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Abstract. We compute the Frobenius trace functions of mirabolic character sheaves
defined over a finite field. The answer is given in terms of the character values of general
linear groups over the finite field, and the structure constants of multiplication in the
mirabolic Hall-Littlewood basis of symmetric functions, introduced by Shoji.
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1. Introduction

1.1. This note is a sequel to [13]. We make a free use of notations and results thereof.
Our goal is to study the mirabolic character sheaves introduced in [3]. According to
Lusztig’s results, the unipotent character sheaves on GLN are numbered by the set of
partitions of N . For such a partition λ we denote by Fλ the corresponding character
sheaf. If the base field is k = Fq, the Frobenius trace function of a character sheaf Fλ on a

unipotent class of type µ is qn(µ)Kλ,µ(q−1) where Kλ,µ is the Kostka-Foulkes polynomial,
and n(µ) =

∑
i≥1(i− 1)µi, see [4].

Let V = kN , so that GLN = GL(V ). For a pair of partitions (λ, µ) such that
|λ| + |µ| = N the corresponding unipotent mirabolic character sheaf Fλ,µ on GL(V )× V
was constructed in [3]. On the other hand, the GLN -orbits in the product of the unipo-
tent cone and V are also numbered by the set of pairs of partitions (λ′, µ′) such that
|λ′| + |µ′| = N (see [13]). In Theorem 2 we compute the Frobenius trace function of a
mirabolic character sheaf Fλ,µ on an orbit corresponding to (λ′, µ′). The answer is given
in terms of certain polynomials Π(λ′,µ′)(λ,µ), the mirabolic analogues of the Kostka-Foulkes
polynomials introduced in [11]. More generally, in 5.4 we compute the Frobenius trace
functions (on any orbit) of a wide class of Weil mirabolic character sheaves. These trace
functions form a basis in the space of GLN (Fq)-invariant functions on GLN (Fq)×FN

q , and
we conjecture that the above class of sheaves exhausts all the irreducible Gm-equivariant
Weil mirabolic character sheaves. This would give a positive answer to a question of
G. Lusztig.
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Recall that the Kostka-Foulkes polynomials are the matrix coefficients of the transition
matrix from the Hall-Littlewood basis to the Schur basis of the ring Λ of symmetric func-
tions. Similarly, the polynomials Π(λ′,µ′)(λ,µ) are the matrix coefficients of the transition
matrix from a certain mirabolic Hall-Littlewood basis of Λ⊗ Λ (introduced in [11]) to the
Schur basis, see 4.2. Recall that Λ is isomorphic to the Hall algebra [7] whose natural basis
goes to the basis of Hall-Littlewood polynomials. Similarly, Λ⊗Λ is naturally isomorphic
to a certain mirabolic Hall bimodule over the Hall algebra, and then the natural basis of
this bimodule goes to the mirabolic Hall-Littlewood basis, see section 4. The structure
constants of this basis, together with Green’s formula for the characters of GLN (Fq), enter
the computation of the Frobenius traces of the previous paragraph.

The Hall algebra is also closely related to the spherical Hecke algebra Hsph of GLN (the
convolution algebra of the affine Grassmannian of GLN ). Similarly, the mirabolic Hall
bimodule is closely related to a certain spherical mirabolic bimodule over Hsph, defined in
terms of convolution of the affine Grassmannian and the mirabolic affine Grassmannian,
see section 3. The geometry of the mirabolic affine Grassmannian is a particular case of
the geometry of the mirabolic affine flag variety studied in section 2. Both geometries are
(mildly) semiinfinite.

Thus all the results of this note are consequences of a single guiding principle which may
be loosely stated as follows: the mirabolic substances form a bimodule over the classical
ones; this bimodule is usually free of rank one.

However, the affine mirabolic bimodule Raff over the affine Hecke algebra Haff is not
free (see Remark 1). Recall that Haff can be realized in the equivariant K-homology of
the Steinberg variety. It would be very interesting to find a similar realization of Raff .

1.2. Acknowledgments. We are indebted to G. Lusztig for his question about classifi-
cation of mirabolic character sheaves over a finite field. We are obliged to P. Achar and
A. Henderson for sending us their preprint [1], and bringing [11] to our attention. It is
a pleasure to thank V. Lunts for his hospitality during our work on this project. M.F.
is also grateful to the Université Paris VI and IAS for the hospitality and support; he
was partially supported by the Oswald Veblen Fund, CRDF award RUM1-2694, and the
ANR program “GIMP”, contract number ANR-05-BLAN-0029-01. The work of V.G. was
partially supported by the NSF grant DMS-0601050.

2. Mirabolic affine flags

2.1. Notations. We set F = k((t)), O = k[[t]]. Furthermore, G = GL(V ), and GF =
G(F), GO = G(O). The affine Grassmannian Gr = GF/GO. We fix a flag F• ∈ Fl(V ),
and its stabilizer Borel subgroup B ⊂ G; it gives rise to an Iwahori subgroup I ⊂ GO.

The affine flag variety Fl = GF/I. We set V = F⊗kV , and
◦
V = V−{0}, and P =

◦
V/k×.

It is well known that the GF-orbits in Fl× Fl are numbered by the affine Weyl group
Saff

N formed by all the permutations w of Z such that w(i+N) = w(i) +N for any i ∈ Z

(periodic permutations). Namely, for a basis {e1, . . . , eN} of V we set ei+Nj := t−jei, i ∈
{1, . . . , N}, j ∈ Z; then the following pair (F 1

• , F
2
• ) of periodic flags of O-sublattices in V

lies in the orbit Ow ⊂ Fl× Fl:
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(1) F 1
k = 〈ek, ek−1, ek−2, . . .〉, F 2

k = 〈ew(k), ew(k−1), ew(k−2), . . .〉.
(it is understood that ek, ek−1, ek−2, . . . is a topological basis of F 1

k ).

Following [13], Lemma 2, we define RBaff as the set of pairs (w, β) where w ∈ Saff
N , and

β ⊂ Z such that if i ∈ Z− β, and j ∈ β, then either i > j or w(i) > w(j); moreover, any
i≪ 0 lies in β, and any j ≫ 0 lies in Z− β.

2.2. GF-orbits in Fl×Fl×P. The following proposition is an affine version of [9] 2.11.

Proposition 1. There is a one-to-one correspondence between the set of GF-orbits in

Fl× Fl×
◦
V (equivalently, in Fl× Fl×P) and RBaff .

Proof. The argument is entirely similar to the proof of Lemma 2 of [13]. It is left to the
reader. We only mention that a representative of an orbit corresponding to (w, β) is given
by (F 1

• , F
2
• , v) where (F 1

• , F
2
• ) are as in (1), and v =

∑
k∈β ek (note that this infinite sum

makes sense in V). �

2.3. The mirabolic bimodule over the affine Hecke algebra. Let k = Fq, a finite
field with q elements. Then the affine Hecke algebra of G is the endomorphism algebra of

the induced module Haff := EndGF
(IndGF

I Z). It has the standard basis {Tw, w ∈ Saff
N },

and the structure constants are polynomial in q, so we may and will view Haff as the

specialization under q 7→ q of a Z[q,q−1]-algebra Haff . Clearly, H = EndGF
(IndGF

I Z)
coincides with the convolution ring of GF-invariant functions on Fl× Fl.

It acts by the right and left convolution on the bimodule Raff of GF-invariant functions

on Fl× Fl×
◦
V. For w̃ ∈ RBaff let Tw̃ ∈ Raff stand for the characteristic function of the

corresponding orbit in Fl × Fl ×
◦
V. Note that the involutions (F 1

• , F
2
• ) ↔ (F 2

• , F
1
• ) and

(F 1
• , F

2
• , v)↔ (F 2

• , F
1
• , v) induce anti-automorphisms of the algebra Haff and the bimodule

of GF-invariant functions on Fl × Fl ×
◦
V. These anti-automorphisms send Tw to Tw−1

and Tw̃ to Tw̃−1 where w̃−1 = (w−1, w(β)) for w̃ = (w, β).
We are going to describe the right action of Haff on the bimodule Raff in the basis

{Tw̃, w̃ ∈ RBaff} (and then the formulas for the left action would follow via the above
anti-automorphisms). To this end recall that Haff is generated by Ts1, . . . , TsN

, T±1
τ where

Tsi
is the characteristic function of the orbit formed by the pairs (F 1

• , F
2
• ) such that

F 1
j 6= F 2

j iff j = i (mod N); and τ(k) = k + 1, k ∈ Z. Evidently, Tw̃T
±1
τ = Tw̃[±1] where

w̃[±1] is the shift of w̃ by±1. The following proposition is an affine version of Proposition 2
of [13], and the proof is straightforward.

Proposition 2. Let w̃ = (w, β) ∈ RBaff and let s = si ∈ Saff
N , i ∈ {1, . . . ,N}. Denote

w̃s = (ws, s(β)) and w̃′ = (w, β △ {i+ 1}). Let σ = σ(w̃) and σ′ = σ(w̃s) be given by the
formula (6) of [13]. Then

(2) Tw̃Ts =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Tw̃s if ws > w and i + 1 6∈ σ′,

Tw̃s + T(w̃s)′ if ws > w and i + 1 ∈ σ′,

Tw̃′ + Tw̃′s if ws < w and β ∩ ι = {i},

(q − 1)Tw̃ + qTw̃s if ws < w and i 6∈ σ,

(q − 2)Tw̃ + (q − 1)(Tw̃′ + Tw̃s) if ws < w and ι ⊂ σ



4 MICHAEL FINKELBERG, VICTOR GINZBURG AND ROMAN TRAVKIN

where ι = {i, i + 1}.

2.4. Modified bases. The formulas (2) being polynomial in q, we may (and will) view
the Haff -bimodule Raff as the specialization under q 7→ q of the Z[q,q−1]-bimodule Raff

over the Z[q,q−1]-algebra Haff . We consider a new variable v, v2 = q, and extend the
scalars to Z[v,v−1] : Haff := Z[v,v−1]⊗Z[q,q−1] H

aff ; Raff := Z[v,v−1]⊗Z[q,q−1] R
aff .

Recall the basis {Hw := (−v)−ℓ(w)Tw} of Haff (see e.g. [12]), and the Kazhdan-Lusztig

basis {H̃w} (loc. cit.); in particular, for si (i = 1, . . . ,N), H̃si
= Hsi

− v−1. For w̃ =
(w, β) ∈ RBaff , we denote by ℓ(w̃) the sum ℓ(w) + ℓ(β) where ℓ(w) is the standard
length function on Saff

N , and ℓ(β) = ♯(β \ {−N}) − ♯({−N} \ β). We introduce a new

basis {Hw̃ := (−v)−ℓ(w̃)Tw̃} of Raff . In this basis the right action of the Hecke algebra

generators H̃si
takes the form:

Proposition 3. Let w̃ = (w, β) ∈ RBaff and let s = si ∈ Saff
N , i ∈ {1, . . . ,N}. Denote

w̃s = (ws, s(β)) and w̃′ = (w, β △ {i+ 1}). Let σ = σ(w̃) and σ′ = σ(w̃s) be given by the
formula (6) of [13]. Then

(3) Hw̃H̃s =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Hw̃s − v
−1Hw̃ if ws > w and i + 1 6∈ σ′,

Hw̃s − v
−1H(w̃s)′ − v

−1Hw̃ if ws > w and i + 1 ∈ σ′,

Hw̃′ − v
−1Hw̃ − v

−1Hw̃′s if ws < w and β ∩ ι = {i},

Hw̃s − vHw̃ if ws < w and i 6∈ σ,

(v−1 − v)Hw̃ + (1 − v
−2)(Hw̃′ + Hw̃s) if ws < w and ι ⊂ σ

where ι = {i, i + 1}.

2.5. Generators. We consider the elements w̃i,j = (τ j , βi) ∈ RBaff such that w = τ j

(the shift by j), and βi = {i, i − 1, i − 2, . . .}, for any i, j ∈ Z. The following lemma is
proved exactly as Corollary 2 of [13].

Lemma 1. Raff is generated by {w̃i,j , i, j ∈ Z} as a Haff -bimodule.

Remark 1. Let PF ⊂ GF be the stabilizer of a vector v ∈
◦
V. One can

see easily that Raff |q=q is isomorphic to EndPF
(IndGF

I Z) as a bimodule over

Haff |q=q = EndGF
(IndGF

I Z). Let Zaff ⊂ Haff stand for the center of Haff . Let Zaff
loc

stand for the field of fractions of Zaff . Let Haff
loc := Haff ⊗Zaff Zaff

loc. It is known that

Haff
loc ≃ MatN !(Q)⊗Q Z

aff
loc. Let Raff

loc := Zaff
loc ⊗Zaff Raff ⊗Zaff Zaff

loc. Then it follows from the

main theorem of [2] that Raff
loc ≃ Zaff

loc ⊗Q MatN !(Q)⊗Q Z
aff
loc.

2.6. Geometric interpretation. It is well known that Haff is the Grothendieck ring
(with respect to convolution) of the derived constructible I-equivariant category of Tate
Weil Ql-sheaves on Fl, and multiplication by v corresponds to the twist by Ql(−1

2 ) (so

that v has weight 1). In particular, Hw is the class of the shriek extension of Ql[ℓ(w)]( ℓ(w)
2 )

from the corresponding orbit Flw, and H̃w is the selfdual class of the Goresky-MacPherson

extension of Ql[ℓ(w)]( ℓ(x)
2 ) from this orbit. We will interpret Raff in a similar vein, as the

Grothendieck group of the derived constructible I-equivariant category of Tate Weil Ql-

sheaves on Fl×
◦
V.
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To be more precise, we view V as an indscheme (of ind-infinite type), the union of
schemes (of infinite type) Vi := t−ik[[t]]⊗ V, i ∈ Z. Here Vi is the projective limit of the
finite dimensional affine spaces Vi/Vj , j < i. Note that I acts on Vi linearly (over k),
and it acts on any quotient Vi/Vj through a finite dimensional quotient group. Thus we

have the derived constructible I-equivariant category of Weil Ql-sheaves on Fl ×Vi/Vj ,
to be denoted by DI(Fl × Vi/Vj). For j′ < j we have the inverse image functor from

DI(Fl ×Vi/Vj) to DI(Fl ×Vi/Vj′), and we denote by DI(Fl ×
◦
Vi) the 2-limit of this

system. Now for i′ > i we have the direct image functor from DI(Fl×
◦
Vi) to DI(Fl×

◦
Vi′),

and we denote by DI(Fl×
◦
V) the 2-limit of this system.

Clearly, DI(Fl) acts by convolution both on the left and on the right on DI(Fl×
◦
V).

The I-orbits in Fl ×
◦
V are numbered by RBaff ; for w̃ ∈ RBaff , the locally closed

embedding of the orbit Ωw̃ →֒ Fl×
◦
V is denoted by jw̃.

Proposition 4. For any w̃ ∈ RBaff , the Goresky-MacPherson sheaf jw̃!∗Ql[ℓ(w̃)]( ℓ(w̃)
2 ) is

Tate.

Proof. Repeats word for word the proof of Proposition 3 of [13]. For the base of induction,
we use the fact that the orbit closure Ω̄w̃i,j

(see 2.5) is smooth. �

2.7. The completed bimodule R̂aff . Let DTate
I (Fl) ⊂ DI(Fl) (resp. DTate

I (Fl×
◦
V) ⊂

DI(Fl×
◦
V)) stand for the full subcategory of Tate sheaves. Then DTate

I (Fl) is closed under

convolution, and its K-ring is isomorphic to Haff . The proof of Proposition 4 implies that

DTate
I (Fl ×

◦
V) is closed under both left and right convolution with DTate

I (Fl). Hence

K(DTate
I (Fl×

◦
V)) forms an Haff -bimodule. This bimodule is isomorphic to a completion

R̂aff of Raff we presently describe.
Recall that for an O-sublattice F ⊂ V its virtual dimension is dim(F ) := dim(F/(F ∩

(O ⊗ V ))) − dim((O ⊗ V )/(F ∩ (O ⊗ V ))). Recall that I is the stabilizer of the flag F 1
• ,

where F 1
k = 〈ek, ek−1, ek−2, . . .〉. The connected components of GF/I = Fl are numbered

by Z: a flag F• lies in the component Fli where i = dim(FN ). For the same reason, the

connected components of Fl×
◦
V are numbered by Z: a pair (F•, v) lies in the connected

component (Fl×
◦
V)i where i = dim(FN ). We will say w̃ ∈ RBaff

i iff Ωw̃ ⊂ (Fl×
◦
V)i. Now

note that for any i, k ∈ Z there are only finitely many w̃ ∈ RBaff such that w̃ ∈ RBaff
i and

ℓ(w̃) = k.

We define R̂aff as the direct sum R̂aff =
⊕

i∈Z R̂aff
i , and R̂aff

i is formed by all the for-

mal sums
∑

w̃∈RBaff
i
aw̃Hw̃ where aw̃ ∈ Z[v,v−1], and aw̃ = 0 for ℓ(w̃) ≫ 0. So we

have K(DTate
I (Fl×

◦
V)) ≃ R̂aff as an Haff -bimodule, and the isomorphism takes the class

[jw̃! Ql[ℓ(w̃)]( ℓ(w̃)
2 )] to Hw̃.

2.8. Bruhat order. Following Ehresmann and Magyar (see [8]) we will define a partial
order w̃′′ ≤ w̃′ on a connected component RBaff

i . Let (F 1
• , F

′
•, v

′) (resp. F 1
• , F

′′
• , v

′′) be
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a triple in the relative position w̃′ (resp. w̃′′). For any k, j ∈ Z we define rjk(w̃
′) :=

dim(F 1
j ∩F ′

k). We also define δ(j, k, w̃′) to be 1 iff v′ ∈ (F 1
j +F ′

k), and 0 iff v′ 6∈ (F 1
j +F ′

k);

we set r〈jk〉(w̃
′) := rjk(w̃

′) + δ(j, k, w̃′). Finally, we define w̃′′ ≤ w̃′ iff rjk(w̃
′′) ≥ rjk(w̃

′),

and r〈jk〉(w̃
′′) ≥ r〈jk〉(w̃′) for all j, k ∈ Z.

The following proposition is proved similarly to the Rank Theorem 2.2 of [8].

Proposition 5. For w̃′, w̃′′ ∈ RBaff
i the orbit Ωw̃′′ lies in the orbit closure Ω̄w̃′ iff w̃′′ ≤ w̃′.

2.9. Duality and the Kazhdan-Lusztig basis of R̂aff . Recall that the Grothendieck-
Verdier duality on Fl induces the involution (denoted by h 7→ h) of Haff which takes v to

v−1 and H̃w to H̃w. We will describe the involution on R̂aff induced by the Grothendieck-

Verdier duality on Fl ×
◦
V. Recall the elements w̃i,j introduced in 2.5. We set H̃w̃i,j

:=∑
k≤i(−v)k−iHw̃k,j

. This is the class of the selfdual (geometrically constant) IC sheaf on
the closure of the orbit Ωw̃i,j

. The following proposition is proved exactly as Proposition 5
of [13].

Proposition 6. a) There exists a unique involution r 7→ r on R̂aff such that H̃w̃i,j
= H̃w̃i,j

for any i, j ∈ Z, and hr = hr, and rh = rh for any h ∈ Haff and r ∈ R̂aff .

b) The involution in a) is induced by the Grothendieck-Verdier duality on Fl×
◦
V.

The following proposition is proved exactly as Proposition 6 of [13].

Proposition 7. a) For each w̃ ∈ RBaff there exists a unique element H̃w̃ ∈ R̂aff such that

H̃w̃ = H̃w̃, and H̃w̃ ∈ Hw̃ +
∑

ỹ<w̃ v−1Z[v−1]Hỹ.

b) For each w̃ ∈ RBaff the element H̃w̃ is the class of the selfdual I-equivariant IC-sheaf

with support Ω̄w̃. In particular, for w̃ = w̃i,j , the element H̃w̃i,j
is consistent with the

notation introduced before Proposition 6.

We conjecture that the sheaves j!∗Ql[ℓ(w̃)]( ℓ(w̃)
2 ) are pointwise pure. The parity vanish-

ing of their stalks, and the positivity properties of the coefficients of the transition matrix
from {Hw̃} to {H̃w̃} would follow.

3. Mirabolic affine Grassmannian

3.1. GF-orbits in Gr×Gr×P. We consider the spherical counterpart of the objects of
the previous section. To begin with, recall that the GF-orbits in Gr×Gr are numbered by

the set S
sph
N formed by all the nonincreasingN -tuples of integers ν = (ν1 ≥ ν2 ≥ . . . ≥ νN ).

Namely, for such ν, the following pair (L1, L2) of O-sublattices in V lies in the orbit Oν :

(4) L1 = O〈e1, e2, . . . , eN 〉, L2 = O〈t−ν1e1, t
−ν2e2, . . . , t

−νN eN 〉.
We define RBsph as S

sph
N ×S

sph
N . We have an addition map RBsph → S

sph
N : (λ, µ) 7→

ν = λ+ µ where νi = λi + µi, i = 1, . . . ,N .

Proposition 8. There is a one-to-one correspondence between the set of GF-orbits in

Gr×Gr×
◦
V (equivalently, in Gr×Gr×P) and RBsph.
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Proof. The argument is entirely similar to the proof of Proposition 1. We only mention
that a representative of an orbit O(λ,µ) corresponding to (λ, µ) with λ+ µ = ν is given by

(L1, L2, v) where (L1, L2) are as in (4), and v =
∑N

i=1 t
−λiei. �

3.2. The spherical mirabolic bimodule. Let k = Fq. Then the spherical affine Hecke

Hsph algebra of G is the endomorphism algebra of the induced module EndGF
(IndGF

GO
Z).

It coincides with the convolution ring of GF-invariant functions on Gr ×Gr. It has the

standard basis {Uν , ν ∈ S
sph
N } of characteristic functions of GF-orbits in Gr ×Gr, and

the structure constants are polynomial in q (Hall polynomials), so we may and will view

Hsph = EndGF
(IndGF

GO
Z) as specialization of the Z[q,q−1]-algebra Hsph under q 7→ q.

The algebra Hsph acts by the right and left convolution on the bimodule Rsph of GF-

invariant functions on Gr ×Gr ×
◦
V. For (λ, µ) ∈ RBsph let U(λ,µ) stand for the char-

acteristic function of the corresponding orbit in Gr × Gr ×
◦
V. We are going to de-

scribe the right and left action of Hsph on the bimodule in the basis {U(λ,µ), (λ, µ) ∈
RBsph}. To this end recall that Hsph is a commutative algebra freely generated by
U(1,0,...,0), U(1,1,0,...,0), . . . , U(1,1,...,1,0), and U±1 where U±1 is the characteristic function of

the orbit of (L1, t∓1L1). We will denote ν = (1, . . . , 1, 0, . . . , 0) (r 1’s and N − r 0’s) by
(1r).

Note that the assignment φi,j : (L1, L2, v) 7→ (L1, t
−i−jL2, t

−iv) is a GF-equivariant

automorphism of Gr × Gr ×
◦
V sending an orbit O(λ,µ) to O(λ+iN ,µ+jN ). We will de-

note the corresponding automorphism of the bimodule Rsph by φi,j as well: φi,j(Uλ,µ) =
U(λ+iN ,µ+jN ). Furthermore, an automorphism (L1, L2) 7→ (L2, L1) of Gr×Gr induces an

(anti)automorphism ̺ of (commutative) algebra Hsph, ̺(U±1) = U∓1, ̺(Uν) = Uν∗ where
for ν = (ν1, . . . , νN ) we set ν∗ = (−νN ,−νN−1, . . . ,−ν1). Similarly, an automorphism

(L1, L2, v) 7→ (L2, L1, v) of Gr×Gr×
◦
V induces an antiautomorphism ̺ of the bimodule

Rsph such that ̺(U(λ,µ)) = U(µ∗,λ∗), and ̺(hm) = ̺(m)̺(h) for any h ∈ Hsph, m ∈ Rsph.

Clearly, U±1U(λ,µ) = U(λ±1N ,µ), and U(λ,µ)U
±1 = U(λ,µ±1N ).

3.3. Structure constants. In this subsection we will compute the structure constants

G
(λ,µ)
(1r)(λ′,µ′) such that U(1r)U(λ′,µ′) =

∑
(λ,µ)∈RBsph G

(λ,µ)
(1r)(λ′,µ′)U(λ,µ) (see Proposition 9 be-

low). Due to the existence of the automorphisms φi,j of Rsph, it suffices to compute

G
(λ,µ)
(1r)(λ′,µ′) for λ′, µ′ ∈ NN . In this case λ, µ necessarily lie in NN as well, that is, all the

four λ′, µ′, λ, µ are partitions (with N parts). We have λ = (λ1, . . . , λN ); we may and
will assume that λ1 > 0. We set n := |λ| + |µ|, and let D = kn. We fix a nilpotent
endomorphism u of D, and a vector v ∈ D such that the type of GL(D)-orbit of the pair
(u, v) is (λ, µ) (see [13], Theorem 1). By the definition of the structure constants in the

spherical mirabolic bimodule, G
(λ,µ)
(1r)(λ′,µ′) is the number of r-dimensional vector subspaces

W ⊂ Ker(u) such that the type of the pair (u|D/W , v (mod W )) is (λ′, µ′).
To formulate the answer we need to introduce certain auxilliary data in Ker(u). First of

all, uλ1−1v is a nonzero vector in Ker(u). We consider the pair of partitions (ν, θ) = Υ(λ, µ)
(notations introduced before Corollary 1 of [13]), so that ν = λ + µ is the Jordan type



8 MICHAEL FINKELBERG, VICTOR GINZBURG AND ROMAN TRAVKIN

of u. We consider the dual partitions ν̃, θ̃. We consider the following flag of subspaces of
Ker(u):

F ν̃ν1 := Ker(u) ∩ Im(uν1−1) ⊂ F ν̃ν2 := Ker(u) ∩ Im(uν2−1) ⊂ . . .
⊂ F ν̃2 := Ker(u) ∩ Im(uνν̃2

−1) ⊂ F ν̃1 := Ker(u).

It is (an incomplete, in general) flag of intersections of Ker(u) with the im-
ages of u, u2, u3, . . .. More precisely, for any k = 0, 1, . . . , ν1 we have
Fk := Ker(u) ∩ Im(uk) = F ν̃k+1, and dim(F ν̃k+1) = ν̃k+1. There is a unique k0

such that uλ1−1v ∈ Fk0 but uλ1−1v 6∈ Fk0+1; namely, we choose the maximal i such that
λi = λ1, and then k0 = νi − 1.

Let Q ⊂ GL(Ker(u)) be the stabilizer of the flag F•, a parabolic subgroup of
GL(Ker(u)); and let Q′ ⊂ Q be the stabilizer of the vector uλ1−1v. Both Q and
Q′ have finitely many orbits in the Grassmannian Gr of r-dimensional subspaces in
Ker(u). The orbits of Q are numbered by the compositions ρ = (ρ1, . . . , ρν1) such
that |ρ| = r, and 0 ≤ ρk ≤ ν̃k − ν̃k+1. Namely, W ∈ Gr lies in the orbit Oρ iff
dim(W ∩ Fk) = ρk+1 + . . . + ρν1 ; equivalently, dim(W + Fk) = ν̃k+1 + ρ1 + . . . + ρk. If
we extend the flag F• to a complete flag in Ker(u), then the stabilizer of the extended
flag is a Borel subgroup B ⊂ Q. The orbit Oρ is a union of certain B-orbits in Gr, that
is Schubert cells. So the cardinality of Oρ is a sum of powers of q given by the well
known formula for the dimension of the Schubert cells (see e.g. Appendix to Chapter II
of [7]). We will denote this cardinality by Pρ. Note that the Jordan type of u|D/W for
W ∈ Oρ is ν ′ := ρ(ν) where ρ(ν) is defined as the partition dual to ν̃ ′ = (ν̃ ′1, ν̃

′
2, . . .), and

ν̃ ′k := ν̃k+1 + dim(W + Fk−1)− dim(W + Fk) = ν̃k − ρk.
Now each Q-orbit Oρ in Gr splits as a union Oρ =

⊔
0≤j≤ν1

Oρ,j of Q′-orbits. Namely,

W ∈ Oρ lies in Oρ,j iff uλ1−1v ∈W + Fj but uλ1−1v 6∈W + Fj+1 (so that for some j, e.g.
j < k0, Oρ,j may be empty). The type of (u|D/W , v (mod W )) for W ∈ Oρ,j is (ν ′, θ′) :=

(ρ, j)(ν, θ) where ν ′ = ρ(ν), and θ′ is defined as the partition dual to θ̃′ = (θ̃′1, θ̃
′
2, . . .),

and θ̃′k := θ̃k+1 + dim(W + Fk−1 + kuλ1−1v)− dim(W + Fk + kuλ1−1v). Finally, note that

dim(W +Fk−1 + kuλ1−1v)− dim(W +Fk + kuλ1−1v) = dim(W +Fk−1)− dim(W +Fk) =
ν̃k − ν̃k+1 − ρk if j 6= k − 1, and dim(W + Fk−1 + kuλ1−1v) − dim(W + Fk + kuλ1−1v) =
dim(W + Fk−1)− dim(W + Fk)− 1 = ν̃k − ν̃k+1 − ρk − 1 if j = k − 1.

It remains to find the cardinality Pρ,j of Oρ,j. Let us denote uλ1−1v by v′ for
short. Then v′ ∈ Fk0 , v

′ ∈ W + Fj , v
′ 6∈ Fk0+1, v

′ 6∈ W + Fj+1, thus v′ ∈ A :=
{(W + Fj) ∩ Fk0} \ ({(W + Fj) ∩ Fk0+1} ∪ {(W + Fj+1) ∩ Fk0}). The cardinality of A

equals PA := qdim(W+Fj)∩Fk0 − qdim(W+Fj)∩Fk0+1 − qdim(W+Fj+1)∩Fk0 + qdim(W+Fj+1)∩Fk0+1,
while for any i > l we have dim(W + Fi) ∩ Fl = dim(W + Fi) + dimFl − dim(W + Fl) =
ν̃i+1 + ρl+1 + . . . + ρi. Now we can count the set of pairs (W,v′) in a relative position
(ρ, j) with respect to F• in two ways. First all v′ in Fk0 \ Fk0+1 (qν̃k0+1 − qν̃k0+2 choices
altogether), and then for each v′ all W in Oρ,j (Pρ,j choices altogether). Second, all W in
Oρ (Pρ choices altogether), and then for each W all v′ in A (PA choices altogether). We
find

(5) Pρ,j = Pρ · PA/(q
ν̃k0+1 − qν̃k0+2)
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Note that Pρ,j is a polynomial in q. We conclude that this polynomial computes the
desired structure constant

(6) G
(λ,µ)
(1r)(λ′,µ′) = Pρ,j

where (λ′, µ′) = Ξ(ν ′, θ′) (notations introduced before Corollary 1 of [13]), and (ν ′, θ′) =
(ρ, j)(ν, θ) where as before we have (ν, θ) = Υ(λ, µ).

Clearly, for any i, j ≥ 0 we have G
(λ,µ)
(1r)(λ′,µ′) = G

(λ+iN ,µ+jN )

(1r)(λ′+iN ,µ′+jN )
. Hence for any

(λ, µ), (λ′, µ′) ∈ RBsph we can set G
(λ,µ)
(1r)(λ′,µ′) := G

(λ+iN ,µ+jN )

(1r)(λ′+iN ,µ′+jN )
for any i, j ≫ 0.

Also, we set

(7) G
(λ,µ)
(λ′,µ′)(1r) := G

(µ∗−1N ,λ∗)

(1N−r)(µ′∗,λ′∗)
.

Thus we have proved the following proposition (the second statement is equivalent to
the first one via the antiautomorphism ̺).

Proposition 9. Let (λ′, µ′) ∈ RBsph, and 1 ≤ r ≤ N − 1. Then

(8) U(1r)U(λ′,µ′) =
∑

(λ,µ)∈RBsph

G
(λ,µ)
(1r)(λ′,µ′)U(λ,µ), and

U(λ′,µ′)U(1r) =
∑

(λ,µ)∈RBsph

G
(λ,µ)
(λ′,µ′)(1r)U(λ,µ).

3.4. Modified bases and generators. The formulas (8) being polynomial in q, we

may and will view the Hsph-bimodule Rsph of GF-invariant functions on Gr ×Gr ×
◦
V

as the specialization under q 7→ q of a Z[q,q−1]-bimodule Rsph over the Z[q,q−1]-algebra
Hsph. We extend the scalars to Z[v,v−1] : Hsph := Z[v,v−1] ⊗Z[q,q−1] H

sph; Rsph :=

Z[v,v−1]⊗Z[q,q−1] R
sph.

Recall the selfdual basis Cλ of Hsph (see. e.g. [4]). In particular, for 1 ≤ r ≤ N −
1, C(1r) = (−v)−r(N−r)U(1r). For (λ, µ) ∈ RBsph with ν = λ + µ, we denote by ℓ(λ, µ)
the sum d(ν) + |λ| with |λ| := λ1 + . . . + λN , and d(ν) := |ν|(N − 1) − 2n(ν) where

n(ν) =
∑N

i=1(i− 1)νi.

We introduce a new basis {H(λ,µ) := (−v)−ℓ(λ,µ)U(λ,µ) of Rsph. We consider the elements

(iN , jN ) = ((i, . . . , i), (j, . . . , j)) ∈ RBsph for any i, j ∈ Z. The following lemma is proved
the same way as Lemma 1.

Lemma 2. Rsph is generated by {(iN , jN ), i, j ∈ Z} as a Hsph-bimodule.

3.5. Geometric interpretation and the completed bimodule R̂sph. Following the

pattern of subsection 2.6 we define the category DGO
(Gr×

◦
V) acted by convolution (both

on the left and on the right) by DGO
(Gr). Similarly to Proposition 4, we have (in obvious

notations):

Proposition 10. For any (λ, µ) ∈ RBsph, the Goresky-MacPherson sheaf

j
(λ,µ)
!∗ Ql[ℓ(λ, µ)]( ℓ(λ,µ)

2 ) is Tate.
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We also have the full subcategories of Tate sheaves DTate
GO

(Gr) ⊂ DGO
(Gr) and

DTate
GO

(Gr ×
◦
V) ⊂ DGO

(Gr ×
◦
V). Furthermore, DTate

GO
(Gr) is closed under convolution,

and DTate
GO

(Gr ×
◦
V) is closed under both right and left convolution with DTate

GO
(Gr). The

K-ring K(DTate
GO

(Gr)) is isomorphic to Hsph, and this isomorphism sends the class of
the selfdual Goresky-MacPherson sheaf on the orbit closure Grλ to Cλ. The K-group

K(DTate
GO

(Gr ×
◦
V)) forms an Hsph-bimodule isomorphic to a completion R̂sph of Rsph we

presently describe.

The connected components of Gr ×
◦
V are numbered by Z: a pair (L, v) lies in the

connected component (Gr ×
◦
V)i where i = dim(L). We will say that (λ, µ) ∈ RBsph

i if

the corresponding orbit lies in (Gr×
◦
V)i; equivalently,

∑N
j=1 λj +

∑N
j=1 µj = i. Note that

for any i, k ∈ Z there are only finitely many (λ, µ) ∈ RBsph such that (λ, µ) ∈ RBsph
i , and

ℓ(λ, µ) = k.

We define R̂sph as the direct sum R̂sph =
⊕

i∈Z R̂
sph
i , and R̂

sph
i is formed by all the formal

sums
∑

(λ,µ)∈RBsph
i

a(λ,µ)H(λ,µ) where a(λ,µ) ∈ Z[v,v−1], and a(λ,µ) = 0 for ℓ(λ, µ)≫ 0. So

we have K(DTate
GO

(Gr×
◦
V)) ≃ R̂sph as an Hsph-bimodule, and the isomorphism takes the

class [j
(λ,µ)
! Ql[ℓ(λ, µ)]( ℓ(λ,µ)

2 )] to H(λ,µ).

3.6. Bruhat order, duality and the Kazhdan-Lusztig basis. Following Achar and

Henderson [1], we define a partial order (λ, µ) ≤ (λ′, µ′) on a connected component RBsph
i :

we say (λ, µ) ≤ (λ′, µ′) iff λ1 ≤ λ′1, λ1 + µ1 ≤ λ′1 + µ′1, λ1 + µ1 + λ2 ≤ λ′1 + µ′1 +

λ′2, λ1 + µ1 + λ2 + µ2 ≤ λ′1 + µ′1 + λ′2 + µ′2, . . . (in the end we have
∑N

k=1 λk +
∑N

k=1 µk =∑N
k=1 λ

′
k +

∑N
k=1 µ

′
k = i). The following proposition is due to Achar and Henderson

(Theorem 3.9 of [1]) :

Proposition 11. For (λ, µ), (λ′, µ′) ∈ RBsph
i the GO-orbit Ω(λ,µ) ⊂ Gr ×

◦
V lies in the

orbit closure Ω̄(λ′,µ′) iff (λ, µ) ≤ (λ′, µ′).

Now we will describe the involution on R̂sph induced by the Grothendieck-Verdier du-

ality on Gr ×
◦
V. Recall the elements (iN , jN ) introduced in 3.4. We set H̃(iN ,jN ) :=∑

k≤0(−v)NkH((i−k)N ,(j+k)N ). This is the class of the selfdual (geometrically constant) IC
sheaf on the closure of the orbit Ω(iN ,jN). The following propositions are proved exactly
as Propositions 6 and 7:

Proposition 12. a) There exists a unique involution r 7→ r on R̂sph such that H̃(iN ,jN ) =

H̃(iN ,jN ) for any i, j ∈ Z, and hr = hr, and rh = rh for any h ∈ Hsph and r ∈ R̂sph.

b) The involution in a) is induced by the Grothendieck-Verdier duality on Gr×
◦
V.

Proposition 13. a) For each (λ, µ) ∈ RBsph there exists a unique element H̃(λ,µ) ∈ R̂sph

such that H̃(λ,µ) = H̃(λ,µ), and H̃(λ,µ) ∈ H(λ,µ) +
∑

(λ′,µ′)<(λ,µ) v
−1Z[v−1]H(λ′,µ′).
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b) For each (λ, µ) ∈ RBsph the element H̃(λ,µ) is the class of the selfdual GO-equivariant

IC-sheaf with support Ω̄(λ,µ). In particular, for (λ, µ) = (iN , jN ), the element H̃(iN ,jN) is
consistent with the notation introduced before Proposition 12.

We will write

(9) H̃(λ,µ) =
∑

(λ′,µ′)≤(λ,µ)

Π(λ′,µ′),(λ,µ)H(λ′,µ′).

The coefficients Π(λ′,µ′),(λ,µ) are polynomials in v−1. As we will see in subsection 4.2
below, they coincide with a generalization of Kostka-Foulkes polynomials introduced by
Shoji in [11].

We define a sub-bimodule R̃sph ⊂ R̂sph generated (not topologically) by the set

H̃(λ,µ), (λ, µ) ∈ RBsph. It turns out to be a free Hsph-bimodule of rank one:

Theorem 1. CλH̃(0N ,0N )Cµ = H̃(λ,µ).

The proof will be given in subsection 3.9 after we introduce the necessary ingredients
in 3.7 and 3.8.

3.7. Lusztig’s construction. Following Lusztig (see [4], section 2) we will prove that
the G-orbit closures in N × V are equisingular to (certain open pieces of) the GO-orbit

closures in Gr ×
◦
V. So we set E = V ⊕ . . . ⊕ V (N copies), and let t : E → E

be defined by t(v1, . . . , vN ) = (0, v1, . . . , vN−1). Let Y be the variety of all pairs (E′, e)
where E′ ⊂ E is an N -dimensional t-stable subspace, and e ∈ E′. Let Y0 be the open
subvariety of Y consisting of those pairs (E′, e) in which E′ is transversal to V ⊕ . . . ⊕
V ⊕ 0. According to loc. cit. Y0 is isomorphic to N × V , the isomorphism sending
(u, v) to

(
E′ = (uN−1w, uN−2w, . . . , uw,w)w∈V , e = (uN−1v, uN−2v, . . . , uv, v)

)
. Now E

is naturally isomorphic to
(
t−Nk[[t]]/k[[t]]

)
⊗ V (together with the action of t), and the

assignment (E′, e) 7→ (L := E′ ⊕ k[[t]] ⊗ V, e) embeds Y into Gr(N,0,...,0) × V. We will
denote the composed embedding N × V →֒ Gr × V by ψ : (u, v) 7→ (L(u, v), e(u, v)).
There is an open subset W ⊂ k[[t]] ⊗ V with the property that for any w ∈ W, and
any (u, v) ∈ (N × V )(λ,µ) (a G-orbit, see [13], Theorem 1), we have (L(u, v), e(u, v) +

w) ∈ Ω(λ,µ) (the corresponding GO-orbit in Gr×
◦
V). Moreover, the resulting embedding

W×(N×V )(λ,µ) →֒ Ω(λ,µ) is an open embedding. Also, the embedding W×(N × V )(λ,µ) →֒
Ω̄(λ,µ) of the orbit closures is an open embedding as well. Hence the Frobenius action on

the IC stalks of (N × V )(λ,µ) is encoded in the polynomials Π(λ′,µ′),(λ,µ) introduced after

Proposition 13.

3.8. Mirković-Vybornov construction. The GO-orbits Ω(λ,µ) ⊂ Gr ×
◦
V considered

in subsection 3.7 are rather special: all the components λk, µk are nonnegative integers,
and

∑N
k=1 λk +

∑N
k=1 µk = N . To relate the singularities of more general orbit closures

Ω̄(λ′,µ′) to the singularities of orbits in the enhanced nilpotent cones (for different groups
GLn, n 6= N) we need a certain generalization of Lusztig’s construction, due to Mirković
and Vybornov [10].
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To begin with, note that the assignment φi,j : (L, v) 7→ (t−i−jL, t−iv) is a GO-

equivariant automorphism of Gr×
◦
V sending Ω(λ,µ) to Ω(λ+iN ,µ+jN ). Thus we may restrict

ourselves to the study of orbits Ω(λ,µ) with λ, µ ∈ NN without restricting generality. Ge-

ometrically, this means to study the pairs (L, v) such that L ⊃ L1 = O〈e1, . . . , eN 〉 and
L ∋ v 6∈ L1.

Let n = rN for r ∈ N. We consider an n-dimensional k-vector space D with a basis
{ek,i, 1 ≤ k ≤ r, 1 ≤ i ≤ N} and a nilpotent endomorphism x : ek,i 7→ ek−1,i, e1,i 7→ 0.

The Mirković-Vybornov transversal slice is defined as Tx := {x+f, f ∈ End(D) : f l,j
k,i = 0

if k 6= r}. Its intersection with the nilpotent cone of End(D) is Tx ∩Nn.
Let L2 ∈ Gr be given as L2 = t−rL1. It lies in the orbit closure Gr(n,0,...,0), and we

will describe an open neighbourhood U of L2 in Gr(n,0,...,0) isomorphic to Tx ∩ Nn. We

choose a direct complement to L2 in V so that L2 := t−r−1k[t−1]⊗ V . Then U is formed
by all the lattices whose projection along L2 is an isomorphism onto L2. Any L ∈ U is
of the form (1 + g)L2 where g : L2 → L2 is a linear map with the kernel containing L1,
i.e. g : L2/L1 → L2. Now we use the natural identification of L2/L1 with D (so that the
action of t corresponds to the action of x). Furthermore, we identify t−rV with a subset of
L2/L1 = D. Hence we may view g as a sum

∑∞
k=1 t

−kgk where gk : D → t−rV are linear
maps. Composing with t−rV →֒ D we may view gk as an endomorphism of D. Then L
being a lattice is equivalent to the condition: gk = g1(t + g1)

k−1 and t + g1 is nilpotent.

In other words, the desired isomorphism Tx ∩Nn
∼−→U is of the form:

Tx ∩Nn ∋ x+ f 7→ L = L(x+ f) :=

(
1 +

∞∑

k=1

t−kf(t+ f)k−1

)
L2.

Now we identify D with t−1V ⊕ . . .⊕ t−rV ⊂ L2. Given a vector v ∈ D we consider its
image v ∈ L2 under the above embedding, and define e(x+f, v) ∈ L(x+f) as the preimage

of v under the isomorphism L
∼−→L2 (projection along L2). Thus we have constructed an

embedding ψ : (Tx ∩ Nn) × D →֒ Gr × V, (x + f, v) 7→ L(x + f), e(x + f, v). Note
that the Jordan type of any nilpotent x+ f is given by a partition ν with the number of
parts less than or equal to N . There is an open subset W ⊂ k[[t]] ⊗ V with the property
that for any w ∈ W, and any (x + f, v) ∈ ((Tx ∩ Nn) × V )(λ,µ) (the intersection with a
GLn-orbit), we have (L(x + f), e(x + f, v) + w) ∈ Ω(λ,µ) (the corresponding GO-orbit in

Gr×
◦
V). Moreover, the resulting embedding W×((Tx∩Nn)×D)(λ,µ) →֒ Ω(λ,µ) is an open

embedding. Also, the embedding W × ((Tx ∩Nn)× V )(λ,µ) →֒ Ω̄(λ,µ) of the intersection

with the orbit closure is an open embedding as well.
We conclude that the orbit closures Ω̄(λ,µ) with

∑N
k=1 λk +

∑N
k=1 µk divisible by N are

equisingular to certain GLn-orbit closures in Nn ×D for some n divisible by N .

3.9. Semismallness of convolution. We are ready for the proof of Theorem 1. Let us
denote the self-dual Goresky-MacPherson sheaf on the orbit Grλ (whose class is Cλ) by
ICλ for short. Then the convolution power IC∗l

(1,0,...,0) is isomorphic to ⊕|λ|=lKλ⊗ ICλ for

certain vector spaces Kλ (equal to the multiplicities of irreducible GLN -modules in V ⊗l).
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We stress that Kλ is concentrated in degree 0, that is convolution morphism is stratified
semismall. Thus it suffices to prove

(10) IC∗l
(1,0,...,0) ∗ IC(0N ,0N ) ∗ IC∗m

(1,0,...,0) ≃
|λ|=l⊕

|µ|=m

Kµ ⊗Kλ ⊗ IC(λ,µ).

Moreover, it suffices to prove (10) for m, l divisible by N . In effect, this would imply

that the convolution morphism Gr∗l(1,0,...,0) ∗ Ω̄(0N ,0N ) ∗Gr∗m(1,0,...,0) → Gr ×
◦
V is stratified

semismall for any m, l ≥ 0. Indeed, if the direct image of the constant IC sheaf under the
above morphism involved some summands with nontrivial shifts in the derived category,
the further convolution with IC(1,0,...,0) could not possibly kill the nontrivially shifted
summands, and so they would persist for some m, l divisible by N .

Having established the semismallness for arbitrary m, l ≥ 0, we see that the semisimple
abelian category formed by direct sums of IC(λ,µ), (λ, µ) ∈ RBsph is a bimodule category

over the tensor category formed by direct sums of ICλ, λ ∈ S
sph
N (equivalent by Satake

isomorphism to Rep(GLN )). To specify such a bimodule category it suffices to specify the
action of the generator IC(1,0,...,0), and there is only one action satisfying (10) with m, l
divisible by N : it necessarily satisfies (10) for any m, l.

We set n = m+ l. The advantage of having n divisible by N is that according to 3.8,
the (open part of the) orbit closure is equisingular to certain slice of the GLn-orbit closure
in Nn × D. To describe the convolution diagram in terms of GLn we need to recall a
Springer type construction of [3] 5.4.

So Ỹn,m is the smooth variety of triples (u, F•, v) where F• is a complete flag in the n-
dimensional vector spaceD, and u is a nilpotent endomorphism ofD such that uFk ⊂ Fk−1,

and v ∈ Fn−m. We have a proper morphism πn,m : Ỹn,m → Nn × D with the image
Yn,m ⊂ Nn ×D formed by all the pairs (u, v) such that dim〈v, uv, u2v, . . .〉 ≤ n −m. It
follows from the proof of Proposition 5.4.1 of loc. cit. that πn,m is a semismall resolution
of singularities, and

(11) (πn,m)∗IC(Ỹn,m) ≃
|λ|=n−m⊕

|µ|=m

Lµ⊗Lλ⊗IC(λ,µ)

where Lµ (resp. Lλ) is the irreducible representation of Sm (resp. Sn−m) corresponding
to the partition µ (resp. λ); furthermore, IC(λ,µ) is the IC sheaf of the GLn-orbit closure

(Nn ×D)(λ,µ) (cf. Theorem 4.5 of [1]).

Recall the nilpotent element x ∈ Nm introduced in 3.8, and the slice Tx ∩ Nn. We
will denote π−1

n,m((Tx ∩ Nn) × D) by T Ỹn,m ⊂ Ỹn,m. Recall the open embedding ϕ :

W × ((Tx ∩ Nn) × D) →֒ Ω̄(n,0,...,0),(0N ) of 3.8. Let us denote the convolution diagram

Gr∗l(1,0,...,0) ∗ Ω̄(0N ,0N ) ∗Gr∗m(1,0,...,0) by Ω̃(l,0,...,0),(m,0,...,0) for short; let us denote its morphism

to Ω̄(n,0,...,0),(0N ) (with the image Ω̄(l,0,...,0),(m,0,...,0)) by ̟n,m. Finally, let us denote the

preimage under ̟n,m of ϕ(W× ((Tx ∩Nn)×D)) by T Ω̃(l,0,...,0),(m,0,...,0). The next lemma
follows by comparison of definitions:
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Lemma 3. We have a commutative diagram

W× T Ỹn,m
∼−−−−→ T Ω̃(l,0,...,0),(m,0,...,0)yid×πn,m ̟n,m

y

W× ((Tx ∩Nn)×D)
ϕ−−−−→ Ω̄(n,0,...,0),(0N )

Since Lλ = Kλ by Schur-Weyl duality, the proof of the theorem is finished. �

Remark 2. Due to Lusztig’s construction of 3.7, Theorem 1 implies Proposition 4.6 of [1].

4. Mirabolic Hall bimodule

4.1. Recollections. The field k is still Fq. The Hall algebra Hall = HallN of all fi-
nite k[[t]]-modules which are direct sums of ≤ N indecomposable modules is defined as
in [7] II.2. It is a quotient algebra of the “universal” Hall algebra H(k[[t]]) of loc. cit. It

has a basis {uλ} where λ runs through the set +S
sph
N of partitions with ≤ N parts. It is a

free polynomial algebra with generators {u(1r), 1 ≤ r ≤ N − 1}. The structure constants

Gλ
µν being polynomial in q, we may and will view Hall as the specialization under q 7→ q

of a Z[q,q−1]-algebra Hall. Extending scalars to Z[v,v−1] we obtain a Z[v,v−1]-algebra
Haℓℓ.

Let Λ = ΛN denote the ring of symmetric polynomials in the variables
X = (X1, . . . ,XN ) over Z[v,v−1]. There is an isomorphism Ψ : Haℓℓ

∼−→Λ sending
u(1r) to v−r(r−1)er (elementary symmetric polynomial), and uλ to v−2n(λ)Pλ(X,v−2)

(Chapter III of loc. cit.) where Pλ(X,v−2) is the Hall-Littlewood polynomial, and

n(λ) =
∑N

i=1(i − 1)λi. Let us denote by +Hsph the subalgebra of Hsph spanned by

{Uλ, λ ∈ +S
sph
N }. Then we have a natural identification of +Hsph with Haℓℓ sending Uλ

to uλ, and Cλ to cλ. Furthermore, Ψ(cλ) = (−v)−(N−1)|λ|sλ (Schur polynomial).

4.2. The Mirabolic Hall bimodule. A finite k[[t]]-module which is direct sum of ≤ N
indecomposable modules is the same as a k-vector space D with a nilpotent operator u
with ≤ N Jordan blocks. The isomorphism classes of pairs (u, v) (where v ∈ D) are
numbered by the set +RBsph of pairs of partitions (λ, µ) with ≤ N parts in λ and ≤ N

parts in µ. We define the structure constants G
(λ,µ)
(λ′,µ′)ν and G

(λ,µ)
ν(λ′,µ′) as follows1. G

(λ,µ)
ν(λ′,µ′)

is the number of u-invariant subspaces D′′ ⊂ D such that the isomorphism type of u|D′′

is given by ν, and the isomorphism type of (u|D/D′′ , v (mod D′′)) is given by (λ′, µ′).

Furthermore, G
(λ,µ)
(λ′,µ′)ν is the number of u-invariant subspaces D′ ⊂ D containing v such

that the isomorphism type of (u|D′ , v) is given by (λ′, µ′), and the isomorphism type of
u|D/D′ is given by ν. Note that some similar quantities were introduced in Proposition 5.8

of [1]: in notations of loc. cit. we have gλ;µ
θ;ν =

∑
λ′+µ′=θ G

(λ,µ)
(λ′,µ′)ν .

Lemma 4. For any +RBsph ∋ (λ, µ), (λ′, µ′), 1 ≤ r ≤ N − 1, the structure constants

G
(λ,µ)
(1r)(λ′,µ′) and G

(λ,µ)
(λ′,µ′)(1r) are given by the formulas (6) and (7).

1The notation G
(λ,µ)

(λ′,µ′)(1r) and G
(λ,µ)

(1r)(λ′,µ′) introduced in subsection 3.3 is just a particular case of the

present one for ν = (1r) as we will see in Lemma 4.
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Proof. Was given in subsection 3.3. �

We define the Mirabolic Hall bimodule Mall over Hall to have a Z-basis {u(λ,µ), (λ, µ) ∈
+RBsph} and the structure constants

uνu(λ′,µ′) =
∑

(λ,µ)∈ +RBsph

G
(λ,µ)
ν(λ′,µ′)u(λ,µ), u(λ′,µ′)uν =

∑

(λ,µ)∈ +RBsph

G
(λ,µ)
(λ′,µ′)νu(λ,µ)

The structure constants G
(λ,µ)
(λ′,µ′)(1r) and G

(λ,µ)
(1r)(λ′,µ′) for the generators of Hall being poly-

nomial in q, we may and will view Mall as the specialization under q 7→ q of a Z[q,q−1]-
bimodule Mall over the Z[q,q−1]-algebra Hall. Extending scalars to Z[v,v−1] we obtain
a Z[v,v−1]-bimodule Maℓℓ over the Z[v,v−1]-algebra Haℓℓ. Let us denote by +Rsph the
+Hsph-subbimodule of Rsph spanned by {U(λ,µ), (λ, µ) ∈ +RBsph}. Then we have a nat-

ural identification of +Rsph with Maℓℓ sending U(λ,µ) to u(λ,µ). For (λ, µ) ∈ +RBsph we

set +C(λ,µ) :=
∑

+RBsph∋(λ′,µ′)≤(λ,µ) Π(λ′,µ′),(λ,µ)H(λ′,µ′) (notation introduced after Propo-

sition 13). We define c(λ,µ) ∈ Maℓℓ as the element corresponding to +C(λ,µ) under the
above identification.

Theorem 1 admits the following corollary:

Corollary 1. For any λ, µ ∈ +S
sph
N we have cλc(0N ,0N )cµ = c(λ,µ).

Hence there is a unique isomorphism Ψ : Maℓℓ
∼−→Λ⊗Λ of Haℓℓ ≃ Λ-bimodules sending

c(λ,µ) to (−v)−(N−1)(|λ|+|µ|)sλ ⊗ sµ. We define

Λ⊗ Λ ∋ P(λ,µ)(X,Y,v
−1) := (−v)2n(λ)+2n(µ)+|µ|Ψ(u(λ,µ))

(mirabolic Hall-Littlewood polynomials).
Thus the polynomials Π(λ′,µ′),(λ,µ) are the matrix coefficients of the transition matrix

from the basis {P(λ,µ)(X,Y,v
−1)} to the basis {sλ(X)sµ(Y )} of Λ⊗Λ. It follows from The-

orem 5.2 of [1] that the mirabolic Hall-Littlewood polynomial P(λ,µ)(X,Y,v
−1) coincides

with Shoji’s Hall-Littlewood function P±
(λ,µ)(X,Y,v

−1) (see section 2.5 and Theorem 2.8

of [11]).

5. Frobenius traces in mirabolic character sheaves

5.1. Unipotent mirabolic character sheaves. Recall the construction of certain
mirabolic character sheaves in [3] 5.4. So X̃n,m is the smooth variety of triples (g, F•, v)
where F• is a complete flag in an n-dimensional vector space D, and v ∈ Fm, and g is
an invertible linear transformation of D preserving F•. We have a proper morphism
πn,m : X̃n,m → GLn×D with the image Xn,m ⊂ GLn×D formed by all the pairs (g, v)
such that dim〈v, gv, g2v, . . .〉 ≤ n−m. According to Corollary 5.4.2 of loc. cit., we have

(12) (πn,m)∗IC(X̃n,m) ≃
|λ|=n−m⊕

|µ|=m

Lµ⊗Lλ⊗Fλ,µ

for certain irreducible perverse mirabolic character sheaves Fλ,µ on GLn×D.
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Following [AH], we set b(λ, µ) := 2n(λ)+2n(µ)+|µ|, so that b(λ′, µ′)−b(λ, µ) equals the

codimension of Ω(λ′,µ′) in Ω̄(λ,µ), and the codimension of (Nn ×D)(λ′,µ′) in (Nn ×D)(λ,µ).

Theorem 2. Let (u, v) ∈ (Nn × D)(λ′,µ′)(Fq). The trace of Frobenius automorphism of

the stalk of Fλ,µ at (u, v) equals
√
qb(λ′,µ′)−b(λ,µ)Π(λ′,µ′),(λ,µ)(

√
q)(see (9)).

Proof. We identify the nilpotent cone Nn and the variety of unipotent elements of GLn by
adding the identity matrix, so that we may view Nn ⊂ GLn. Then Xn,m∩(Nn×D) = Yn,m,

and π−1
n,m(Xn,m∩(Nn×D)) = Ỹn,m (notations of the proof of Theorem 1). Comparing (12)

with (11), we see that Fλ,µ|Nn×D ≃ IC(λ,µ). Hence the trace of Frobenius in the stalk of
Fλ,µ at (u, v) equals the trace of Frobenius in the stalk of IC(λ,µ) at (u, v). The latter is

equal to the matrix coefficient of the transition matrix from the basis {j!Ql(Nn×D)(λ′,µ′)
[n2−

b(λ′, µ′)]} to the basis {j!∗Ql(Nn×D)(λ,µ)
[n2 − b(λ, µ)]}. And the latter by construction, up

to the factor of
√
qb(λ′,µ′)−b(λ,µ), is equal to Π(λ′,µ′),(λ,µ)(

√
q). �

5.2. Gm-equivariant mirabolic character sheaves. More generally, we recall the no-
tion [3] of mirabolic character sheaves equivariant with respect to the dilation action of

Gm on D. Let B be the flag variety of GL(D), let B̃ be the base affine space of GL(D), so

that B̃→ B is a GL(D)-equivariant H-torsor, where H is the abstract Cartan of GL(D).

Let Y be the quotient of B̃× B̃ modulo the diagonal action of H; it is called the horocycle
space of GL(D). Clearly, Y is an H-torsor over B × B with respect to the right action
(x̃1, x̃2) · h := (x̃1 · h, x̃2). We consider the following diagram of GL(D)-varieties and
GL(D)×Gm-equivariant maps:

GL(D)×D pr←− GL(D)×B× V f−→ Y×D.
In this diagram, the map pr is given by pr(g, x, v) := (g, v). To define the map f , we think

of B as B̃/H, and for a representative x̃ ∈ B̃ of x ∈ B we set f(g, x, v) := (gx̃, x̃, v). The
group GL(D) acts diagonally on all the product spaces in the above diagram, and acts on
itself by conjugation. The group Gm acts by dilations on D.

The functor CH from the constructible derived category of l-adic sheaves on Y×D to the
constructible derived category of l-adic sheaves on GL(D)×D is defined as CH := pr!f

∗.
Now let F be a GL(D) × Gm-equivariant, H-monodromic perverse sheaf on Y ×D. The
irreducible perverse constituents of CHF are called Gm-equivariant mirabolic character
sheaves on GL(D)×D. We define a Gm-equivariant mirabolic character sheaf as a direct
sum of the above constituents for various F as above. The semisimple abelian category of
Gm-equivariant mirabolic character sheaves will be denoted MC(GL(D)×D). Clearly, this
definition is a direct analogue of Lusztig’s definition of character sheaves. The semisimple
abelian category of character sheaves on GL(D) will be denoted C(GL(D)).

5.3. Left and right induction. Following Lusztig’s construction of induction of char-
acter sheaves, we define the left and right action of Lusztig’s character sheaves on the
mirabolic character sheaves (for varying D). To this end it will be notationally more con-
venient to consider MC(GL(D)×D) (resp. C(GL(D))) as a category of perverse sheaves
on the quotient stack GL(D)\(GL(D)×D) (resp. GL(D)\GL(D)). Let m ≤ n = dim(D),
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and let V be an n−m-dimensional k-vector space, and let W be an m-dimensional k-vector
space. We have the following diagrams:

(13) GL(D)\(GL(D)×D)
p←− A q−→ GL(V )\GL(V ) × GL(W )\(GL(W )×W ),

(14) GL(D)\(GL(D)×D)
d←− B b−→ GL(V )\(GL(V )× V ) × GL(W )\GL(W ).

Here A is the quotient stack of Ã by the action of GL(D), and

Ã := {(g ∈ GL(D), F ⊂ D, v ∈ D) such that dimF = n−m, and gF = F},
and, p forgets F , and q sends (g, F, v) to g|F ; (g|D/F , v (mod F )) (under an arbitrary
identification V ≃ F, W ≃ D/F ). Note that p is proper, and q is smooth of relative
dimension n−m.

Furthermore, B is the quotient stack of B̃ by the action of GL(D), and

B̃ := {(g ∈ GL(D), F ⊂ D, v ∈ F ) such that dimF = n−m, and gF = F},
and, d forgets F , and b sends (g, F, v) to (g|F , v); g|D/F ) (under an arbitrary identification
V ≃ F, W ≃ D/F ). Note that d is proper, and b is smooth of relative dimension 0.

Finally, for a character sheaf G ∈ C(GL(V )) and a mirabolic character sheaf F ∈
MC(GL(W )×W ) we define the left convolution G ∗F := p!q

∗(G⊠F)[n−m]. Similarly, for
a character sheaf G′ ∈ C(GL(W )) and a mirabolic character sheaf F′ ∈ MC(GL(V ) × V )
we define the right convolution F′ ∗ G′ := d!b

∗(F′
⊠ G′).

Note that the definition of convolution works in the extreme cases m = 0 or n−m = 0
as well: if dimV = 0, then GL(V ) is just the trivial group. The following proposition is
proved like Proposition 4.8.b) in [6].

Proposition 14. Both G ∗ F and F′ ∗ G′ are Gm-equivariant mirabolic character sheaves
on GL(D)×D.

We denote by Ql the unique Gm-equivariant mirabolic character sheaf on GL(D) ×D
for dim(D) = 0.

Proposition 15. Let G ∈ C(GL(V )), and G′ ∈ C(GL(W )) be irreducible character sheaves.
Then G ∗Ql ∗ G′ is irreducible.

Proof. Let dim(D) = n, dim(W ) = m, dim(V ) = n −m. Recall the diagram (14), and
denote by r : GL(V )\(GL(V ) × V ) → GL(V )\GL(V ) the natural projection (forgetting
vector v). Then G∗Ql∗G′ = d!b

∗(r∗G⊠G′[n−m]). The sheaf b∗(r∗G⊠G′[n−m]) is irreducible
perverse on B; more precisely, it is the intermediate extension of a local system on an
open part of B. The image of proper morphism d coincides with GL(D)\Xn,m (notations
of 5.1), and d : B → GL(D)\Xn,m is generically isomorphism: F is reconstructed as F =
〈v, gv, g2v, . . .〉. Finally, the arguments absolutely similar to the proof of Proposition 4.5
of [5] prove that d is stratified small. This implies that d!b

∗(r∗G⊠G′[n−m]) is irreducible.
�

Conjecture 1. Any irreducible Gm-equivariant mirabolic character sheaf on GL(D)×D
is isomorphic to G ∗Ql ∗ G′ for some G ∈ C(GL(V )), and G′ ∈ C(GL(W )) where dim(V ) +
dim(W ) = dim(D).
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5.4. Mirabolic Green bimodule. Once again k = Fq. We will freely use the notation

of Chapter IV of [7]. In particular, Φ is the set of Frobenius orbits in Fq
×, or equivalently,

the set of irreducible monic polynomials in Fq[t] with the exception of f = t. We consider
the set of isomorphism classes (D, g, v) where D is a k-vector space, v ∈ D, and g is
an invertible linear operator D → D. Similarly to section 2 of loc. cit. we identify
this set with the set of finitely supported functions (λ,µ) : Φ → P × P to the set of
pairs of partitions. Note that dim(D) = |(λ,µ)| :=

∑
f∈Φ deg(f)(|λ(f)| + |µ(f)|). Let

c(λ,µ) ⊂ GL(D)×D be the corresponding GL(D)-orbit, and let π(λ,µ) be its characteristic

function. Let MA be a Ql-vector space with the basis {π(λ,µ)}. It is evidently isomorphic

to
⊕

n≥0 Ql(GL(kn)× kn)GL(kn).

Recall the Green algebra A =
⊕

n≥0 An of class functions on the groups GLn(Fq) (see

section 3 of loc. cit.; the multiplication is given by parabolic induction) with the basis
{πµ} of characteristic functions of conjugacy classes. The construction of 5.3 equips MA

with a structure of an A-bimodule. It is easily seen to be a free bimodule of rank 1 with
a generator π(0,0) given by the zero function (taking the value of zero bipartition on any
f ∈ Φ). The structure constants are as follows (the proof is similar to (3.1) of loc. cit.).

(15) πνπ(λ′,µ′) =
∑

(λ,µ)

g
(λ,µ)

ν(λ′,µ′)
π(λ,µ), π(λ′,µ′)πν =

∑

(λ,µ)

g
(λ,µ)

(λ′,µ′)ν
π(λ,µ),

where

(16) g
(λ,µ)

ν(λ′,µ′)
=
∏

f∈Φ

G
(λ(f),µ(f))

ν(f)(λ′(f),µ′(f))
(qdeg(f)), g

(λ,µ)

(λ′,µ′)ν
=
∏

f∈Φ

G
(λ(f),µ(f))

(λ′(f),µ′(f))ν(f)
(qdeg(f)).

Now recall another basis {Sη} of A (see section 4 of loc. cit.), numbered by the finitely
supported functions from Θ to P. Here Θ is the set of Frobenius orbits on the direct limit
L of character groups (F×

qn)∨. This is the basis of irreducible characters. According to
Lusztig, for |η| = m, the function Sη is the Frobenius trace function of an irreducible
Weil character sheaf Sη on GLm. Due to Proposition 15, for |η| + |η′| = n, the function
Sη′π(0,0)Sη is the Frobenius trace function of an irreducible Gm-equivariant Weil mirabolic

character sheaf Sη′ ∗Ql∗Sη on GL(D)×D, dim(D) = n. We know that the set of functions
{Sη′π(0,0)Sη} forms a basis of the mirabolic Green bimodule MA. Hence, if Conjecture 1
holds true, then the set of Frobenius trace functions of irreducible Gm-equivariant Weil
mirabolic character sheaves forms a basis of MA. This would be a positive answer to a
question of G. Lusztig.
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