loc loc
main theorem of [2] that R ~ Z3 @0 Mat i (Q) ®g Z2E.

2.6. Geometric interpretation. It is well known that H*T is the Grothendieck ring
(with respect to convolution) of the derived constructible I-equivariant category of Tate
Weil Q;-sheaves on F1, and multiplication by v corresponds to the twist by Ql(—%) (so

that v has weight 1). In particular, H,, is the class of the shriek extension of Q;[¢(w)] (L;"))

from the corresponding orbit Fl,, and H,, is the selfdual class of the Goresky-MacPherson
extension of Q; [E(w)](@) from this orbit. We will interpret R* in a similar vein, as the

Grothendieck group of the derived constructible I-equivariant category of Tate Weil Q;-
o

sheaves on F1 x V.
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To be more precise, we view V as an indscheme (of ind-infinite type), the union of
schemes (of infinite type) V; :=t7k[[t]] ® V, i € Z. Here V; is the projective limit of the
finite dimensional affine spaces V;/V;, j < i. Note that I acts on V; linearly (over k),
and it acts on any quotient V;/V; through a finite dimensional quotient group. Thus we
have the derived constructible I-equivariant category of Weil Q;-sheaves on F1 x V;/V,
to be denoted by Di(Fl x V;/V,). For j/ < j we have the inverse image functor from
Dy(F1 x V;/V;) to Di(F1 x V;/V;/), and we denote by Dy(F1 x V;) the 2-limit of this
system. Now for i’ > ¢ we have the direct image functor from Dy(F1x V;) to Di(F1x V),
and we denote by Dy(F1 x V) the 2-limit of this system.

Clearly, Dy(F1) acts by convolution both on the left and on the right on Dy(F1 x V).

The I-orbits in F1 x V are numbered by RB*; for @& € RB!, the locally closed
embedding of the orbit Q4 < F1 x V is denoted by j©.

Proposition 4. For any @ € RB™, the Goresky-MacPherson sheaf j2Q [ﬁ(zb)](@) is
Tate.

Proof. Repeats word for word the proof of Proposition 3 of [13]. For the base of induction,
we use the fact that the orbit closure g, ; (see 2.5) is smooth. O

2.7. The completed bimodule R, Let DF**(F1) ¢ Dy(F1) (resp. Df*¢(Fl x V) C

Di(F1x V)) stand for the full subcategory of Tate sheaves. Then Df*¢(F1) is closed under
convolution, and its K-ring is isomorphic to H*. The proof of Proposition 4 implies that

Df*°(F1 x V) is closed under both left and right convolution with Dy**(F1). Hence

K(Df*e(F1 x V)) forms an H*-bimodule. This bimodule is isomorphic to a completion
R of Rafl e presently describe.

Recall that for an O-sublattice F' C 'V its virtual dimension is dim(F') := dim(F/(F N
(0O®V))) —dim((0O®V)/(FN(0O®V))). Recall that I is the stabilizer of the flag F}},
where F,g = (e, €ek—_1,€k—2,...). The connected components of Gg/I = F1 are numbered
by Z: a flag F, lies in the component Fl; where i = dim(Fy). For the same reason, the

connected components of F1 x V are numbered by Z: a pair (F,,v) lies in the connected

component (F1x \Of)l where i = dim(Fy). We will say w € RBM iff Q5 C (Flx \O/')Z Now
note that for any i, k € Z there are only finitely many @ € RB*! such that w € RBZ?lff and
L(w) = k.

We define R*T as the direct sum R = Dicz JAQ?H, and ﬁ?ﬁ is formed by all the for-
mal sums Zﬁ)eRB?H agHg where ag € Z[v,v~'], and ag = 0 for £(w) > 0. So we

have K (Df**°(F1 x \O/.)) ~ R ag an H* -bimodule, and the isomorphism takes the class
Q@) ()] to Ha.

2.8. Bruhat order. Following Ehresmann and Magyar (see [8]) we will define a partial
order @” < @' on a connected component RB. Let (F), F,,v') (resp. F},F/',v") be
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a triple in the relative position @’ (resp. w”). For any k,j € Z we define rji(0’) =
dim(Fj1 NF}). We also define 6(j, k,w’) to be 1 iff o' € (Fj1 + F}), and 0 iff o' ¢ (F1 + F);
we set r(]k>( ') = rj(W') + (4, k,0'). Finally, we define " < @' iff rj,(0”) > rjk(il/
and 7y (@) > 7y (w') for all j, k € Z.

The following proposition is proved similarly to the Rank Theorem 2.2 of [8].

Proposition 5. For @', @w" € RBM the orbit Qg lies in the orbit closure Qg iff 0" < W'

2.9. Duality and the Kazhdan-Lusztig basis of R, Recall that the Grothendieck-
Verdier duality on F1 induces the involution (denoted by h — h) of H* which takes v to
Vand H,, to H,,. We will describe the involution on R induced by the Grothendieck-

Verdier duality on F1 x V Recall the elements w; ; introduced in 2.5. We set Hyg Hy, ; :
> ok<i(—V vk ZH@M. This is the class of the selfdual (geometrically constant) IC sheaf on
the closure of the orbit 2, ;. The following proposition is proved exactly as Proposition 5
of [13].

Proposition 6. a) There ezists a unique involution r — T on Rt sych that Emz ;= ﬂwm
for any i,j € Z, and hr = h¥, and rh =Th for any h € H* and r € Raft
b) The involution in a) is induced by the Grothendieck-Verdier duality on F1 x V.

The following proposition is proved exactly as Proposition 6 of [13].

Prop051t10n 7. a) For each w € RB™ there exists a unique element Hyg € Rt sych that

Hy=Hg, and Hy € Hy + Y55 v ' Z[v='|Hj.
b) For each i € RB™ the element Hy is the class of the selfdual I-equivariant IC-sheaf
with support Qg. In particular, for © = = w; j, the element ﬁ~ .; s consistent with the

notation introduced before Proposition 6.

We conjecture that the sheaves ji. Q) [E(w)](@) are pointwise pure. The parity vanish-
ing of their stalks, and the positivity properties of the coefficients of the transition matrix
from {Hy} to {Hy} would follow.

3. MIRABOLIC AFFINE GRASSMANNIAN

3.1. Gg-orbits in Gr x Gr x P. We consider the spherical counterpart of the objects of
the previous section. To begin with, recall that the Gg-orbits in Gr x Gr are numbered by
the set Gﬁh formed by all the nonincreasing N-tuples of integers v = (14 > v9 > ... > vy).
Namely, for such v, the following pair (L', L?) of O-sublattices in V lies in the orbit O,:

(4) Ll = 0(61,62, .. .,€N>, L2 = O(t_ulel,t_uzeg, v ,t_VN€N>.

We define RB*P! as 6??}1 X Gﬁh. We have an addition map RB%P" — Gﬁh (A ) e
v=A+pu wherev; =X\, +pu;, it =1,...,N.

Proposition 8. There is a one-to-one correspondence between the set of Gg-orbits in
[}
Gr x Gr x V (equivalently, in Gr x Gr x P) and RB*P".



MIRABOLIC AFFINE GRASSMANNIAN AND CHARACTER SHEAVES 7

Proof. The argument is entirely similar to the proof of Proposition 1. We only mention
that a representative of an orbit @, ,) corresponding to (A, p) with A+ g = v is given by

(L', L?,v) where (L', L?) are as in (4), and v = SVt ie;. O

3.2. The spherical mirabolic bimodule. Let k = IF,. Then the spherical affine Hecke
H®PP algebra of G is the endomorphism algebra of the induced module Endgp (Indgg 7).
It coincides with the convolution ring of Gg-invariant functions on Gr x Gr. It has the
standard basis {U,, v € G%Jh} of characteristic functions of Gg-orbits in Gr x Gr, and
the structure constants are polynomial in ¢ (Hall polynomials), so we may and will view
H*P! = Endg, (Indgg 7)) as specialization of the Z[q, q']-algebra H*" under q + q.
The algebra HP! acts by the right and left convolution on the bimodule RP" of Gp-

invariant functions on Gr x Gr x V. For (A, ) € RB*" let Ux,py stand for the char-

acteristic function of the corresponding orbit in Gr x Gr x V. We are going to de-
scribe the right and left action of H*P" on the bimodule in the basis Wi, M) €
RB®"}. To this end recall that H®P!" is a commutative algebra freely generated by
Uo.,..,0,Ua,1,0,...,005 > Ug1,...,1,0), and U+l where U*! is the characteristic function of
the orbit of (L', ¢T1LY). We will denote v = (1,...,1,0,...,0) (r I’s and N —r 0’s) by
(17).

Note that the assignment ¢; ; : (L1, Lo,v) — (L1,t7"7 Ly, t7") is a Gg-equivariant
o)

automorphism of Gr x Gr X 'V sending an orbit O, ,) to Op v vy We will de-
note the corresponding automorphism of the bimodule R%® by ¢ij as well: ¢; ;(Uy, p) =
UirgiV yutjNy- Furthermore, an automorphism (L1, L2) — (L2, L1) of Gr x Gr induces an
(anti)automorphism o of (commutative) algebra HP", o(U*!) = UTL) o(U,) = U,+ where
for v = (11,...,vN) we set v* = (—vn,—VN_1,...,—Vv1). Similarly, an automorphism

(L1, La,v) — (Lo, L1,v) of Gr x Gr x V induces an antiautomorphism p of the bimodule
RSP such that o(Uin ) = U 2+, and o(hm) = o(m)o(h) for any h € H*®Y m ¢ RsPh,
Clearly, UilU()\7M) = U()d:lN“u), and U()\#)Uil = U()\7H:|:1N).

3.3. Structure constants. In this subsection we will compute the structure constants

A, A, ..
GElf)Lz)\,’u,) such that U(lr)U()\l’ul) = E()\’M)ERBsph GElT§2A,7M,)U()\7M) (see Proposition 9 be-

low). Due to the existence of the automorphisms ¢;; of R it suffices to compute

Ggi\#)?)\’,u’) for X,/ € NV, In this case \, i necessarily lie in NV as well, that is, all the

four N, u/, A\, pu are partitions (with N parts). We have A = (\1,...,Ay); we may and
will assume that Ay > 0. We set n := |A| + |u|, and let D = k™. We fix a nilpotent
endomorphism u of D, and a vector v € D such that the type of GL(D)-orbit of the pair
(u,v) is (A, p) (see [13], Theorem 1). By the definition of the structure constants in the

spherical mirabolic bimodule, GE;‘;‘;?M ) is the number of r-dimensional vector subspaces

W C Ker(u) such that the type of the pair (u|p/w,v (mod W)) is (X, u').

To formulate the answer we need to introduce certain auxilliary data in Ker(u). First of
all, u*~1v is a nonzero vector in Ker(u). We consider the pair of partitions (v, ) = T(\, 1)
(notations introduced before Corollary 1 of [13]), so that ¥ = X\ + p is the Jordan type
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of u. We consider the dual partitions 7, 8. We consider the following flag of subspaces of
Ker(u):

F"1 = Ker(u) NTm(u”* ™) € F?2 := Ker(u) NIm(u"271) C ...
C F” :=Ker(u) NTm(u*72"1) C F™ := Ker(u).

It is (an incomplete, in general) flag of intersections of Ker(u) with the im-
ages of w,u? u’,.... More precisely, for any k = 0,1,...,1v1 we have
F, = Ker(u) N Im(u¥) = F%+1 and dim(F%+) = ,1. There is a unique ko
such that uM~1v € Fy, but uM 1y & Fi,+1; namely, we choose the maximal ¢ such that
i = A, and then kg = v; — 1.

Let @ C GL(Ker(u)) be the stabilizer of the flag F,, a parabolic subgroup of
GL(Ker(u)); and let Q' C Q be the stabilizer of the vector u*~lv. Both Q and
Q' have finitely many orbits in the Grassmannian Gr of r-dimensional subspaces in
Ker(u). The orbits of ) are numbered by the compositions p = (p1,...,p,,) such
that |p| = r, and 0 < pp < U — Dgq1. Namely, W € Gr lies in the orbit O, iff
dim(W N Fy) = pr+1 + ... + pyy; equivalently, dim(W + Fy) = Dgy1 +p1 + ... + pg. If
we extend the flag Fy to a complete flag in Ker(u), then the stabilizer of the extended
flag is a Borel subgroup B C (). The orbit O, is a union of certain B-orbits in Gr, that
is Schubert cells. So the cardinality of O, is a sum of powers of ¢ given by the well
known formula for the dimension of the Schubert cells (see e.g. Appendix to Chapter II
of [7]). We will denote this cardinality by P,. Note that the Jordan type of u|p/y for
W e Q, is V' := p(v) where p(v) is defined as the partition dual to o/ = (71,75, ...), and
D]/c = Ugy1 + dim(W + Fk—l) — dim(W + Fk) = Uk — Pk

Now each @Q-orbit O, in Gr splits as a union O, = |—|OS i< 0,,; of @Q"-orbits. Namely,
W € Q, lies in O, ; iff WMy e W+ F; but WMy ¢ W+ Fj 11 (so that for some j, e.g.
J < ko, 0, ; may be empty). The type of (u|p,y,v (mod W)) for W € Q,; is (v/,0') :=
(p,7)(v,0) where v/ = p(v), and ¢ is defined as the partition dual to 8’ = (8},65,...),
and 0, := Oy 1 + dim(W + Fj,_; + ku* 1) — dim(W + Fy, + ku™ ~'v). Finally, note that
dim(W + Fj,_; + ku’ ) — dim(W + Fy, + kuM~1o) = dim(W + Fj,_1) — dim(W + F},) =
g — Upy1 — pr if § # k — 1, and dim(W + Fy_y + kuM 1) — dim(W + Fj, + ku’~1v) =
dim(W-l-Fk_l) —dim(W—FFk) —1= ﬁk_ﬁk—l—l — Pk — 1 lf] =k—1.

It remains to find the cardinality P,; of O,;. Let us denote uM~ oy by o for
short. Then v/ € Fyy, vV € W+ F;, v & Fiyp1, vV ¢ W+ Fjqq, thus v/ € A =
{W+F;)NnFy} \ ({(W+Fj) N Frgq1 } U{(W + Fj41) N Fi,}). The cardinality of A
equals Py = gmW+E)NFy,  qdim(W+E)NFrg i1 _ odim(WHE; )N Fig 4 odim(W+F )N Frg 1
while for any ¢ > [ we have dim(W + F;) N F; = dim(W + F;) 4+ dim F; — dim(W + F}) =
Uis1 + pia1 + ... + pi- Now we can count the set of pairs (W,v') in a relative position
(p,7) with respect to Fy in two ways. First all v/ in Fj, \ Fi,11 (¢”%0+! — ¢”0+2 choices
altogether), and then for each v" all W in O, ; (P, ; choices altogether). Second, all W in
0, (P, choices altogether), and then for each W all v’ in A (P4 choices altogether). We
find

(5) P,j =P, Pa/(q"o+" — ¢"ot?)



MIRABOLIC AFFINE GRASSMANNIAN AND CHARACTER SHEAVES 9

Note that P,; is a polynomial in ¢. We conclude that this polynomial computes the
desired structure constant

(Am) - p .
(6) G = o

where (X, 1) = Z(v/,0") (notations introduced before Corollary 1 of [13]), and (v/,6") =
(p,7)(v,0) where as before we have (v,0) = T(\, ).

.. A, A iN7 N
Clearly, for any 4,7 > 0 we have GElT‘)L()/\,M,) = fgl:gj(\;\’ij’\]’,u?Jer)' Hence for any
S )‘7 A+ 5 ] ..
(A ), (N, ') € RB%" we can set GEIT'I)?NM) = GEl;S(A,iZFJ§7M2+jN) for any 4,5 > 0.

Also, we set
()\,,LL) P (“*_1N7)‘*)
(7) G vy ar) = Gy xe):

Thus we have proved the following proposition (the second statement is equivalent to
the first one via the antiautomorphism p).

Proposition 9. Let (X, u') € RB", and 1 <r < N — 1. Then

_ (M)
®) UanUpv ) = Z G(v-’f(x,wﬁ(&u)v and
(Ap)ERDBsPh

_ ()
U unUary = Z G(A/iﬂ)(r) Uiy
(A,p)ERBPR

3.4. Modified bases and generators. The formulas (8) being polynomial in ¢, we

may and will view the H*PP-bimodule RP" of Gg-invariant functions on Gr x Gr x \Of
as the specialization under q — ¢ of a Z[q, q~']-bimodule R*P" over the Z[q, q~']-algebra
H*PP. We extend the scalars to Z[v,v™!] : FPM := Z[v,v7!] ®7z[a,q-1] HePh; Reph . —
Z[V,V_l] ®zlq,q-1] RsPh,

Recall the selfdual basis C of 3! (see. e.g. [4]). In particular, for 1 < r < N —
L, Cary = (—V)_T(N_T)U(lr). For (\, ;1) € RB%P! with v = X\ + p, we denote by £()\, )
the sum d(v) + |A| with [A] := A\ + ... + Ay, and d(v) = |[v[(N — 1) — 2n(v) where
n(v) = YL, - Vv,

We introduce a new basis { Hy ) := (—v) Uiy of RSP We consider the elements
(N, VY = ((4,...,1),(j,.-.,j)) € RB%" for any i, € Z. The following lemma is proved
the same way as Lemma 1.

Lemma 2. R is generated by {(i™, V), 4,7 € Z} as a HPP-bimodule.

3.5. Geometric interpretation and the completed bimodule Resph, Following the

pattern of subsection 2.6 we define the category Dg, (Gr x V) acted by convolution (both
on the left and on the right) by Dg (Gr). Similarly to Proposition 4, we have (in obvious
notations):

Proposition 10. For any (\pu) € RB™'  the Goresky-MacPherson sheaf
ST, )] (U52) s Tate,
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We also have the full subcategories of Tate sheaves Daa(ge(Gr) C Dgo(Gr) and
Daact)c(Gr x V) C Dgo(Gr x V). Furthermore, D(T;agC(Gr) is closed under convolution,

and Dga(t)e(Gr x V) is closed under both right and left convolution with Daa(t)e(Gr). The

K-ring K (DTago(Gr)) is isomorphic to H*P", and this isomorphism sends the class of
the selfdual Goresky—MacPherson sheaf on the orbit closure Gr) to Cy. The K-group

K (DTago(Gr X V)) forms an HPP-bimodule isomorphic to a completion RP! of RSP we
presently describe.

The connected components of Gr x V are numbered by Z: a pair (L,v) lies in the
connected component (Gr x V) Where i = dim(L). We will say that (A, u) € RBZ-Sph if
the corresponding orbit lies in (Gr x V),-; equivalently, Z;VZI Aj+ Zévzl p; = i. Note that

for any i, k € Z there are only finitely many (X, 1) € RB%" such that (\, u) € RBZ-Sph, and
L\ p) = k.

We define R%P! as the direct sum RP" = P, RPEand REP" is formed by all the formal
sums Z()\M)ERprh aonu) Hnu where agy ) € Z[v,v~'], and aouy = 0 for £(A, 1) > 0. So

we have K (D(T;agO(Gr X \O/')) ~ RPh a5 an HPM-bimodule, and the isomorphism takes the
class [J1 QO m)](“5)] to His,p-

3.6. Bruhat order, duality and the Kazhdan-Lusztig basis. Following Achar and
Henderson [1], we define a partial order (A, u) < (X, i) on a connected component RBZ-Sph:
we say (A, p) < (N,p/) iff A <A, M+ < A’ +ph, A A <N+l +
Xoy A1+ pn + A+ pe <A+ ph + Xy + 4y, ... (in the end we have E,ﬁ;l i + Z]kvzl,uk =
Zé\le X, + Zi\;l py, = i). The following proposition is due to Achar and Henderson
(Theorem 3.9 of [1]) :

Proposition 11. For ()\ 1), N, 1) € RBP" the Go-orbit Q) € Gr x 'V lies in the
orbit closure Qv iy iff (A, ) < (N, ).

Now we will describe the involution on RP® induced by the Grothendieck-Verdier du-

ality on Gr x V. Recall the elements (i, ;") introduced in 3.4. We set E(iN’jN) =

> k<o(— v)NEH ((i—k)N,(j+k)N)- This is the class of the selfdual (geometrically constant) 1C
sheaf on the closure of the orbit Qv jny. The following propositions are proved exactly
as Propositions 6 and 7:

Proposition 12. a) There exists a unique involution r — T on REPY such that E(iNJN) =
E(iNJN) for any i,j € Z, and hr = h¥, and rh =Th for any h € HP? and r € Reph,
b) The involution in a) is induced by the Grothendieck-Verdier duality on Gr x V.

Proposition 13. a) For each (A, 1) € RBPY there exists a unique element E()\m € fsph
such that E()\M H()\ ) and H()\ w € Hov + Z Mo <Oup) Y —IZ[V—I]H(X’#,).
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b) For each (X, 1) € RB%" the element E(/\,u) is the class of the selfdual Go-equivariant
IC-sheaf with support Q(/\,u)' In particular, for (\,p) = (i, V), the element E(iNJN) is
consistent with the notation introduced before Proposition 12.

We will write

(9) How = >, TovouHow:
(V)< (Aogs)

The coefficients Iy /) (r ) are polynomials in v, As we will see in subsection 4.2

below, they coincide with a generalization of Kostka-Foulkes polynomials introduced by
Shoji in [11].

We define a sub-bimodule RSPh < Rsph generated (not topologically) by the set
E(A,u)v (A, ) € RBP!. Tt turns out to be a free H*PP-bimodule of rank one:

Theorem 1. C)\E(ON’ON)C =H\ -

The proof will be given in subsection 3.9 after we introduce the necessary ingredients
in 3.7 and 3.8.

3.7. Lusztig’s construction. Following Lusztig (see [4], section 2) we will prove that
the G-orbit closures in N x V' are equisingular to (certain open pieces of) the Go-orbit

closures in Gr x V. Sowe set £ = V& ...®V (N copies), and let ¢t : EF — FE
be defined by t(v1,...,vn) = (0,v1,...,o5-1). Let Y be the variety of all pairs (E',e)
where £/ C E is an N-dimensional ¢-stable subspace, and e € E’. Let Yy be the open
subvariety of Y consisting of those pairs (E’,e) in which E’ is transversal to V & ... &
V & 0. According to loc. cit. Yo is isomorphic to N x V, the isomorphism sending
(u,v) to (E’ = (N w, uN 2w, . . uw, w) ey, e = (uN_lv,uN_zv,...,uv,fu)). Now E
is naturally isomorphic to (t~Vk[[t]]/k[[t]]) ® V (together with the action of t), and the
assignment (E',e) — (L := E' @ K[[t]] ® V,e) embeds Y into Gr(yg,_. o) x V. We will
denote the composed embedding N x V < Gr x V by ¢ : (u,v) — (L(u,v),e(u,v)).
There is an open subset W C k[[t]] ® V' with the property that for any w € W, and
any (u,v) € (N x V)@, (a G-orbit, see [13], Theorem 1), we have (L(u,v),e(u,v) +

w) € Q) (the corresponding Go-orbit in Gr x V). Moreover, the resulting embedding

Wx(NXV)(n ) < Q) is an open embedding. Also, the embedding Wx (N x V), ,y =
Q( ) Of the orbit closures is an open embedding as well. Hence the Frobenius action on

the IC stalks of (N x V)(A,u) is encoded in the polynomials ITy ) () introduced after
Proposition 13.

o
3.8. Mirkovi¢-Vybornov construction. The Go-orbits Q) ,) C Gr X V considered
in subsection 3.7 are rather special: all the components A, ui are nonnegative integers,
and Z]kvzl A+ Eszl ur = N. To relate the singularities of more general orbit closures
Q( x,u) to the singularities of orbits in the enhanced nilpotent cones (for different groups
GL,, n# N) we need a certain generalization of Lusztig’s construction, due to Mirkovié
and Vybornov [10].
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To begin with, note that the assignment ¢;; : (L,v) — (7L, t7") is a Go-

o
equivariant automorphism of Grx 'V sending €y ,,) t0 @y~ ;1 jv). Thus we may restrict
ourselves to the study of orbits Qy ,) with A, u € NV without restricting generality. Ge-
ometrically, this means to study the pairs (L,v) such that L D L' = O(ey,...,ey) and
L>vgL.

Let n = rN for r € N. We consider an n-dimensional k-vector space D with a basis
{eri, 1 <k <r, 1<i< N} and a nilpotent endomorphism x : ej; — ex_1,, €1, — 0.
The Mirkovié-Vybornov transversal slice is defined as T, := {z+ f, f € End(D) : f,ijl =0
if k # r}. Its intersection with the nilpotent cone of End(D) is T, N N,,.

Let L? € Gr be given as L? = ¢t "L'. It lies in the orbit closure Gr(,0,..0), and we
will describe an open neighbourhood U of L? in Gr(,,..0) isomorphic to T; NN,. We
choose a direct complement to L? in V so that Lo := ¢t~ ""!k[t~!] ® V. Then U is formed
by all the lattices whose projection along Lo is an isomorphism onto L?. Any L € U is
of the form (1 4 g)L? where g : L? — Ly is a linear map with the kernel containing L?,
ie. g: L?/L' — L. Now we use the natural identification of L?/L! with D (so that the
action of ¢ corresponds to the action of z). Furthermore, we identify t~"V with a subset of
L?/L' = D. Hence we may view g as a sum ey t~Fgr where gy : D — t~"V are linear
maps. Composing with 7"V <— D we may view g, as an endomorphism of D. Then L
being a lattice is equivalent to the condition: g = g1 (t + ¢g1)*~' and t + g; is nilpotent.
In other words, the desired isomorphism T, NN, —U is of the form:

k=1

Now we identify D with t'V @...®¢t™"V C L?. Given a vector v € D we consider its
image v € L? under the above embedding, and define e(z+ f,v) € L(z+ f) as the preimage
of v under the isomorphism L—L? (projection along Ls). Thus we have constructed an
embedding ¢ : (T, "N,) x D — Gr x V, (x + f,v) — L(x + f),e(z + f,v). Note
that the Jordan type of any nilpotent x + f is given by a partition v with the number of
parts less than or equal to V. There is an open subset W C k[[t]] ® V with the property
that for any w € W, and any (z + f,v) € ((Tx N Ny,) x V) ) (the intersection with a
GLy-orbit), we have (L(z + f),e(z + f,v) +w) € Q5 (the corresponding Go-orbit in

Gr x V). Moreover, the resulting embedding W x ((T:; NNy,) X D) u) = (x,u) is an open
embedding. Also, the embedding W x ((Tx N Np) x V), ,y = Q) of the intersection
with the orbit closure is an open embedding as well.

We conclude that the orbit closures Q( Ap) With Zi\;l Ax + Z{f:l uy, divisible by N are
equisingular to certain GL,-orbit closures in N,, x D for some n divisible by N.

3.9. Semismallness of convolution. We are ready for the proof of Theorem 1. Let us
denote the self-dual Goresky-MacPherson sheaf on the orbit Gr) (whose class is C)) by

1C), for short. Then the convolution power IC’E“{ 0,...0) is isomorphic to @y - K @ IC) for

certain vector spaces K (equal to the multiplicities of irreducible GLy-modules in V).
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We stress that K is concentrated in degree 0, that is convolution morphism is stratified
semismall. Thus it suffices to prove

A=t
(10) 10;{707___,0) x IC(n vy * ICHTh o) =~ @ K, ® Kx®IC( .
lul=m
Moreover, it suffices to prove (10) for m,[ divisible by N. In effect, this would imply

[}

that the convolution morphism Gr’("{’07___’0) * Q(ON@N) * Grf{?fo,...p — Gr x V is stratified
semismall for any m,l > 0. Indeed, if the direct image of the constant IC sheaf under the
above morphism involved some summands with nontrivial shifts in the derived category,
the further convolution with IC( . o) could not possibly kill the nontrivially shifted
summands, and so they would persist for some m, [ divisible by N.

Having established the semismallness for arbitrary m,l > 0, we see that the semisimple
abelian category formed by direct sums of IC(y .y, (A, 1) € RB®P" is a bimodule category

over the tensor category formed by direct sums of ICy, A € Gﬁh (equivalent by Satake
isomorphism to Rep(GLy)). To specify such a bimodule category it suffices to specify the
action of the generator IC(1, . ¢y, and there is only one action satisfying (10) with m,1
divisible by N: it necessarily satisfies (10) for any m, (.

We set n = m + [. The advantage of having n divisible by N is that according to 3.8,
the (open part of the) orbit closure is equisingular to certain slice of the GL,-orbit closure
in N,, x D. To describe the convolution diagram in terms of GL, we need to recall a
Springer type construction of [3] 5.4.

So @nm is the smooth variety of triples (u, F,,v) where F, is a complete flag in the n-
dimensional vector space D, and u is a nilpotent endomorphism of D such that uF} C Fy_1,
and v € F,_,,. We have a proper morphism 7, ,, : Qjmm — N, x D with the image
Dnm C Np x D formed by all the pairs (u,v) such that dim(v,uv,u?v,...) <n —m. It
follows from the proof of Proposition 5.4.1 of loc. cit. that m, ., is a semismall resolution
of singularities, and

[Al=n—m

(11) (T ICDnm) = P Lu®La®ICH

lpl=m

where L, (resp. L)) is the irreducible representation of &,, (resp. &,_,,) corresponding
to the partition p (resp. A); furthermore, I C(,p) is the IC sheaf of the GLy-orbit closure

(Ni x D)y iy (cf. Theorem 4.5 of [1]).

Recall the nilpotent element z € Nm~ introduced in 3.8, and the slice T, N N,. We
will denote 7,1, (T N Ny) X D) by TDnm C Dnm- Recall the open embedding ¢ :
W x (T, "N N,) x D) — Q(n707___70)7(01v) of 3.8. Let us denote the convolution diagram
Grﬁ,o,...,o) *Q(prw) * Gr’(kfbo’m’o) by Q(l,07...70)7(m,07...,0) for short; let us denote its morphism

to Qn0,...0),0~) (with the image Q(l,o,...,o),(m,o,...,o)) by @ m. Finally, let us denote the

preimage under @, ,, of (W x (T N"Ny) x D)) by TQ0....0),(m,0,...0)- The next lemma
follows by comparison of definitions:



14 MICHAEL FINKELBERG, VICTOR GINZBURG AND ROMAN TRAVKIN

Lemma 3. We have a commutative diagram

~

W x T@n,m E— TQ(l,O,...,0),(m,0,...,0)

lld XTn,m wn,ml

W x (Te N Np) x D) —5— Q0. 0y 0M)
Since Ly = K by Schur-Weyl duality, the proof of the theorem is finished. O

Remark 2. Due to Lusztig’s construction of 3.7, Theorem 1 implies Proposition 4.6 of [1].

4. MIRABOLIC HALL BIMODULE

4.1. Recollections. The field k is still F,. The Hall algebra Hall = Hally of all fi-
nite k[[t]]-modules which are direct sums of < N indecomposable modules is defined as
in [7] I1.2. It is a quotient algebra of the “universal” Hall algebra H (k[[t]]) of loc. cit. It

has a basis {uy} where A runs through the set +6§$h of partitions with < NN parts. It is a
free polynomial algebra with generators {ur), 1 <7 < N —1}. The structure constants

Gﬁy being polynomial in ¢, we may and will view Hall as the specialization under q — ¢

of a Z[q, q!]-algebra Hall. Extending scalars to Z[v,v~!] we obtain a Z[v, v_!]-algebra
Hall.
Let A = Ay denote the ring of symmetric polynomials in the variables

X = (Xi,...,Xn) over Z[v,v~!]. There is an isomorphism ¥ : Hall—-A sending
ugry to v "(=De, (elementary symmetric polynomial), and uy to v—2"(N Py (X, v=2)
(Chapter III of loc. cit.) where Py\(X,v~2) is the Hall-Littlewood polynomial, and
n(A) = SN (i — 1)\ Let us denote by tFH! the subalgebra of H**" spanned by
{Ux, X € +6?\If)h}. Then we have a natural identification of TH*P? with Hall sending U,
to uy, and Cy to cy. Furthermore, ¥(cy) = (—v)~ ™ =Dls, (Schur polynomial).

4.2. The Mirabolic Hall bimodule. A finite k[[t]]-module which is direct sum of < N
indecomposable modules is the same as a k-vector space D with a nilpotent operator u
with < N Jordan blocks. The isomorphism classes of pairs (u,v) (where v € D) are
numbered by the set TRBP! of pairs of partitions (A, x) with < N parts in A and < N

parts in u. We define the structure constants GE;}” 2,)11 and Gl(j/}’)ff)“,) as follows!. Gl(j/}’)ff)“,)
is the number of u-invariant subspaces D” C D such that the isomorphism type of u|p»
is given by v, and the isomorphism type of (u|p,pr,v (mod D")) is given by (X, u').

(M)

Furthermore, G&} ) is the number of u-invariant subspaces D’ C D containing v such

wv

that the isomorphism type of (u|ps,v) is given by (X, '), and the isomorphism type of

ulp /pr is given by v. Note that some similar quantities were introduced in Proposition 5.8
. : - Ap (Ap)

of [1]: in notations of loc. cit. we have gp’' = >\ /g GO

Lemma 4. For any TRB®" > (\,pu), (N, u), 1 < r < N — 1, the structure constants

Ggi\#)?)\’,u’) and G&fﬂ/)(m are given by the formulas (6) and (7).

1The notation G(A}“), ~ and G(A;‘”) , ,y introduced in subsection 3.3 is just a particular case of the
(A,u")(A7) (am)(N,u")

present one for v = (17) as we will see in Lemma 4.
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Proof. Was given in subsection 3.3. O
We define the Mirabolic Hall bimodule Mall over Hall to have a Z-basis {uy ), (A, pt) €

+RBP1} and the structure constants

_ (M) _ (As)
WU = > G otous date = DGR o
(Ap)e +RBsPh (Ap)€ TRBsph

The structure constants G&}f‘ /3,) (1) and Ggi\#)?)\’,u’) for the generators of Hall being poll3]/-

nomial in ¢, we may and will view Mall as the specialization under q — ¢ of a Z[q,q~
bimodule Mall over the Z[q,q~!]-algebra Hall. Extending scalars to Z[v,v~!] we obtain
a Z[v,v~]-bimodule Mall over the Z[v,v~']-algebra Hall. Let us denote by TRP" the
+HsPP_subbimodule of RP! spanned by U, (M) € +RB"}. Then we have a nat-
ural identification of *RP! with Mall sending Uy, ,,y to u(y ). For (A, ) € TRB¥! we
set +C(>\7u) = ZJrRBSPhB()\’“u’)S()\“u) oy, oy Hiv iy (notation introduced after Propo-
sition 13). We define ¢() ,) € Mall as the element corresponding to +C’()\7“) under the
above identification.
Theorem 1 admits the following corollary:

Corollary 1. For any A\, € +6§$h we have exc(oN N )¢ = C(x ) -

Hence there is a unique isomorphism ¥ : Mal/—-A® A of Hall ~ A-bimodules sending
¢ to (—v)"W=DAHED 5\ ® 5,. We define

A®AS P()x,u) (X, Y,V_l) — (_V)2n(>\)+2n(u)+|ﬂ|\Ij(u()\#))

(mirabolic Hall-Littlewood polynomials).

Thus the polynomials Iy /) (x,) are the matrix coeflicients of the transition matrix
from the basis { P, ,) (X, Y, v 1)} to the basis {sx(X)s,(Y)} of A®A. It follows from The-
orem 5.2 of [1] that the mirabolic Hall-Littlewood polynomial Py ,)(X,Y,v™!) coincides
with Shoji’s Hall-Littlewood function P(jfw) (X,Y,v™1) (see section 2.5 and Theorem 2.8
of [11]).

5. FROBENIUS TRACES IN MIRABOLIC CHARACTER SHEAVES

5.1. Unipotent mirabolic character sheaves. Recall the construction of certain
mirabolic character sheaves in [3] 5.4. So X, is the smooth variety of triples (g, Fy,v)
where F, is a complete flag in an n-dimensional vector space D, and v € Fy,, and g is
an invertible linear transformation of D preserving F,. We have a proper morphism

Tnm @ Xnm — GLp xD with the image X, ,, C GL,, xD formed by all the pairs (g,v)
such that dim(v, gv, g?v,...) < n —m. According to Corollary 5.4.2 of loc. cit., we have

[A|=n—m

(12) (Tnn)«IC(Xnm) ~ €D Lu@Lr®Fr,

lul=m

for certain irreducible perverse mirabolic character sheaves &) ,, on GL, xD.
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Following [AH], we set b(\, 1) := 2n(\)+2n(p)+|p], so that b(N, u') —b(A, ) equals the
codimension of Q) in Q(, ), and the codimension of (N, x D)y ) in (Ny, X D)x -

Theorem 2. Let (u,v) € (N x D)n w)(Fy). The trace of Frobenius automorphism of
the stalk of Ty, at (u,v) equals \/ab(x’“l)_b(’\’“)H(X’H,M}\M(ﬂ)(see 9)).

Proof. We identify the nilpotent cone N,, and the variety of unipotent elements of GL,, by
adding the identity matrix, so that we may view N,, C GL,,. Then X,, ,,, N(Ny, X D) = Dy, m.,
and 7, L (X, m (N, x D)) = D.m (notations of the proof of Theorem 1). Comparing (12)
with (11), we see that Iy ,|n,xp =~ IC(y ). Hence the trace of Frobenius in the stalk of

Fapu at (u,v) equals the trace of Frobenius in the stalk of IC(y ,y at (u,v). The latter is
2

equal to the matrix coefficient of the transition matrix from the basis {jQ; (N x D)t ) [n
— n N/

b\, 1))} to the basis {j!*@l(NnxD) [n? — b(\, 1)]}. And the latter by construction, up

(X,m)

to the factor of \/ab(’\/’“/)_b@’“), is equal to Iy ), (a0 (VQ)- O

5.2. G,,-equivariant mirabolic character sheaves. More generally, we recall the no-
tion [3] of mirabolic character sheaves equivariant with respect to the dilation action of
G on D. Let B be the flag variety of GL(D), let B be the base affine space of GL(D), so
that B — B is a GL(D)-equivariant H-torsor, where H is the abstract Cartan of GL(D).
Let Y be the quotient of B x B modulo the diagonal action of H; it is called the horocycle
space of GL(D). Clearly, Y is an H-torsor over B x B with respect to the right action
(Z1,Z2) - h := (@1 - h,Z2). We consider the following diagram of GL(D)-varieties and
GL(D) x G,-equivariant maps:

GL(D) x D ¥~ GL(D) x B x V -1 4 x D.

In this diagram, the map pr is given by pr(g, z,v) := (g,v). To define the map f, we think
of B as B/H, and for a representative € B of z € B we set f(g,z,v) := (¢9&,Z,v). The
group GL(D) acts diagonally on all the product spaces in the above diagram, and acts on
itself by conjugation. The group G,, acts by dilations on D.

The functor CH from the constructible derived category of l-adic sheaves on Y x D to the
constructible derived category of l-adic sheaves on GL(D) x D is defined as CH := pr) f*.
Now let F be a GL(D) x G,-equivariant, H-monodromic perverse sheaf on Y x D. The
irreducible perverse constituents of CHF are called G,,-equivariant mirabolic character
sheaves on GL(D) x D. We define a G,,-equivariant mirabolic character sheaf as a direct
sum of the above constituents for various F as above. The semisimple abelian category of
G-equivariant mirabolic character sheaves will be denoted MC(GL(D) x D). Clearly, this
definition is a direct analogue of Lusztig’s definition of character sheaves. The semisimple
abelian category of character sheaves on GL(D) will be denoted C(GL(D)).

5.3. Left and right induction. Following Lusztig’s construction of induction of char-
acter sheaves, we define the left and right action of Lusztig’s character sheaves on the
mirabolic character sheaves (for varying D). To this end it will be notationally more con-
venient to consider MC(GL(D) x D) (resp. C(GL(D))) as a category of perverse sheaves
on the quotient stack GL(D)\(GL(D) x D) (resp. GL(D)\ GL(D)). Let m < n = dim(D),
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and let V' be an n—m-dimensional k-vector space, and let W be an m-dimensional k-vector
space. We have the following diagrams:

(13)  GL(D)\(GL(D) x D) <™ A L, GL(V)\ GL(V) x GL(W)\(GL(W) x W),

(14)  GL(D)\(GL(D) x D) <% B -2 GL(V)\(GL(V) x V) x GL(W)\ GL(W).
Here A is the quotient stack of A by the action of GL(D), and
A:={(g € GL(D),F Cc D,v € D) such that dimF =n —m, and gF = F},

and, p forgets F', and ¢ sends (g, F,v) to g|r;(glp/r,v (mod F')) (under an arbitrary
identification V' ~ F, W ~ D/F). Note that p is proper, and ¢ is smooth of relative
dimension n — m.

Furthermore, B is the quotient stack of B by the action of GL(D), and

B:={(g € GL(D),F C D,v € F) such that dim F = n —m, and gF = F},

and, d forgets I, and b sends (g, F,v) to (g|r,v); 9|p/r) (under an arbitrary identification
V ~F, W~ D/F). Note that d is proper, and b is smooth of relative dimension 0.

Finally, for a character sheaf § € C(GL(V)) and a mirabolic character sheaf F €
MC(GL(W) x W) we define the left convolution G+ F := pig* (R F)[n —m|. Similarly, for
a character sheaf §' € C(GL(W)) and a mirabolic character sheaf ¥ € MC(GL(V) x V)
we define the right convolution ¥ * §' := d\b*(F' KX §).

Note that the definition of convolution works in the extreme cases m =0 orn—m =0
as well: if dimV = 0, then GL(V') is just the trivial group. The following proposition is
proved like Proposition 4.8.b) in [6].

Proposition 14. Both G+ F and ¥ * §' are G,,-equivariant mirabolic character sheaves
on GL(D) x D.

We denote by @l the unique G,,-equivariant mirabolic character sheaf on GL(D) x D
for dim(D) = 0.

Proposition 15. Let G € C(GL(V)), and §' € C(GL(W)) be irreducible character sheaves.
Then G * @l * G’ is irreducible.

Proof. Let dim(D) = n, dim(W) = m, dim(V) = n — m. Recall the diagram (14), and
denote by 7 : GL(V)\(GL(V) x V) — GL(V)\ GL(V) the natural projection (forgetting
vector v). Then §xQ;*G’ = dib*(r*GX¥G' [n—m]). The sheaf b*(r* GRS [n—m)]) is irreducible
perverse on B; more precisely, it is the intermediate extension of a local system on an
open part of B. The image of proper morphism d coincides with GL(D)\X%,,,, (notations
of 5.1), and d : B — GL(D)\X,, ,, is generically isomorphism: F is reconstructed as F' =
(v, gv,g?v,...). Finally, the arguments absolutely similar to the proof of Proposition 4.5
of [5] prove that d is stratified small. This implies that d\b*(r*SX G’ [n—m)]) is irreducible.

O

Conjecture 1. Any irreducible G,,-equivariant mirabolic character sheaf on GL(D) x D
is isomorphic to G« Q; G for some G € C(GL(V)), and §' € €(GL(W)) where dim(V) +
dim(W) = dim(D).
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5.4. Mirabolic Green bimodule. Once again k = F,. We will freely use the notation
of Chapter IV of [7]. In particular, ® is the set of Frobenius orbits in F,*, or equivalently,
the set of irreducible monic polynomials in F,[t] with the exception of f = ¢. We consider
the set of isomorphism classes (D, g,v) where D is a k-vector space, v € D, and g is
an invertible linear operator D — D. Similarly to section 2 of loc. cit. we identify
this set with the set of finitely supported functions (A\,u) : ® — P x P to the set of
pairs of partitions. Note that dim(D) = [(A, p)| 1= 37 cq deg(f)(IA(f)] + [w(f)]). Let
c(au) € GL(D) x D be the corresponding GL(D)-orbit, and let 7y ., be its characteristic
function. Let MA be a Q;-vector space with the basis {7} It is evidently isomorphic
to @, Q;(GL(k?) x km)GLK"),

Recall the Green algebra A = €P,,o A, of class functions on the groups GL,(F,) (see
section 3 of loc. cit.; the multiplication is given by parabolic induction) with the basis
{m .} of characteristic functions of conjugacy classes. The construction of 5.3 equips MA
with a structure of an A-bimodule. It is easily seen to be a free bimodule of rank 1 with
a generator (g g) given by the zero function (taking the value of zero bipartition on any
f € ®). The structure constants are as follows (the proof is similar to (3.1) of loc. cit.).

A
(15) TV (N Z oW ) T TN ) Tw = Z g&x“ )
)
where
(Au M) deg(f) (Au (A),k(f)) deg(f)
(16)  gx JgGV(f winl@ ) 8 H G B (wn @)

Now recall another basis {Sy} of A (see section 4 of loc. czt.), numbered by the finitely
supported functions from © to P. Here O is the set of Frobenius orbits on the direct limit
L of character groups (F;n)v. This is the basis of irreducible characters. According to
Lusztig, for |p| = m, the function Sy, is the Frobenius trace function of an irreducible
Weil character sheaf 8, on GL,,. Due to Proposition 15, for |n| + || = n, the function
Sy T (0,0)5n is the Frobenius trace function of an irreducible G,,-equivariant Weil mirabolic

character sheaf 8,y *Q;*8,, on GL(D)x D, dim(D) = n. We know that the set of functions
{Swm (00,0050} forms a ba51s of the mlrabohc Green bimodule MA. Hence, if Conjecture 1
holds true then the set of Frobenius trace functions of irreducible G,,-equivariant Weil
mirabolic character sheaves forms a basis of MA. This would be a positive answer to a
question of G. Lusztig.
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