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0. IntroductionThis paper is the third in a series on P -partitions, symmetric functions, commutationmonoids, pattern avoidance, and reduced words in Coxeter groups.Previously, in [Ste1] we introduced the notion of enriched P -partitions. These arerelated to Schur's Q-functions in the same way that Stanley's P -partitions (see [St2,x4.5])are related to Schur's S-functions. For example, the generating function �(P ) for the setof enriched P -partitions of a (labeled) poset P is a quasi-symmetric formal series in a setof variables z1; z2; : : : ; in case P is a shifted Young diagram, �(P ) is a Schur Q-function.In [Ste2], we analyzed the fully commutative elements of Coxeter groups. These areelements w with the property that any reduced expression for w can be obtained fromany other by transposing adjacent pairs of commuting generators. One of the character-izing properties of full commutativity is that the reduced words for such an element canbe viewed as the linear extensions of a \heap"|a poset whose vertices are labeled bygenerators of the Coxeter group.In the present paper, we show that enriched P -partitions are closely related to thesymmetric functions associated with elements of the Coxeter groups Bn and Dn (knownelsewhere as \stable Schubert polynomials" or \Stanley symmetric functions"|see [BH],[FK1-2], [L]). In fact each of these symmetric functions is a linear combination of thegenerating functions �(P ) for certain labeled posets P . (See Propositions 6.5 and 8.1.)This connection has interesting implications for an open problem identi�ed in [Ste1]:the classi�cation of labeled posets P such that �(P ) is a symmetric function. There isexactly one term in the �-expansion for the symmetric function indexed by a given w 2 Bnor Dn if and only if w is fully commutative. Furthermore, the one labeled poset P thatappears in the expansion is the heap. Thus as a corollary, we obtain that the heap of anyfully commutative member of Bn or Dn is �-symmetric.We analyze in detail the structure of the fully commutative members of Bn and Dnand their heaps in Sections 5, 6, and 10. It turns out that for both groups, the fullycommutative elements can be naturally partitioned into two families. In one family, theheaps are merely shifted (skew) diagrams, and the corresponding generating functions are(skew) Schur Q-functions. On the other hand, although the members of the second familyare indexed in a natural way by skew shapes, the corresponding heaps are not Youngdiagrams. (See Propositions 6.4 and 10.6, and the examples in Figures 2 and 4.)We also introduce here two additional families of symmetric functions associated withCoxeter groups, one indexed by members of An and depending on a free parameter t, andthe second being indexed by a subset of Dn and depending on two free parameters. The�rst family is related to, but not a specialization of, the symmetric functions indexed by2



An de�ned by Stanley in [St1]. Stanley's symmetric functions encode information aboutthe number of reduced words for each w 2 An, whereas these new symmetric functionscarry information about a generating function for such words in which the number ofoccurrences of an \end-node" generator is marked. We prove that these new symmetricfunctions are sums of the symmetric functions associated with Bn (see Theorem 3.4). Itfollows that the number of reduced words for any w 2 An in which an end-node generatoroccurs k times can be expressed in terms of the number of standard shifted tableaux ofcertain shapes.There are four special subsets of Bn, and six subsets of Dn, that occur naturally in thecourse of this work (e.g., the sets of fully commutative members of both Bn and Dn). Ineach of these ten cases, we provide (typically) three characterizations for membership ofan element w in the set: a collection of subwords that cannot appear in any reduced wordfor w, a set of \patterns" that must be avoided in a vector representation of w, and aset of properties that a canonically chosen reduced word for w must possess. (The latterfacilitates enumeration of the members of the set.) The existence of pattern avoidancecharacterizations for these sets is not surprising, since there are numerous instances ofpattern-avoidance arising naturally in previous work on reduced words in An. For example,the 321-avoiding permutations of n objects are known to be the fully commutativemembersofAn�1 (see [BJS,x2]). On the other hand, two of our ten subsets cannot be given pattern-avoidance characterizations. 1. PreliminariesLet W be a Coxeter group with generating set S = fsi : i 2 Ig, where I is any suitable(�nite, totally ordered) index set. For i; j 2 I, de�ne m(i; j) to be the order of sisj in W ,so that M = [m(i; j)]i;j2I is the Coxeter matrix. One allows m(i; j) =1.1.1 Reduced words.Let I� denote the free monoid consisting of all words that can be formed from thealphabet I. By a subword of i = i1� � � il 2 I�, we shall mean a subsequence of i occupyingconsecutive positions.For w 2W , let `(w) denote the common length of every reduced (i.e., minimal) expres-sion w = si1 � � �sil with i1; : : : ; il 2 I. The corresponding index sequence i = i1� � � il 2 I�is called a reduced word. We use the notation R(w) for the set of reduced words for w,and R(W ) = Sw2W R(w) for the set of reduced words for all members of W .For integers m � 0 and i; j 2 I, de�nehi; jim := ijiji � � �| {z }m 2 I�;3



and let � denote the congruence on I� generated by the braid relationshi; jim(i;j) � hj; iim(i;j)for all i; j 2 I such that m(i; j) <1. It is well known that R(w) constitutes a single braidequivalence class; i.e., any reduced word for w can be obtained from any other by meansof the braid relations [B, xIV.1.5].1.2 Heaps and commutativity classes.Let � denote the congruence on I� generated by the braid relations corresponding topairs of commuting generators ofW ; i.e., ij � ji for all i; j 2 I such that m(i; j) = 2. Theequivalence class of a word i 2 I� with respect to � is called the commutativity class of i.Since � is consistent with �, it follows that for each w 2W , there is a decompositionR(w) = C1 _[ � � � _[ Cl;where each Ci is a commutativity class. In case R(w) consists of a single commutativityclass, we say that w is fully commutative. It is not hard to show that w is fully commutativeif and only if hi; jim is not a subword of any i 2 R(w) whenever m = m(i; j) � 3.Given a word i = i1� � � il 2 I�, the heap of i is de�ned to be the partial ordering P = P iof f1; : : : ; lg generated by the transitive closure of the relationsr <P s for r < s such that iris 6� isir or ir = is.Let L(P i) � I� denote the set of (labeled) linear extensions of P i. By this we mean the setof words i�(1)� � � i�(l) , where � ranges over all permutations of f1; : : : ; lg consistent with P i(i.e., �(r) <P �(s)) r < s).The following result is a standard part of the Cartier-Foata theory of commutationmonoids. For a proof, see [Ste2,x1.2] or Exercise 3.48(b) of [St2].Proposition 1.1. L(P i) is the commutativity class of i.It follows that if w is fully commutative, then R(w) consists of the linear extensions ofsome labeled poset; namely, the heap of any member of R(w).1.3 Canonical factorizations.For J � I, let WJ denote the parabolic subgroup of W generated by fsj : j 2 Jg, andde�ne W J := fw 2W : j 2 J ) `(wsj) > `(w)g:It is well-known that W J is a set of (shortest) left coset representatives for W=WJ . Fur-thermore, one has `(xy) = `(x) + `(y) for all x 2W J and y 2WJ (e.g., [H, x1.10]).4



AssumingW has rank n, let us �x a chain f1g =W0 � W1 � � � � � Wn = W of Coxetergroups in which Wi�1 is a maximal (proper) parabolic subgroup of Wi. Let W hii denotethe set of shortest coset representatives for Wi=Wi�1. In these terms, every w 2 W has aunique factorization w = wnwn�1 � � �w1with wi 2 W hii. Moreover, `(w) = `(w1) + � � � + `(wn). We call this the canonicalfactorization of w.For the classical Weyl groups An, Bn and Dn, it is possible to choose the subgroupchain so that every member of W hii has a unique reduced word (with mild exceptions inthe case of Dn|see the beginning of Part II). Thus in these cases, we have not only thenotion of a canonical factorization, but also a canonical reduced word for each w 2W .For example, consider W = An with the index set I = f1; : : : ; ng arranged in the usualway so that m(i; i + 1) = 3. Using the subgroup chain Wi = Ai, we obtainW hii = f1; si; si�1si; : : : ; s1� � � sig:Using [i; j] (for i � j) as an abbreviation for the word i � (i + 1) � � �j 2 I�, it follows thatthe canonical reduced words for the members of An are of the form[m1; n1] � [m2; n2] � � � [mr; nr];where n � n1 > � � � > nr � 1 and ni � mi � 1. It can be shown that the canonicalreduced word for each w 2 An is also the �rst in reverse (i.e., from the right) lexicographicorder among the members of R(w) (see Theorem 2.3 of [E]).1.4 One-line forms.Consider a geometric representation of W as a group generated by re
ections actingon Rn, with h� ; �i denoting the associated W -invariant symmetric bilinear form. Let�i 2 Rn denote the simple root corresponding to si, and �x a vector � 2 Rn in theinterior of the fundamental chamber (i.e., h�; �ii > 0 for all i 2 I). The stabilizer of sucha vector is trivial, so one can label the members of W by the vectors in the W -orbit of �.In these terms, if 
 is the \label" of w 2W (i.e., 
 = w�), then (cf. [H, x5.4])`(siw) > `(w), h
; �ii > 0:For example, consider W = An�1. We can represent W acting on Rn with a Euclideaninner product. Using "1; : : : ; "n to denote the standard orthonormal basis of Rn, we canchoose the simple roots to be �i = "i+1 � "i (1 � i < n), and take � := (1; 2; : : :; n) =5



"1 + 2"2 + � � �+ n"n. The orbit of � consists of all permutations of (1; 2; : : : ; n). Thus ourconvention of using vectors to label Coxeter group elements amounts to a generalization ofthe usual one-line description of a permutation. However, there is one signi�cant di�erence.By our convention, (2; 3; 1) labels the (unique) permutation that maps "1 + 2"2 + 3"3 to2"1 + 3"2 + "3 (i.e., "1 7! "3, "2 7! "1, "3 7! "2), whereas the more common convention isto use the inverse; i.e., (2; 3; 1) labels the permutation "1 7! "2, "2 7! "3, "3 7! "1. Thus if(w1; : : : ; wn) is the vector label of w 2 An�1, then by our convention, the vector label ofsiw is obtained by interchanging wi and wi+1. Those using the inverse convention wouldinterchange the occurrences of i and i + 1.Given that � and the choice of basis is understood, we will refer to the coordinatesequence for the vector label of a given w 2W as the one-line form of w.1.5 Dominance.Suppose that W 0 is a second Coxeter group, with generating set S0 = fs0i : i 2 Ig andCoxeter matrix M 0 = [m0(i; j)]i;j2I . Note that by using I as the index set for S and S0,we are presupposing that W and W 0 have the same rank. Under these conditions, we saythat W dominates W 0 if m(i; j) � m0(i; j) for all i; j 2 I.For example, Bn dominates An and Am+n dominates Am � An.Proposition 1.2. If W dominates W 0, then R(W 0) � R(W ). Furthermore, if w 2Wand R(w) \R(W 0) 6= ?, then(a) Any i 2 R(w) can be transformed into any j 2 R(w) via braid relations involvingonly those pairs i; j 2 I such that m(i; j) = m0(i; j).(b) R(w) � R(w0) for some w0 2W 0.Proof. To prove R(W 0) � R(W ), suppose i = i1� � � il 62 R(W ). Then there must existsome k > 1 such that i1� � � ik�1 is W -reduced and i1� � � ik is not. Hence some member ofthe W -braid equivalence class of i1� � � ik�1 ends with ik, and thus some word j with twoequal consecutive letters (both equal to ik) is W -braid equivalent to i.Now consider any sequence ofW -braid relations that transform i into j. If these relationsonly involve pairs i; j 2 I such that m(i; j) = m0(i; j), then this sequence is equally validas a series ofW 0-braid relations, thus proving i 62 R(W 0). Otherwise, immediately prior tothe �rst time aW -braid relation is applied in which m(i; j) > m0(i; j), we will have a wordthat isW 0-braid equivalent to i containing hi; jim as a subword for somem > m0 = m0(i; j).However, if the W 0-braid relation hi; jim0 � hj; iim0 is applied at the beginning of hi; jim,one obtains two equal consecutive letters, thereby proving i 62 R(W 0).To prove (a) and (b), suppose that i 2 R(w) is W 0-reduced. Any W -braid transforma-tions of i involving pairs i; j 2 I such that m(i; j) = m0(i; j) are also valid inW 0 and hence6



generate words that are also W 0-reduced. In particular, none of these words can containhi; jim as a subword for any i; j 2 I and m > m0(i; j). And hence they constitute thefull W -braid equivalence class of i, since there are no opportunities among these words toapply any of the other W -braid relations. Since these words are also W 0-equivalent, theymust belong to R(w0) for some w0 2W 0. �Remark 1.3. (a) For speci�c dominating pairsW and W 0, it is an interesting problemto explicitly determine the set X = fw 2W : R(w) � R(W 0)g of W 0-reduced members ofW and the (unique) partition of X into subsets X(w0) indexed by w0 2W 0 such thatR(w0) = [w2X(w0)R(w):In Section 2 we will treat the case (W;W 0) = (Bn; An) in detail.(b) It is tempting to guess that w 2W is W 0-reduced if and only if for all m > m0(i; j),hi; jim does not occur as a subword of any i 2 R(w). Although this condition is clearlynecessary, it is not su�cient in general. For example, see Theorem 2.3.1.6 Quasi-symmetric functions.Following the notation of [Ste1], let � = Ll�0�l denote the graded ring of quasi-symmetric functions in the variables z1; z2; : : : , with integer coe�cients. Given any twin-free word i = i1� � � il 2 I� (i.e., distinct adjacent letters), we de�neLi := Xj1�����jljk=jk+1)ik<ik+1 zj1 � � � zjl 2 �l;bearing in mind that I is assumed to be totally ordered. Clearly Li depends only on l andthe descent set D(i) := f1 � k < l : ik > ik+1g; thus we may write LD for Li wheneverD = D(i). It is not hard to show that the set of LD 's for D � f1; : : : ; l�1g freely generate�l as a Z-module.We will also be making use of a second family of quasi-symmetric functions indexed bytwin-free words. For this family, totally order the nonzero integers so that�1 � +1 � �2 � +2 � �3 � +3 � � � � :Letting the indices j1; : : : ; jl range over nonzero integers, we de�neKi := Xj14���4jljk=jk+1>0)ik<ik+1jk=jk+1<0)ik>ik+1 zjj1j� � �zjjlj (1.1)7



for any twin-free i = i1� � � il. Again it is clear that Ki depends only on l and the descentset D(i). Less clear, but true (see Proposition 2.2 of [Ste1]), is the fact that Ki dependsonly on l and the peak set�(i) := f1 < k < l : ik�1 < ik > ik+1g: (1.2)Thus we maywriteK� forKi whenever � = �(i). The K�'s freely generate a Z-submodule�l of �l; in fact, � =Ll�0�l is a graded subring of � (see Theorem 3.1 of [Ste1]).Now let U be any ring with unity. Adjoining central indeterminates z; z1; z2; : : : , ifF (z) 2 U [z] satis�es F (0) = 1, then F (z1)F (z2) � � � is quasi-symmetric. More precisely,working in the ring Z[[z1; z2; : : : ]]
U , it is clear that F (z1)F (z2) � � � 2 �
U . We will beconcerned with expansions of F (z1)F (z2) � � � in some particular cases; namely,F+n (z) : = (1 + zu1)(1 + zu2) � � � (1 + zun);F�n (z) : = (1 + zun) � � � (1 + zu2)(1 + zu1);Gn(z) : = F�n (z)F+n (z);where u1; : : : ; un 2 U satisfy u21 = � � � = u2n = 0.Proposition 1.4. Let I = f1; 2; : : : ; ng. We have(a) F+n (z1)F+n (z2) � � � = Xi2I� LD(i)ui,(b) Gn(z1)Gn(z2) � � � = Xi2I�K�(i)ui,where ui := ui1 � � �uil if i = i1� � � il.Proof. We prove (b), leaving (a) to the reader.For (b), selecting a term from the expansion of Gn(z1)Gn(z2) � � � can be encoded byan ordered sequence of the form (i1; j1); : : : ; (il; jl); the presence of (i;�j) (resp., (i;+j))indicates selection of the term zjui from the �rst (resp., second) of the two occurrences ofthe binomial (1 + zjui). We may assume that i = i1� � � il is twin-free; otherwise ui = 0.The possible selection sequences are characterized by the propertiesj1 4 � � � 4 jl; jk = jk+1 > 0) ik < ik+1; jk = jk+1 < 0) ik > ik+1;so for a �xed choice of i, the net contribution of these selections is Kiui. �1.7 Nil Coxeter rings.Specializing the setting of the previous subsection, let U be the nil Coxeter ring associ-ated withW . That is, let U be the free associative ring with unity generated by ui : i 2 I,8



modulo the relationsu2i = 0; hui; ujim(i;j) = huj ; uiim(i;j) (m(i; j) <1):For w 2 W , de�ne uw = ui for any i 2 R(w); the result is clearly independent of thechoice of i, and it is not hard to show that fuw : w 2Wg is a free Z-basis of U .Nil Coxeter rings have been used to great advantage by Fomin-Stanley [FS] and Fomin-Kirillov [FK1-2] in analyzing various symmetric functions associated with Coxeter groups.For example, consider W = An. In [St1], Stanley de�ned quasi-symmetric functions foreach w 2 An by setting FA(w) := Xi2R(w)LD(i);and used these to derive numerous combinatorial properties of reduced words in An. Acrucial feature of these formal series, not obvious from their de�nition, is the fact thatthey are symmetric in the variables z1; z2; : : : .By Proposition 1.4(a), we see thatF+n (z1)F+n (z2) � � � = Xw2An FA(w)uw:That is, FA(w) is the coe�cient of uw in F+n (z1)F+n (z2) � � � . The symmetry of FA(w) istherefore a corollary of the following lemma due to Fomin-Stanley [FS]. (We include belowa slightly di�erent proof.)Lemma 1.5. We have(a) F+n (x)F+n (y) = F+n (y)F+n (x).(b) F�n (x)F+n (y) = F+n (y)F�n (x).Proof. Since F+n (�x)F�n (x) = 1, it su�ces to prove (b). Proceeding by induction on n,leaving the basis of the induction (n � 2) to the reader, we �ndF+n (y)F�n (x) = F+n�2(y)(1 + yun�1)(1 + yun) � (1 + xun)(1 + xun�1)F�n�2(x)= F+n�2(y)(1 + xun)(1 + xun�1) � (1 + yun�1)(1 + yun)F�n�2(x)= (1 + xun)F+n�2(y)(1 + (x+ y)un�1)F�n�2(x)(1 + yun)= (1 + xun)F+n�1(y)F�n�1(x)(1 + yun)= (1 + xun)F�n�1(x)F+n�1(y)(1 + yun) = F�n (x)F+n (y):The second and �fth equalities are instances of the induction hypothesis. �9



Remark 1.6. A second corollary of Lemma 1.5 is that Gn(x) commutes with Gn(y),so the coe�cient of uw in Gn(z1)Gn(z2) � � � is a symmetric function GA(w). Furthermore,by Proposition 1.4(b), we have GA(w) = Xi2R(w)K�(i):However, one can show that GA(w) is merely a \diagonal super�cation" of FA(w) (i.e.,the image of FA(w) under the map � that kills even power sums and doubles odd powersums|see [Ste1,x3]). Hence GA(w) does not carry more information than FA(w) itself.However in Section 3, we will consider a one-parameter re�nement of GA(w) that encodescombinatorial information about R(w) not carried by FA(w).Part I: BnLet s0; s1; : : : ; sn�1 denote generators for the Coxeter group Bn, arranging the indicesso that m(0; 1) = 4 and m(i � 1; i) = 3 for 1 < i < n. For w 2 Bn, the number ofoccurrences of 0 in any reduced word for w will be denoted `0(w); it is independent of thechoice of reduced word since this quantity is preserved by the braid relations.The shortest left coset representatives for Bn=Bn�1 consist off1; sn�1; sn�2sn�1; : : : ; s0s1 � � �sn�1; s1s0s1 � � �sn�1; : : : ; sn�1 � � � s1s0s1 � � �sn�1g:There is only one reduced word for each of these coset representatives, so every w 2 Bnhas a canonical reduced word, as explained in Section 1.3. Extending the notation ofSection 1.3 slightly, for integers i; j such that 0 � i � j we de�ne [i; j] and [�i; j] to be thewords i � (i + 1) � � � j and i � (i � 1) � � �101 � � �j, respectively. In these terms, the canonicalreduced words for the members of Bn are the expressions[m1; n1] � [m2; n2] � � � [mr; nr];where n > n1 > � � � > nr � 0 and jmij � ni.With "1; : : : ; "n as the standard orthonormal basis of Rn, we take "i+1 � "i (resp., "1)as the simple root corresponding to si for i � 1 (resp., i = 0). The vector� = "1 + 2"2 + � � �+ n"n = (1; 2; : : : ; n)belongs to the interior of the fundamental chamber de�ned by these simple roots, andits orbit consists of all signed permutations of (1; 2; : : : ; n). These constitute the one-lineforms of the members of Bn, as explained in Section 1.4.10



In the following, we will derive numerous pattern-avoidance characterizations of varioussubsets of Bn. While it is possible (however complicated) to give a general de�nition ofpattern avoidance, it is best explained by special cases. For example, an element w 2 Bnis said to avoid the pattern (2;�1;�3) if in the one-line form of w, say (w1; : : : ; wn), thereis no triple i < j < k such that �wk > wi > �wj > 0.2. The A-reduced members of BnAs we noted in Section 1.5, Bn dominatesAn. The following result is a �rst step towardscharacterizing when w 2 Bn is A-reduced (i.e., R(w) � R(An)).Lemma 2.1. For w 2 Bn, 0101 is a subword of some i 2 R(w) if and only if the pattern(�1;�2) occurs in the one-line form of w.Proof. Let (w1; : : : ; wn) be the one-line form of w, and suppose that the pattern (�1;�2)occurs in positions i and j, so that i < j and �wj > �wi > 0. Among all such choicesfor i and j, we can choose one that minimizes j � i. If there is a positive entry in anyposition prior to j, then we would have wk > 0 > wk+1 for some k (1 � k < j). Howeverin that case, `(skw) < `(w) and skw still contains the pattern (�1;�2), so by inductionon length, skw (and hence w) has a reduced word containing 0101.Otherwise, every entry prior to wj is negative. In particular, i and j must be consec-utive; otherwise, j � i would not be minimal. We also have `(s0w) < `(w) since w1 < 0.If i > 1, then s0w still contains the pattern (�1;�2), so again by induction, s0w (andhence w) has a reduced word containing 0101.The only remaining possibility is that i = 1 and j = 2. However since 0101 is a reducedword for the member of B2 whose one-line form is (�1;�2), it follows that w has a reducedword that begins with 0101.For the converse, it su�ces to prove the following.(i) If w has a reduced word that begins 0101 : : : , then w contains the pattern (�1;�2).(ii) If w contains the pattern (�1;�2) and `(sjw) > `(w), then sjw also contains thepattern (�1;�2).For (i), recall that 0101 � 1010. Thus if w has a reduced word that begins with 0101,then it has reduced words that begin with 0 and 1; i.e., `(s0w) < `(w) and `(s1w) < `(w).Hence w1 < 0 and w1 > w2, so w contains the pattern (�1;�2).For (ii), suppose that (�1;�2) occurs in w and `(sjw) > `(w). If j = 0, then w1 > 0and sjw has one-line form (�w1; w2; : : : ; wn). Clearly this can only increase the number ofoccurrences of (�1;�2). If j > 0, then wj < wj+1, and the one-form of w is obtained byinterchanging wj and wj+1. If wj and wj+1 are both negative, this increases the number11



of occurrences of (�1;�2); otherwise, the relative positions of the negative entries areunchanged. �Let s00; s01; : : : ; s0n�1 denote a set of generators for An. We are deliberately using theindex set f0; 1; : : :; n � 1g here so that the dominance relationship between Bn and Anremains conspicuous. Since 0101 � 1010 is the only Bn-braid relation that is not also validfor An, it follows that for the (�1;�2)-avoiding elements w 2 Bn, the mapping si 7! s0i iswell-de�ned in the sense that w0 = s0i1� � �s0il 2 Anis independent of the choice of i = i1� � � il 2 R(w).To describe this mapping more explicitly, we need to choose coordinates for An. For thiswe pass to Rn+1 and use "0 as the name for the new coordinate. By convention, we willwrite (a0; a1; : : : ; an) for the vector a0"0 + � � �+ an"n. For the simple root correspondingto s0i, we choose "i+1 � "i. The vector � belongs to the fundamental chamber de�ned bythese roots, so we can use its An-orbit (namely, all permutations of (0; 1; : : : ; n)) as theone-line forms for the members of An.We now de�ne a \bumping" map b : Bn ! An as follows. Let (w1; : : : ; wn) be theone-line form of some w 2 Bn, and suppose that i1 < � � � < ik are the positions i such thatwi < 0. De�ne b(w) to be the member of An whose one-line form is (x0; : : : ; xn), wherex0 = �wi1 ; xi1 = �wi2 ; : : : ; xik�1 = �wik ; xik = 0;and xj = wj for wj > 0. In other words, we insert 0 into w from the right, where it bumpsout and changes the sign of the �rst encountered negative entry, which in turn bumps outand changes the sign of the next negative entry, and so on. The algorithm terminates withthe last bumped element stopping at the 0th position. For example,if w = (3;�6; 1;�4;�2; 5; 7) 2 B7;then b(w) = (6; 3; 4; 1; 2; 0; 5; 7) 2 A7:Lemma 2.2. If w 2 Bn avoids (�1;�2) and i = i1� � � il 2 R(w), thenb(w) = w0 = s0i1� � �s0il :Furthermore, if there is some index j such that `(sjw) < `(w) and `(s0jw0) > `(w0), thenw contains the pattern (1;�3;�2).Proof. We prove both assertions by induction on `(w). If `(w) = 0 the claims aretrivial, so assume `(w) > 0 and choose an index j such that `(sjw) < `(w). If w avoids12



(�1;�2), then 0101 cannot occur in any i = i1� � � il 2 R(w) (Lemma 2.1). It followsthat w0 = s0i1� � � s0il does not depend on the choice of i, and (by the induction hypothesis)b(sjw) = s0jw0. Thus for the �rst assertion, it su�ces to prove that b(w) = s0jb(sjw).Case 1: j = 0. Let �a < 0 be the �rst entry in the one-line form of w (this entryis negative since `(s0w) < `(w)), and let �b � 0 be the entry that bumps �a when 0 isinserted into w. The �rst two entries in the one-line form of b(w) must be (a; b). On theother hand, in s0w the �rst entry is a > 0 and �b is the leftmost negative entry (or thereare no negative entries, if b = 0). The �rst two entries of b(s0w) are therefore (b; a), andthe remaining entries agree with b(w). Hence b(w) = s00b(s0w) = w0, as desired. Also,regarding the second assertion, note that `(s00w0) > `(w0) occurs only if a < b, in whichcase the pattern (�1;�2) occurs in w, a contradiction.Case 2: j � 1. Let a; b be the entries in positions j; j + 1 of the one-line form of w; theone-line form of sjw is obtained by interchanging a and b. Since `(sjw) < `(w), we musthave a > b, and since w avoids (�1;�2), a and b cannot both be negative. It follows thatb commutes with permuting a and b, and hence b(w) = s0jb(sjw) = w0, as desired.Regarding the second assertion, suppose that `(s0jw0) > `(w0). Since the positive entriesof w remain stationary, this can occur only if one of a or b is negative. Since a > b, thisrequires a > 0 > b. If c � 0 is the entry that bumps b when 0 is inserted into w, thenwe must have b < c; otherwise w would contain the pattern (�1;�2). Furthermore, sincewe then have a and �c in positions j and j + 1 of w0 = b(w) (respectively), the fact that`(s0jw0) > `(w0) implies a < �c. Thus we have b < c < �a < 0, and the w-subsequence(a; b; c) �ts the pattern (1;�3;�2). �Theorem 2.3. For w 2 Bn, the following are equivalent.(a) w is A-reduced (i.e., R(w) � R(An)).(b) Neither 0101 nor 1012101 occur as subwords of any i 2 R(w).(c) w avoids the patterns (�1;�2) and (1;�3;�2).Proof. (a))(b) is immediate since 0101 and 1012101 are not reduced words for An.(b))(c). If the one-line form of w, say (w1; : : : ; wn), contains the pattern (�1;�2),then 0101 must occur as a subword of some i 2 R(w) (Lemma 2.1). Hence we may assumetowards a contradiction that w avoids (�1;�2) but contains an occurrence of (1;�3;�2),in positions i < j < k. Among all such occurrences of this pattern, choose one thatminimizes i+ j +k. Since 1012101 is a reduced word for the member of B3 whose one-lineform is (1;�3;�2), it follows that if (i; j; k) = (1; 2; 3), then w has a reduced word thatbegins with 1012101, contradicting (b). In the remaining cases, it su�ces to prove thatthere is an index l with `(slw) < `(w) such that the pattern (1;�3;�2) also occurs in slw.13



Indeed, we may then argue by induction on length that there is a reduced word for slw(and hence w) that contains 1012101 as a subword, contradicting (b).To prove the claim, note �rst that if a positive entry occurs in any position between iand k then we would have wl > 0 > wl+1 for some l such that i < l < k. However in thatcase, `(slw) < `(w) and the pattern (1;�3;�2) still occurs in slw. Otherwise, every entrybetween i and k is negative. Since w avoids (�1;�2), minimality of i+ j + k forces i; j; kto be consecutive. Hence the only remaining possibility is i > 1.Suppose that a positive entry occurs prior to wi. This entry must be greater than wi,by minimality of i + j + k. Hence there must be some index l such that 1 � l < iand wl > wl+1. However in that case, `(slw) < `(w) and the pattern (1;�3;�2) stilloccurs in slw. Thus all entries prior to wi, including w1, must be negative. But then`(s0w) < `(w) and the pattern (1;�3;�2) still occurs in s0w.(c))(a). Proceeding by induction on `(w), assume `(w) > 0 and that w avoids thepattern (�1;�2). Let j be an index such that `(sjw) < `(w), and let w0 = b(w), as inLemma 2.2. If sjw is A-reduced but w is not, then we have `(s0jw0) = `(sjw) = `(w)�1 >`(w0) � 1, so `(s0jw0) > `(w0). However in that case, Lemma 2.2 implies that (1;�3;�2)occurs in w, contradicting (c).Otherwise, sjw is not A-reduced, so by induction sjw must contain the pattern (�1;�2)or (1;�3;�2). If the pattern (�1;�2) occurs, then it must also occur in w (Lemma 2.1),contradicting (c). Thus we may assume there is a subsequence (a; b; c) of the one-line formof sjw �tting the pattern (1;�3;�2); i.e., �b > �c > a > 0. The action of sj cannotchange the relative position of a and b since a > b and `(sjw) < `(w); it also cannotchange the relative position of b and c, since otherwise the pattern (�1;�2) would occurin w. And �nally, if j = 0 and s0 replaces a with �a, then the pattern (�1;�2) wouldoccur in w. Hence (a; b; c) is also a subsequence of w, contradicting (c). �Suppose that the one-line form of some w 2 An is (w0; : : : ; wn), and that m is the indexsuch that wm = 0. Given any set of indices J such that f0;mg � J � f0; 1; : : : ;mg, letwJ 2 Bn denote the result of \unbumping" the entries of w in the positions indexed by J .More precisely, if 0 = j0 < j1 < � � � < jl = m are the members of J , then de�ne wJ to bethe member of Bn whose one-line form is (x1; : : : ; xn), wherexj1 = �wj0 ; xj2 = �wj1 ; : : : ; xjl = �wjl�1 ;and xj = wj for j 62 J .It is not hard to see that b(x) = w if and only if x = wJ for some J , but it is notnecessarily the case that wJ is A-reduced. To characterize when this occurs, let us �rst14



introduce the notation L(w) := fi : j < i) wj > wigfor the set of positions where left-minima occur in the one-line form of w 2 An.Theorem 2.4. If w 2 An and wm = 0 (i.e., m is the position where 0 occurs in theone-line form of w), then x 2 Bn is A-reduced and b(x) = w if and only if x = wJ withf0;mg � J � L(w). In other words,fx 2 Bn : R(x) � R(w)g = fwJ : f0;mg � J � L(w)g:Proof. Choose J so that f0;mg � J � L(w), and let 0 = j0 < j1 < � � � < jl = m be themembers of J . If x = wJ , it is clear from the de�nitions that b(x) = w. Furthermore, sinceeach member of J indexes a left-minimum of w, we have wj0 > � � � > wjl , and the negativeentries in the one-line form of x (namely, �wj0 ; : : : ;�wjl�1) appear in increasing order.That is, x avoids the pattern (�1;�2). If the pattern (1;�3;�2) occurred in positionsi < j < k of x, then we would have j; k 2 J and wi < wj, contradicting the fact that jindexes a left-minimum. Thus x avoids (1;�3;�2), so by Theorem 2.3 it is A-reduced.Conversely, if b(x) = w, then x = wJ where J = f0g [ fj : xj < 0g. Clearly m 2 J ; infact, m is the largest member of J . We also claim that if x is A-reduced, then J � L(w).Otherwise, there would be some j 2 J such that 0 < j < m and j 62 L(w). In that case, letk be the smallest member of J greater than j (it is clear that k exists, since m 2 J). In theone-line form (x1; : : : ; xn) of x we must have xj < xk, since otherwise the pattern (�1;�2)would appear, contrary to the assumption that x is A-reduced. When b is applied to x,�xk replaces the entry in position j. However j 62 L(w), so there is an index i < j suchthat wi < wj = �xk. It is necessarily the case that i 62 J , since otherwise the pattern(�1;�2) would have appeared in x. However if i 62 J , then the entries in positions i; j; kof x �t the pattern (1;�3;�2). By Theorem 2.3, this contradicts the assumption that xis A-reduced. �As a consequence of Theorem 2.4 and Proposition 1.2, we obtain the following.Corollary 2.5. If w 2 An and m are as above, thenR(w) = [f0;mg�J�L(w)R(wJ ):To count the A-reduced members of Bn, we use the following.15



Lemma 2.6. We have Pw2An q#L(w) = q(q + 1) � � � (q + n).Proof. Let Ln(q) =Pw2An q#L(w). We have Ln(q) = (q + n)Ln�1(q), since among then + 1 positions where `n' can be inserted into the one-line form of some w 2 An�1, thenumber of left-minima changes only when `n' is inserted at the beginning. �Proposition 2.7. There are 14 (n+ 2)! + 12n! A-reduced members of Bn.Proof. By Theorem 2.4, there are 2#L(w)�2 A-reduced members of Bn corresponding toeach w 2 An unless #L(w) = 1, in which case there is just one. The latter occurs whenw0 = 0 (i.e., when w belongs to the parabolic subgroup of An generated by s01; : : : ; s0n�1).Hence the number of A-reduced elements is14 Xw2An 2#L(w) + 12 Xw2An�1 1:Apply Lemma 2.6. �3. The symmetric functions GB and GA(t).Let u0; u1; : : : ; un�1 denote generators for the nil Coxeter ring U associated with Bn.Shifting the notation of Section 1.6 slightly, letF+n (z) = (1 + zu0)(1 + zu1) � � � (1 + zun�1)F�n (z) = (1 + zun�1) � � � (1 + zu1)(1 + zu0);and Gn(z) = F�n (z)F+n (z). It was �rst noted by Fomin and Kirillov [FK1] that Gn(x)and Gn(y) commute; this observation allows one to de�ne a family of symmetric functionsindexed by w 2 Bn via the method explained in Section 1.7.To minimize notation in the following, we adopt the convention that if u is a nilpotentelement of a ring with unity and x is a central indeterminate, then ux := exp(xu). In allcases of interest u will be nilpotent of index 2, so in fact ux = 1 + xu.Proposition 3.1. Let u; v; a; b be elements of a ring with unity such that u2 = v2 = 0,v commutes with a and b, and uxaux commutes with uybuy.(a) If (uv)2 = (vu)2, then vxu2xvx commutes with vyu2yvy.(b) If uvu = vuv, then vxuxauxvx commutes with vyuybuyvy .Proof. (a) is a straightforward computation. For (b), note �rst that uxvx and vxuxcommute with uyvy and vyuy, by the n = 2 cases of Lemma 1.5 (with u = u1, v = u2).16



We therefore have(vxuxauxvx)(vyuybuyvy) = vxuxa(vyuy)(uxvx)buyvy = vxuxvyaux+ybvxuyvy= (vxux)(vyuy)u�yaux+ybu�x(uxvx)(uyvy)= (vyuy)(vxux)u�yaux+ybu�x(uyvy)(uxvx)= (vyuy)vxu�y(uxaux)(uybuy)u�xvy(uxvx)= vyuyvxu�y(uybuy)(uxaux)u�xvyuxvx= vyuyvxbux+yavyuxvx = vyuyb(vxux)(uyvy)auxvx= (vyuybuyvy)(vxuxauxvx): �Corollary 3.2 (Fomin-Kirillov). We have Gn(x)Gn(y) = Gn(y)Gn(x).Proof. Proceed by induction on n. The basis of the induction (n = 2) is a conse-quence of Proposition 3.1(a) and the identi�cations u = u0, v = u1. For n > 2, applyProposition 3.1(b) with a = Gn�2(x), b = Gn�2(y), u = un�2 and v = un�1. �It follows that for w 2 Bn, the coe�cients GB(w) appearing in the expansionGn(z1)Gn(z2) � � � = Xw2Bn GB(w)(z1; z2; : : :)uw (3.1)are symmetric functions of z1; z2; : : : , and by Proposition 1.4(b) we have the expansionGB(w) = Xi2R(w)K�(i): (3.2)By Theorem 3.8 of [Ste1], it follows immediately that GB(w) is Q-integral; i.e., an integerlinear combination of Schur Q-functions.Remark 3.3. These symmetric functions have been studied previously by Fomin-Kirillov [FK1], T.-K. Lam [L], and Billey and Haiman [BH], although in some casesusing the normalization 2�`0(w)GB(w). For example, Lam and Billey-Haiman both provethat GB(w) is a positive integer linear combination of Schur Q-functions. Although itis immediate that 2�`0(w)GB(w) is an integer linear combination of Schur P -functions,for combinatorial purposes, it is preferable to use the Q-function expansion of GB(w).(For example, see the proof of Theorem 2.13 in [L].) The Q-integrality of GB(w) is also astronger assertion than the P -integrality of 2�`0(w)GB(w).Now let u00; u01; : : : ; u0n�1 denote generators for the nil Coxeter ring U 0 of An. The onlybraid relation of Bn that is not also a braid relation of An is 1010 � 0101. However17



the corresponding relation in U (namely, u0u1u0u1 = u1u0u1u0) is also valid in U 0, sinceu00u01u00u01 = 0 = u01u00u01u00. That is, U 0 is a quotient of U . (More generally, this applies tothe nil Coxeter rings of any pair (W;W 0) such that W dominatesW 0.) Thus Corollary 3.2is also valid in U 0, and this permits the construction of a family of symmetric functionsGA(w) for w 2 An as in (3.1). But as we noted previously in Remark 1.6, GA(w) is merelya homomorphic image of FA(w), and thus carries no new combinatorial information.However, consider the following re�nement.If t is any central indeterminate, the map u0 7! tu0, ui 7! ui (1 � i < n) de�nes a(unique) ring endomorphism of U (or rather, U [t]). Note that for w 2 Bn, this map has theproperty that uw 7! t`0(w)uw. As an endomorphism, it of course preserves the commutingrelationship of Corollary 3.2, but its e�ect on (3.1) is rather trivial|replacing GB(w)with t`0(w)GB(w). However, if we combine this with the homomorphism U 7! U 0 (i.e.,u0 7! tu00, otherwise ui 7! u0i), we obtain from Corollary 3.2 a genuinely new commutingrelationship in U 0 with an associated family of symmetric functions indexed by w 2 Anand depending on a parameter t; namely,GA(w; t) := Xi2R(w) t`0(i)K�(i): (3.3)Here we are committing a minor abuse of notation|using `0(i) to denote the number ofoccurrences of 0 in the reduced word i.Comparing (3.2) and (3.3), the following is a consequence of Corollary 2.5.Theorem 3.4. If w 2 An and wm = 0 (i.e., m is the position where 0 occurs in theone-line form of w), thenGA(w; t) = Xf0;mg�J�L(w) t#J�1GB(wJ ):Remark 3.5. It follows that for all w 2 An, GA(w; t) is a Z[t]-linear combinationof Schur Q-functions. More speci�cally, let Q� = Q�(z1; z2; : : : ) denote the Schur Q-function indexed by the strict partition � (e.g., see Appendix A of [Ste1]). If l = `(w),then GA(w; t) is homogeneous of degree l and it is clear from (1.1) that the coe�cientof z1� � �zl in K� is 2l. On the other hand, Q� is homogeneous of degree equal to thesize of �, and the coe�cient of z1� � �zl in Q� is 2lg�, where g� denotes the number ofshifted standard tableaux of shape � (e.g., [M, p. 135]). Thus for every w 2 An thereexist polynomials Cw;�(t) 2 Z[t] indexed by strict partitions � of size `(w) (and having18



nonnegative coe�cients, by the work of Lam and Billey-Haiman) such thatXi2R(w) t`0(i) =X� Cw;�(t)g�:For example, consider w = w0, the longest element of An. We have w0 = (n; : : : ; 1; 0)in one-line form, and there are 2n�1 terms in the expansion of Theorem 3.4. There isa unique term in this expansion of degree n with respect to t (the maximum possible),corresponding to the choice J = L(w0) = f0; 1; : : : ; ng. In this case wJ0 is the member ofBn whose one line-form is (�n; : : : ;�2;�1). By Corollary 6.6 below (or Proposition 3.14of [BH], or Corollary 3.5 of [L]), one knows that GB(wJ0 ) = Q(n;:::;2;1). Thus we concludethat the number of reduced words for w0 in which 0 occurs n times is the number ofshifted standard tableaux of shape (n; : : : ; 2; 1).1 By the shifted hook length formulafor g� (e.g., [M, p. 135)]), this quantity is�n + 12 �! � n�1Yi=0 (2i)!(n+ i)! :4. The top and bottom classesFor w 2 An, recall that any x 2 Bn such that b(x) = w can be obtained by unbumpingthe elements in some set of positions J in the one-line form of w; i.e., x = wJ for some J .In that case, x has #J�1 negative entries, and therefore `0(x) = #J�1. By Theorem 2.4,it follows that for every w 2 An, there is a unique x 2 Bn that maximizes `0(x) among allx0 2 Bn such that R(x0) � R(w). In fact, x = wL(w). In other words, the set of reducedwords for w in which 0 appears the maximum number of times is itself the set of reducedwords for some x 2 Bn, and this maximum number is #L(w)� 1. Whenever x and w arerelated in this way, we write x = top(w) and refer to x as the top element of w.Theorem 4.1. For w 2 Bn, the following are equivalent.(a) w is the top element of some w0 2 An.(b) 101 is not a subword of any i 2 R(w).(c) The canonical reduced word [m1; n1] � � � [mr ; nr] for w satis�es m1; : : : ;mr � 0.(d) w avoids the patterns (�1;�2).Proof. (a))(b). If w is the top element for w0, then w is A-reduced and every i 2 R(w)is also a reduced word for w0. However, if 101 occurred as a subword of i, then `0(w) couldnot have been maximal since 101 � 010 is a valid An-braid relation.1This is closely related to Theorem 4.5 of [E]|see Remark 6.3(c) below.19



(b))(c) is immediate, since 101 is a subword of [�i; j] whenever 0 < i � j.(d))(a). If w avoids the pattern (1;�2), then it also avoids the pattern (1;�3;�2).Hence Theorem 2.3 implies that w is A-reduced. Now let w0 = b(w) 2 An, and let(w1; : : : ; wn) denote the one-line form of w. To prove w = top(w0), we must argue thatJ = L(w0), where J = f0g [ fj : wj < 0g. Certainly J � L(w0), by Theorem 2.4. Nowif there were some i 2 L(w0) such that i 62 J , then there would be some j > i such thatj 2 J . (Indeed, the rightmost left-minimum of w0 is always a member of J .) If j is theleast such index, then when 0 is inserted into w, wj will be bumped and �wj will appearto the left of wi in the one-line form of w0. However, i indexes a left-minimum of w0,so �wj > wi > 0. Hence the entries in positions i and j of w �t the pattern (1;�2),contradicting (d).To complete the proof, note that the canonical reduced words appearing in (c) are thecanonical reduced words for the members of An, so there are exactly (n + 1)! membersof Bn that satisfy (c). Therefore, having proved (d))(a))(b))(c), it su�ces to provethat there are exactly (n + 1)! members of Bn that satisfy (d). For this, suppose thatw 2 Bn has one-line form (w1; : : : ; wn), and let jwj = (jw1j; : : : ; jwnj), a permutation of(1; : : : ; n). For w to avoid the patterns (�1;�2) it is necessary and su�cient to have jindex a left-minimum of jwj whenever wj < 0. Thus for a �xed choice of jwj, there are2#L(jwj) ways to choose sign patterns for w that avoid (�1;�2). Apply Lemma 2.6. �Similarly, for each w 2 An, Theorem 2.4 implies that there is a unique x 2 Bn thatminimizes `0(x) among all x0 2 Bn such that R(x0) � R(w). In other words, the set ofreduced words for w in which 0 appears the minimumnumber of times is the set of reducedwords for x. In fact, x is obtained by unbumping the 0 and the entry in position 0 fromthe one-line form of w. In this situation, we write x = bot(w) and refer to x as the bottomelement of w.It is easy to show directly (or one may use Theorem 2.4 to see) that the minimumnumber of occurrences of 0 in any reduced word for w 2 An is either 0 or 1 according towhether or not 0 is the entry in position 0 of w. In the former case, 0 cannot appear inany reduced word for w, so we conclude that x is a bottom element for some w 2 An ifand only if `0(x) � 1. Also, since `0(x) is the number of negative entries in the one-lineform of x, this condition can also be characterized by avoidance of the patterns (�1;�2)and (�2;�1). We summarize these remarks with the following.Proposition 4.2. For w 2 Bn, the following are equivalent.(a) w is the bottom element of some w0 2 An.(b) 010 is not a subword of any i 2 R(w).20



(c) `0(w) � 1.(d) w avoids the patterns (�1;�2) and (�2;�1).Of course there are (n + 1)! bottom elements, one for each member of An.Those x 2 Bn that are simultaneously top and bottom elements, so that top(w) =bot(w) = x for some w 2 An, are distinguished by the fact that there is exactly one termin the decompositions of Corollary 2.5 and Theorem 3.4; i.e., R(x) = R(w) andGA(w; t) = t`0(x)GB(x):By Theorem 4.1 and Proposition 4.2, one sees that this class can by characterized byforbidden patterns, forbidden subwords, or by the structure of the canonical reduced word.De�ne H(n) =Pni=1 1=i.Proposition 4.3. There are n! (1 +H(n)) elements w 2 Bn such that R(w) = R(w0)for some w0 2 An (i.e., elements that are both the top and bottom of some w0).Proof. Let w 2 Bn be a top-and-bottom element. By Theorem 4.1 and Proposition 4.2,either w is one of the n! elements with `0(w) = 0, or else `0(w) = 1 and w avoids thepattern (1;�2). In the latter case, if �j is the unique negative entry in the one-line formof w, it is necessary and su�cient that all entries in positions to the left of �j are > j. If�j occurs in position i, this can be done in �n�ji�1�(i � 1)! (n� i)! ways, for a total ofnXi=1 nXj=1�n� ji � 1�(i � 1)! (n� i)! = nXi=1 �ni�(i� 1)! (n� i)! = n!H(n): �5. Full commutativityRecall that w is fully commutative if R(w) consists of a single commutativity class, orequivalently, if 1010; 212; 323; : : : do not occur as subwords of any i 2 R(w).Theorem 5.1. For w 2 Bn, the following are equivalent.(a) w is fully commutative.(b) In the canonical reduced word [m1; n1] � � � [mr ; nr] for w, we have either(1) m1 > � � � > ms > ms+1 = � � � = mr = 0 for some s � r, or(2) m1 > � � � > mr�1 > �mr > 0.(c) w avoids the pattern (�1;�2) and all patterns (a; b; c) such that jaj > b > c or�b > jaj > c. 21



Proof. (a))(b). Assume that [m1; n1] � � � [mr; nr] is the canonical reduced word forsome fully commutative w 2 Bn. We must have n > n1 > � � � > nr � 0 and jmij � ni,since every canonical reduced word for Bn has this property.For i > 0, the word [�1; i]0 is braid-equivalent to 1010[2; i], and for i > j > 0 the word[�1; i] j is braid-equivalent to [�1; j � 1]j(j + 1)j[j + 2; i]. Hence neither word can occuras a subword of any i 2 R(w). Since subwords of this type occur in [mi; ni][mi+1; ni+1]whenever mi < 0, we must therefore have m1; : : : ;mr�1 � 0.If j > k � i � 0, then the word [i; j] k is braid-equivalent to [i; k� 1]k(k+ 1)k[k+ 2; j]and hence cannot occur as a subword of any i 2 R(w) unless k = i = 0. Since subwordsof this type occur in [mi; ni][mi+1; ni+1] whenever jmi+1j � jmij, we must therefore havejmij > jmi+1j or mi = mi+1 = 0 for 1 � i < r, and hence (b) follows.(c))(a). If w 2 Bn is not fully commutative, then there must be some i 2 R(w)containing one or more of 1010; 212; 323; : : : as subwords. If 1010 occurs, then w containsthe pattern (�1;�2) (Lemma 2.1), contradicting (c). For the remaining possibilities, itsu�ces to prove the following.(i) If w has a reduced word that begins with i(i� 1)i for some i > 1, then w containsone of the patterns forbidden by (c).(ii) If `(sjw) > `(w) and w contains a pattern forbidden by (c), then so does sjw.Given the hypothesis of (i), w has reduced words that begin with i � 1 and i; i.e.,`(si�1w) < `(w) and `(siw) < `(w). Thus in the one-line form (w1; : : : ; wn) of w, we havewi�1 > wi > wi+1, a pattern that is forbidden by (c).For (ii), suppose that `(sjw) > `(w) and that (a; b; c) is a subsequence of w such thatjaj > b > c or �b > jaj > c. If j = 0, then sjw contains one of the subsequences (�a; b; c),both of which are forbidden by (c). If j > 0, then sjw will also contain the subsequence(a; b; c) unless a and b, or b and c, occur in positions j and j + 1.If b and c occur in positions j and j + 1, then `(sjw) > `(w) implies b < c. Hence(a; b; c) must satisfy �b > jaj > c, and sjw contains the subsequence (a0; b0; c0) = (a; c; b).However this yields ja0j > b0 > c0, a pattern forbidden by (c).If a and b occur in positions j and j + 1, then `(sjw) > `(w) implies a < b. Hence(a; b; c) must satisfy �a > b > c or �b > a > c, and sjw contains the subsequence(a0; b0; c0) = (b; a; c). If �b > a > c, then ja0j � �a0 > b0 > c0, and hence ja0j > b0 > c0.If �a > b > c, then (using also the fact that a < b implies �b0 > �a0) we must have�b0 > max(a0;�a0) � a0 > c0, and hence �b0 > ja0j > c0. In either case, (a0; b0; c0) �ts apattern forbidden by (c).To prove (b))(c), we use the following pair of lemmas.22



Lemma 5.2. If the canonical reduced word [m1; n1] � � � [mr; nr] for some w 2 Bn satis-�es (1), then in the one-line form of w we have the following.(a) The entries n1 + 1; : : : ; ns + 1 occur in positions m1; : : : ;ms, respectively.(b) The negative entries are �(ns+1 + 1); : : : ;�(nr + 1).(c) The subsequence formed by the entries not speci�ed in (a) is increasing.Proof. Proceed by induction on r. If r = 1, one can check that(1; 2; : : : ;m1 � 1; n1 + 1;m1; : : : ; n1; n1 + 2; : : : ; n) (if m1 > 0);(�(n1 + 1); 1; 2; : : :; n1; n1 + 2; : : : ; n) (if m1 = 0);is the one-line form of w, and it is clear that properties (a){(c) hold. For r � 2, let(w01; : : : ; w0n) denote the one-line form of the element w0 2 Bn whose canonical reducedword is [m2; n2] � � � [mr; nr]. Every entry > n1 appears in its natural position in w0.If m1 = 0 then m2 = � � � = mr = 0. Hence by the induction hypothesis, the negativeentries of w0 are �(n2 + 1); : : : ;�(nr + 1) and we have w01 < � � � < w0n. The entry n1 + 1appears in its natural position in w0, so the e�ect of passing fromw0 to w is to delete n1+1and insert �(n1 + 1) into the �rst position. Thus the one-line form of w is increasing andthe negative entries are �(n1 + 1); : : : ;�(nr + 1), in agreement with (a){(c).If m1 > 0, then the one-line form of w is(w01; : : : ; w0m1�1; n1 + 1; w0m1; : : : ; w0n1; n1 + 2; : : : ; n): (5.1)Since m1 > m2 > � � � > ms > 0, it follows that w0 and w agree at positions m2; : : : ;ms,which by the induction hypothesis are occupied by n2 + 1; : : : ; ns + 1. Also, we see thatw and w0 have the same negative entries, and deletion of n1 + 1 from w and w0 yields thesame sequence, in agreement with (a){(c). �Lemma 5.3. If the canonical reduced word [m1; n1] � � � [mr; nr] for some w 2 Bn satis-�es (2), then in the one-line form of w we have the following.(a) The entries n1 + 1; : : : ; nr�1 + 1 occur in positions m1; : : : ;mr�1, respectively.(b) The entry �(nr + 1) occurs in the �rst position > jmrj not in fm1; : : : ;mr�1g.(c) The subsequence of entries not speci�ed in (a) and (b) is positive and increasing.Proof. Again by induction on r. If r = 1 then the one-line form of w is(1; 2; : : : ; jm1j;�(n1 + 1); jm1j+ 1; : : : ; n1; n1 + 2; : : : ; n);and it is clear that properties (a){(c) hold. 23



For r � 2, let (w01; : : : ; w0n) denote the one-line form of the element w0 2 Bn whosecanonical reduced word is [m2; n2] � � � [mr ; nr]. Every entry > n1 appears in its naturalposition in w0, and the one-line form of w is given by (5.1). Since m1 > � � � > mr�1 > 0, itfollows that w0 and w agree at positions m2; : : : ;mr�1, which by the induction hypothesisare occupied by n2+1; : : : ; nr�1+1. Thus (a) holds. For (b), let m be the position where�(nr + 1) occurs in w0. By the induction hypothesis, m is the least integer > jmrj not infm2; : : : ;mr�1g, so in particular m � m1. On the other hand, in passing from w to w0,the position of the entry �(nr + 1) will change only if m � m1 (and hence m = m1), inwhich case it moves to position m1 + 1. Either way, the new position is the least integer> jmrj not in fm1; : : : ;mr�1g, proving (b). Finally, note that deletion of n1 + 1 from wand w0 yields the same sequence, so (c) holds as well. �Lemmas 5.2 and 5.3 each uniquely determine the one-line form of any member of Bnwhose canonical reduced word satis�es the stated hypotheses.To complete the proof of Theorem 5.1, let w 2 Bn be such that the canonical reducedword �ts either of the two speci�cations in (b).If w is of the �rst type, then the negative entries of w appear in increasing order(Lemma5.2), so w avoids (�1;�2). Therefore consider an arbitrary 3-element subsequence(a; b; c) taken from the one-line form of w. Parts (a) and (c) of Lemma 5.2 show that w canbe partitioned into two increasing subsequences, so a > b > c is impossible. If �a > b > cwere to occur with a < 0, Lemma 5.2 shows that �a = nj + 1 for some j > s, and sinceb > c, either b or c must be ni+1 for some i � s. However in that case, we have i � s < jand ni > nj, so �a < b or �a < c, a contradiction.If �b > jaj > c, then �b = nj + 1 for some j > s and a > 0. (If a < 0 then the pattern(�1;�2) would appear.) Since a precedes b and a > b, we must have a = ni + 1 for somei � s, otherwise we would contradict Lemma 5.2(c). But then i � s < j, ni > nj anda > �b, a contradiction.If w is of the second type, then `0(w) = 1. Hence w has one negative entry, and inparticular, avoids (�1;�2). So consider an arbitrary 3-element subsequence (a; b; c) takenfrom the one-line form of w. By Lemma 5.3, w can be partitioned into three increasingsubsequences, two of which are (�(nr +1)) and (nr�1+1; : : : ; n1+1). Thus a > b > c canoccur only if �c = nr + 1. However by Lemma 5.3(b), if �(nr + 1) occurs in position m,then the entries ni + 1 that appear prior to �(nr + 1) occur in a contiguous block fromjmrj + 1 to m � 1. Also by Lemma 5.3, the entries in positions prior to this block aresmaller and in increasing order. That is, the subsequence of entries prior to �(nr + 1) isincreasing, so a > b > c is impossible.If �a > b > c were to occur, then �a = nr + 1, and neither b nor c can be of the24



form ni + 1 for i < r since ni + 1 > �a. However b and c appear in decreasing order,contradicting Lemma 5.3(c). Finally, if �b > jaj > c, then we would have �b = nr + 1and a > c > 0. Hence, a or c must be ni + 1 for some i < r. However ni > nr, so a > �bor c > �b, a contradiction. �Corollary 5.4. Every fully commutative w 2 Bn is either a top or bottom element.In particular, every fully commutative element is A-reduced.Proof. Suppose that w 2 Bn is fully commutative. If the canonical reduced word for wbelongs to the �rst of the two types listed in Theorem 5.1(b), then w is a top element, byTheorem 4.1. The only other possibility is `0(w) = 1, in which case w is a bottom elementby Proposition 4.2. �Remark 5.5. For \most" pairs of Coxeter groups (W;W 0) such thatW dominatesW 0,it is not true that the fully commutative members of W are W 0-reduced. For example,using the most obvious labeling of the generators for the pair (F4; A4), it is not hard toshow that 4323412321 is a reduced word for some fully commutative w 2 F4. However, itis not A4-reduced.If we specialize to either the top or bottom classes of fully commutative elements, theforbidden patterns of Theorem 5.1 can be simpli�ed. For example, the patterns (a; b; c)such that jaj > b > c are(�3; 2;�1); (�3;�1;�2); (�2;�1;�3); (�1;�2;�3): (5.2)However w is a top element if and only if w avoids (�1;�2) (Theorem 4.1), and the onlypatterns in this list that manage to avoid (�1;�2) belong to the �rst group. Note alsothat (a; b) �ts the pattern (�1;�2) whenever �b > jaj > c. Summarizing, we haveCorollary 5.6. For w 2 Bn, the following are equivalent.(a) w is a fully commutative top element.(b) The canonical reduced word [m1; n1] � � � [mr ; nr] for w satis�esm1 > � � � > ms > ms+1 = � � � = mr = 0 for some s � r.(c) w avoids the patterns (�1;�2) and (�3; 2;�1).Similarly, w is a bottom element if and only if `0(w) � 1 (Proposition 4.2), so theforbidden patterns for fully commutative bottom elements are (�1;�2), (�2;�1), and thepatterns (a; b; c) of Theorem 5.1(c) with at most one negative member. Thus we have25



Corollary 5.7. For w 2 Bn, the following are equivalent.(a) w is a fully commutative bottom element.(b) The canonical reduced word [m1; n1] � � � [mr ; nr] for w satis�esm1 > � � � > mr�1 > jmr j.(c) w avoids the patterns (�1;�2), (�2;�1), (�3; 2; 1), (2;�3; 1), and all patterns(a; b; c) such that a > b > c.Aside from a change of coordinates, the (a),(c) parts of Corollaries 5.6 and 5.7 areimplicit in the remarks of C. K. Fan in [F, x11].If we restrict Theorem 5.1 to the subgroup of type An�1 generated by s1; : : : ; sn�1, weobtain the following. (The (a),(c) part of this result is due to Billey-Jockusch-Stanley.See Theorem 2.1 of [BJS].)Corollary 5.8. For w 2 An�1, the following are equivalent.(a) w is fully commutative.(b) The canonical reduced word [m1; n1] � � � [mr ; nr] for w satis�es m1 > � � � > mr .(c) w avoids the pattern (3; 2; 1).Let C(n) = 1n+1�2nn � denote the nth Catalan number. Results equivalent to parts (b)and (c) of the following have also been obtained by Fan [private communication] (butstated only as a conjecture in [F]).Proposition 5.9. In Bn, there are(a) (n+ 2)C(n)� 1 fully commutative elements.(b) �2nn � fully commutative top elements.(c) C(n+ 1) +C(n)� 1 fully commutative bottom elements.(d) C(n+ 1) fully commutative top-and-bottom elements.Proof. By Corollary 5.6, the fully commutative top elements are encoded by pairs ofinteger sequences n1 > � � � > nr � 0 and m1 > � � � > ms > 0 such that r � s � 0, n > n1,and ni > mi. If nr = 0 then r > s, so we can create a new valid \code" by deleting nrfrom the �rst sequence. Conversely, if nr > 0, then adding nr+1 = 0 to the �rst sequencealso creates a valid code. Hence, the number of fully commutative top elements is twicethe number of codes such that nr > 0. However, the codes with this property are in one-to-one correspondence with column-strict plane partitions having at most two columnsand entries taken from f1; : : : ; n� 1g.Via the rule for the Schur function expansion of products of elementary symmetricfunctions (e.g., [M, I.(5.17)]), it follows that �n�1k �2 (resp., �n�1k ��n�1k+1�) is the number of26



plane partitions of the desired type with a total of 2k (resp., 2k + 1) entries. Hence, thetotal number of these plane partitions isXk�0�n � 1k �2 + �n� 1k ��n� 1k + 1� =Xk�0�n � 1k �� nk + 1� = �2n� 1n� 1 � = 12�2nn �;and thus (b) follows.By Corollary 5.8, the fully commutative members of An�1 are encoded by pairs ofinteger sequences n > n1 > � � � > nr > 0 and m1 > � � � > mr > 0 such that r � 0and mi < ni. The fact that there are exactly C(n) such codes can be shown in severalways; e.g., by using Schur functions to count the appropriate set of plane partitions, or byrecognizing that (mr ; nr); : : : ; (m1; n1) can be viewed as the north-to-east turning pointsof an increasing lattice path from (0; 0) to (n; n) con�ned to the region f(i; j) : i � jg (awell-known interpretation of C(n)), or by appealing to the fact C(n) is known to be thenumber of (3; 2; 1)-avoiding permutations of n objects (see the discussion in [BJS,x2]).By Corollary 5.7, the codes of this type such that r > 0 are in one-to-one correspondencewith the fully commutative bottom elements of Bn that are not also top elements. Sincethere is just one code with r = 0, it follows that there are C(n)� 1 such elements. Hencethere are �2nn � + C(n) � 1 = (n + 2)C(n) � 1 fully commutative elements, in agreementwith (a).The fully commutative bottom elements that we have not yet accounted for are thosethat are also top elements. However any such w 2 Bn has the property thatR(w) = R(w0)for some fully commutative w0 2 An, and conversely. Hence there are C(n + 1) suchelements (this can also be seen by examining the codes of the corresponding canonicalreduced words), yielding (b) and (d). �6. Heaps and heap expansions6.1 Heaps of fully commutative elements.Suppose that [m1; n1] � � � [mr ; nr] is the canonical reduced word for some fully commu-tative top element w 2 Bn. By Corollary 5.6, we know that n > n1 > � � � > nr � 0,m1 > � � �> ms> ms+1 = � � � = mr = 0 (for some s � r) and mi � ni for 1 � i � r. Underthese circumstances, we will say that w is of shape �=�, where � := (n1 + 1; : : : ; nr + 1)and � := (m1; : : : ;ms). This terminology re
ects the fact that � and � are a pair of strictpartitions with the (shifted) diagram of � being contained in the (shifted) diagram of �;thus �=� may (and shall) be regarded as a shifted skew shape. Every shifted skew shapewithout empty rows is the shape of some fully commutative top element of Bn, providedthat n is su�ciently large. 27



More explicitly, given a strict partition �1 > � � � > �l > 0, the shifted diagram of � isde�ned to be D0� := f(i; j) 2 Z2 : 1 � i � l; i � j < �i + ig;partially ordered so that (i; j) � (i0; j0) for i � i0 and j � j0. Whenever D0� � D0�, wewrite D0�=� as an abbreviation for the shifted skew diagram D0� �D0�, a subposet of D0�.We prefer to regard each shifted skew diagram as a labeled poset (in the sense of [Ste1]),with the labeling of the cell (i; j) 2 D0�=� de�ned to be j � i.For example, using matrix-style coordinates (so that poset gravity points in the north-west direction), the labeling of the cells of �=� = 7542=42 is4 5 62 3 40 1 2 30 1.If w is a fully commutative top element of shape �=�, then the canonical reduced wordfor w is obtained by reading the labels of the diagram of �=� in (English) reading order(i.e., by rows, left-to-right, starting with the highest row).Recall from Section 1.2 that if w is fully commutative, then R(w) consists of the setL(P ) of (labeled) linear extensions of a labeled poset P ; namely, the heap of any i 2 R(w).Since all heaps belonging to a given commutativity class are isomorphic as labeled posets,we may thus refer to the heap of w without ambiguity.Proposition 6.1. If w 2 Bn is a fully commutative top element of shape �=�, thenthe heap of w is isomorphic to D0�=� (as a labeled poset).Proof. Let i = i1� � � il denote the canonical reduced word for w and P the correspondingheap ordering of f1; : : : ; lg, as in Section 1.2. For 1 � k � l, de�ne ck 2 D = D0�=� tobe the kth cell of D in reading order. We claim that the map k 7! ck is a labeled posetisomorphism P ! D. Since the canonical reduced word is obtained by reading the labelsof D in (English) order, it is clear that the map is bijective and label-preserving. Now ifr < s is a covering relation of the heap, then i = ir and j = is are indices of noncommutinggenerators of Bn; i.e., j = i � 1. However, the cells of D with label i � 1 that appearlater (in reading order) than the cell cr are all greater than cr in the partial order of D.Conversely, a cell c 2 D with label i is covered in the partial order only by cells with labelsi � 1, so these covering relations correspond to relations of the heap. �A (shifted) standard tableau of shape �=� is by de�nition an order-preserving bijectionT : D0�=� ! f1; : : : ; lg. The number of such tableaux is denoted g�=�. Since there is an28



obvious equivalence between standard tableaux and linear extensions of the underlyingdiagram poset, we obtain the following.Corollary 6.2. If w 2 Bn is a fully commutative top element of shape �=�, then wehave #R(w) = g�=�.Remark 6.3. (a) If we specialize Proposition 6.1 and its corollary to the parabolicsubgroup An�1, we obtain Proposition 2.1 and Corollary 2.1 of [BJS].(b) In case � = ?, there is a well-known hook length formula for g�=�|see [M, p. 135].The fully commutative top elements whose shapes have this property are distinguishedamong all members of Bn by the fact that their one-line forms are increasing (Lemma 5.2).Furthermore, for such elements the negative entries of the one-line form are (in absolutevalue) the parts of �.(c) The special case � = ? of Corollary 6.2 is closely related to Theorem 4.5 of [E]. Inthis paper, Edelman identi�es a set of elements w� 2 An indexed by strict partitions �,and proves that the number of i 2 R(w) that satisfy the lattice property is g�. Althoughthe de�nition of w� is complicated, it can be shown that x = top(w�1� ) 2 Bn is the fullycommutative top element of shape �=? and R(x�1) is the set of reduced words for w�satisfying the lattice property.The heaps of the fully commutative members of Bn that are not top elements are morecomplicated to describe. By Corollaries 5.6 and 5.7, the canonical reduced words for suchelements are of the form i = [m1; n1] � � � [mr�1; nr�1][�mr; nr]; (6.1)where m1 > � � � > mr > 0. If we delete the subword [�mr;mr � 1] from i, we obtain acanonical reduced word j = [m1; n1] � � � [mr; nr] for some fully commutative top element.The heap of this top element is by Proposition 6.1 a shifted skew diagram of some shape,say �=�. Furthermore, this diagram has the property that the smallest label is m = mr,and there is exactly one cell with this property. In fact, in any shifted skew diagram withno cells labeled 0 (i.e., no cells on the main diagonal) the smallest label appears only once.Since i can be obtained from j by replacing the unique occurrence of the smallestterm m with the word m � � �101 � � �m, it follows that the heap of i can be obtained fromthe heap of j by replacing the cell labeled m with a chain of 2m + 1 elements labeledm; : : : ; 1; 0; 1; : : : ;m.More formally, given a labeled poset P with a unique vertex x having label m > 0,de�ne Im(P ) to be the labeled poset obtained from P by replacing x with the chainx�m < � � � < x�1 < x0 < x1 < � � � < xm:29



q q qq q qq q q������������������@@@@@@@@@@@@@@@2 33 44 55 6 7Figure 1. qqqqq21012 q3 q3 q4q4 q5 q5 q6 q7������HHH����BBBB AAA@@@���@@@������Figure 2.q q q q q qq q�������� ������@@@@@@@@@1 0 1 2 3 44 5Figure 3.The label of xi is de�ned to be j i j, and for each relation x < y (resp., x > y) of P , wenow have xi < y (resp., xi > y) for all j i j � m.In summary, we have the following.Proposition 6.4. If w 2 Bn is fully commutative, with a canonical reduced word ofthe form (6.1), then the heap of w is isomorphic to Im(D0�=�) (as a labeled poset), where� = (n1 + 1; : : : ; nr + 1), � = (m1; : : : ;mr), and m = mr .For example, consider the fully commutative w 2 B8 whose canonical reduced wordis [5; 7][3; 5][�2;4]. The shape of [5; 7][3;5][2;4] is �=� = 865=532 (see Figure 1) and theheap of w is obtained by replacing the cell of �=� labeled 2 with a 5-element chain. SeeFigure 2. As this example plainly shows, the heap of a fully commutative member of Bnneed not be isomorphic to a shifted skew diagram, or even ranked.On the other hand, it is possible for the heaps of words of the form (6.1) to be isomorphicto shifted skew diagrams as unlabeled posets. For example, it is clear from Figure 3 that,after deleting the labels, the heap of [4; 5][3;4][�1; 2] is isomorphic to D0764=54. Hence thenumber of reduced words for the corresponding element of Bn is the number of standardshifted tableaux of shape 764=54. In general, it is not hard to show that the (unlabeled)heap of any word of the form (6.1) is isomorphic to an (unlabeled) shifted skew diagramif and only if mr + 1 occurs at most once, or equivalently, nr = mr or mr�1 > mr + 1.30



6.2 Heap expansions.There is a close connection between the symmetric functions GB(w) and the theoryof enriched P -partitions developed in [Ste1]. To explain, let P be a partial ordering ofa �nite set X, and let 
 : X ! f0; 1; 2; : : :g be a labeling of its elements. An enrichedP -partition is a mapping f : P ! f�1;�2; : : :g such that the following properties holdfor all x < y in P : (1) f(x) 4 f(y) (where 4 denotes the total ordering of Section 1.6),(2) f(x) = f(y) > 0 implies 
(x) < 
(y), and (3) f(x) = f(y) < 0 implies 
(x) > 
(y).The primary object of study in [Ste1] is the generating function�(P )(z1; z2; : : :) =Xf Yx2X zjf(x)j;summed over all enriched P -partitions f .It should be noted that in [Ste1], the labeling map of the poset P is required to beinjective, however the labeled posets we have in mind here (namely, heaps of reducedwords) tend to have multiple uses of the same label. Nevertheless, it is easy to check thatthe theory of enriched P -partitions remains valid for non-injective labelings, provided thateach element is comparable to, but does not cover, every other element of the same label.This is equivalent to requiring every labeled linear extensions of P to be twin-free. (Hencethe theory does apply to heaps of reduced words.)One of the motivating examples of enriched P -partitions are the tableaux associatedwith Schur Q-functions. Indeed the Schur Q-function indexed by the (shifted) skew shape�=� is the generating function for enriched D0�=�-partitions. That is,Q�=� = �(D0�=�):See [Ste1,x2.4] for more details.Proposition 6.5. If P1; : : : ; Pk are the heaps of the commutativity classes of R(w)for some w 2 Bn, then we haveGB(w) = �(P1) + � � �+�(Pk):Proof. If P is the heap of any reduced word i, then by the fundamental lemma ofenriched P -partitions (Lemma 2.1 of [Ste1]), we have�(P ) = Xj2L(P )K�(j): (6.2)However L(P ) is the commutativity class of i (Proposition 1.1), so the result followsfrom (3.2). � 31



Results equivalent to (in some instances special cases of) the following have been inde-pendently obtained by others. For example, Lam (Corollary 3.5 of [L]) and Billey-Haiman(Proposition 3.14 of [BH]) both prove the case � = ?, and Fomin-Kirillov [FK1, x8] statethe result without proof.Corollary 6.6. If w 2 Bn is a fully commutative top element of shape �=�, then wehave GB(w) = �(D0�=�) = Q�=�.An interesting open problem (see [Ste1,x5]) is the classi�cation of labeled posets Psuch that �(P ) is a symmetric function. An obvious conjecture to propose is that shiftedskew diagrams are the only �-symmetric posets. However, even after accounting forthe \correct" notion of isomorphism for labeled posets (namely, the weak isomorphismof [Ste1,x2.3]), the fully commutative members of Bn (and as we shall see, also Dn)provide examples of �-symmetric posets that are not of this type.To be explicit, �rst note that by Proposition 6.5 we have the following.Corollary 6.7. If P is the heap of any fully commutative w 2 Bn, then we have�(P ) = GB(w). In particular, �(P ) is symmetric.Hence by Proposition 6.4, we obtain a �-symmetric poset by taking any skew diagramwhose smallest label is m > 0, and replacing the (necessarily unique) cell with this labelby a (2m + 1)-element chain. If the resulting labeled poset P has more than one vertexlabeled m+ 1 (as in, for example, the heap of Figure 2), then it is not isomorphic, even inthe weak sense, to any shifted skew diagram.Part II: DnLet s�1; s1; : : : ; sn�1 denote generators for the Coxeter group Dn, arranging the indicesso that m(�1; 2) = m(1; 2) = 3 and m(i � 1; i) = 3 for 2 < i < n. For any word i 2 R(Dn),we let `1(i) (resp., `�1(i)) denote the number of occurrences of 1 (resp., �1), and de�ne`�1(i) = `1(i)+ `�1(i). In some circumstances, it will be necessary to have a total orderingof the indices; for these purposes, we choose �1 < 1 < 2 < � � � < n� 1.Interchanging s1 and s�1 extends to an automorphism of Dn, denoted w 7! �w. We adoptthe convention that An�1 refers speci�cally to the parabolic subgroup of Dn generatedby s1; : : : ; sn�1; thus to be consistent, �An�1 must denote the subgroup generated bys�1; s2; : : : ; sn�1.The shortest left coset representatives for Dn=Dn�1 consist off1; sn�1; sn�2sn�1; : : : ; s1s2 � � �sn�1; s�1s2 � � � sn�1;s1s�1s2 � � � sn�1; s2s1s�1s2 � � �sn�1; : : : ; sn�1 � � �s2s1s�1s2 � � �sn�1g:32



These coset representatives each have either one or two reduced expressions, according towhether the factor s1s�1 occurs. By consistently choosing representative reduced words inwhich the subword �11 does not appear, we thus obtain a canonical reduced word for everyw 2 Dn, following the conventions of Section 1.3.For integers j � i � 2, we de�ne hi; j] and h�i; j] to be the words i � (i + 1) � � �j andi � (i � 1) � � �21�12 � � �j (respectively), and for j � 1 we de�neh1; j] = 12 � � �j; h�1; j] = �12 � � �j; h0; j] = 1�12 � � � j:In particular, h�1; 1] = �1 and h0; 1] = 1�1. In these terms, the canonical reduced words forthe members of Dn are the expressionshm1; n1] � hm2; n2] � � � hmr ; nr];where n > n1 > � � � > nr � 1 and jmij � ni.With "1; : : : ; "n as the standard orthonormal basis ofRn, we take "i+1�"i (resp., "1+"2)as the simple root corresponding to si for i � 1 (resp., i = �1). In these terms, the vector� = "1+2"2+ � � �+n"n = (1; 2; : : : ; n) belongs to the interior of the fundamental chamberde�ned by this choice of simple roots, and its orbit consists of all signed permutations of(1; 2; : : : ; n) with an even number of negative entries. These constitute the one-line formsof the members of Dn. 7. The A-stable members of DnThe map s�1 7! s1, si 7! si (i � 1) extends to a group homomorphism Dn ! An�1,denoted w 7! jwj. In terms of one-line forms, the e�ect of this homomorphism is the sameas taking the absolute values of the coordinates; i.e., (w1; : : : ; wn) 7! (jw1j; : : : ; jwnj).If the length of w 2 Dn is the same as the length of jwj 2 An�1, we will say that w isA-stable. As we shall see, the A-stable members of Dn are closely related to the A-reducedmembers of Bn�1.Theorem 7.1. For w 2 Dn, the following are equivalent.(a) w is A-stable.(b) 1�1 is not a subword of any i 2 R(w).(c) 1�1 does not occur in the canonical reduced word for w.(d) w avoids the patterns (�1;�2).Proof. Since js1s�1j = 1, it is clear that (a))(b). Also, (b))(c) is immediate.(c))(d). Proceed by induction on n. If n = 2, the possibilities for w are 1; s1, and s�1,for which the corresponding one-line forms are (1; 2), (2; 1), and (�2;�1). Otherwise, if33



n > 2, consider the canonical factorization xn� � �x2 of w. By the induction hypothesis,w0 = xn�1 � � �x2 2 Dn�1 has a one-line form (w01; : : : ; w0n�1) that avoids the patterns(�1;�2). In passing from w0 to w = xnw0, the entry �n is inserted into some position ofthe one-line form depending on xn. Since n cannot participate in an occurrence of eitherof the patterns (�1;�2), suppose that �n is the inserted entry. This can happen only if�1 occurs in the canonical reduced word for xn. However, the only coset representative forDn=Dn�1 whose canonical reduced word contains �1 but not 1�1 is xn = s�1s2 � � �sn�1. Inthat case, the one-line form of w is (�n;�w01; w02; : : : ; w0n�1) and there is no way for �n(or �w01) to participate in an occurrence of the patterns (�1;�2).(d))(a). If w contains one of the patterns (�1;�2) and `(sjw) > `(w), then weclaim that sjw also contains one of these patterns. To see this, suppose that (a; b) is asubsequence of the one-line form of w that �ts (�1;�2); i.e., �b > jaj. If j � 1 then(a; b) will also be a subsequence of sjw unless sj interchanges a and b. However since`(sjw) > `(w), this would require a < b, contrary to the fact that �b > jaj. In theremaining case, namely j = �1, we cannot have a and b in the �rst two positions of w, sinceotherwise `(sjw) > `(w) would require that a+ b > 0. Hence either (a; b) or (�a; b) occursas a subsequence of sjw, both of which �t (�1;�2).Given the claim, it su�ces to show that if w is A-stable but sjw is not, then sjwcontains one of the patterns (�1;�2). For this, note �rst that `(sjw) > `(w) (otherwisesjw would be A-stable) and `(jsjwj) < `(sjw) = `(w)+1 = `(jwj)+1, so `(jsjwj) < `(jwj).If j � 1, let a and b denote the entries of the one-line form of w in positions j and j + 1.Since `(sjw) > `(w), we have a < b, and since `(jsjwj) < `(jwj), we have jaj > jbj. Hence�a > jbj and the subsequence (b; a) of sjw �ts one of the patterns (�1;�2). Otherwise,if j = �1, let a and b denote the entries in positions 1 and 2 of the one-line form of w. Wehave a+ b > 0 since `(sjw) > `(w), and jaj > jbj since `(jsjwj) < `(jwj). Therefore a > jbjand the subsequence (�b;�a) of sjw �ts one of the patterns (�1;�2). �For any even J � f1; : : : ; ng, let t(J) 2 Dn denote the member of Dn whose action onRn is to change the sign of the coordinates indexed by J . The elements t(J) form thekernel of the homomorphism w 7! jwj.Corollary 7.2. If w 2 An�1, then w0 2 Dn is A-stable and jw0j = w if and only ifw0 = t(J)w for some even J � L(w).Proof. By the criterion of Theorem 7.1(d), w0 2 Dn is A-stable if and only if thepositions where negative entries occur are left-minima of jw0j. �Corollary 7.3. There are 12 (n+ 1)! A-stable members of Dn.34



Proof. By Corollary 7.2, there are 2#L(w)�1 A-stable members of Dn corresponding toeach w 2 An�1. Apply Lemma 2.6. (Alternatively, there are n + 1 coset representativesof Dn=Dn�1 whose canonical reduced words do not contain 1�1, so the result follows byinduction and the criterion of Theorem 7.1(c).) �De�ne a map � : f�1; 1; : : : ; n�1g ! f0; 1; : : : ; n�2g by setting �(i) = i�1 for 1 < i < nand �(1) = �(�1) = 0. Extending � to the corresponding free monoid, we will write �(i) for�(i1) � � ��(il) whenever i = i1� � � il. Note that if w 2 Dn is A-stable, then any i 2 R(w)remains reduced under the identi�cation 1 = �1. Therefore �(i), regarded as a word formedout of labels for the generators of Bn�1, is A-reduced. In particular, �(i) 2 R(Bn�1).If j 2 R(Bn�1) is obtained from �(i) by the application of a single Bn�1-braid relation,then j = �(i0) for some word i0 that is Dn-braid equivalent to i, except for cases involvingthe relation 1010 � 0101. In such cases, i must contain one of the subwords 212�1, 2�121,12�12, or �1212. However, none of these subwords can occur if w is A-stable. (For example,if 212�1 occurs, then the relation 212�1 � 121�1 shows that 1�1 would appear in some reducedword for w.) Therefore if w is A-stable, then�R(w) = [x2X(w)RB(x) (7.1)for someX(w) � Bn�1. (We use the notationRB(x) here, rather thanR(x), to emphasizethat x 2 Bn�1.) Although it is not clear a priori, we will see that � is injective on R(w).In order to describe the set X(w) appearing in (7.1), let us de�neN (w) = f1g [ fj : wj < 0 or jwjj = 1g;where (w1; : : : ; wn) denotes the one-line form of some w 2 Dn. Also, for any set of positionsJ = fj1 < � � � < jmg, we de�ne�+(w; J) = #f1 � k < m : �1� � ��k = +1g;��(w; J) = #f1 � k < m : �1� � ��k = �1g; (7.2)where �k denotes the sign of the jkth entry of w.Recall from Section 2 that b : Bn�1 ! An�1 denotes the map in which 0 is insertedinto the one-line form of x 2 Bn�1 from the right, and then successive negative entriesare bumped. In the present context, the one-line forms for w 2 An�1 are permutations of(1; : : : ; n). Thus to produce the correct one-line form of b(x), we must now supplementthe procedure of Section 2 by adding (1; : : : ; 1) to the result. For example, if x 2 B5 hasone-line form (3;�4; 5;�2; 1), then b(x) 2 A5 (now) has one-line form (5; 4; 3; 6; 1;2).35



Let us also recall from Section 2 the description of the b-preimages of w 2 An�1. Takinginto account the shift of entries, if k is the position where 1 occurs in w, the preimages ofw are the elements wJ 2 Bn�1 obtained by unbumping the entries of w at the positionsindexed by J , for all J such that f1; kg � J � f1; : : : ; kg.Theorem 7.4. If w 2 Dn is A-stable, then we have the following.(a) The restriction of � to R(w) is injective.(b) �R(w) = [N(w)�K�L(jwj)RB(jwjK).(c) If N (w) � K � L(jwj), then for every i 2 R(w) such that �(i) 2 RB(jwjK), wehave `1(i) = �+(w;K) and `�1(i) = ��(w;K).For example, if w = (6; 7;�4; 2; 3;�1;5) 2 D7 then w is A-stable, N (w) = f1; 3; 6g,L(jwj) = f1; 3; 4; 6g, and there are two elements jwjK 2 B6 that appear in the decompo-sition of part (b); namely, (6;�5; 1; 2;�3; 4) and (6;�5;�3; 2;�1; 4).Corollary 7.5. If w 2 Dn is A-stable, then #R(w) = XN(w)�K�L(jwj)#RB(jwjK).For example, if w has one-line form (�n; : : : ;�2;�1) (the sign of the last entry beingdetermined by parity considerations), then w is A-stable and N (w) = L(jwj) = f1; : : : ; ng.Hence there is exactly one term in the expansion of Corollary 7.5, corresponding to theelement x 2 Bn�1 whose one-line form is (�(n � 1); : : : ;�1). As noted in Section 3, thenumber of reduced words for x (and therefore also w) is the number of shifted standardtableaux of shape (n � 1; : : : ; 1).If x 2 Bn�1 has one-line form (x1; : : : ; xn�1), set M (x) := f1g [ fj + 1 : xj < 0g.Our proof of Theorem 7.4 relies on the following.Lemma 7.6. For x 2 Bn�1 and w 2 Dn, the following are equivalent.(a) w is A-stable and R(x) � �R(w).(b) x is A-reduced and w = t(J)b(x) for some even J � M (x).(c) x = jwjK for some K such that N (w) � K � L(jwj).Furthermore, if w and x are related as in (c), then for some i 2 R(w) such that �(i) 2 R(x),we have `1(i) = �+(w;K) and `�1(i) = ��(w;K).Proof. (b))(c). If w = t(J)b(x) for some even J � M (x), then jwj = b(x). ByTheorem 2.4, it follows that if x is A-reduced, then we must have x = jwjK for some Ksatisfying f1; kg � K � L(jwj), where k is the position where 1 occurs in jwj. Thus tosatisfy (c), it remains only to check that N (w) � K. Since J is the set of indices where36



negative entries occur in w, it su�ces to show that J � K. However J � M (x), so j 2 Jimplies j = 1 or xj�1 < 0. In either case, j indexes a position that must be unbumped inorder to obtain x from jwj; i.e., j 2 K.(c))(a). Suppose that x = jwjK for some K such that N (w) � K � L(jwj). Underthese circumstances, we must have K = M (x) and jwj = b(x). We prove by inductionon `(x) that there exists some i 2 R(w) such that �(i) 2 R(x), `1(i) = �+(w;K), and`�1(i) = ��(w;K). For the base of the induction, suppose `0(x) = 0. In that case, xhas no negative entries, so K = M (x) = f1g and 1 is the �rst entry in the one-lineform of jwj = b(x). Hence w belongs to the subgroup generated by s2; : : : ; sn�1 andR(x) = �R(w). We also have `1(i) = `�1(i) = ��(w;K) = 0 for every i 2 R(w).For the remainder of the proof, let (w1; : : : ; wn) and (x1; : : : ; xn�1) denote the respectiveone-line forms of w and x. Also, to distinguish the generators of Dn from those Bn�1, weuse s�0; : : : ; s�n�2 to denote the latter.In the case `0(x) > 0, x has at least one negative entry; assume that the leftmostone is xj = �a. Let �b � 0 be the entry that bumps �a when 0 is inserted fromthe right. In jwj = b(x), we therefore have jw1j = a + 1 and jwj+1j = b + 1. Sincej + 1 2M (x) = K � L(jwj), b+ 1 must be a left-minimum of jwj.Case 1: j � 2. Since N (w) � K and j+1 is the smallest member ofM (x) = K greaterthan 1, we have wj > 0. Therefore wj > wj+1 and `(sjw) < `(w), since jwj+1j = b+1 is aleft-minimum of jwj. We also have xj�1 > xj and `(s�j�1x) < `(x), since every entry of xprior to j is positive. Using sjw and s�j�1x in place of w and x, the hypotheses of (c) aresatis�ed (the only e�ects on the values of N (w), K, and L(jwj) are that the occurrencesof j+1 are replaced with j), so by the induction hypothesis we can �nd some i0 2 R(sjw)such that �(i0) 2 R(s�j�1x), with the values of `1(i0), `�1(i0) as desired. By inserting j atthe beginning of i0, we obtain a word i 2 R(w) such that �(i) 2 R(x). For this word, wehave `1(i) = �+(w;K) and `�1(i) = ��(w;K), since the values of `1(�), `�1(�) and ��(�) donot change.Case 2: j = 1. In this case, (a+1; b+1) are the �rst two entries of jwj, and a > b sinceb+ 1 is a left-minimum. Hence `(w0) < `(w), where w0 = s1w (if w1 = a+ 1) or w0 = s�1w(if w1 = �(a + 1)). We also have `(s�0x) < `(x), since x1 = �a < 0. If we replace w withw0 and x with s�0x, the hypotheses of (c) are still satis�ed|the e�ects on N (w), K, andL(jwj) are such that j + 1 = 2 is deleted from K, L(jwj), and (if it occurs there) N (w).Hence by the induction hypothesis we can �nd some i0 2 R(w0) such that �(i0) 2 R(s�0x),`1(i0) = �+(w0;K0), and `�1(i0) = ��(w0;K0), where K0 = K � f2g. By inserting 1 or �1 atthe beginning of i0 according to the sign of w1, we thus obtain a reduced word i 2 R(w)such that �(i) 2 R(x). Furthermore, if �1; : : : ; �m (resp., �01; : : : ; �0m�1) denote the signs37



used to compute ��(w;K) (resp., ��(w0;K0)) in (7.2), then �1 is the sign of w1, and(�2; : : : ; �m) = (�1�01; �02; : : : ; �0m�1):It follows that �1 � � ��k+1 = �01 � � � �0k for k � 1, so we have �+(w;K)� �+(w0;K0) = 1 and��(w;K)� ��(w0;K0) = 0 or vice-versa, according to whether the �rst term of i is 1 or �1.Hence `1(i) = �+(w;K) and `�1(i) = ��(w;K), so the induction is complete.Since one of the hypotheses of (c) is N (w) � L(jwj), it follows that w is A-stable,by Corollary 7.2. Having already shown R(x) \ �R(w) is nonempty, it now follows thatR(x) � �R(w), by (7.1).(a))(b). Given that w is A-stable, every x 2 Bn�1 such that R(x) � �R(w) is A-reduced. Thus the implication (a))(b) is trivial if x is not A-reduced. Otherwise, thereare exactly 2#M(x)�1 = 2`0(x) distinct elements w 2 Dn that satisfy (b). Having proved(b))(c))(a), it follows that each of these elements also satisfy (a). On the other hand,for any j 2 R(x), there are only 2`0(x) possible words i such that �(i) = j. Since we havealready identi�ed 2`0(x) distinct members ofDn that satisfy (a), this can only be reconciledif these are the only members of Dn that satisfy (a). �Proof of Theorem 7.4. For (a), suppose that �(i) = �(i0) = j for some pair i; i0 2 R(w).It follows that j 2 R(x) for some A-reduced x 2 Bn�1. However, by the equivalenceof parts (a) and (b) of Lemma 7.6, there are 2`0(x) distinct A-stable w0 2 Dn such thatj 2 �R(w0). Since there are only 2`0(x) words i00 such that �(i00) = j, it follows that theymust be reduced words for distinct members of Dn. Hence i = i0.Part (b) is a corollary of (7.1) and the equivalence of parts (a) and (c) of Lemma 7.6.For (c), we already know by Lemma 7.6 that there exists at least one i 2 R(w) suchthat �(i) 2 R(jwjK) for which `1(i) = �+(w;K) and `�1(i) = ��(w;K). Given anotheri0 2 R(w) such that �(i0) 2 R(x), �(i0) can be transformed into �(i) by means of a seriesof Bn�1-braid relations. Furthermore, the relation 1010 � 0101 can never arise, sinceotherwise w would not be A-stable. Hence the only relations involved are �-images ofDn-braid relations that preserves the number of occurrences of both 1 and �1. It followsthat there must exist i00 2 R(w) such that `1(i0) = `1(i00), `�1(i0) = `�1(i00), and �(i00) = �(i).However � is injective on R(w), so i = i00. �Remark 7.7. (a) If w 2 Dn is A-stable, Theorem 7.4 implies that the maximum valueof `�1(i) for i 2 R(w) is #L(jwj) � 1, and the set of reduced words with this propertyis in one-to-one correspondence (via �) with the set of reduced words for some x 2 Bn�1(namely, x = top(jwj)).(b) Similarly, the minimum value of `�1(i) for i 2 R(w) is #N (w)� 1, and the set of38



reduced words with this property is in one-to-one correspondence (via �) with the set ofreduced words for some x 2 Bn�1. For a �xed choice of jwj, we can select an A-stablepreimage w so that N (w) takes on any value in the interval f1; kg � N � L(jwj), where kdenotes the position where 1 occurs in jwj. Thus every A-reduced x 2 Bn�1 occurs as the`�1-minimizer of some A-stable w 2 Dn.8. The symmetric functions GD and GD(s; t)Let u�1; u1; : : : ; un�1 denote generators for the nil Coxeter ring of Dn, and de�ne�Gn(z; s; t) = (1 + zun�1) � � � (1 + zu2)(1 + 2szu1)(1 + 2tzu�1)(1 + zu2) � � � (1 + zun�1);where z; s; t are central indeterminates. For each w 2 Dn, we de�ne GD(w; s; t) to be thequasi-symmetric function appearing as the coe�cient of uw in the expansion�Gn(z1; s; t) �Gn(z2; s; t) � � � = Xw2Dn GD(w; s; t)(z1; z2; : : : )uw:Considering the relation(1 + 2szu1)(1 + 2tzu�1) = (1 + su1)(1 + tu�1)(1 + tu�1)(1 + su1);one sees that �Gn(z; s; t) is the image of Gn(z) (see Section 1.6) under the substitutionsu�1 7! tu1, u1 7! su2, ui 7! ui+1 (i � 2). Thus by Proposition 1.4(b), we haveGD(w; s; t) = Xi2R(w) s`1(i)t`�1(i)K�(i): (8.1)Note that GD( �w; s; t) = GD(w; t; s) andGD(w�1; s; t)(z1; : : : ; zm) = GD(w; s; t)(zm; : : : ; z1):Also, if w 2 An�1, then GA(w; t) = GD(w; t; s) = GD(w; t; 0).An immediate consequence of (8.1) and the fundamental lemmaof enriched P -partitions(see (6.2)) is the following heap expansion for GD(w; s; t) (cf. Proposition 6.5).Proposition 8.1. If P1; : : : ; Pk are the heaps of the commutativity classes of R(w)for some w 2 Dn, then we haveGD(w; s; t) = kXi=1 s`1(Pi)t`�1(Pi)�(Pi);where `1(P ) and `�1(P ) denote the number 1's and �1's in the labeled poset P .39



The formal series GD(w; s; t) need not be symmetric in the variables z1; z2; : : : ; forexample, one may check that GD(s1s2s�1s2; s; t)(z1; z2) = 4stz1z2(z1 + z2)(2tz1 + z2). Onthe other hand, it is known (e.g., Lemma 4.24 of [L]) that in the special case s = t = 1=2,�Gn(x; s; t) does commutes with �Gn(y; s; t), and thusGD(w) := GD(w; 1=2; 1=2)is a symmetric function of z1; z2; : : : .Corollary 8.2. If P is the heap of any fully commutative w 2 Dn, then we have�(P ) = 2lGD(w), where l denotes the number of occurrences of 1 and �1 in any reducedword for w. In particular, �(P ) is symmetric.We claim that there is also a special class of elements w 2 Dn for which GD(w; s; t)remains symmetric without specializing s and t. To explain, let I denote the two-sidedideal of the nil Coxeter ring generated by u1u2u�1u2, u�1u2u1u2, u2u�1u2u1, and u2u1u2u�1.Proposition 8.3. We have �Gn(x; s; t) �Gn(y; s; t) = �Gn(y; s; t) �Gn(x; s; t) mod I.Proof. Applying Proposition 3.1(b) with a = �Gn�2(x; s; t), b = �Gn�2(y; s; t), u = un�2,and v = un�1, we see that the assertion follows by induction, once the cases n = 2and 3 have been established. However the case n = 2 is trivial, and n = 3 is equivalent toshowing that for every w 2 D3, either GD(w; s; t)(x; y) is symmetric in x and y, or else somei 2 R(w) contains the subword 12�12, �1212, 2�121, or 212�1. Now if w belongs to a properparabolic subgroup of D3 (i.e., A2, �A2, or D2), then the symmetry of GD(w; s; t)(x; y) iseither trivial or a consequence of the symmetry of the GA(t)-family of quasi-symmetricfunctions. Retaining only one member from each quadruple (w; �w;w�1; �w�1), there remainonly three elements with no reduced word containing 12�12, �1212, 2�121, or 212�1 as asubword; namely, s1s2s�1, s1s�1s2, and s2s1s�1s2. For these one obtainsGD(s1s2s�1; s; t)(x; y) = 4stxy(x + y);GD(s1s�1s2; s; t)(x; y) = 4st(x + y)(x2 + xy + y2);GD(s2s1s�1s2; s; t)(x; y) = 4st(x + y)2(x2 + y2);each of which is visibly symmetric. �De�ne w 2 Dn to be �nely symmetric if there is no member of R(w) containing any ofthe subwords 12�12, �1212, 2�121, or 212�1. 40



Corollary 8.4. If w is �nely symmetric, then GD(w; s; t) is a symmetric function.Remark 8.5. (a) Proposition 3.1(b) also provides an easy inductive proof of thefact that �Gn(x; 1=2; 1=2) commutes with �Gn(y; 1=2; 1=2) (or equivalently, that GD(w) =GD(w; 1=2; 1=2) is symmetric for all w 2 Dn). One needs only to check the case n = 3, aroutine calculation.(b) Since �G(z; s; t) �G(�z; s; t) = 1, it follows that GD(w; s; t) satis�es the Pragacz can-cellation law (e.g., see [Ste1,xA.3]), and thus is a Q[s; t]-linear combination of SchurQ-functions or P -functions whenever it is symmetric. In particular, since the de�nition of�G(z; s; t) shows that GD(w) has integer coe�cients relative to monomials in the variablesz1; z2; : : : , it follows that GD(w) is P -integral. (However, GD(w) need not be Q-integral.)Also, since GD(w; s; t) is a Z-linear combination of the quasi-symmetric functions K�(see (8.1)), it follows from Theorem 3.8 of [Ste1] that if GD(w; s; t) is symmetric, it mustbe a Z[s; t]-linear combination of Schur Q-functions.(c) The symmetric functions GD(w) have been studied by both Lam [L] and Billeyand Haiman [BH]. For example, Lam and Billey-Haiman both prove that GD(w) is anonnegative Z-linear combination of Schur P -functions.It is clear that every A-stable w 2 Dn is �nely symmetric, since each of the forbiddensubwords 12�12, �1212, 2�121, and 212�1 is braid-equivalent to a word that contains 1�1. Infact, comparing (3.2) and (8.1), the following is an immediate consequence of Theorem 7.4.Theorem 8.6. If w 2 Dn is A-stable, then we haveGD(w; s; t) = XN(w)�K�L(jwj) s�+(w;K)t��(w;K)GB(jwjK):In particular, given the Q-positivity of the symmetric functions GB(w), we see thatfor the A-stable w 2 Dn, the Q-function coe�cients of GD(w; s; t) are polynomials withnonnegative coe�cients. In fact, as we will shall see below, this holds for every �nelysymmetric w 2 Dn. 9. Finely symmetric elementsIn the following, we reserve the notation An�2 speci�cally for the parabolic subgroupof Dn generated by s2; : : : ; sn�1.Lemma 9.1. We have An�1 = An�2 _[ An�2s1An�2.Proof. In the canonical reduced word for any w 2 An�1, the index n� 1 occurs at mostonce. Since si 7! sn�i is an automorphism, it follows that w also has a reduced word inwhich the index 1 appears at most once. �41



Lemma 9.2. For w 2 Dn, the following are equivalent.(a) w 2 An�2s1s�1An�2.(b) Every i 2 R(w) has one 1, one �1, and no 2 occurs between the 1 and the �1.(c) The canonical reduced word for w has the subword 1�1 and no other 1 or �1.(d) The one-line form of w has exactly two negative entries, and the �rst entry is �1.Proof. (a))(b). If w 2 An�2s1s�1An�2, then there is at least one i 2 R(w) that meetsthe conditions of (b). Furthermore, in any such word, there is no opportunity to apply thebraid relations 121 � 212 or �12�1 � 2�12. Since the remaining braid relations preserve thenumber of occurrences of 1 and �1 as well as the relative positions of 1,2, and �1, it followsthat every i 2 R(w) meets the conditions of (b).(b))(c). Let hm1; n1] � � � hmr ; nr] be the canonical reduced word for w, and supposethat 1 (resp., �1) occurs in the subword hmi; ni] (resp., hmj ; nj]). If i = j, then they appearconsecutively in the order 1�1, by construction. Otherwise, if (say) i < j, then a 2 mustoccur immediately following the 1, contrary to the hypotheses of (b).(c))(a) is immediate.(a),(d). If w = xs1s�1y for some x; y 2 An�2, then the �rst entry of the one-line formof y must be 1. Therefore, the �rst two entries of s1s�1y are (�1;�j) for some j > 1, andw is obtained by arbitrarily permuting the entries of s1s�1y in positions beyond the �rst.Thus (d) holds. Reversing this argument proves the converse. �We remark that it is not possible to characterize the members of the double cosetAn�2s1s�1An�2 in terms of pattern avoidance. Indeed, every pattern involving positiveterms occurs in some member of this double coset. However, it contains no member ofAn�1 and yet members of An�1 have only positive entries.On the other hand, if we include the double cosets containing the remaining membersof D2 (i.e., 1, s1, and s�1), it is possible to give both pattern-avoidance and forbiddensubword characterizations.Theorem 9.3. For w 2 Dn, the following are equivalent.(a) w 2 An�2D2An�2.(b) Neither 12�1 nor �121 occur as subwords of any i 2 R(w).(c) w avoids all patterns (a; b; c) such that b; c < 0, as well as all patterns that arepermutations of (�1;�2;�3).Proof. (a))(b). If w 2 An�2s1s�1An�2, then the implication (a))(b) of Lemma 9.2shows that neither 12�1 nor �121 can appear in any reduced word for w. Otherwise, we have42



w 2 An�1 or w 2 �An�1, in which case every reduced word for w omits either �1 or 1, andhence (b) is trivially satis�ed.(b))(c). Towards a contradiction, assume that w has three entries (a; b; c) that �t oneof the patterns forbidden by (c), and no reduced word for w contains 12�1 or �121. Among allsuch counterexamples, choose one that minimizes length. Given this, w cannot have fouror more negative entries; otherwise, any choice of sj such that `(sjw) < `(w) would yielda shorter element with (at least) four negative entries or two negative entries preceded bya positive one, both of which are forbidden. Thus exactly two of a; b; c are negative, andthe remaining entries of w are positive.If (a; b; c) is a permutation of (1;�2;�3), then since every such permutation is forbidden,we must have `(sjw) > `(w) for all j � 1. In other words, the one-line form of w mustbe increasing. Therefore (a; b; c) must �t the pattern (�3;�2; 1) and a; b are the �rst twoentries of w. Whether or not the third entry of w is c, the fact that the entries increaseimplies that the �rst three entries also �t the pattern (�3;�2; 1). However in that case,w has a reduced word that begins with �121, a contradiction.The remaining possibility is that (a; b; c) �ts a pattern with a > 0 and b; c < 0. Sinceevery entry prior to b is positive, we may assume that a is the �rst entry of w. If wepermute any pair of entries of w not involving the �rst, the result will still contain aforbidden pattern. Therefore, minimality requires `(sjw) > `(w) for all j � 2; i.e., theentries beyond the �rst position of w must increase. Hence, (a; b; c) �ts one of the patterns(1;�3;�2), (2;�3;�1), or (3;�2;�1). In the �rst two cases, we see that `(s�1w) < `(w)and s�1w still contains a forbidden pattern (contrary to minimality), but in the last case,w has a reduced word that begins with 12�1, a contradiction.(c))(a). If w avoids all patterns involving three negative terms, then w has at mosttwo negative entries. If w has none, then w 2 An�1 � An�2D2An�2 (Lemma 9.1), soassume that w has exactly two. If �1 is not one the negative entries, then w contains apattern formed by some permutation of (1;�2;�3), contrary to (c). If the �rst entry ispositive, then w contains a pattern (a; b; c) such that b; c < 0, again contrary to (c). Thusthe negative entries are �1 and �j for some j > 1 and one of them occurs in the �rstposition. If �1 occurs �rst, then Lemma 9.2 implies w 2 An�2s1s�1An�2. Otherwise, wecan �nd x 2 An�2 so that the �rst two entries of the one-line form of xw are (�j;�1).However in that case, s�1xw 2 An�2, and therefore w 2 An�2s�1An�2. �Recall that w 2 Dn is �nely symmetric if none of 12�12, �1212, 2�121, and 212�1 occur assubwords of any i 2 R(w). This clearly does not happen unless 12�1 and �121 occur as well,so we obtain the following. 43



Corollary 9.4. Every w 2 An�2D2An�2 is �nely symmetric.Remark 9.5. The members of An�1 and �An�1 are obviously A-stable and therefore�nely symmetric, so the only \new" �nely symmetric elements identi�ed by this result arethe members of An�2s1s�1An�2. Since Lemma 9.2 implies that every such element w hasexactly one occurrence each of 1 and �1 in every reduced word, it follows thatGD(w; s; t) = 4stGD(w):In particular, the Q-positivity of GD(w; s; t) follows from the Q-positivity of GD(w).Theorem 9.6. For w 2 Dn, the following are equivalent.(a) w is �nely symmetric.(b) w is A-stable or w 2 An�2D2An�2.(c) w avoids the patterns(�1;�2;�3); (�1;�3;�2); (�2;�1;�3); (�3;�1;�2);(�2;�3;�1); (2;�3;�1); (3;�1;�2); (2;�1;�3):Proof. (a),(b). We have already noted that the A-stable members of Dn, as well asthe members of An�2D2An�2, are �nely symmetric. Conversely, if w is not A-stable andnot in An�2s1s�1An�2, then by Theorem 7.1 and Lemma 9.2 the subword 1�1 appears in thecanonical reduced word i for w, along with at least one other occurrence of either 1 or �1.It follows that i has a subword of the form 1i01�1, �1i01�1, 1�1i01, or 1�1i0�1, with 1 and �1 notappearing in i0. Note that 2 must appear in i0; otherwise i would not be reduced. Howeverin that case, Lemma 9.1 shows that i0 is braid-equivalent to some word in which 2 appearsexactly once (and 1 and �1 do not occur at all). Since the indices > 2 commute with 1and �1, it follows that 1i01�1 is braid-equivalent to a word containing 121�1 � 212�1, andhence w could not be �nely symmetric. (The other cases are similar.)(b))(c). If w is A-stable, then w avoids the patterns (�1;�2) (Theorem 7.1). Hencew also avoids the patterns listed in (c), since each of them �ts either (1;�2) or (�1;�2).Also, any member of An�2D2An�2 avoids the patterns listed in Theorem 9.3, and hencealso the patterns of (c), since the latter are a subset of the former.(c))(b). Assume w has at least two negative entries; otherwise w is clearly A-stable.Case 1: w avoids (�1;�2). In this case, the negative terms must appear in increasingorder, so if the pattern (1;�2) occurs, then one of the patterns (�3; 1;�2), (1;�3;�2),or (2;�3;�1) also occurs. However, each of these patterns is explicitly forbidden by (c).Thus w avoids (�1;�2), and hence is A-stable (Theorem 7.1).44



Case 2: w contains the pattern (�1;�2). In this case, w must contain exactly twonegative terms, since the only pattern among the permutations of (�1;�2;�3) that isnot forbidden is (�3;�2;�1). If the �rst entry of w is positive, then one of the patterns(1;�2;�3), (2;�1;�3), or (3;�1;�2) occurs, contrary to (c). If the �rst entry of wis negative but not �1, then one of the patterns (�2; 1;�3) or (�2;�3; 1) occurs, againcontrary to (c). Hence the �rst entry of w is �1, so w 2 An�2s1s�1An�2 by Lemma 9.2. �Proposition 9.7. There are(a) 12(n + 1)! + (n � 1)(n� 1)! �nely symmetric members of Dn.(b) (3n� 2)(n� 1)! members of An�2D2An�2.(c) (2n� 1)(n� 1)! A-stable members of An�2D2An�2.Proof. The description in Lemma 9.2(d) shows that the double coset An�2s1s�1An�2 has(n�1)(n�1)! members. Thus (a) follows from Theorem 9.6 and Corollary 7.3. Obviouslyno member of this double coset is A-stable, and the remaining members of An�2D2An�2consist of An�1 [ �An�1. The latter has cardinality 2(n!)� (n� 1)!, yielding (c); restoringthe (n � 1)(n� 1)! members of An�2s1s�1An�2 yields (b). �De�ne w 2 Dn to be `�1-invariant if `�1(i) = `1(i) + `�1(i) is independent of the choiceof i 2 R(w). Since the only braid relations that a�ect `1(i) or `�1(i) are 121 � 212 and�12�1 � 2�12, it follows that w is `�1-invariant if and only if neither 212 nor 2�12 occur assubwords of any i 2 R(w). In particular, every `�1-invariant element is �nely symmetric.We remark that the `�1-invariant members of Dn and An�2D2An�2, and the A-stableportions thereof, cannot be characterized in terms of pattern avoidance. To prove this,note that since A-stability and membership in Dn, An�2D2An�2 and An�1 can be char-acterized by pattern avoidance, and each contains An�1, it su�ces merely to show that`�1-invariance in An�1 cannot be characterized by pattern avoidance. For this, considerthe one-line form of w = s2s1s2 2 D3; i.e., (3; 2; 1). Since w is not `�1-invariant, (3; 2; 1)must be a forbidden pattern for `�1-invariance in An�1, if a set of such patterns exists.However w0 = s2s3s2 2 D4 has one-line form (1; 4; 3; 2), so it contains the pattern (3; 2; 1)and yet is clearly `�1-invariant.Proposition 9.8. For w 2 Dn, the following are equivalent.(a) w is A-stable and `�1-invariant.(b) N (w) = L(jwj).(c) �R(w) = R(x) for some x 2 Bn�1.(d) In the canonical reduced word for w, the subword 1�1 does not appear, and theoccurrences of 1 and �1 alternate. 45



Proof. (a))(b). If w is A-stable, then we have N (w) � L(jwj) (Corollary 7.2). Also,Theorem 7.4 shows that there exist i; i0 2 R(w) such that `�1(i) = #N (w) � 1 and`�1(i0) = #L(jwj)� 1. Thus if w is `�1-invariant, #N (w) = #L(jwj) and (b) follows.(b))(c). If N (w) = L(jwj) then w is A-stable (Corollary 7.2). Apply Theorem 7.4(b).(c))(d). Given that �R(w) only contains reduced words for Bn�1, the subword 1�1cannot appear in the canonical (or any) reduced word i for w. If there were (say) asubword 1i01 of i such that neither 1 nor �1 occurs in i0, then by Lemma 9.1, 1i01 wouldbe braid-equivalent to some word in which 1 occurs exactly once (and �1 not at all). Thenumber of occurrences of 0 in the �-images of these words therefore varies. On the otherhand, the hypothesis �R(w) = R(x) implies that there are `0(x) occurrences of 0 in everymember of �R(w), a contradiction.(d))(a). If 1�1 does not occur in the canonical reduced word i for w, then w is A-stable(Theorem 7.1), and �(i) is the canonical reduced word for some top element x 2 Bn�1(Theorem 4.1). Given that the occurrences of 1 and �1 alternate in i, it follows that if wfailed to be `�1-invariant, there would exist a sequence of braid relations not involving1�1 � �11, 121 � 212, or �12�1 � 2�12 that transforms i into a reduced word j containing 212or 2�12. (Each allowed transformation preserves the property of alternating 1's and �1's, so212 or 2�12 must occur before 121 or �12�1.) The �-images of these transformations are validfor Bn�1, so �(j) 2 R(x). However �(212) = �(2�12) = 101 is a subword of �(j), which byTheorem 4.1 contradicts the fact that x is a top element. �Remark 9.9. (a) Suppose that w 2 Dn is `�1-invariant but not A-stable. Of coursew must be �nely symmetric, so w 2 An�2s1s�1An�2 by Theorem 9.6. However in thatcase, Lemma 9.2 shows that every reduced word for w has one 1 and one �1, and hence is`�1-invariant. In other words, the `�1-invariant members of Dn are the elements describedin Proposition 9.8, together with the members of the double coset An�2s1s�1An�2.(b) For any `�1-invariant w 2 Dn, the absence of the subwords 212 and 2�12 shows thatnot only is `�1(�) constant on R(w), but in fact `1(�) and `�1(�) are constant as well. Hencethe notations `1(w) and `�1(w) are unambiguous. In case w is also A-stable, Theorem 7.4and Proposition 9.8(d) show that`1(w) = 12(#L(jwj)� 1 + �); `�1(w) = 12(#L(jwj)� 1� �);where � is the sign of the �rst entry of w when #L(w) is even, and 0 otherwise.(c) If w 2 Dn is `�1-invariant and A-stable, then the element x 2 Bn�1 appearing inpart (c) of Proposition 9.8 is top(jwj) (cf. Remark 7.7(a)). If we restrict our attention tothe `�1-invariant elements w 2 An�1, the range of the map w 7! top(w) consists of those46



elements with exactly one term in the decomposition of Corollary 2.5; i.e., the membersof Bn�1 that are top-and-bottom elements. In other words, there is a bijection betweenthe top-and-bottom elements of Bn and the `�1-invariant members of An.Proposition 9.10. There are(a) (3n� 2)(n� 1)! `�1-invariant members of Dn.(b) (2n� 1)(n� 1)! A-stable `�1-invariant members of Dn.(c) (n� 1)! (n+ 2H(n� 1)) `�1-invariant members of An�2D2An�2.(d) (n� 1)! (1 + 2H(n� 1)) A-stable `�1-invariant members of An�2D2An�2.Proof. For (b), Proposition 9.8 shows that we can construct the canonical reduced wordfor any A-stable `�1-invariant w 2 Dn by selecting any of the n! canonical reduced wordsfor An�1, and then replacing every other occurrence of 1 with �1. Assuming there is atleast one occurrence of 1, this can be done in two ways, for a total of 2(n!)� (n� 1)!.For (a) recall from Remark 9.9(a) that the `�1-invariant members of Dn that are notA-stable are the members of An�2s1s�1An�2. We know from the proof of Proposition 9.7that this double coset has (n� 1)(n � 1)! members.By Remark 9.9(c) and Proposition 4.3, we know that there are (n� 1)! (1 +H(n� 1))`�1-invariant members of An�1, and hence (n�1)! (1+2H(n�1)) `�1-invariant membersof An�1[ �An�1, since every member of An�1\ �An�1 is `�1-invariant. This yields (d), andrestoring the (n� 1)(n� 1)! members of An�2s1s�1An�2 yields (c). �10. Full commutativityThe equivalence of (a) and (c) in the following has also been obtained by Fan [F, x7],although his choice of coordinates is not the same as ours.Theorem 10.1. For w 2 Dn, the following are equivalent.(a) w is fully commutative.(b) In the canonical reduced word hm1; n1] � � � hmr ; nr] for w, the occurrences of 1 and �1alternate, and either(1) m1 > � � � > ms > jms+1j = � � � = jmrj = 1 for some s � r, or(2) m1 > � � � > mr�1 > �mr � 0, mr�1 > 1, and mr 6= �1.(c) w avoids all patterns (a; b; c) such that jaj > b > c or �b > jaj > c.Proof. (a))(b). If w is fully commutative, then w is `�1-invariant. If w is A-stable aswell, then (i) the occurrences of 1 and �1 in the canonical reduced word for w must alternate,and (ii) �R(w) = R(x) for some x 2 Bn�1, by Proposition 9.8. In fact x must be a fullycommutative top element, since otherwise there would be a subword i(i� 1)i (with i � 1)47



appearing in some i 2 R(x), contradicting the fact that w is fully commutative. Hencethe canonical reduced word [m01; n01] � � � [m0r ; n0r] for x satis�esm01 > � � � > m0s > m0s+1 = � � � = m0r = 0for some s � r, by Corollary 5.6(b). Any �-preimage of this word satis�es (1), and isnecessarily the canonical reduced word for some member of Dn.Otherwise, if w is not A-stable, then w 2 An�2s1s�1An�2 (see Remark 9.9(a)). It followsthat the subword 1�1 occurs in some factor hmi; ni] of the canonical reduced word i for w,and there are no other occurrences of 1 or �1, by Lemma 9.2. Leti0 = h2; ni]hmi+1; ni+1] � � � hmr ; nr] = [2; ni][mi+1; ni+1] � � � [mr; nr]denote the subword of i formed by every term following the unique occurrence of 1�1. Theword i0 is the canonical reduced word for some (necessarily fully commutative) memberof the parabolic subgroup of type A generated by s2; : : : ; sn�2. Since the �rst term of i0is 2 (or i0 is empty), Corollary 5.8 shows that this is possible only if i = r. Therefore,m1; : : : ;mr�1 > 1, mr � 0, and mr 6= �1.Now let m be the leading term of hmr ; nr]; i.e., m = �mr (if mr < �1) or m = 1 (ifmr = 0), and leti00 = hm1; n1] � � � hmr�1; nr�1]m = [m1; n1] � � � [mr�1; nr�1][m;m]be the subword of i obtained by deleting all terms beyond the �rst term of hmr ; nr].Since nr�1 > nr � jmrj in every canonical reduced word, it follows that i00 is a canonicalreduced word for some (necessarily fully commutative) member of An�1. By Corollary 5.8,it follows that m1 > � � � > mr�1 > m � 1.(c))(a). Arguing by contradiction, it su�ces to prove the following.(i) If w has a reduced word that begins with 2�12 or i(i � 1)i for some i > 1, then wcontains one of the patterns forbidden by (c).(ii) If `(sjw) > `(w) and w contains a pattern forbidden by (c), then so does sjw.Given the hypothesis of (i), w has reduced words beginning with either of �1 and 2,or i � 1 and i. In the former case, the one-line form of w, say (w1; : : : ; wn), satis�es�w1 > w2 > w3, and in the latter case we have wi�1 > wi > wi+1. In either case, wcontains one of the forbidden patterns.For (ii), suppose `(sjw) > `(w) and that the one-line form of w has a subsequence(a; b; c) such that jaj > b > c or �b > jaj > c. If j � 1 then the same is true of sjw,48



by the same argument used in the proof of the implication (c))(a) for Theorem 5.1. Wetherefore consider only the case j = �1. If b does not occur in the second position of w, thens�1w has a subsequence of the form (�a; b; c), contrary to (c). Otherwise, a and b occur inthe �rst two positions of w, and (a0; b0; c0) = (�b;�a; c) is a subsequence of s�1w. We alsohave a + b > 0 (since `(s�1w) > `(w)), so the subsequence (a; b; c) must satisfy a > b > cor �b > �a > c. In the latter case, we obtain a0 > b0 > c0 and hence ja0j > b0 > c0, whichis forbidden by (c). In the former case, we obtain �b0 > �a0 > c0. However a+ b > 0 alsoimplies �b0 > a0, so we have �b0 > ja0j � �a0 > c0. Hence �b0 > ja0j > c0, which is alsoforbidden by (c).(b))(c). Let i = hm1; n1] � � �hmr ; nr] denote the canonical reduced word for w.Case 1: i satis�es (1). In this case, w is A-stable and `�1-invariant, by Proposition 9.8.In particular, Theorem 7.1 implies that w avoids the patterns (�1;�2), and hence allpatterns (a; b; c) such that �b > jaj > c (or even �b > jaj). Furthermore, among thepatterns (a; b; c) such that jaj > b > c (see (5.2)), the only ones that manage to avoid(�1;�2) are the patterns (�3; 2;�1). Hence for this case, it su�ces to prove that wavoids the patterns (�3; 2;�1).For this, we �rst note that �(i) is the canonical reduced word for some fully commutativetop element x 2 Bn�1, by Corollary 5.6. In particular (again by Corollary 5.6), x avoidsthe patterns (�1;�2) and (�3; 2;�1). Towards a contradiction, suppose that (a; b; c) isa subsequence of the one-line form of w that �ts one of the patterns (�3; 2;�1) (i.e.,jaj > b > jcj). Since x is a top element, x is obtained by unbumping the entries of jwj atthe positions where left-minima occur. Therefore if b appears to the right of �1 in w, nounbumping a�ects b and c and (�(a � 1); b� 1; c� 1) is a subsequence of x �tting one ofthe patterns (�3; 2; 1), a contradiction. Otherwise, let a1 (resp., a2) be the left-minimumof jwj immediately preceding (resp., following) b in jwj. Note that b itself cannot be aleft-minimum, since b > 0 and N (w) = L(jwj) (Proposition 9.8). Therefore to obtain xfrom jwj, a1 unbumps a2, replacing it with �(a1 � 1). In particular, (b� 1;�(a1� 1)) is asubsequence of the one-line form of x. Since x avoids (1;�2), this requires a1 < b. Now ifno unbumping a�ects a, then a > 0 and (a�1; b�1;�(a1�1)) is a subsequence of x �ttingthe pattern (3; 2;�1), a contradiction. Otherwise, if jaj is unbumped, then jaj appears tothe left of a1 (since jaj > b > a1), and (�ja � 1j; b� 1;�(a1 � 1)) is a subsequence of x�tting the pattern (�3; 2;�1), a contradiction.Case 2: i satis�es (2). In this case, 1�1 is a subword of i and there are no otheroccurrences of 1 or �1. Let j be the word obtained by deleting one of the two (consecutive)occurrences of 0 from �(i). The constraints of (2) implyj = [m1 � 1; n1 � 1] � � � [mr�1 � 1; nr�1 � 1][�(m� 1); nr � 1];49



where m denotes the leading term of hmr ; nr]. Since m1 > � � � > mr�1 > m � 1, itfollows that j is the canonical reduced word for some x 2 Bn�1 of the type described inCorollary 5.7(b), and is therefore fully commutative.By Lemma 9.2, the one-line form of w has exactly two negative entries, and the �rstentry is �1. The e�ect of s1s�1 on one-line forms of members of Dn is to negate the �rsttwo coordinates, whereas the e�ect of s0 on Bn is to negate only the �rst coordinate. Theremaining generators act as adjacent transpositions on Bn and Dn. It follows that if wedelete the initial �1 from w and replace each remaining i (resp., �i) such that i � 2with i � 1 (resp., �(i � 1)), we obtain the one-line form of x. Therefore, if (a; b; c) is asubsequence of the one-line form of w such that jaj > b > c or �b > jaj > c, then a isthe �rst entry of w; otherwise there would be subsequence of x �tting the same pattern,contrary to Theorem 5.1. However the �rst entry is �1, so jaj > b > c or �b > jaj > cwould both imply the impossibility b; c < 0. �Since (�3; 2;�1) are the only (�1;�2)-avoiding patterns (a; b; c) such that jaj > b > cor �b > jaj > c, we obtain the following.Corollary 10.2. For w 2 Dn, the following are equivalent.(a) w is fully commutative and A-stable.(b) In the canonical reduced word hm1; n1] � � � hmr ; nr] for w, the occurrences of 1 and �1alternate and m1 > � � �> ms > jms+1j = � � � = jmr j = 1 for some s � r.(c) w avoids the patterns (�1;�2) and (�3; 2;�1).Similarly, by selecting the patterns (a; b; c) such that jaj > b > c or �b > jaj > c thatare not eliminated by Theorem 9.3, we obtainCorollary 10.3. For w 2 An�2D2An�2, the following are equivalent.(a) w is fully commutative.(b) The canonical reduced word hm1; n1] � � � hmr ; nr] for w satis�esm1 > � � � > mr�1 > max(jmrj; 1).(c) w avoids the patterns (�3; 2;�1), (2;�3; 1), (3; 1;�2), and (2; 1;�3).Part (a) of the following has also been obtained by Fan (Proposition 3 of [F]).Proposition 10.4. There are(a) 12(n + 3)C(n)� 1 fully commutative members of Dn.(b) 12�2nn � fully commutative A-stable members of Dn.(c) 3C(n)�C(n� 1)� 1 fully commutative members of An�2D2An�2.(d) 2C(n)�C(n� 1) fully commutative A-stable members of An�2D2An�2.50



Proof. For w 2 Bn, let w0 2 Bn be the element obtained by changing the sign of theentry �1 in the one-line form of w. Exactly one member of each pair (w;w0) is the one-lineform of a member of Dn. Furthermore, w avoids the patterns (�1;�2) and (�3; 2;�1)if and only if the same is true of w0. Comparing Corollary 10.2 with Corollary 5.6, wededuce that there are half as many fully commutative A-stable members of Dn as thereare fully commutative top elements in Bn. Applying Proposition 5.9(b), we obtain (b).For (d), recall that An�1 [ �An�1 is the set of A-stable members of An�2D2An�2.We know that An�1 and �An�1 each have C(n) fully commutative elements, and theirintersection (being An�2) has C(n�1) such elements, yielding a total of 2C(n)�C(n�1).By Theorem 10.1, the canonical reduced words hm1; n1] � � �hmr ; nr] for the fully com-mutative members of An�2s1s�1An�2 are characterized by the relationsm1 > � � � > mr�1 > m � 1; mr � 0; mr 6= �1;where m denotes the leading term of hmr ; nr]. Also, given that mr = 0 or mr < �1, theleading term of hmr ; nr] uniquely determinesmr as well. Comparing this with Theorem 5.1,we see that there is a one-to-one correspondence between these words and the canonicalreduced words for the fully commutative members of Bn that are not top elements. Thereare C(n)� 1 of the latter, by parts (a) and (b) of Proposition 5.9.Since An�2s1s�1An�2 is the set of `�1-invariant members of Dn that are not A-stable,it follows that there are 12�2nn �+C(n)� 1 = 12(n+ 3)C(n)� 1 fully commutative membersof Dn (yielding (a)), and 2C(n) � C(n � 1) + C(n) � 1 fully commutative members ofAn�2D2An�2, yielding (c). �Let hm1; n1] � � �hmr ; nr] be the canonical reduced word for some A-stable fully commu-tative w 2 Dn, and let s be the largest index such that ms � 2. We de�ne the shape of wto be the shifted shape �=�, where � = (n1; : : : ; nr) and � = (m1 � 1; : : : ;ms � 1).The � = ? case in part (b) of the following is equivalent to Proposition 3.13 of [BH].Proposition 10.5. If w 2 Dn is fully commutative, A-stable and of shape �=�, then(a) The heap of w is isomorphic to D0�=� (as a labeled poset).(b) GD(w) = 2�(`(�)�`(�))�(D0�=�) = P�=�.Proof. Let i be the canonical reduced word for w. As we have noted previously, �(i) isthe canonical reduced word for some fully commutative top element x 2 Bn�1. In fact xand w have the same shape, so by Proposition 6.1, the heap of x is isomorphic to D0�=�.Since there is no reduced word for w in which 1 and �1 appear consecutively, it follows thatthe heaps of i and �(i) are isomorphic as labeled posets (yielding (a)). Furthermore, we51



qqqqq q32�1 123 q4 q4 q5q5 q6 q6 q7 q8@@����@@������HHH����BBBB AAA@@@���@@@������Figure 4.have `�1(w) = `0(x) = `(�) � `(�) (the number of cells on the main diagonal of D0�=�),so (b) follows from Corollary 6.6 and Corollary 8.2. �Now consider the heap of some fully commutativew 2 An�2s1s�1An�2; by Theorem 10.1,we know that the only fully commutative members of Dn that are not A-stable are of thistype. Furthermore, if i = hm1; n1] � � �hmr ; nr] is the canonical reduced word for w, thenwe have m1 > � � � > mr�1 > m � 1, where m denotes the leading term of hmr ; nr]. Wede�ne the shape of w to be the shape of the fully commutative A-stable element whosecanonical reduced word is j = hm1; n1] � � � hmr�1; nr�1]hm;nr]:That is, the shape ofw is �=�, where � = (n1; : : : ; nr) and � = (m1�1; : : : ;mr�1�1;m�1).We obtain i from j by replacing the unique occurrence of the smallest term m with theword m � � �21�12 � � �m. (In case m = 1, we replace 1 with 1�1.) It follows that the heap ofi can be obtained from the heap of j by replacing the unique vertex labeled m with theheap of m � � �21�12 � � �m. The latter is nearly a total order, the only exception being thatthe vertices labeled 1 and �1 are incomparable.More explicitly, given a labeled poset P with a unique vertex x labeled m � 1, de�neYm(P ) to be the labeled poset obtained from P by replacing x with 2m elements orderedso that x�m < � � � < x�2 < x�1; x1 < x2 < � � � < xm:The label of x�1 is de�ned to be �1, and all other elements xi are labeled j i j. (Comparethis with the de�nition of Im(P ) in Section 6.1.)Summarizing, we have the following.Proposition 10.6. If w 2 An�2s1s�1An�2 is fully commutative, then the heap of w isisomorphic to Ym(P ), where P is the heap of the fully commutative A-stable element ofthe same shape as w, and m is the smallest label in P .52



For example, the fully commutative element w 2 D8 whose canonical reduced word ish6; 8]h4; 6]h�3; 5] has shape 865=532 (cf. Figure 1). The corresponding fully commutativeA-stable element has canonical reduced word j = h6; 8]h4; 6]h3;5] and smallest term m = 3.The heap of w is therefore obtained by replacing the vertex labeled 3 in the heap of j withthe heap of 321�123 (see Figure 4).Remark 10.7. By Corollary 8.2, it follows that we obtain a �-symmetric poset fromany skew diagram D0�=� with smallest label m > 0 by applying the operation Ym.11. The V -stable members of Dn.Let i = i1� � � il be a reduced word for some w 2 Dn, and set wk = sik+1sik+2 � � � sil for0 � k � l. (In particular, wl is the identity element.) The elements w0; : : : ; wl form ashortest path from w = w0 to the identity. We de�ne V (i) to be the set of \1-visitors"along this path; i.e., the set of entries that appear in the �rst positions of the one-lineforms of jw0j; : : : ; jwlj. It will be convenient to let �(i) := #V (i).For example, if i = 2�12, then the one-line forms of w = w0; w1; w2 and w3 are (in reverseorder) (1; 2; 3), (1; 3; 2), (�3;�1; 2), and (�3; 2;�1), so we have V (i) = f1; 3g.The following result also occurs in the work of Billey-Haiman (Proposition 3.7 of [BH]).Lemma 11.1. For w 2 Dn and i 2 R(w), we have#fj 2 R(w) : �(j) = �(i)g = 2`�1(i)��(i)+1:Proof. Let l = `�1(i). For any j 2 R(w), de�ne j0 to be the word obtained by replacingeach occurrence of �1 with 1. There is a unique factorization i0i1 � � � il of i0 in which 1 isthe last term of ik for 0 � k < l and il is possibly empty.For 0 � k � l, let xk 2 An�1 denote the product of the generators indexed by ik. Thereis a one-to-one correspondence between the set of words j 2 R(w) such that i0 = j0 (orequivalently, �(i) = �(j)) and l-tuples (t1; : : : ; tl) taken from f1; s1s�1g such thatw = x0t1x1t2 � � �xl�1tlxl: (11.1)Indeed, one chooses tk = 1 (resp., tk = s1s�1) according to whether the kth occurrence of 1in i0 is in a position where 1 (resp., �1) occurs in j.Thus the objective is to count solutions of (11.1).For this, note that Dn is the semi-direct product of An�1 and the kernel T of thehomomorphism w 7! jwj. In particular, every w 2 Dn has a (unique) representation53



w = jwj � t for some t 2 T . Given any solution of (11.1), we see that jwj = x0 � � �xl andthe element t is given by(x0 � � �xl)�1(x0t1x1t2 � � �xl�1tlxl) = ty11 ty22 � � � tyll ;where yk = xkxk+1 � � �xl and ty = y�1ty. Conversely, (t1; : : : ; tl) is a solution of (11.1)whenever t = ty11 ty22 � � � tyll . However T is abelian, so(t1; : : : ; tl) '7�! ty11 ty22 � � � tyllis clearly a group homomorphism f1; s1s�1gl ! T . It follows that the number of solutionsof (11.1) is #(Ker') = 2l=#(Im').To determine the range of ', note that for any y 2 An�1, (s1s�1)y = y�1s1s�1y 2 T actson Rn by changing the sign of the two coordinates indexed by the �rst two entries in theone-line form of y. Now as the one-line form of w is computed by applying the generatorsof i (read from right to left), the entry that appears in the �rst coordinate changes onlywhen the generator to be applied is s1 or s�1. It follows that the members of V (i) arethe �rst entries of y0; : : : ; yl; say, v0; v1; : : : ; vl = 1. (We are not assuming that v0; : : : ; vlare distinct.) Furthermore, in passing from yk to yk�1, the entry in the second positionof yk moves to the �rst position of yk�1; in other words, the �rst two entries of yk are(vk; vk�1). It follows that Im' is the subgroup of T consisting of all sign changes involvingeven subsets of coordinates indexed by V (i), a group of order 2�(i)�1. �It is easy to see that for i 2 R(Dn), V (i) and �(i) (see (1.2)) depend only on j = �(i).Hence the use of �(j) and �(j) in the following is unambiguous.Theorem 11.2. For w 2 Dn, we haveGD(w) = Xj2�R(w) 12�(j)�1K�(j):Proof. Set s = t = 1=2 in (8.1) and apply Lemma 11.1. �De�ne w 2 Dn to be V -stable if V (i) does not depend on the choice of i 2 R(w).Theorem 11.3. For w 2 Dn, the following are equivalent.(a) w is V -stable.(b) �(i) = #V (i) is independent of i 2 R(w).(c) L(jwj) � N (w).Moreover, if w is V -stable, then �(i) = #N (w) for all i 2 R(w).This result is an immediate corollary of the following.54



Lemma 11.4. If (w1; : : : ; wn) is the one-line form of w 2 Dn, thenN (w) � fj : jwjj 2 V (i)g � N (w) [ L(jwj)for every i 2 R(w). Furthermore, both bounds are attained.Proof. Let j 2 N (w); i.e., wj < 0, j = 1, or jwjj = 1. If wj < 0, then �wj must be the�rst entry of some member of the path from w to the identity de�ned by any i 2 R(w),since an entry cannot be changed from negative to positive without appearing in the �rstposition. Also, w1 and 1 must appear in the �rst position of the starting and �nishingmembers of the path. Thus in each case, j 2 N (w) implies jwjj 2 V (i).Next consider some index j 62 N (w) [ L(jwj); i.e., suppose that wj is a positive entryof w that is not a left-minimum of jwj. We claim that if `(siw) < `(w), then the same istrue of siw; i.e., wj is a positive entry of siw that is not a left-minimum. If si does notchange the jth coordinate then there is nothing to prove, so assume i = j, i = j � 1, ori = �1 and j = 2. (We cannot have j = 1, otherwise wj is trivially a left-minimum.) Ifi = j, then si moves wj to the right and hence it remains a left non-minimum. If i = j�1,then si moves wj to the left. However in that case, `(siw) < `(w) implies wj�1 > wj, sowj remains a left non-minimum. Finally, if i = �1 and j = 2, then `(siw) < `(w) impliesw1 + w2 < 0. However this yields 0 < w2 < �w1; thus wj = w2 is a left-minimum of jwj,a contradiction.Having proved the claim, it follows by induction on `(w) that any positive entry a ofw that is not a left-minimum of jwj can never occur as a left-minimum in any member ofthe path from jwj to the identity de�ned by i. In particular, no such entry can appear inthe �rst position; i.e., j 62 N (w) [ L(jwj) implies jwjj 62 V (i).Attaining the lower bound. Since N (w) � fj : jwjj 2 V (i)g, it su�ces to exhibit somei 2 R(w) such that �(i) � #N (w). For this we proceed by induction on `(w).Case 1: w 2 An�1. In this case, w has no negative entries. If the �rst entry of w is 1,then #N (w) = 1 and �(i) = 1 for every i 2 R(w). Otherwise, if 1 occurs in positionj + 1 � 2, then `(sjw) < `(w). Hence by induction, there exists j 2 R(sjw) such that�(j) � #N (sjw), and by adding j to the beginning of j we obtain a reduced word i for w.If j = 1, then the �rst entry of sjw is 1, so we obtain �(i) = 2 and N (w) = f1; 2g. Onthe other hand, if j > 1 then �(i) = �(j) and #N (w) = #N (sjw) = 2. In either case, weobtain �(i) � #N (w).Case 2: w 62 An�1. In this case, w has two or more negative entries. If the �rst twoentries are negative then `(s�1w) < `(w), so by induction we can �nd j 2 R(s�1w) so that�(j) = #N (s�1w), and adding �1 at the beginning of j yields a reduced word i for w. Sincethe second entry of s�1w is now positive, we have #N (w) � #N (s�1w) = 1, unless this55



second entry is 1, in which case #N (w) = #N (s�1w). On the other hand, in passing from jto i, at most one new entry appears in the �rst position; i.e., �(i)��(j)� 1, with equalityoccurring only if jw1j > 1. Thus in either case, we obtain �(i) � #N (w).The remaining possibility is that w has a positive entry in some position j � 1, imme-diately followed by a negative entry. It follows that `(sjw) < `(w), so by induction thereexists j 2 R(sjw) such that �(j) � #N (sjw), and by adding j to the beginning of j weobtain a reduced word i for w. Since w and sjw have the same negative entries, we have#N (w) = #N (sjw), unless j = 1 and w1 > 1, in which case #N (w) � #N (sjw) = 1.In passing from j to i, we have �(i)� �(j) � 1, with equality only if a new entry appearsin the �rst position. Since the latter occurs only if j = 1 and w1 > 1, we again obtain�(i) � #N (w) in either case.Attaining the upper bound. Since fj : jwjj 2 V (i)g � N (w)[L(jwj), it follows that theupper bound is attained if there is some i 2 R(w) such that �(i) = #(N (w) [L(jwj)). Infact, we claim that this occurs when i is the canonical reduced word for w. Proceeding byinduction with respect to n, let xn� � �x2 be the canonical factorization of w, and let i0 bethe canonical reduced word for w0 = xn�1 � � �x2, a su�x of i.If n occurs in position j > 1 of w, then the one-line form of w is obtained from w0 byremoving n from the nth position (regarding w0 as a member of Dn) and re-inserting itinto position j. In that case, we claim that�(i) = �(i0) = #(N (w0) [ L(jw0j)) = #(N (w) [ L(jwj)):The �rst equality is a consequence of the fact that in passing from i0 to i, the entry nnever occupies the �rst position. The second equality is the induction hypothesis, and thelast is a consequence of the fact that since n does not occur in the �rst position of w, itcannot be a left-minimum of jwj.Otherwise, in case �n occurs in any position, or n occurs in the �rst position of w, then�n must visit the �rst position in passing from i0 to i, and either a new negative entryoccurs in some position beyond the �rst, or a new left-minimum is created. It follows thatthe values of �(i) and #(N (w) [ L(jwj)) are increased by 1 relative to the correspondingvalues for i0 and w0. Hence by the induction hypothesis, the quantities are equal. �Let r(w) = #(N (w) [ L(jwj)). Since Lemma 11.4 shows that r(w) is the maximumvalue of �(i) as i ranges over R(w), it follows from Theorem 11.2 that 2r(w)�1GD(w) isa (symmetric) integer linear combination of the quasi-symmetric functions K�. Thus byTheorem 3.8 of [Ste1], we obtain the following.Corollary 11.5. For every w 2 Dn, 2r(w)�1GD(w) is Q-integral.56



In other words, for w 2 Dn and strict partitions � of size l = `(w), the coe�cientsc�(w) appearing in the expansion2r(w)�1GD(w) =X� c�(w)Q� (11.2)are integers. (And hence, nonnegative integers, by the work of Lam and Billey-Haiman.)If we use (11.2) to extract the coe�cient of z1� � �zl from 2r(w)�1GD(w), we obtainP� c�(w)2lg�. On the other hand, if w is V -stable, then �(i) = r(w) for every i 2 R(w),so in this case Theorem 11.2 implies2r(w)�1GD(w) = Xi2�R(w)K�(i):Since the coe�cient of z1� � � zl in K� is 2l (see (1.1)), it follows that in the V -stable case,the coe�cient of z1� � � zl in 2r(w)�1GD(w) is 2l �#�R(w). Having obtained two expressionsfor the coe�cient of z1� � �zl, we deduce the following.Corollary 11.6. If w 2 Dn is V -stable, then the integers c�(w) of (11.2) satisfy#�R(w) =X� c�(w)g�:For example, consider the longest element w0 of Dn. The one-line form of w0 is(�1;�2; : : : ;�n), so N (w0) = f1; : : : ; ng, L(jw0j) = f1g, and w0 is V -stable, by thecriterion of Theorem 11.3. It is known by Corollary 5.3 of [L] or Proposition 3.16 of [BH]that GD(w0) = P(2n�2;:::;4;2), so 2r(w0)�1GD(w0) = Q(2n�2;:::;4;2). In other words, there isjust one term in the expansion of Corollary 11.6, yielding#�R(w0) = g(2n�2;:::;4;2):That is, the number of distinct reduced words for w0 under the identi�cation 1 = �1 isthe number of standard shifted tableaux of shape (2n � 2; : : : ; 4; 2). This fact is provedbijectively by both Lam [L] and Billey-Haiman [BH].Remark 11.7. (a) Given that c�(w) � 0, the same reasoning that proves Corollary 11.6can also be used to show that for every w 2 Dn, we have #�R(w) � P� c�(w)g�, withequality occurring if and only if w is V -stable. By Theorems 4.18 and 4.35 of [L], it alsofollows that #�R(w) =P� b�(w)g� for certain nonnegative integers b�(w) � c�(w).(b) One might hope to prove Corollary 11.5 directly from the P -integrality of GD(w),57



bypassing Theorem 11.2. This would require r(w) > `(�) for every strict partition � suchthat c�(w) > 0. However this fails, even in the V -stable case. Alternatively, one couldattempt to use (8.1) to bypass Theorem 11.2; this would require r(w) > `�1(i) for everyi 2 R(w). However again this fails, even in the V -stable case.(c) A natural question to ask at this point is how the set of V -stable elements overlapswith the set of �nely symmetric elements. By Corollary 7.2, we know that w is A-stableif and only if N (w) � L(jwj). Comparing this with Theorem 11.3, we see that the onlyA-stable members of Dn that are also V -stable are those that satisfy N (w) = L(jwj); byProposition 9.8, these are the `�1-invariant elements. Otherwise, if w is �nely symmet-ric but not A-stable, then w 2 An�2s1s�1An�2 (Remark 9.5). However the criterion ofLemma 9.2(d) shows that all such elements satisfy L(jwj) = f1g, and hence are V -stable.But the members of w 2 An�2s1s�1An�2 are also `�1-invariant, so we conclude that w is�nely symmetric and V -stable if and only if w is `�1-invariant.(d) We claim that V -stability cannot be characterized by means of pattern avoidance.Indeed, since �ne symmetry does have a pattern-avoidance characterization (Theorem 9.6),a set of patterns for V -stability would, by the previous remark, also imply the existence ofa set of patterns for `�1-invariance. However the discussion prior to Proposition 9.8 showsthat a set of such patterns does not exist.Let (2n� 1)!! = 1 � 3 � 5 � � � (2n� 1).Proposition 11.8. There are 2(2n� 1)!!� 2n�1(n � 1)! V -stable members of Dn.Proof. For a given w 2 An�1 with l � 2 left-minima, there are 2n�l+1 elements w0 2 Dnsuch that jw0j = w and L(w) � N (w0). If w has only one left-minimum (i.e., the �rstentry of w is 1), then there are only 2n�1 such elements, not 2n. Hence by Theorem 11.3,there are Xw2An�1 2n�#L(w)+1 � Xw2An�2 2n�1V -stable members of Dn. Apply Lemma 2.6 with q = 1=2. �
58



AppendixTables 1 and 2 list the number of members of Bn and Dn (for n � 7) belonging tothe various subsets identi�ed in Parts I and II, respectively. (Abbreviations: T =top,B =bottom, FC = fully commutative, FS = �nely symmetric, A = A-stable, ` = `�1-invariant, II = An�2D2An�2.)X #Xn 1 2 3 4 5 6 7All 2nn! 2 8 48 384 3840 46080 645120A-reduced 14(n + 2)! + 12n! 2 7 33 192 1320 10440 93240T;B (n+ 1)! 2 6 24 120 720 5040 40320T \B n! (1 +H(n)) 2 5 17 74 394 2484 18108FC (n+ 2)C(n)� 1 2 7 24 83 293 1055 3860FC \ T �2nn � 2 6 20 70 252 924 3432FC \B C(n) + C(n+ 1)� 1 2 6 18 55 173 560 1858FC \ T \B C(n+ 1) 2 5 14 42 132 429 1430Table 1: Bn.X #Xn 2 3 4 5 6 7All 2n�1n! 4 24 192 1920 23040 322560V -stable 2(2n� 1)!!� 2n�1(n� 1)! 4 22 162 1506 16950 224190FS 12 (n+ 1)! + (n� 1)(n � 1)! 4 16 78 456 3120 24480A 12(n + 1)! 3 12 60 360 2520 20160`; II (3n� 2)(n� 1)! 4 14 60 312 1920 13680A \ `; A \ II (2n� 1)(n� 1)! 3 10 42 216 1320 9360` \ II (n� 1)! (n+ 2H(n� 1)) 4 12 46 220 1268 8568A \ ` \ II (n� 1)! (1 + 2H(n� 1)) 3 8 28 124 668 4248FC 12(n + 3)C(n)� 1 4 14 48 167 593 2144FC \A 12�2nn � 3 10 35 126 462 1716FC \ II 3C(n)� C(n� 1)� 1 4 12 36 111 353 1154FC \A \ II 2C(n)�C(n� 1) 3 8 23 70 222 726Table 2: Dn.59
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