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0. Introduction

This paper is the third in a series on P-partitions, symmetric functions, commutation
monoids, pattern avoidance, and reduced words in Coxeter groups.

Previously, in [Stel] we introduced the notion of enriched P-partitions. These are
related to Schur’s @Q-functions in the same way that Stanley’s P-partitions (see [St2,§4.5])
are related to Schur’s S-functions. For example, the generating function A(P) for the set
of enriched P-partitions of a (labeled) poset P is a quasi-symmetric formal series in a set
of variables z1, z2,...; in case P is a shifted Young diagram, A(P) is a Schur @-function.

In [Ste2], we analyzed the fully commutative elements of Coxeter groups. These are
elements w with the property that any reduced expression for w can be obtained from
any other by transposing adjacent pairs of commuting generators. One of the character-
izing properties of full commutativity is that the reduced words for such an element can
be viewed as the linear extensions of a “heap”—a poset whose vertices are labeled by
generators of the Coxeter group.

In the present paper, we show that enriched P-partitions are closely related to the
symmetric functions associated with elements of the Coxeter groups B, and D, (known
elsewhere as “stable Schubert polynomials” or “Stanley symmetric functions”—see [BH],
[FK1-2], [L]). In fact each of these symmetric functions is a linear combination of the
generating functions A(P) for certain labeled posets P. (See Propositions 6.5 and 8.1.)

This connection has interesting implications for an open problem identified in [Stel]:
the classification of labeled posets P such that A(P) is a symmetric function. There is
exactly one term in the A-expansion for the symmetric function indexed by a given w € B,
or D, if and only if w 1s fully commutative. Furthermore, the one labeled poset P that
appears in the expansion is the heap. Thus as a corollary, we obtain that the heap of any
fully commutative member of B,, or D, is A-symmetric.

We analyze in detail the structure of the fully commutative members of B, and D,
and their heaps in Sections 5, 6, and 10. It turns out that for both groups, the fully
commutative elements can be naturally partitioned into two families. In one family, the
heaps are merely shifted (skew) diagrams, and the corresponding generating functions are
(skew) Schur @-functions. On the other hand, although the members of the second family
are indexed in a natural way by skew shapes, the corresponding heaps are not Young
diagrams. (See Propositions 6.4 and 10.6, and the examples in Figures 2 and 4.)

We also introduce here two additional families of symmetric functions associated with
Coxeter groups, one indexed by members of A, and depending on a free parameter ¢, and
the second being indexed by a subset of D,, and depending on two free parameters. The

first family 1s related to, but not a specialization of, the symmetric functions indexed by



A, defined by Stanley in [St1]. Stanley’s symmetric functions encode information about
the number of reduced words for each w € A, , whereas these new symmetric functions
carry information about a generating function for such words in which the number of
occurrences of an “end-node” generator is marked. We prove that these new symmetric
functions are sums of the symmetric functions associated with B, (see Theorem 3.4). Tt
follows that the number of reduced words for any w € A,, in which an end-node generator
occurs k times can be expressed in terms of the number of standard shifted tableaux of
certain shapes.

There are four special subsets of B,,, and six subsets of D, , that occur naturally in the
course of this work (e.g., the sets of fully commutative members of both B,, and D). In
each of these ten cases, we provide (typically) three characterizations for membership of
an element w in the set: a collection of subwords that cannot appear in any reduced word
for w, a set of “patterns” that must be avoided in a vector representation of w, and a
set of properties that a canonically chosen reduced word for w must possess. (The latter
facilitates enumeration of the members of the set.) The existence of pattern avoidance
characterizations for these sets is not surprising, since there are numerous instances of
pattern-avoidance arising naturally in previous work on reduced words in 4,,. For example,
the 321-avoiding permutations of n objects are known to be the fully commutative members
of Ap_1 (see [BJS,§2]). On the other hand, two of our ten subsets cannot be given pattern-

avoldance characterizations.

1. Preliminaries
Let W be a Coxeter group with generating set S = {s; : i € I'}, where I is any suitable
(finite, totally ordered) index set. For 4, j € I, define m(¢, j) to be the order of s;s; in W,

so that M = [m(4, j)]i jer is the Coxeter matrix. One allows m(¢, j) = co.

1.1 Reduced words.

Let I* denote the free monoid consisting of all words that can be formed from the
alphabet 7. By a subword of i = i1---4; € I*, we shall mean a subsequence of 1 occupying
consecutive positions.

For w € W, let £(w) denote the common length of every reduced (i.e., minimal) expres-
sion w = s;,---s;, with ¢1,...,4 € I. The corresponding index sequence i = i1---4 € I*
is called a reduced word. We use the notation R(w) for the set of reduced words for w,
and R(W) = U, ew R(w) for the set of reduced words for all members of V.

For integers m > 0 and 7,5 € I, define

(6, m = tjigi--- € I",
—
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and let a2 denote the congruence on I* generated by the braid relations
(& Jym(ig) = (G D)

for all 4, j € T such that m(%, j) < co. It is well known that R(w) constitutes a single braid
equivalence class; i.e., any reduced word for w can be obtained from any other by means

of the braid relations [B, §1V.1.5].

1.2 Heaps and commutativity classes.

Let ~ denote the congruence on I* generated by the braid relations corresponding to
pairs of commuting generators of W; i.e., ij ~ ji for all ¢, € T such that m(i,j) = 2. The
equivalence class of a word 1 € I* with respect to ~ is called the commutativity class of 1.

Since ~ 1s consistent with &, it follows that for each w € W, there is a decomposition
Rw)=C, U .- UG,

where each C; is a commutativity class. In case R(w) consists of a single commutativity
class, we say that w is fully commutative. It 1s not hard to show that w is fully commutative
if and only if (¢, j}», is not a subword of any i € R(w) whenever m = m(i,j) > 3.

Given a word 1 = i1+ --4; € I*| the heap of 1 is defined to be the partial ordering P = P;

of {1,...,1} generated by the transitive closure of the relations
r<ps forr < ssuch that i,i; £ i5i, or ip = is.

Let £(P;) C I* denote the set of (labeled) linear extensions of P;. By this we mean the set
of words ir(1y- - -ir(;), where 7 ranges over all permutations of {1,..., [} consistent with P;
(i.e., w(r) <p w(s) = r < s).

The following result is a standard part of the Cartier-Foata theory of commutation
monoids. For a proof, see [Ste2,§1.2] or Exercise 3.48(b) of [St2].

ProposITION 1.1. L(Pj) is the commutativity class of 1i.

It follows that if w is fully commutative, then R(w) consists of the linear extensions of

some labeled poset; namely, the heap of any member of R(w).

1.8 Canonical factorizations.
For J C I, let Wy denote the parabolic subgroup of W generated by {s; : j € J}, and
define
W’ i={weW:jeJ=Llws;)>l(w)}

It is well-known that W is a set of (shortest) left coset representatives for W/W;. Fur-
thermore, one has {(zy) = {(z) + {(y) for all z € W7 and y € W, (e.g., [H, §1.10]).



Assuming W has rank n, let us fix a chain {1} = Wy C Wy C --- C W,, = W of Coxeter
groups in which W;_, is a maximal (proper) parabolic subgroup of W;. Let Wi denote
the set of shortest coset representatives for W;/W;_;. In these terms, every w € W has a
unique factorization

W= WnWp_1* W1

with w; € W), Moreover, lw) = Lwy) + - + €(wy). We call this the canonical
factorization of w.

For the classical Weyl groups A,, B, and D,, it is possible to choose the subgroup
chain so that every member of W{") has a unique reduced word (with mild exceptions in
the case of Dp—see the beginning of Part IT). Thus in these cases, we have not only the
notion of a canonical factorization, but also a canonical reduced word for each w € W.

For example, consider W = A,, with the index set 7T = {1,...,n} arranged in the usual

way so that m(é,7 4 1) = 3. Using the subgroup chain W; = A;, we obtain
W<Z> = {1a Siy Si—18i, .., S1°- 52}

Using [4, j] (for i < j) as an abbreviation for the word ¢ - (i + 1)---j € I, it follows that

the canonical reduced words for the members of A,, are of the form
[m1,n1] - [ma, no] - - [y, iy,

where n > ny > --- > n, > 1 and n; > m; > 1. It can be shown that the canonical
reduced word for each w € A, is also the first in reverse (i.e., from the right) lexicographic

order among the members of R(w) (see Theorem 2.3 of [E]).

1.4 One-line forms.

Consider a geometric representation of W as a group generated by reflections acting
on R”, with (-, ) denoting the associated W-invariant symmetric bilinear form. Let
a; € R™ denote the simple root corresponding to s;, and fix a vector 6 € R” in the
interior of the fundamental chamber (i.e., {6, ;) > 0 for all ¢ € T). The stabilizer of such
a vector is trivial, so one can label the members of W by the vectors in the W-orbit of 6.

In these terms, if v is the “label” of w € W (i.e., v = wé), then (cf. [H, §5.4])

s;jw) > b(w) < {v,a;) > 0.

For example, consider W = A,,_1. We can represent W acting on R” with a Euclidean
inner product. Using €1,...,&, to denote the standard orthonormal basis of R”, we can

choose the simple roots to be a; = €;41 —&; (1 < ¢ < n), and take 6 := (1,2,...,n) =



€1+ 2¢2 4 - - -+ ne,. The orbit of § consists of all permutations of (1,2,...,n). Thus our
convention of using vectors to label Coxeter group elements amounts to a generalization of
the usual one-line description of a permutation. However, there is one significant difference.
By our convention, (2,3, 1) labels the (unique) permutation that maps €1 4+ 2¢2 + 3¢5 to
261 4 3e2 + 3 (i.e., g1 — €3, €2 — €1, €3 — £2), whereas the more common convention is
to use the inverse; i.e., (2,3,1) labels the permutation &1 — €2, €9 — €3, €3 — £1. Thus if
(w1, ..., wy) is the vector label of w € A,_1, then by our convention, the vector label of
s;w 1s obtained by interchanging w; and w;41. Those using the inverse convention would
interchange the occurrences of ¢ and ¢ + 1.

Given that § and the choice of basis is understood, we will refer to the coordinate

sequence for the vector label of a given w € W as the one-line form of w.

1.5 Domanance.

Suppose that W' is a second Coxeter group, with generating set S" = {s} : i € I} and
Coxeter matrix M’ = [m/(4, j)]i jer. Note that by using I as the index set for S and &,
we are presupposing that W and W’ have the same rank. Under these conditions, we say
that W dominates W if m(i, j) > m/(i,j) for all i,j € I.

For example, B,, dominates A4, and A,,;, dominates A, x A,.

ProposITION 1.2. If W dominates W', then R(W') C R(W). Furthermore, if w € W
and R(w) N R(W') # &, then
(a) Any i€ R(w) can be transformed into any j € R(w) via braid relations involving
only those pairs i,j € I such that m(i,j) = m/'(,j).
(b) R(w) C R(w') for some w' € W'.

Proof. To prove R(W') C R(W), suppose i = i1---4; € R(W). Then there must exist
some k > 1 such that ¢;---ig_1 18 W-reduced and 77 -4, 1s not. Hence some member of
the W-braid equivalence class of 71---75_1 ends with 45, and thus some word j with two
equal consecutive letters (both equal to i) is W-braid equivalent to i.

Now consider any sequence of W-braid relations that transform iinto j. If these relations
only involve pairs ¢,j € I such that m(, j) = m/(4, j), then this sequence is equally valid
as a series of W'-braid relations, thus proving i ¢ R(W'). Otherwise, immediately prior to
the first time a W-braid relation is applied in which m(¢, j) > m/(4, j), we will have a word
that is W’-braid equivalent to 1 containing (é, j)n, as a subword for some m > m’ = m/(i, j).
However, if the W'-braid relation (i, j}m' = (4, )m’ is applied at the beginning of (i, i),
one obtains two equal consecutive letters, thereby proving i ¢ R(W').

To prove (a) and (b), suppose that i € R(w) is W'-reduced. Any W-braid transforma-

tions of i involving pairs 4, j € I such that m(¢, j) = m/(¢, ) are also valid in W' and hence



generate words that are also W’-reduced. In particular, none of these words can contain
(¢,7)m as a subword for any ¢,j € I and m > m/(4,j). And hence they constitute the
full W-braid equivalence class of i, since there are no opportunities among these words to
apply any of the other 1¥/-braid relations. Since these words are also WW’-equivalent, they
must belong to R(w') for some v’ € W'. O

REMARK 1.3. (a) For specific dominating pairs W and W, it is an interesting problem
to explicitly determine the set X = {w € W : R(w) C R(W')} of W'-reduced members of
W and the (unique) partition of X into subsets X (w’) indexed by w’ € W’ such that

Rw)= [J R(w).
weX (w')
In Section 2 we will treat the case (W, W') = (B, An) in detail.
(b) Tt is tempting to guess that w € W is W’-reduced if and only if for all m > m/(¢, j),
(,§)m does not occur as a subword of any i € R(w). Although this condition is clearly

necessary, it is not sufficient in general. For example, see Theorem 2.3.

1.6 Quasi-symmetric functions.
Following the notation of [Stel], let ¥ = €,5, X' denote the graded ring of quasi-
symmetric functions in the variables z1, z5, ..., with integer coefficients. Given any twin-

free word i =41+ -4 € I'* (i.e., distinct adjacent letters), we define

Li:= Z Zj1~~~2j162l,

g

Je=Jk41= 0 <kl
bearing in mind that 7 is assumed to be totally ordered. Clearly L; depends only on [ and
the descent set D(1) := {1 < k <[ :d; > ix41}; thus we may write Lp for L; whenever
D = D(i). Tt is not hard to show that the set of Lp’s for D C {1,...,{—1} freely generate
2! as a Z-module.

We will also be making use of a second family of quasi-symmetric functions indexed by

twin-free words. For this family, totally order the nonzero integers so that

1<+l <-2<4+2<-3<+3<--.

Letting the indices ji, ..., j; range over nonzero integers, we define
K= > gl Al (L.1)
s

Je=Jp+1>0= 0k <ip4a
Je=Jk4+1 <00 >ip41

7



for any twin-free 1 = 4;---4;. Again it is clear that K; depends only on [ and the descent
set D(i). Less clear, but true (see Proposition 2.2 of [Stel]), is the fact that Kj depends
only on [ and the peak set

Ay ={l <k <l:idp_1 <ip>ipq1}. (1.2)

Thus we may write K for Kj whenever A = A(i). The K’s freely generate a Z-submodule
IT' of ='; in fact, IT = ;5 , I’ is a graded subring of ¥ (see Theorem 3.1 of [Stel]).

Now let U be any ring with unity. Adjoining central indeterminates z, z1, 22, ...

,if
F(z) € Ulz] satisfies F/(0) = 1, then F(z1)F(z2)--- is quasi-symmetric. More precisely,
working in the ring Z[[z1, z2,...]]@ U, it is clear that F(z1)F(z2)--- € T @ U. We will be
concerned with expansions of F(z1)F (z2)--- in some particular cases; namely,

FF(z): =14 zu)(1+ zuz) - (1 + zuy),

Fo(z): =1+ zup) - (14 zu2)(1 + zuy),

Gn(2) 1 = Fy (2)Ff (2),

where uy, ..., u, € U satisfy u? = --- = u2 = 0.

ProposITION 1.4. Let I ={1,2,...,n}. We have

(a) Ff(z2)Ff(z) = Z Lpuyw,
il

(b) Gn(21)Gn(z2) -+ = Kapyui,
il

where uj := u;, -y, if 1=41--- 4.

Proof. We prove (b), leaving (a) to the reader.

For (b), selecting a term from the expansion of G,(21)Gp(22) -+ can be encoded by
an ordered sequence of the form (¢1,1),..., (¢, j1); the presence of (¢, —j) (resp., (¢,+5))
indicates selection of the term z;u; from the first (resp., second) of the two occurrences of
the binomial (1 + zju;). We may assume that i = ¢--- ¢ is twin-free; otherwise u; = 0.

The possible selection sequences are characterized by the properties
=R Jr = Ik > 0= 0k <dgyr, Jk = Jrt1 < 0= dp > dgg,
so for a fixed choice of i, the net contribution of these selections is Kju;. O

1.7 Nil Cozeter rings.
Specializing the setting of the previous subsection, let U be the nil Coxeter ring associ-

ated with W. That 1s, let U be the free associative ring with unity generated by u; : ¢ € 1,
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modulo the relations

ui =0, (Ui, uj)m@ ) = (U, ti)m@j)y (m(i,5) < o).

For w € W, define u,, = v for any 1 € R(w); the result is clearly independent of the
choice of i, and it is not hard to show that {u, : w € W} is a free Z-basis of U.

Nil Coxeter rings have been used to great advantage by Fomin-Stanley [F'S] and Fomin-
Kirillov [FK1-2] in analyzing various symmetric functions associated with Coxeter groups.

For example, consider W = A,,. In [St1], Stanley defined quasi-symmetric functions for

- 3 Low,

iER(w)

each w € A, by setting

and used these to derive numerous combinatorial properties of reduced words in A4,. A
crucial feature of these formal series, not obvious from their definition, is the fact that
they are symmetric in the variables z1, z9,.. ..

By Proposition 1.4(a), we see that

FHe)F ()= ) Fa(w)uy

WEA,

That is, Fa(w) is the coefficient of u,, in F;F(21)F;F(z2) . The symmetry of Fu(w) is
therefore a corollary of the following lemma due to Fomin-Stanley [F'S]. (We include below

a slightly different proof.)

LEMMA 1.5. We have
(a) Ff(2)Ff(y) = FF () Ff (2).
(b) Py (x)Ff(y) = Ff(y)Fy ().

Proof. Since Fit(—x)F, (x) = 1, it suffices to prove (b). Proceeding by induction on n,

n

leaving the basis of the induction (n < 2) to the reader, we find

(T4 zun)(1 4+ zup—1)F_o(2)
(L4 yun—1) (L + yun) Fy o ()
(L4 (2 + y)un—1) I _o(2)(1 + yun)
Fo_i(e)(1+ yun)

()1 +yun) = 7 (2) Ff (y).

oy
+
—~
<
N
X
—
3]
~
Il

= P o)1+ yun—1)(1+ yu,)
= FF o (y)(1 + 2un)(1 + zup_q)
(14 zun ) Py o(y
(14 zun ) Py (y
(

14 zun)F, (2

)
)
)
)

The second and fifth equalities are instances of the induction hypothesis. O



REMARK 1.6. A second corollary of Lemma 1.5 is that G, (2) commutes with G, (y),
so the coefficient of uy, in Gp(21)Gp(22) - -+ is a symmetric function G4(w). Furthermore,

by Proposition 1.4(b), we have

Ga(w)= D K.

iER(w)

However, one can show that G4(w) is merely a “diagonal superfication” of Fu(w) (i.e.,
the image of F4(w) under the map @ that kills even power sums and doubles odd power
sums—see [Stel, §3]). Hence G 4(w) does not carry more information than Fu(w) itself.
However in Section 3, we will consider a one-parameter refinement of G 4(w) that encodes

combinatorial information about R(w) not carried by Fa(w).

Part I: B,

Let sg,s1,...,8,—1 denote generators for the Coxeter group B, , arranging the indices
so that m(0,1) = 4 and m(i — 1,4) = 3 for 1 < i < n. For w € B,, the number of
occurrences of 0 in any reduced word for w will be denoted £y(w); it is independent of the
choice of reduced word since this quantity is preserved by the braid relations.

The shortest left coset representatives for B, /B, _1 consist of
{1, Sn—1, Sn—25p—1, .. , 5051 Sp—1, S15051 " Sp—1, --. ,Sp—1-" 515051 " Sp—1}.

There 1s only one reduced word for each of these coset representatives, so every w € B,
has a canonical reduced word, as explained in Section 1.3. Extending the notation of
Section 1.3 slightly, for integers 7, j such that 0 < i < j we define [, j] and [—1, j] to be the
words i-(i4+1)---jand ¢-(i—1)---101---j, respectively. In these terms, the canonical

reduced words for the members of B,, are the expressions
[y, na] - mz,no] - - [me, ny],

where n > ny > -+ > n, > 0 and |my;| < n;.
With €1, ...,&, as the standard orthonormal basis of R”, we take ;41 — ¢; (resp., £1)

as the simple root corresponding to s; for ¢ > 1 (resp., ¢ = 0). The vector
§=e14+ 22+ +ne, =(1,2,...,n)

belongs to the interior of the fundamental chamber defined by these simple roots, and
its orbit consists of all signed permutations of (1,2,...,n). These constitute the one-line

forms of the members of B,,, as explained in Section 1.4.
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In the following, we will derive numerous pattern-avoidance characterizations of various
subsets of B,,. While it is possible (however complicated) to give a general definition of
pattern avoidance, it 18 best explained by special cases. For example, an element w € B,
is said to avoid the pattern (2,—1,—3) if in the one-line form of w, say (w, ..., wy), there

is no triple ¢ < j < k such that —w; > w; > —w; > 0.

2. The A-reduced members of B,
As we noted in Section 1.5, B, dominates A,,. The following result is a first step towards
characterizing when w € B,, is A-reduced (i.e., R(w) C R(An)).

LEMMA 2.1. For w € By, 0101 is a subword of some i € R(w) if and only if the pattern

(=1, —=2) occurs in the one-line form of w.

Proof. Let (wy, ..., wy) be the one-line form of w, and suppose that the pattern (—1, —2)
occurs in positions ¢ and j, so that ¢ < j and —w; > —w; > 0. Among all such choices
for ¢ and j, we can choose one that minimizes 5 — 7. If there is a positive entry in any
position prior to j, then we would have wy > 0 > wg41 for some k (1 < k < j). However
in that case, £(spw) < £(w) and spw still contains the pattern (—1,—2), so by induction
on length, syw (and hence w) has a reduced word containing 0101.

Otherwise, every entry prior to w; is negative. In particular, 7 and j must be consec-
utive; otherwise, j — ¢ would not be minimal. We also have £(sqw) < {(w) since wy < 0.
If ¢ > 1, then spw still contains the pattern (—1,—2), so again by induction, spw (and
hence w) has a reduced word containing 0101.

The only remaining possibility is that ¢ = 1 and j = 2. However since 0101 is a reduced
word for the member of B2 whose one-line form is (—1, —2), it follows that w has a reduced
word that begins with 0101.

For the converse, it suffices to prove the following.

(i) Tf w has a reduced word that begins 0101 ..., then w contains the pattern (—1, —2).

(i1) If w contains the pattern (—1,—2) and £(s;w) > £(w), then s;w also contains the

pattern (—1, —2).

For (i), recall that 0101 & 1010. Thus if w has a reduced word that begins with 0101,
then it has reduced words that begin with 0 and 1; i.e., {(sow) < £(w) and £(s;w) < {(w).
Hence wy < 0 and wy > ws, so w contains the pattern (—1,—2).

For (ii), suppose that (—1,—2) occurs in w and #(s;w) > #(w). If j = 0, then wy > 0
and sjw has one-line form (—w1, ws, ..., wy). Clearly this can only increase the number of
occurrences of (—1,—2). If j > 0, then w; < w;4+1, and the one-form of w is obtained by

interchanging w; and w;41. If w; and w;4; are both negative, this increases the number

11



of occurrences of (—1,—2); otherwise, the relative positions of the negative entries are

unchanged. O

Let sp,s),...,s,_; denote a set of generators for 4,,. We are deliberately using the
index set {0,1,...,n — 1} here so that the dominance relationship between B, and A,
remains conspicuous. Since 0101 & 1010 is the only B, -braid relation that is not also valid
for Ay, it follows that for the (—1, —2)-avoiding elements w € By, the mapping s; — s} is
well-defined in the sense that

r_ ’
w' =s;--85;, € Ay

is independent of the choice of i = 4;- -4 € R(w).

To describe this mapping more explicitly, we need to choose coordinates for 4,,. For this
we pass to R™t! and use £y as the name for the new coordinate. By convention, we will
write (ag,a1,...,a,) for the vector apeg + - - - + aney,. For the simple root corresponding

/
to s;

, we choose ¢;41 — ;. The vector § belongs to the fundamental chamber defined by
these roots, so we can use its A,-orbit (namely, all permutations of (0,1,...,n)) as the
one-line forms for the members of A4,,.

We now define a “bumping” map b : B, — A, as follows. Let (w1,...,w,) be the

one-line form of some w € B,,, and suppose that ¢; < --- < i} are the positions 7 such that
w; < 0. Define b(w) to be the member of A,, whose one-line form is (g, ..., #,), where
Lo = Wiy, Ly = —Wiy, s &y = Wi, L = Oa

and z; = w; for w; > 0. In other words, we insert 0 into w from the right, where it bumps
out and changes the sign of the first encountered negative entry, which in turn bumps out
and changes the sign of the next negative entry, and so on. The algorithm terminates with
the last bumped element stopping at the 0th position. For example,
ifw= (3,—6, 1,—-4,-2, 5, 7)€ By,
then b(w)=(6, 3, 4, 1, 2, 0, 5, 7)€ A~

LEMMA 2.2. Ifw € B, avoids (—1,—2) andi=1;---4 € R(w), then

b(w) = w' = sj ;.

Furthermore, if there is some index j such that {(s;w) < £(w) and £(siw') > £(w'), then
w contains the pattern (1, -3, —2).

Proof. We prove both assertions by induction on ¢(w). If £(w) = 0 the claims are

trivial, so assume £(w) > 0 and choose an index j such that £(s;w) < f(w). If w avoids
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(—=1,-2), then 0101 cannot occur in any i = 41---4 € R(w) (Lemma 2.1). Tt follows

that w' = s} - s/
1 1

. does not depend on the choice of i, and (by the induction hypothesis)
b(sjw) = siw’. Thus for the first assertion, it suffices to prove that b(w) = s’ b(s;w).

Case 1: j = 0. Let —a < 0 be the first entry in the one-line form of w (this entry
is negative since {(spw) < £(w)), and let —b < 0 be the entry that bumps —a when 0 is
inserted into w. The first two entries in the one-line form of b(w) must be (a,b). On the
other hand, in sqw the first entry is ¢ > 0 and —b is the leftmost negative entry (or there
are no negative entries, if b = 0). The first two entries of b(spw) are therefore (b, a), and
the remaining entries agree with b(w). Hence b(w) = spb(spw) = w’, as desired. Also,
regarding the second assertion, note that £(sjw’) > £(w’) occurs only if @ < b, in which
case the pattern (—1, —2) occurs in w, a contradiction.

Case 2: j > 1. Let a,b be the entries in positions j, j + 1 of the one-line form of w; the
one-line form of s;w is obtained by interchanging a and b. Since {(s;w) < £(w), we must
have a > b, and since w avoids (=1, —2), a and b cannot both be negative. It follows that
b commutes with permuting a and b, and hence b(w) = s7b(s;w) = w', as desired.

Regarding the second assertion, suppose that {(sjw’) > £(w'). Since the positive entries
of w remain stationary, this can occur only if one of a or b is negative. Since a > b, this
requires @ > 0 > b. If ¢ < 0 is the entry that bumps b when 0 is inserted into w, then
we must have b < ¢; otherwise w would contain the pattern (—1, —2). Furthermore, since
we then have a and —c¢ in positions j and j+ 1 of w’ = b(w) (respectively), the fact that
{(shw') > £(w') implies @ < —c. Thus we have b < ¢ < —a < 0, and the w-subsequence
(a,b,c) fits the pattern (1,—-3,-2). O

THEOREM 2.3. For w € B,,, the following are equivalent.

(a) w is A-reduced (i.e., R(w) C R(An)).

(b) Neither 0101 nor 1012101 occur as subwords of any 1 € R(w).
(¢) w avoids the patterns (—1,—2) and (1,—3, —2).

Proof. (a)=>(b) is immediate since 0101 and 1012101 are not reduced words for A,,.

(b)=(c). If the one-line form of w, say (wi,...,w,), contains the pattern (—1,—2),
then 0101 must occur as a subword of some i € R(w) (Lemma 2.1). Hence we may assume
towards a contradiction that w avoids (—1, —2) but contains an occurrence of (1,—3, —2),
in positions i < j < k. Among all such occurrences of this pattern, choose one that
minimizes i+ j + k. Since 1012101 is a reduced word for the member of Bs whose one-line
form is (1,—3,—2), it follows that if (¢,7,k) = (1,2, 3), then w has a reduced word that
begins with 1012101, contradicting (b). In the remaining cases, it suffices to prove that
there is an index [ with ¢(s;w) < €(w) such that the pattern (1,—3, —2) also occurs in s;w.
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Indeed, we may then argue by induction on length that there is a reduced word for s;w
(and hence w) that contains 1012101 as a subword, contradicting (b).

To prove the claim, note first that if a positive entry occurs in any position between i
and k then we would have w; > 0 > w41 for some [ such that ¢ < { < k. However in that
case, {(s;w) < {(w) and the pattern (1, —3, —2) still occurs in s;w. Otherwise, every entry
between ¢ and k is negative. Since w avoids (—1,—2), minimality of ¢ + j + k forces ¢, 4, k
to be consecutive. Hence the only remaining possibility is ¢ > 1.

Suppose that a positive entry occurs prior to w;. This entry must be greater than w;,
by minimality of ¢ + j + k. Hence there must be some index [ such that 1 < [ < 1
and w; > wiyy. However in that case, {(s;w) < £(w) and the pattern (1,—3,—2) still
occurs in s;w. Thus all entries prior to w;, including wi, must be negative. But then
L(spw) < ¢(w) and the pattern (1, —3,—2) still occurs in spuw.

(c)=(a). Proceeding by induction on {(w), assume #(w) > 0 and that w avoids the
pattern (—1,—2). Let j be an index such that (s;w) < £(w), and let w' = b(w), as in
Lemma 2.2. If sjw is A-reduced but w is not, then we have {(s}w') = {(sjw) = ((w) =1 >
f(w') — 1, s0 £(sjw') > {(w'). However in that case, Lemma 2.2 implies that (1,—3,-2)
occurs in w, contradicting (c).

Otherwise, s;w is not A-reduced, so by induction s;w must contain the pattern (—1, —2)
or (1,—3,-2). If the pattern (—1, —2) occurs, then it must also occur in w (Lemma 2.1),
contradicting (¢). Thus we may assume there is a subsequence (a, b, ¢) of the one-line form
of s;w fitting the pattern (1,—3,—-2); i.e., =b > —c > a > 0. The action of s; cannot
change the relative position of ¢ and b since a > b and £(s;w) < £(w); it also cannot
change the relative position of b and ¢, since otherwise the pattern (—1, —2) would occur
in w. And finally, if j = 0 and sy replaces a with —a, then the pattern (-1, —2) would

occur in w. Hence (a,b,¢) is also a subsequence of w, contradicting (¢). O

Suppose that the one-line form of some w € A, is (wo, ..., wy), and that m is the index
such that w,, = 0. Given any set of indices J such that {0,m} C J C {0,1,...,m}, let
w’ € B, denote the result of “unbumping” the entries of w in the positions indexed by J.
More precisely, if 0 = jo < j; < --- < j; = m are the members of J, then define w” to be

the member of B,, whose one-line form is (z1, ..., 2, ), where

Tj, = — Wy, Xj, = Wy, ... G5, = Wi,

and z; = w; for j & J.
It is not hard to see that b(z) = w if and only if # = w’ for some J, but it is not

necessarily the case that w’ is A-reduced. To characterize when this occurs, let us first
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itroduce the notation

Lw) ={i:j<i=w; >w}
for the set of positions where left-minima occur in the one-line form of w € A,,.

THEOREM 2.4. If w € A, and w, = 0 (i.e., m is the position where 0 occurs in the
one-line form of w), then * € B, is A-reduced and b(z) = w if and only if + = w’ with
{0,m} C J C L(w). In other words,

{x € B, : R(x) CR(w)} = {w’ : {0,m} CJ C L(w)}.

Proof. Choose J so that {0, m} C J C L(w), and let 0 = jp < j1 < --- < ji = m be the
members of J. If 2 = w” | it is clear from the definitions that b(xz) = w. Furthermore, since
each member of J indexes a left-minimum of w, we have w;, > --- > w;,, and the negative
entries in the one-line form of # (namely, —wj,,..., —w;,_,) appear in increasing order.
That is, z avoids the pattern (—1,—2). If the pattern (1, —3,—2) occurred in positions
t < j < k of z, then we would have j, k € J and w; < wj, contradicting the fact that j
indexes a left-minimum. Thus # avoids (1,—3, —2), so by Theorem 2.3 it is A-reduced.

Conversely, if b(z) = w, then z = w/ where J = {0} U {j : z; < 0}. Clearly m € J; in
fact, m is the largest member of .J. We also claim that if # is A-reduced, then J C L(w).
Otherwise, there would be some j € J such that 0 < j < m and j ¢ L(w). In that case, let
k be the smallest member of J greater than j (it is clear that k exists, since m € J). In the
one-line form (21, ..., #,) of © we must have z; < zy, since otherwise the pattern (—1,—2)
would appear, contrary to the assumption that x is A-reduced. When b is applied to z,
—xy, replaces the entry in position j. However j ¢ L(w), so there is an index ¢ < j such
that w; < w; = —xg. It is necessarily the case that 7 € J, since otherwise the pattern
(—=1,—-2) would have appeared in . However if ¢ & J, then the entries in positions 4, j, k
of z fit the pattern (1,—3,—2). By Theorem 2.3, this contradicts the assumption that »
is A-reduced. O

As a consequence of Theorem 2.4 and Proposition 1.2, we obtain the following.

COROLLARY 2.5. If w € A, and m are as above, then

R(w) = UJ R(w”).

{0,m}CICL(w)

To count the A-reduced members of B,,, we use the following.

15



LEMMA 2.6. We have >, ., g# W) = g(g+1)--- (g +n).

Proof. Let Ln(¢) = yea, q# ) We have L,(q) = (¢ +n)Ln_1(q), since among the
n + 1 positions where ‘n’ can be inserted into the one-line form of some w € A,_1, the

number of left-minima changes only when ‘n’ is inserted at the beginning. O
PROPOSITION 2.7. There are %(n + 21+ %n! A-reduced members of B,,.

Proof. By Theorem 2.4, there are 2#2(¥)=2 A_reduced members of B, corresponding to
each w € Ay, unless #L(w) = 1, in which case there is just one. The latter occurs when
wg = 0 (i.e., when w belongs to the parabolic subgroup of A, generated by s},...,s,_;).

Hence the number of A-reduced elements 1s

1 w) 1
422#L +3 oL

wWEA, WEAL_1

Apply Lemma 2.6. O

3. The symmetric functions G and G 4(%).
Let ug,uq, ..., un—1 denote generators for the nil Coxeter ring U associated with B,.
Shifting the notation of Section 1.6 slightly, let

FF(z) = (14 zuo)(1+ zuy) - (1 + zup_1)

Fo(z) =+ zup—1) (1 + zug)(1 + zug),

and G, (z) = F; (2)F,f(z). Tt was first noted by Fomin and Kirillov [FK1] that G, (z)
and Gy (y) commute; this observation allows one to define a family of symmetric functions
indexed by w € B, via the method explained in Section 1.7.

To minimize notation in the following, we adopt the convention that if u is a nilpotent
element of a ring with unity and x is a central indeterminate, then «” := exp(zu). In all

cases of interest u will be nilpotent of index 2, so in fact «” = 1 + zu.

PRrROPOSITION 3.1. Let u, v, a, b be elements of a ring with unity such that u?> = v? = 0,
v commutes with a and b, and u”au” commutes with u¥bu?.
(a) If (uv)? = (vu)?, then v*u**v® commutes with vYu?oY.

(b) If uvu = vuv, then v"u”au”v® commutes with vYu¥bu¥v¥.

Proof. (a) is a straightforward computation. For (b), note first that «*v® and v”u”

commute with w¥v¥ and vYu¥, by the n = 2 cases of Lemma 1.5 (with v = u1, v = ua).
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We therefore have
(v u” au®v® ) (v ubu¥v?) = v uTa(v¥u?)(u” " )buYvY = v"utv¥ au” TV bv" u oY
Yul YumY au"TVhu " (utv” ) (u¥ oY)
v u" ) u Y au" tYbu " (u¥o? ) (u”v")
vCuTY (uau”)(uYbu? )uT oY (uT )
= oYV u Y (WY bu? ) (" au” ) uT T oY u "
= WV bu" TV arV ut v = vV b(v"u” ) (uo? )au® v”

= (vWu¥YbuYo?) (v uauv®). O

COROLLARY 3.2 (Fomin-Kirillov). We have G, (2)Gp(y) = Gn(y)Gn(2).

Proof. Proceed by induction on n. The basis of the induction (n = 2) is a conse-
quence of Proposition 3.1(a) and the identifications © = ug, v = u3. For n > 2, apply
Proposition 3.1(b) with a = G,,_a(x), b = Gp_2(y), u = up_s and v = u,_1. O

It follows that for w € B, the coefficients G'p(w) appearing in the expansion

Gn(21)Gn(z2) - = Y Gp(w)(z1, 22, .. )y (3.1)

weEB,

are symmetric functions of z1, za, ..., and by Proposition 1.4(b) we have the expansion

Gp(w)= > Kag.- (3.2)

iER(w)

By Theorem 3.8 of [Stel], it follows immediately that Gp(w) is Q-integral; i.e., an integer

linear combination of Schur @-functions.

REMARK 3.3. These symmetric functions have been studied previously by Fomin-
Kirillov [FK1], T-K. Lam [L], and Billey and Haiman [BH], although in some cases
using the normalization Q_ZD(W)GB(w). For example, Lam and Billey-Haiman both prove
that Gp(w) is a positive integer linear combination of Schur @-functions. Although it
is immediate that Q_ZD(W)GB(w) i1s an integer linear combination of Schur P-functions,
for combinatorial purposes, it is preferable to use the @Q-function expansion of Gp(w).
(For example, see the proof of Theorem 2.13 in [L].) The @-integrality of Gp(w) is also a
stronger assertion than the P-integrality of 2= ()G p(w).

Now let up, uf, ..., ul,_; denote generators for the nil Coxeter ring U’ of A,,. The only
braid relation of B, that is not also a braid relation of A, i1s 1010 ~ 0101. However
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the corresponding relation in U (namely, ugujugu; = ujuguiug) is also valid in U, since
upujugu) = 0 = vjufuiuy. That is, U’ is a quotient of U. (More generally, this applies to
the nil Coxeter rings of any pair (W, W’) such that W dominates W’.) Thus Corollary 3.2
is also valid in U/, and this permits the construction of a family of symmetric functions
Ga(w) for w € Ay asin (3.1). But as we noted previously in Remark 1.6, G4(w) is merely
a homomorphic image of F4(w), and thus carries no new combinatorial information.

However, consider the following refinement.

If ¢ is any central indeterminate, the map ug — tug, w; — u; (1 < ¢ < n) defines a
(unique) ring endomorphism of U (or rather, U[t]). Note that for w € By, this map has the
property that w, — t%(®y, . As an endomorphism, it of course preserves the commuting
relationship of Corollary 3.2, but its effect on (3.1) is rather trivial—replacing Gp(w)
with )G p(w). However, if we combine this with the homomorphism U — U’ (i.e.,
ug — tuy, otherwise u; — u}), we obtain from Corollary 3.2 a genuinely new commuting
relationship in U/ with an associated family of symmetric functions indexed by w € A4,

and depending on a parameter ¢; namely,

GA(w;t) = Z tZD(i)[(A(i). (33)
iER(w)

Here we are committing a minor abuse of notation—using €y(i) to denote the number of
occurrences of 0 in the reduced word i.

Comparing (3.2) and (3.3), the following is a consequence of Corollary 2.5.

THEOREM 3.4. If w € A, and w, = 0 (i.e., m is the position where 0 occurs in the

one-line form of w), then

Ga(w;t) = > # T Gp((w).
{0,m}CJICL(w)

REMARK 3.5. It follows that for all w € A,, Ga(w;t) is a Z[t]-linear combination
of Schur @-functions. More specifically, let @y = Qa(z1, z2,...) denote the Schur Q-
function indexed by the strict partition A (e.g., see Appendix A of [Stel]). If | = {(w),
then G 4(w;t) is homogeneous of degree ! and it is clear from (1.1) that the coefficient
of z1---z in Ka is 2°. On the other hand, @, is homogeneous of degree equal to the
size of A, and the coefficient of z1---% in @y is 2'¢*, where ¢* denotes the number of
shifted standard tableaux of shape A (e.g., [M,p.135]). Thus for every w € A, there
exist polynomials Cy A(f) € Z[t] indexed by strict partitions A of size {(w) (and having
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nonnegative coefficients, by the work of Lam and Billey-Haiman) such that

Z tZu(i) — ch,x(t)gA~
A

iER(w)

For example, consider w = wy, the longest element of A,. We have wg = (n,...,1,0)
in one-line form, and there are 27~! terms in the expansion of Theorem 3.4. There is
a unique term in this expansion of degree n with respect to ¢t (the maximum possible),
corresponding to the choice J = L(wg) = {0,1,...,n}. In this case wy is the member of
By, whose one line-form is (—n,...,—2,—1). By Corollary 6.6 below (or Proposition 3.14
of [BH], or Corollary 3.5 of [L]), one knows that Gp(wi) = Qn,...2,1)- Thus we conclude
that the number of reduced words for wg in which 0 occurs n times is the number of
shifted standard tableaux of shape (n,...,2,1).! By the shifted hook length formula
for ¢* (e.g., [M, p.135)]), this quantity is

(1)

4. The top and bottom classes

For w € A, recall that any # € B, such that b(x) = w can be obtained by unbumping
the elements in some set of positions J in the one-line form of w; i.e., x = w” for some J.
In that case, » has #.J — 1 negative entries, and therefore £y(2) = #J—1. By Theorem 2.4,
it follows that for every w € A, there is a unique # € B,, that maximizes £y(2) among all
&' € B, such that R(z") C R(w). In fact, x = w™(). In other words, the set of reduced
words for w in which 0 appears the maximum number of times is itself the set of reduced
words for some z € By, and this maximum number is #L(w) — 1. Whenever # and w are

related in this way, we write £ = top(w) and refer to x as the top element of w.

THEOREM 4.1. For w € B, the following are equivalent.

(a) w is the top element of some w' € A,.

(b) 101 is not a subword of any i € R(w).
(¢) The canonical reduced word [my,nq] - --[m,, n,| for w satisfies my,...,m, > 0.
(d) w avoids the patterns (£1,—2).

Proof. (a)=(b). If w is the top element for w', then w is A-reduced and every i € R(w)
is also a reduced word for w’. However, if 101 occurred as a subword of i, then £y(w) could

not have been maximal since 101 /2 010 is a valid A, -braid relation.

IThis is closely related to Theorem 4.5 of [E]—see Remark 6.3(c) below.
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(b)=(c) is immediate, since 101 is a subword of [—¢, j] whenever 0 < i < j.

(d)=(a). If w avoids the pattern (1,—2), then it also avoids the pattern (1, -3, —2).
Hence Theorem 2.3 implies that w is A-reduced. Now let v’ = b(w) € A,, and let
(w1, ..., wy) denote the one-line form of w. To prove w = top(w’), we must argue that
J = L(w'), where J = {0} U {j : w; < 0}. Certainly J C L(w'), by Theorem 2.4. Now
if there were some ¢ € L(w’) such that ¢ & J, then there would be some j > ¢ such that
J € J. (Indeed, the rightmost left-minimum of w’ is always a member of J.) If j is the
least such index, then when 0 is inserted into w, w; will be bumped and —w; will appear
to the left of w; in the one-line form of w’. However, ¢ indexes a left-minimum of w’,
so —w; > w; > 0. Hence the entries in positions ¢ and j of w fit the pattern (1,-2),
contradicting (d).

To complete the proof, note that the canonical reduced words appearing in (¢) are the
canonical reduced words for the members of A,,, so there are exactly (n + 1)! members
of B, that satisfy (c¢). Therefore, having proved (d)=-(a)=(b)=-(c), it suffices to prove
that there are exactly (n + 1)! members of B, that satisfy (d). For this, suppose that
w € By, has one-line form (wy,...,wy), and let |w| = (Jw1],...,|wy]), a permutation of
(1,...,n). For w to avoid the patterns (+1,—2) it is necessary and sufficient to have j
index a left-minimum of |w| whenever w; < 0. Thus for a fixed choice of |w|, there are

2#L(1v]) ways to choose sign patterns for w that avoid (£1,-2). Apply Lemma 2.6. O

Similarly, for each w € A,,, Theorem 2.4 implies that there 1s a unique =z € B, that
minimizes €o(x) among all 2’ € B,, such that R(2') C R(w). In other words, the set of
reduced words for w in which 0 appears the minimum number of times is the set of reduced
words for @. In fact, & 1s obtained by unbumping the 0 and the entry in position 0 from
the one-line form of w. In this situation, we write # = bot(w) and refer to z as the bottom
element of w.

It is easy to show directly (or one may use Theorem 2.4 to see) that the minimum
number of occurrences of 0 in any reduced word for w € A, is either 0 or 1 according to
whether or not 0 is the entry in position 0 of w. In the former case, 0 cannot appear in
any reduced word for w, so we conclude that z is a bottom element for some w € A,, if
and only if £y(x) < 1. Also, since £y() is the number of negative entries in the one-line
form of x, this condition can also be characterized by avoidance of the patterns (—1, —2)

and (—2,—1). We summarize these remarks with the following.

ProrosiTION 4.2. For w € B,,, the following are equivalent.

(a) w is the bottom element of some w' € A,.
(b) 010 is not a subword of any i € R(w).
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(¢) £o(w) < 1.
(d) w avoids the patterns (—1,—2) and (-2, —1).

Of course there are (n + 1)! bottom elements, one for each member of A,,.

Those © € B, that are simultaneously top and bottom elements, so that top(w) =
bot(w) = x for some w € A,, are distinguished by the fact that there is exactly one term
in the decompositions of Corollary 2.5 and Theorem 3.4; i.e., R(z) = R(w) and

Ga(w;t) =t Gp(e).

By Theorem 4.1 and Proposition 4.2, one sees that this class can by characterized by
forbidden patterns, forbidden subwords, or by the structure of the canonical reduced word.

Define H(n) =", 1/i.

PROPOSITION 4.3. There are n! (1 + H(n)) elements w € By, such that R(w) = R(w’)

for some w' € A,, (i.e., elements that are both the top and bottom of some w').

Proof. Let w € B,, be a top-and-bottom element. By Theorem 4.1 and Proposition 4.2,
either w is one of the n! elements with £y(w) = 0, or else fo(w) = 1 and w avoids the
pattern (1, —2). In the latter case, if —j is the unique negative entry in the one-line form
of w, it is necessary and sufficient that all entries in positions to the left of —j are > j. If

—j occurs in position ¢, this can be done in (7__{) (i — D)l (n — 9)! ways, for a total of

ZH:ZH: (?:f)(i—l)!(n—i)! :Zn: (7;)(1’— i (n—i)l =nlH(n). O

i=1j=1 i=1

5. Full commutativity
Recall that w is fully commutative if R(w) consists of a single commutativity class, or

equivalently, if 1010,212,323,... do not occur as subwords of any i € R(w).

THEOREM 5.1. For w € B,,, the following are equivalent.

(a) w is fully commutative.
(b) In the canonical reduced word [my,nq]---[m,,n,| for w, we have either
(1) my>--->mg >mg41 =---=m, =0 for some s < r, or
(2) my>--->my_1 >—my >0.
(¢) w avoids the pattern (—1,—2) and all patterns (a,b,c) such that |a] > b > ¢ or
—b>|a| > c.

21



Proof. (a)=-(b). Assume that [my,n1]---[m,,n,] is the canonical reduced word for
some fully commutative w € B,. We must have n > ny; > --- > n, > 0 and |m;| < n;,
since every canonical reduced word for B, has this property.

For ¢ > 0, the word [—1,7]0 is braid-equivalent to 1010[2, ], and for i > j > 0 the word
[—1,4] j is braid-equivalent to [—1,j — 1]5(j + 1)j[j + 2, {]. Hence neither word can occur
as a subword of any 1 € R(w). Since subwords of this type occur in [m;, ns][miy1, nit1]
whenever m; < 0, we must therefore have my,...,m,._1 > 0.

If j > k >4 >0, then the word [¢, j] k is braid-equivalent to [¢, k — 1]k(k + D)k[k + 2, /]
and hence cannot occur as a subword of any i € R(w) unless £ = ¢ = 0. Since subwords
of this type occur in [m;, n;][m;11, niy1] whenever |m;41| > |m;|, we must therefore have
|mi| > |mig1| or my = m;pq = 0 for 1 < i < r, and hence (b) follows.

(¢)=(a). If w € By is not fully commutative, then there must be some i € R(w)
containing one or more of 1010,212,323, ... as subwords. If 1010 occurs, then w contains
the pattern (—1,—2) (Lemma 2.1), contradicting (c¢). For the remaining possibilities, it

suffices to prove the following.

(i) If w has a reduced word that begins with (¢ — 1)¢ for some ¢ > 1, then w contains
one of the patterns forbidden by (c).
(i1) If £(s;w) > €(w) and w contains a pattern forbidden by (c¢), then so does s;w.

Given the hypothesis of (i), w has reduced words that begin with i — 1 and ¢; i.e.,
U(si—1w) < L(w) and €(s;w) < £(w). Thus in the one-line form (wy, ..., w,) of w, we have
wi—1 > w; > wiy1, a pattern that is forbidden by (c).

For (ii), suppose that £(s;w) > #(w) and that (a,b,¢) is a subsequence of w such that
la| >b > cor —b> |a| > c. If j =0, then sjw contains one of the subsequences (+a,b,c),
both of which are forbidden by (c). If j > 0, then s;w will also contain the subsequence
(a,b,¢) unless a and b, or b and ¢, occur in positions j and j + 1.

If b and ¢ occur in positions j and j + 1, then £(sjw) > ¢(w) implies b < ¢. Hence
(a,b, c) must satisfy —b > |a| > ¢, and s;w contains the subsequence (a’,¥,¢') = (a, ¢, b).
However this yields |a’| > &’ > ¢/, a pattern forbidden by (c).

If ¢ and b occur in positions j and j + 1, then £(sjw) > £(w) implies a < b. Hence
(a,b,c) must satisfy —a > b > cor —b > a > ¢, and s;w contains the subsequence
(a',b', ') = (bya,c). If =b > a > ¢, then |a'| > —a’ > b > ¢/, and hence |a'| > V' > ¢
If —a > b > ¢, then (using also the fact that a < b implies —§' > —a’) we must have
=0 > max(a’,—ad') > o’ > ¢/, and hence —b' > |a/| > ¢/. In either case, (', b, ') fits a
pattern forbidden by (c).

To prove (b)=(c), we use the following pair of lemmas.
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LEMMA 5.2. If the canonical reduced word [my,n1]---[m,, n,| for some w € B,, satis-

fies (1), then in the one-line form of w we have the following.
(a) The entries ny + 1,...,ns + 1 occur in positions my, ..., ms, respectively.
(b)
()

Proof. Proceed by induction on r. If » = 1, one can check that

The negative entries are —(ns41 +1),...,—(n, + 1).

The subsequence formed by the entries not specified in (a) is increasing.

(L,2,...,m; —Lny+1,my,...,n1,n1 +2,...,n) (if my > 0),
(=(n+1),1,2,...,n1,n1+2,...,n) (if my = 0),

is the one-line form of w, and it is clear that properties (a)-(c) hold. For r > 2, let
(w),...,w}) denote the one-line form of the element w’ € B, whose canonical reduced
word is [mg, ns] - - -[m,, n,]. Every entry > nj appears in its natural position in w’.

If m; = 0 then ms = --- = m, = 0. Hence by the induction hypothesis, the negative
entries of w’ are —(n2 +1),...,—(n, + 1) and we have w| < --- < w),. The entry nj + 1
appears in its natural position in w’, so the effect of passing from w’ to w is to delete ny +1
and insert —(ny + 1) into the first position. Thus the one-line form of w is increasing and
the negative entries are —(ny +1),...,—(n, + 1), in agreement with (a)—-(c).

If my > 0, then the one-line form of w is

(wh,. . wp, _pni+ 1w, w4+ 2,000 n). (5.1)
Since my > mg > - -+ > my > 0, it follows that w’ and w agree at positions ma, ..., ms,
which by the induction hypothesis are occupied by ns + 1,...,n; + 1. Also, we see that
w and w’ have the same negative entries, and deletion of ny + 1 from w and w’ yields the

same sequence, in agreement with (a)—(¢). O
LEMMA 5.3. If the canonical reduced word [my,n1]---[m,, n,| for some w € B,, satis-
fies (2), then in the one-line form of w we have the following.
(a) The entries ny + 1,...,n._1 + 1 occur in positions my, ..., m,_1, respectively.
(b)
(c)

Proof. Again by induction on r. If » = 1 then the one-line form of w is

The entry —(n, 4+ 1) occurs in the first position > |m,| not in {my,...,my_1}.

The subsequence of entries not specified in (a) and (b) is positive and increasing.

(L2, mal|,—(ne + 1), ma|+ 1, ... ng,ny 4+ 2,00 n),
and it is clear that properties (a)—-(c) hold.
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For r > 2, let (w),...,w)) denote the one-line form of the element w’ € B, whose
canonical reduced word is [ma, ns] - - -[m,,n,]. Every entry > n; appears in its natural
position in w’, and the one-line form of w is given by (5.1). Since my > -+ > my_1 > 0, it
follows that w’ and w agree at positions ms, ..., m,_1, which by the induction hypothesis
are occupied by na+1,...,n,-1 4+ 1. Thus (a) holds. For (b), let m be the position where
—(n, + 1) occurs in w’. By the induction hypothesis, m is the least integer > |m,| not in
{ma,...,m,_1}, so in particular m < mj. On the other hand, in passing from w to w’,
the position of the entry —(n, + 1) will change only if m > m; (and hence m = my), in
which case it moves to position my + 1. Either way, the new position is the least integer
> |m,| not in {mq,...,m,_1}, proving (b). Finally, note that deletion of ny + 1 from w

and w’ yields the same sequence, so (¢) holds as well. O

Lemmas 5.2 and 5.3 each uniquely determine the one-line form of any member of B,
whose canonical reduced word satisfies the stated hypotheses.

To complete the proof of Theorem 5.1, let w € B,, be such that the canonical reduced
word fits either of the two specifications in (b).

If w is of the first type, then the negative entries of w appear in increasing order
(Lemmab.2), so w avoids (—1, —2). Therefore consider an arbitrary 3-element subsequence
(a,b,¢) taken from the one-line form of w. Parts (a) and (¢) of Lemma 5.2 show that w can
be partitioned into two increasing subsequences, so a > b > ¢ is impossible. If —a > b > ¢
were to occur with a < 0, Lemma 5.2 shows that —a = n; 4+ 1 for some j > s, and since
b > ¢, either b or ¢ must be n; + 1 for some i < s. However in that case, we have 1 < s < j
and n; > nj, so —a < b or —a < ¢, a contradiction.

If —=b > |a|] > ¢, then —b =n; 4+ 1 for some j > s and @ > 0. (If @ < 0 then the pattern
(—1,-2) would appear.) Since a precedes b and a > b, we must have a = n; + 1 for some
i < s, otherwise we would contradict Lemma 5.2(c). But then ¢ < s < j, n; > n; and
a > —b, a contradiction.

If w is of the second type, then ¢y(w) = 1. Hence w has one negative entry, and in
particular, avoids (—1, —2). So consider an arbitrary 3-element subsequence (a, b, ¢) taken
from the one-line form of w. By Lemma 5.3, w can be partitioned into three increasing
subsequences, two of which are (—(n, +1)) and (n,—1+1,...,n7+1). Thusa > b > ¢ can
occur only if —e¢ = n, + 1. However by Lemma 5.3(b), if —(n, + 1) occurs in position m,
then the entries n; + 1 that appear prior to —(n, + 1) occur in a contiguous block from
|m,| + 1 to m — 1. Also by Lemma 5.3, the entries in positions prior to this block are
smaller and in increasing order. That is, the subsequence of entries prior to —(n, + 1) is
increasing, so a > b > ¢ is impossible.

If —a > b > ¢ were to occur, then —a = n, + 1, and neither b nor ¢ can be of the
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form n; + 1 for ¢ < r since n; + 1 > —a. However b and ¢ appear in decreasing order,
contradicting Lemma 5.3(c). Finally, if —b > |a| > ¢, then we would have —b = n, + 1
and a > ¢ > 0. Hence, a or ¢ must be n; + 1 for some ¢ < r. However n; > n,, so a > —b

or ¢ > —b, a contradiction. O

COROLLARY b.4. Every fully commutative w € B, is either a top or bottom element.

In particular, every fully commutative element is A-reduced.

Proof. Suppose that w € B, is fully commutative. If the canonical reduced word for w
belongs to the first of the two types listed in Theorem 5.1(b), then w is a top element, by
Theorem 4.1. The only other possibility is ¢y(w) = 1, in which case w is a bottom element
by Proposition 4.2. O

REMARK 5.5. For “most” pairs of Coxeter groups (W, W’) such that W dominates W’,
it 1s not true that the fully commutative members of W are W’-reduced. For example,
using the most obvious labeling of the generators for the pair (Fy, A4), it is not hard to
show that 4323412321 is a reduced word for some fully commutative w € Fy. However, it

1s not Ay-reduced.

If we specialize to either the top or bottom classes of fully commutative elements, the
forbidden patterns of Theorem 5.1 can be simplified. For example, the patterns (a,b,¢)
such that |a| > b > ¢ are

(£3,2,£1), (£3,£1,-2), (£2,41,-3), (£1,-2,-3). (5.2)

However w is a top element if and only if w avoids (£1,—2) (Theorem 4.1), and the only
patterns in this list that manage to avoid (£1,—2) belong to the first group. Note also
that (a,b) fits the pattern (£1,—2) whenever —b > |a| > ¢. Summarizing, we have

COROLLARY b.6. For w € B,,, the following are equivalent.
(a) w is a fully commutative top element.
(b) The canonical reduced word [my,n1]---[m,, n,] for w satisfies

my > >mg >mey; = - =m, =0 for some s < r.
(¢) w avoids the patterns (£1,—2) and (£3,2, +1).

Similarly, w is a bottom element if and only if ¢y(w) < 1 (Proposition 4.2), so the
forbidden patterns for fully commutative bottom elements are (=1, —2), (—2,—1), and the

patterns (a, b, ¢) of Theorem 5.1(c) with at most one negative member. Thus we have
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COROLLARY b.7. For w € B, the following are equivalent.

(a) w is a fully commutative bottom element.
(b) The canonical reduced word [my,n1]---[m,, n,] for w satisfies
my > > me_q > |my|.
(¢) w avoids the patterns (—1,-2), (=2,—1), (=3,2,1), (2,-3,1), and all patterns
(a,b,¢) such that a > b > c.

Aside from a change of coordinates, the (a)<(c) parts of Corollaries 5.6 and 5.7 are
implicit in the remarks of C. K. Fan in [F,§11].

If we restrict Theorem 5.1 to the subgroup of type A,,_1 generated by s1,...,s,-1, wWe
obtain the following. (The (a)<(c) part of this result is due to Billey-Jockusch-Stanley.
See Theorem 2.1 of [BJS].)

COROLLARY b.8. For w € A,,_1, the following are equivalent.

(a) w is fully commutative.
(b) The canonical reduced word [my,n1]---[m,,n,] for w satisfies my > -+ > m,.
(¢) w avoids the pattern (3,2, 1).

Let C'(n) = n%l_l(zn") denote the nth Catalan number. Results equivalent to parts (b)
and (c) of the following have also been obtained by Fan [private communication] (but

stated only as a conjecture in [F]).

ProrosiTION 5.9. In B,,, there are

(a) (n+2)C(n) — 1 fully commutative elements.
(b) (Zn”) fully commutative top elements.

(c)
(d)

C(n+ 1)+ C(n)— 1 fully commutative bottom elements.
C(n + 1) fully commutative top-and-bottom elements.

Proof. By Corollary 5.6, the fully commutative top elements are encoded by pairs of
integer sequences ny > --- > n, > 0 and my > --- > m; > 0such that »r > s > 0, n > nq,
and n; > m;. If n, = 0 then r > s, so we can create a new valid “code” by deleting n,
from the first sequence. Conversely, if n, > 0, then adding n,41 = 0 to the first sequence
also creates a valid code. Hence, the number of fully commutative top elements is twice
the number of codes such that n, > 0. However, the codes with this property are in one-
to-one correspondence with column-strict plane partitions having at most two columns
and entries taken from {1,...,n—1}.

Via the rule for the Schur function expansion of products of elementary symmetric
functions (e.g., [M,1.(5.17)]), it follows that (”;1)2 (resp., (”;1) (Z_:)) is the number of
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plane partitions of the desired type with a total of 2k (resp., 2k 4 1) entries. Hence, the
total number of these plane partitions is
2
B+ (76D ECE -G
E>0 E>0
and thus (b) follows.

By Corollary 5.8, the fully commutative members of A,_; are encoded by pairs of
integer sequences n > n; > --- > n, > 0 and my > --- > m, > 0 such that » > 0
and m; < n;. The fact that there are exactly C'(n) such codes can be shown in several
ways; e.g., by using Schur functions to count the appropriate set of plane partitions, or by
recognizing that (my,n,),..., (my,n1) can be viewed as the north-to-east turning points
of an increasing lattice path from (0,0) to (n,n) confined to the region {(¢,5) : i < j} (a
well-known interpretation of C(n)), or by appealing to the fact C'(n) is known to be the
number of (3,2, 1)-avoiding permutations of n objects (see the discussion in [BJS, §2]).

By Corollary 5.7, the codes of this type such that » > 0 are in one-to-one correspondence
with the fully commutative bottom elements of B,, that are not also top elements. Since
there is just one code with » = 0, it follows that there are C'(n) — 1 such elements. Hence
there are (Zn”) +C(n)—1=(n+2)C(n) — 1 fully commutative elements, in agreement
with (a).

The fully commutative bottom elements that we have not yet accounted for are those
that are also top elements. However any such w € B,, has the property that R(w) = R(w')
for some fully commutative w’ € A,, and conversely. Hence there are C'(n + 1) such

elements (this can also be seen by examining the codes of the corresponding canonical

reduced words), yielding (b) and (d). O

6. Heaps and heap expansions

6.1 Heaps of fully commutative elements.

Suppose that [m1,n1]---[m,, n,] is the canonical reduced word for some fully commu-
tative top element w € B,. By Corollary 5.6, we know that n > ny > -+ > n, > 0,
my > o> mg > msyy == m, =0 (for some s < r) and m; < n; for 1 <7< r. Under
these circumstances, we will say that w is of shape A/u, where A := (ny +1,...,n, + 1)
and p:= (my,...,ms). This terminology reflects the fact that A and y are a pair of strict
partitions with the (shifted) diagram of p being contained in the (shifted) diagram of A;
thus A/p may (and shall) be regarded as a shifted skew shape. Every shifted skew shape
without empty rows is the shape of some fully commutative top element of B,,, provided

that n 1s sufficiently large.
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More explicitly, given a strict partition v1 > --- > v > 0, the shifted diagram of v is
defined to be
D,={(,)) EZ*:1<i<l i<j<uv+i},

partially ordered so that (,j) < (¢, ') for ¢ < ¢ and j < j'. Whenever D) C Df, we

write D/A/u as an abbreviation for the shifted skew diagram D} — Dj, a subposet of DS .

We prefer to regard each shifted skew diagram as a labeled poset (in the sense of [Stel]),

with the labeling of the cell (7, ) € D/>\/u defined to be j — 1.

For example, using matrix-style coordinates (so that poset gravity points in the north-
west direction), the labeling of the cells of A/p = 7542/42 is

6
2
0 1
0

t—\l\DOJ»-Jk
[SCINTSN G

If w is a fully commutative top element of shape A/p, then the canonical reduced word
for w is obtained by reading the labels of the diagram of A/u in (English) reading order
(i.e., by rows, left-to-right, starting with the highest row).

Recall from Section 1.2 that if w is fully commutative, then R(w) consists of the set
L(P) of (labeled) linear extensions of a labeled poset P; namely, the heap of any 1 € R(w).
Since all heaps belonging to a given commutativity class are isomorphic as labeled posets,

we may thus refer to the heap of w without ambiguity.

ProposiTION 6.1. If w € B, is a fully commutative top element of shape A/p, then
the heap of w is isomorphic to D/A/u (as a labeled poset).

Proof. Let 1 = iy - - - i; denote the canonical reduced word for w and P the corresponding
heap ordering of {1,...,{}, as in Section 1.2. For 1 < k < [, define ¢, € D = D/A/u to
be the kth cell of D in reading order. We claim that the map k& — ¢; 1s a labeled poset
isomorphism P — D. Since the canonical reduced word is obtained by reading the labels
of D in (English) order, it is clear that the map is bijective and label-preserving. Now if
r < s 1s a covering relation of the heap, then ¢ = i, and j = i, are indices of noncommuting
generators of B,; 1.e., j = ¢+ 1. However, the cells of D with label i & 1 that appear
later (in reading order) than the cell ¢, are all greater than ¢, in the partial order of D.
Conversely, a cell ¢ € D with label ¢ is covered in the partial order only by cells with labels

t & 1, so these covering relations correspond to relations of the heap. O

A (shifted) standard tableau of shape A/ is by definition an order-preserving bijection

T: D/>\/u — {1,...,1}. The number of such tableaux is denoted gM* . Since there is an
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obvious equivalence between standard tableaux and linear extensions of the underlying

diagram poset, we obtain the following.

COROLLARY 6.2. Ifw € B, is a fully commutative top element of shape A/u, then we
have #R(w) = gM*.

REMARK 6.3. (a) If we specialize Proposition 6.1 and its corollary to the parabolic
subgroup A,,_1, we obtain Proposition 2.1 and Corollary 2.1 of [BJS].

(b) In case ;t = @, there is a well-known hook length formula for g*/#—see [M, p. 135].
The fully commutative top elements whose shapes have this property are distinguished
among all members of B,, by the fact that their one-line forms are increasing (Lemma 5.2).
Furthermore, for such elements the negative entries of the one-line form are (in absolute
value) the parts of A.

(¢) The special case g = @ of Corollary 6.2 is closely related to Theorem 4.5 of [E]. In
this paper, Edelman identifies a set of elements wy € A, indexed by strict partitions A,
and proves that the number of i € R(w) that satisfy the lattice property is g*. Although
the definition of wy is complicated, it can be shown that » = top(wgl) € B, 1s the fully
commutative top element of shape A/@ and R(z~1!) is the set of reduced words for wy

satisfying the lattice property.

The heaps of the fully commutative members of B,, that are not top elements are more
complicated to describe. By Corollaries 5.6 and 5.7, the canonical reduced words for such

elements are of the form
i=[my,m] - [me_1, nea][=my, 0], (6.1)

where m; > -+ > m, > 0. If we delete the subword [—m,, m, — 1] from 1, we obtain a
canonical reduced word j = [m1,n1]---[m,, n,] for some fully commutative top element.
The heap of this top element is by Proposition 6.1 a shifted skew diagram of some shape,
say A/p. Furthermore, this diagram has the property that the smallest label is m = m,.,
and there is exactly one cell with this property. In fact, in any shifted skew diagram with
no cells labeled 0 (i.e., no cells on the main diagonal) the smallest label appears only once.

Since 1 can be obtained from j by replacing the unique occurrence of the smallest
term m with the word m---101---m, it follows that the heap of i can be obtained from
the heap of j by replacing the cell labeled m with a chain of 2m + 1 elements labeled
m,...,1,0,1,...,m.

More formally, given a labeled poset P with a unique vertex z having label m > 0,
define I,,,(P) to be the labeled poset obtained from P by replacing x with the chain

T < <1 <xog<x1 << Ty

29



4

3
2 7
1
0
1
2 5

3

FIGURE 1. FIGURE 2.

FIGURE 3.

The label of z; is defined to be |i|, and for each relation # < y (resp., ¢ > y) of P, we
now have z; < y (resp., #; > y) for all [i]| < m.

In summary, we have the following.

ProrosiTION 6.4. If w € B, is fully commutative, with a canonical reduced word of
the form (6.1), then the heap of w is isomorphic to Im(D/A/u) (as a labeled poset), where
A=+ 1,0+ 1), p=(my,...,my), and m = m,.

For example, consider the fully commutative w € Bg whose canonical reduced word
is [5,7][3, 5][—2,4]. The shape of [5,7][3,5][2,4] is A/p = 865/532 (see Figure 1) and the
heap of w is obtained by replacing the cell of A/u labeled 2 with a 5-element chain. See
Figure 2. As this example plainly shows, the heap of a fully commutative member of B,
need not be isomorphic to a shifted skew diagram, or even ranked.

On the other hand, it is possible for the heaps of words of the form (6.1) to be isomorphic
to shifted skew diagrams as unlabeled posets. For example, it is clear from Figure 3 that,
after deleting the labels, the heap of [4,5][3,4][-1, 2] is isomorphic to D%, 5,. Hence the
number of reduced words for the corresponding element of B,, is the number of standard
shifted tableaux of shape 764/54. In general, it is not hard to show that the (unlabeled)
heap of any word of the form (6.1) is isomorphic to an (unlabeled) shifted skew diagram

if and only if m, + 1 occurs at most once, or equivalently, n, = m, or m,_y > m, + 1.
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6.2 Heap expansions.

There is a close connection between the symmetric functions Gp(w) and the theory
of enriched P-partitions developed in [Stel]. To explain, let P be a partial ordering of
a finite set X, and let v : X — {0,1,2,...} be a labeling of its elements. An enriched
P-partilion is a mapping f : P — {&1,42 ...} such that the following properties hold
for all # < y in P: (1) f(x) < f(y) (where < denotes the total ordering of Section 1.6),
(2) f(z) = f(y) > 0 implies y(x) < 7(y), and (3) f(x) = f(y) < 0 implies y(x) > 7(y).

The primary object of study in [Stel] is the generating function

AP) 21,20, =Y ] arens

[ zeX
summed over all enriched P-partitions f.

It should be noted that in [Stel], the labeling map of the poset P is required to be
injective, however the labeled posets we have in mind here (namely, heaps of reduced
words) tend to have multiple uses of the same label. Nevertheless, it is easy to check that
the theory of enriched P-partitions remains valid for non-injective labelings, provided that
each element 1s comparable to, but does not cover, every other element of the same label.
This is equivalent to requiring every labeled linear extensions of P to be twin-free. (Hence
the theory does apply to heaps of reduced words.)

One of the motivating examples of enriched P-partitions are the tableaux associated
with Schur @-functions. Indeed the Schur @-function indexed by the (shifted) skew shape
A/ is the generating function for enriched D’A/u—partitions. That is,

Q)\/M = A( />\/u)
See [Stel, §2.4] for more details.

PrROPOSITION 6.5. If Py, ..., P, are the heaps of the commutativity classes of R(w)

for some w € B,,, then we have
Gp(w) = A(P) + -+ A(Py).

Proof. If P is the heap of any reduced word 1, then by the fundamental lemma of
enriched P-partitions (Lemma 2.1 of [Stel]), we have

A(P)= Y Kag). (6.2)

JeL(p)

However L(P) is the commutativity class of i (Proposition 1.1), so the result follows

from (3.2). O
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Results equivalent to (in some instances special cases of) the following have been inde-
pendently obtained by others. For example, Lam (Corollary 3.5 of [L]) and Billey-Haiman
(Proposition 3.14 of [BH]) both prove the case ¢ = @, and Fomin-Kirillov [FK1, §8] state

the result without proof.

COROLLARY 6.6. Ifw € B, is a fully commutative top element of shape A/u, then we
have Gp(w) = A(D’A/u) =Qx/u-

An interesting open problem (see [Stel,§5]) is the classification of labeled posets P
such that A(P) is a symmetric function. An obvious conjecture to propose is that shifted
skew diagrams are the only A-symmetric posets. However, even after accounting for
the “correct” notion of isomorphism for labeled posets (namely, the weak isomorphism
of [Stel,§2.3]), the fully commutative members of B, (and as we shall see, also D)
provide examples of A-symmetric posets that are not of this type.

To be explicit, first note that by Proposition 6.5 we have the following.

COROLLARY 6.7. If P is the heap of any fully commutative w € B,, then we have
A(P) = Gp(w). In particular, A(P) is symmetric.

Hence by Proposition 6.4, we obtain a A-symmetric poset by taking any skew diagram
whose smallest label is m > 0, and replacing the (necessarily unique) cell with this label
by a (2m + 1)-element chain. If the resulting labeled poset P has more than one vertex
labeled m 4+ 1 (as in, for example, the heap of Figure 2), then it is not isomorphic, even in

the weak sense, to any shifted skew diagram.

Part I1: D,

Let s1,sq,...,8,—1 denote generators for the Coxeter group D,,, arranging the indices
so that m(1,2) = m(1,2) = 3 and m(i — 1,4) = 3 for 2 < i < n. For any word i € R(D,,),
we let £,(i) (resp., ¢1(i)) denote the number of occurrences of 1 (resp., 1), and define
Ly1(1) = £,(1) + ¢1(1). In some circumstances, it will be necessary to have a total ordering
of the indices; for these purposes, we choose 1 <1 <2< ---<n—1.

Interchanging s; and s7 extends to an automorphism of D,,, denoted w — w. We adopt
the convention that A, _; refers specifically to the parabolic subgroup of D, generated
by s1,...,8,_1; thus to be consistent, A,_; must denote the subgroup generated by
ST,89, .-, Sp—1-

The shortest left coset representatives for D, /D,,_; consist of

{L Sn—1, Sn—28n—-1, ... , 85182 "8Sp—_1, 183" Sp—1,

518189 " Sn—1, S98181S9 " Spn—-1, ... ,Sn_l"'52515152"'571_1}.
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These coset representatives each have either one or two reduced expressions, according to
whether the factor s;s7 occurs. By consistently choosing representative reduced words in
which the subword 11 does not appear, we thus obtain a canonical reduced word for every
w € Dy, following the conventions of Section 1.3.

For integers j > ¢ > 2, we define {4, j] and {—¢, j] to be the words ¢ - (i +1)---j and
i-(i—1)---2112---j (respectively), and for j > 1 we define

In particular, (—1,1] = 1 and (0,1] = 11. In these terms, the canonical reduced words for

the members of I),, are the expressions
<m1a 77,1] . <m2a 77'2] o <m7‘a nT]a

where n > ny > -+ >n, > 1 and |m;| < n;.

With g1, ..., &, as the standard orthonormal basis of R, we take ¢; 41 —¢; (resp., e1+€3)
as the simple root corresponding to s; for i > 1 (resp., i = 1). In these terms, the vector
§=e1+42e3+--+ney = (1,2,...,n) belongs to the interior of the fundamental chamber
defined by this choice of simple roots, and its orbit consists of all signed permutations of
(1,2,...,n) with an even number of negative entries. These constitute the one-line forms

of the members of D,,.

7. The A-stable members of D,

The map s; — s1, s; — s; (i > 1) extends to a group homomorphism D, — A,_1,
denoted w +— |w|. In terms of one-line forms, the effect of this homomorphism is the same
as taking the absolute values of the coordinates; i.e., (wy,...,wy) — (Jwi], ..., |wy]).

If the length of w € D,, is the same as the length of |w| € A,_1, we will say that w is
A-stable. As we shall see, the A-stable members of D,, are closely related to the A-reduced

members of B, _1.

THEOREM 7.1. For w € D,, the following are equivalent.

(a) w is A-stable.
(b) 11 is not a subword of any i € R(w).

(
(

)
¢) 11 does not occur in the canonical reduced word for w.
d) w avoids the patterns (+1, —2).

Proof. Since |s;s1]| = 1, it is clear that (a)=(b). Also, (b)=(c) is immediate.
(¢)=(d). Proceed by induction on n. If n = 2, the possibilities for w are 1, s, and sz,
for which the corresponding one-line forms are (1,2), (2,1), and (=2, —1). Otherwise, if
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n > 2, consider the canonical factorization ,---zs of w. By the induction hypothesis,
w = &p_1---22 € Dyp_1 has a one-line form (w),...,w,,_;) that avoids the patterns
(£1,—-2). In passing from w’ to w = z,w’, the entry +n is inserted into some position of
the one-line form depending on z,. Since n cannot participate in an occurrence of either
of the patterns (1, —2), suppose that —n is the inserted entry. This can happen only if
1 occurs in the canonical reduced word for z,,. However, the only coset representative for
D,,/D,—1 whose canonical reduced word contains 1 but not 11is #, = $785---5,_1. In
that case, the one-line form of w is (—n, —w{, wh,...,w},_;) and there is no way for —n
(or —w}) to participate in an occurrence of the patterns (+1, —2).

(d)=-(a). If w contains one of the patterns (+1,—-2) and €(s;w) > £(w), then we
claim that sjw also contains one of these patterns. To see this, suppose that (a,b) is a
subsequence of the one-line form of w that fits (£1,—2); i.e., —b > |a|]. If j > 1 then
(a,b) will also be a subsequence of s;w unless s; interchanges a and b. However since
f(sjw) > {(w), this would require a < b, contrary to the fact that —b > |a|. In the
remaining case, namely j = 1, we cannot have a and b in the first two positions of w, since
otherwise £(s;w) > ¢(w) would require that a4 b > 0. Hence either (a,b) or (—a,b) occurs
as a subsequence of s;w, both of which fit (£1, —2).

Given the claim, it suffices to show that if w is A-stable but s;w is not, then s;w
contains one of the patterns (£1, —2). For this, note first that ¢(s;w) > (w) (otherwise
s;w would be A-stable) and £(|s;w|) < €(sjw) = Lw)+1 = £(|w])+1, so £(]s;w]) < £(|w]).
If j > 1, let a and b denote the entries of the one-line form of w in positions j and j + 1.
Since {(sjw) > {(w), we have a < b, and since {(|s;w]) < {(|w]|), we have |a| > |b|. Hence
—a > |b] and the subsequence (b, a) of s;jw fits one of the patterns (£1, —2). Otherwise,
if j =1, let @ and b denote the entries in positions 1 and 2 of the one-line form of w. We
have a4+ b > 0 since £(s;w) > £(w), and |a| > |b] since €(|s;w]) < £(|w|). Therefore a > |b]
and the subsequence (—b, —a) of s;w fits one of the patterns (+1,-2). O

For any even J C {1,...,n}, let ¢(J) € D,, denote the member of D, whose action on
R™ is to change the sign of the coordinates indexed by J. The elements ¢(.J) form the

kernel of the homomorphism w +— |w|.

COROLLARY 7.2. If w € A,,_y, then w' € D,, is A-stable and |w'| = w if and only if
w' = t(J)w for some even J C L(w).

Proof. By the criterion of Theorem 7.1(d), w' € D, is A-stable if and only if the

positions where negative entries occur are left-minima of |w'|. O
COROLLARY 7.3. There are %(n + 1)! A-stable members of D,,.
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Proof. By Corollary 7.2, there are 2#5(®)=1 A_gstable members of D, corresponding to
each w € A4,_1. Apply Lemma 2.6. (Alternatively, there are n 4+ 1 coset representatives
of D, /D, _1 whose canonical reduced words do not contain 11, so the result follows by
induction and the criterion of Theorem 7.1(¢c).) O

Defineamap o : {1,1,...,n—1} — {0,1,...,n—2} by setting o(i) = i—1for 1 <i<n
and o(1) = o(1) = 0. Extending o to the corresponding free monoid, we will write (i) for
o(iy)---o(i) whenever i = ¢;---4;. Note that if w € D,, is A-stable, then any 1 € R(w)
remains reduced under the identification 1 = 1. Therefore (i), regarded as a word formed
out of labels for the generators of B,_1, is A-reduced. In particular, o(i) € R(Bn_1).

If j € R(Bn-1) is obtained from o (i) by the application of a single B,,_;-braid relation,
then j = o(1’) for some word i’ that is D,,-braid equivalent to i, except for cases involving
the relation 1010 ~ 0101. In such cases, i must contain one of the subwords 2121, 2121,
1212, or 1212. However, none of these subwords can occur if w is A-stable. (For example,
if 2121 occurs, then the relation 2121 a 1211 shows that 11 would appear in some reduced
word for w.) Therefore if w is A-stable, then

oR(w)= |J R (7.1)

z€X (w)

for some X (w) C By—1. (We use the notation Rp(x) here, rather than R(z), to emphasize
that # € B,_1.) Although it is not clear a priori, we will see that ¢ is injective on R(w).
In order to describe the set X (w) appearing in (7.1), let us define

N(w) = {1} U{j:w; <0or|uw;| =1},

where (w1, ..., wy) denotes the one-line form of some w € D,,. Also, for any set of positions

J={j1 < < jm}, we define

Er(w, J)=#{1<k<m: & & = +1},
5_(w,J):#{1§k<m glgk:_l}a

(7.2)

where & denotes the sign of the jith entry of w.

Recall from Section 2 that b : B,_1 — A,_1 denotes the map in which 0 is inserted
into the one-line form of # € B, _; from the right, and then successive negative entries
are bumped. In the present context, the one-line forms for w € A,,_1 are permutations of
(1,...,n). Thus to produce the correct one-line form of b(z), we must now supplement
the procedure of Section 2 by adding (1,...,1) to the result. For example, if x € Bs has
one-line form (3,—4,5,—2,1), then b(x) € As (now) has one-line form (5,4, 3,6, 1,2).
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Let us also recall from Section 2 the description of the b-preimages of w € A,_;. Taking
into account the shift of entries, if k is the position where 1 occurs in w, the preimages of
w are the elements w’ € B,_; obtained by unbumping the entries of w at the positions

indexed by J, for all J such that {1,k} C J C{1,... k}.

THEOREM T7.4. If w € D, is A-stable, then we have the following.

(a) The restriction of o to R(w) is injective.
b oRw) = U RslulS).
N(w)CKCL(|wl|)
(¢) If N(w) C K C L(|w|), then for every i € R(w) such that o(i) € Rp(|w|¥), we
have ¢1(1) = €4 (w, K) and ¢1(i) = £_(w, K).

For example, if w = (6,7,—4,2,3,—1,5) € D7 then w is A-stable, N(w) = {1,3,6},
L(Jw|) = {1,3,4,6}, and there are two elements |w|X € Bg that appear in the decompo-
sition of part (b); namely, (6,—-5,1,2,—3,4) and (6, —5,—3,2,—1,4).

COROLLARY 7.5. If w € D,, is A-stable, then #R(w) = Z #Rp(Jw|).
N(w)CKCL(|w])

For example, if w has one-line form (—n, ..., —2,+1) (the sign of the last entry being
determined by parity considerations), then w is A-stable and N(w) = L(Jw|) = {1, ..., n}.
Hence there is exactly one term in the expansion of Corollary 7.5, corresponding to the
element x € B,_; whose one-line form is (—(n — 1),...,—1). As noted in Section 3, the
number of reduced words for # (and therefore also w) is the number of shifted standard
tableaux of shape (n —1,...,1).

If © € B,_1 has one-line form (z1,...,25-1), set M(z) :={1}U{j+1:2; <0}

Our proof of Theorem 7.4 relies on the following.

LEMMA 7.6. Forz € B,_1 and w € D, the following are equivalent.

(a) w is A-stable and R(x) C o R(w).

(b) x is A-reduced and w = t(J)b(x) for some even J C M(z).

(¢) = = |w|¥ for some K such that N(w) C K C L(|w]).
Furthermore, if w and x are related as in (c), then for somei € R(w) such that o(i) € R(z),
we have ¢1(1) = &4 (w, K) and ¢1(i) = é_(w, K).

Proof. (b)=(c). If w = t(J)b(x) for some even J C M(x), then |w| = b(z). By
Theorem 2.4, it follows that if x is A-reduced, then we must have = |w|® for some K
satisfying {1,k} C K C L(|w]|), where k is the position where 1 occurs in |w|. Thus to
satisfy (c), it remains only to check that N(w) C K. Since J is the set of indices where
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negative entries occur in w, it suffices to show that J C K. However J C M(z), so j € J
implies j = 1 or #;_1 < 0. In either case, j indexes a position that must be unbumped in
order to obtain z from |w|; i.e., j € K.

(c)=(a). Suppose that x = |w|¥ for some K such that N(w) C K C L(Jw|). Under
these circumstances, we must have K = M(z) and |w| = b(z). We prove by induction
on {(x) that there exists some i € R(w) such that o(i) € R(x), (1(1) = &4 (w, K), and
(i) = £_(w, K). For the base of the induction, suppose fy(x) = 0. In that case, x

has no negative entries, so K = M(x) = {1} and 1 is the first entry in the one-line
form of |w| = b(x). Hence w belongs to the subgroup generated by sa2,...,s,-1 and
R(z) = oR(w). We also have £;(i) = ¢1(i) = £+ (w, K) = 0 for every i € R(w).

For the remainder of the proof, let (wq, ..., wy) and (#1, ..., 2,_1) denote the respective

one-line forms of w and x. Also, to distinguish the generators of D, from those B,,_1, we
use s3,..., 55 _o to denote the latter.

In the case £y(x) > 0, x has at least one negative entry; assume that the leftmost
one is ¥; = —a. Let —b < 0 be the entry that bumps —a when 0 is inserted from
the right. In |w| = b(z), we therefore have |wi| = a + 1 and |wj41] = b+ 1. Since
J+1le M(z)=K C L(Jw|), b+ 1 must be a left-minimum of |w|.

Case 1: j > 2. Since N(w) C K and j+1 is the smallest member of M (z) = K greater
than 1, we have w; > 0. Therefore w; > wjt1 and £(s;w) < £(w), since |wj41| =b+11is a
left-minimum of |w|. We also have z;_1 > z; and £(s}_,z) < {(z), since every entry of x
prior to j is positive. Using sjw and s7_;x in place of w and x, the hypotheses of (c) are
satisfied (the only effects on the values of N(w), K, and L(|w|) are that the occurrences
of j+1 are replaced with j), so by the induction hypothesis we can find some i’ € R(s;w)
such that o(i') € R(sj_,z), with the values of ¢,(i'), {1(i') as desired. By inserting j at
the beginning of i’, we obtain a word i € R(w) such that ¢(i) € R(x). For this word, we
have ¢1(i) = &4 (w, K) and £1(i) = £_(w, K), since the values of ¢,(-), £1(-) and £4() do
not change.

Case 2: j = 1. In this case, (a+1,b+4 1) are the first two entries of |w]|, and a > b since
b+ 11is a left-minimum. Hence £(w') < {(w), where w' = s;w (if wy = a+ 1) or v’ = sjw
(if wy = —(a+1)). We also have {(sjz) < £(x), since 21 = —a < 0. If we replace w with
w' and @ with sju, the hypotheses of (c) are still satisfied—the effects on N(w), K, and
L(Jw]) are such that j + 1 = 2 is deleted from K, L(|w|), and (if it occurs there) N(w).
Hence by the induction hypothesis we can find some i’ € R(w’) such that o(i’) € R(s§z),
H(1) =& (w', K", and (1(1') = - (w', K'), where K’ = K — {2}. By inserting 1 or 1 at
the beginning of i’ according to the sign of wy, we thus obtain a reduced word i € R(w)
such that o(i) € R(xz). Furthermore, if &;,... &y (resp., &1,...,&,,_1) denote the signs
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used to compute {1 (w, K) (resp., £x(w’, K)) in (7.2), then &; is the sign of wy, and

(€2a .. ,gm) = (glgiagéa o "€;7’L—1)'

It follows that & - &k = &) -+ &, for k> 1, so we have £ (w, K) — &y (w', K') =1 and
E_(w, K)—&é_(w', K'Y = 0 or vice-versa, according to whether the first term of i is 1 or 1.
Hence ¢1(i) = &4 (w, K) and ¢1(1) = £ (w, K), so the induction is complete.

Since one of the hypotheses of (¢) is N(w) C L(|w]), it follows that w is A-stable,
by Corollary 7.2. Having already shown R(x) N e R(w) is nonempty, it now follows that
R(z) € oR(w), by (7.1).

(a)=(b). Given that w is A-stable, every # € B,_; such that R(z) C oR(w) is A-
reduced. Thus the implication (a)=(b) is trivial if x is not A-reduced. Otherwise, there
are exactly 2#M(@)=1 = 960(*) distinct elements w € D,, that satisfy (b). Having proved
(b)=(c)=(a), it follows that each of these elements also satisfy (a). On the other hand,
for any j € R(x), there are only 2¢°(®) possible words i such that o(i) = j. Since we have
already identified 2¢(®) distinct members of D,, that satisfy (a), this can only be reconciled
if these are the only members of D, that satisfy (a). O

Proof of Theorem 7.4. For (a), suppose that ¢(i) = o(i') = j for some pair 1,1’ € R(w).
It follows that j € R(x) for some A-reduced # € B,_;. However, by the equivalence
of parts (a) and (b) of Lemma 7.6, there are 2¢(®) distinct A-stable w’ € D,, such that
j € oR(w"). Since there are only 2°(*) words i” such that ¢(i”) = j, it follows that they
must be reduced words for distinct members of D,,. Hence 1 =1’

Part (b) is a corollary of (7.1) and the equivalence of parts (a) and (¢) of Lemma 7.6.

For (¢), we already know by Lemma 7.6 that there exists at least one i € R(w) such
that o(i) € R(Jw|®) for which ¢,(i) = &4 (w, K) and ¢7(i) = £_(w, K). Given another
i’ € R(w) such that o(i") € R(x), o(i’) can be transformed into o(i) by means of a series
of B, _1-braid relations. Furthermore, the relation 1010 & 0101 can never arise, since
otherwise w would not be A-stable. Hence the only relations involved are o-images of
D, -braid relations that preserves the number of occurrences of both 1 and 1. It follows
that there must exist i € R(w) such that ¢,(1") = £,(1"), (i) = £1(”), and ¢(i”) = o(i).

However o is injective on R(w), soi=1". O

REMARK 7.7. (a) If w € D,, is A-stable, Theorem 7.4 implies that the maximum value
of £11(1) for i € R(w) is #L(Jw|) — 1, and the set of reduced words with this property
is in one-to-one correspondence (via o) with the set of reduced words for some z € B,,_;
(namely, z = top(|w])).

(b) Similarly, the minimum value of £1(i) for i € R(w) is #N(w) — 1, and the set of
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reduced words with this property is in one-to-one correspondence (via o) with the set of
reduced words for some # € B,_;. For a fixed choice of |w|, we can select an A-stable
preimage w so that N(w) takes on any value in the interval {1,k} C N C L(|w|), where k
denotes the position where 1 occurs in |w|. Thus every A-reduced & € B, _1 occurs as the

{+1-minimizer of some A-stable w € D,,.

8. The symmetric functions Gp and Gp(s,t)

Let ug,uq, ..., u,—1 denote generators for the nil Coxeter ring of D,,, and define
Gn(z;5,1) = (14 2un_1) - (14 zus)(1 4+ 2sz2uq ) (1 + 2tzug)(1 4 zus) - - (1 4 zup_1),

where z,s,t are central indeterminates. For each w € D, we define Gp(w;s,t) to be the

quasi-symmetric function appearing as the coefficient of u,, in the expansion

Gn(zl;s,t)é (22;8,1)- Z Gp(w;s, t)(z1, 22, ... Yty
weD,
Considering the relation

(14 2szu ) (14 2tzur) = (1 4+ sug)(1 + tug) (1 + tug)(1 + suy),

one sees that G,(z;s,t) is the image of G, (z) (see Section 1.6) under the substitutions

U >ty Uy — Sts, U — U1 (1 > 2). Thus by Proposition 1.4(b), we have

Gpl(w;s,t) = Z Szl(i)tzi(i)[(A(i). (8.1)
iER(w)

Note that Gp(w;s,t) = Gp(w;t,s) and
Gp(w s, ) (21, ..., 2m) = Gp(w; s,8)(2m, .., 21).

Also, if w € Ap_1, then G4(w;t) = Gp(w;t, s) = Gp(w;t,0).
An immediate consequence of (8.1) and the fundamental lemma of enriched P-partitions

(see (6.2)) is the following heap expansion for Gp(w;s,t) (cf. Proposition 6.5).

ProposITION 8.1. If Py, ..., P, are the heaps of the commutativity classes of R(w)

for some w € D,,, then we have
k
(w;s,t) 2541 A(P),
where (,(P) and {;(P) denote the number 1’s and 1’s in the labeled poset P.
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The formal series Gp(w;s,t) need not be symmetric in the variables z1,za,...; for
example, one may check that Gp(s;sys189;8,1)(21, 22) = 4stz122(21 + 22)(2tz1 + z2). On
the other hand, it is known (e.g., Lemma 4.24 of [L]) that in the special case s =t = 1/2,

Gr(z;s,t) does commutes with G, (y;s,t), and thus
Gp(w) = Gp(w;1/2,1/2)

1s a symmetric function of z1, 29, .. ..

COROLLARY 8.2. If P is the heap of any fully commutative w € D,, then we have
A(P) = 2'Gp(w), where | denotes the number of occurrences of 1 and 1 in any reduced

word for w. In particular, A(P) is symmetric.

We claim that there is also a special class of elements w € D,, for which Gp(w;s,t)
remains symmetric without specializing s and ¢. To explain, let I denote the two-sided

ideal of the nil Coxeter ring generated by wjusugus, UTUxU Uy, UsUTUU, AN Ug U U UT .
PROPOSITION 8.3. We have Gy, (2;5,1)Gn(y;s,1) = Gn(y; 5,1)Gn(x;s,t) mod I.

Proof. Applying Proposition 3.1(b) with a = G, _a(x;s,1), b = Gp_a(y; 8, 1), © = tp_3,

and v = wu,_1, we see that the assertion follows by induction, once the cases n = 2
and 3 have been established. However the case n = 2 is trivial, and n = 3 1s equivalent to
showing that for every w € Ds, either Gp(w; s,t)(#,y) is symmetricin 2 and y, or else some
i € R(w) contains the subword 1212, 1212, 2121, or 2121. Now if w belongs to a proper
parabolic subgroup of D3 (i.e., Ay, As, or Ds), then the symmetry of Gp(w;s,t)(z,y) is
either trivial or a consequence of the symmetry of the G 4(¢)-family of quasi-symmetric
functions. Retaining only one member from each quadruple (w, w, w=!, @~1), there remain
only three elements with no reduced word containing 1212, 1212, 2121, or 2121 as a

subword; namely, s,5,57, 15789, and s,5;5755. For these one obtains

Gp(s18951;8,8) (2, y) = dstey(x + y),
Gp(s1s189;8,8) (2, y) = 4st(z + y)(ar:2 + zy + yz),
Gp(s9815189;8,8)(x,y) = 4dst(x + y)z(av2 + yz),

each of which is visibly symmetric. O

Define w € D, to be finely symmetric if there is no member of R(w) containing any of
the subwords 1212, 1212, 2121, or 2121.
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COROLLARY 8.4. If w is finely symmetric, then Gp(w;s,t) is a symmetric function.

REMARK 8.5. (a) Proposition 3.1(b) also provides an easy inductive proof of the
fact that Gp(x;1/2,1/2) commutes with G, (y;1/2,1/2) (or equivalently, that Gp(w) =
Gp(w;1/2,1/2) is symmetric for all w € D,). One needs only to check the case n =3, a
routine calculation.

(b) Since G(z;s,t)G(—2;s,t) = 1, it follows that Gp(w;s,t) satisfies the Pragacz can-
cellation law (e.g., see [Stel,§A.3]), and thus is a Q[s,t]-linear combination of Schur
@-functions or P-functions whenever it is symmetric. In particular, since the definition of
G(z;s,t) shows that Gp(w) has integer coefficients relative to monomials in the variables
Z1, Z2, . . ., it follows that G'p(w) is P-integral. (However, G'p(w) need not be Q-integral.)
Also, since Gp(w;s,t) is a Z-linear combination of the quasi-symmetric functions Ky
(see (8.1)), it follows from Theorem 3.8 of [Stel] that if Gp(w;s,t) is symmetric, it must
be a Z[s, t]-linear combination of Schur Q-functions.

(¢) The symmetric functions Gp(w) have been studied by both Lam [L] and Billey
and Haiman [BH]. For example, Lam and Billey-Haiman both prove that Gp(w) is a

nonnegative Z-linear combination of Schur P-functions.

It is clear that every A-stable w € D, 1s finely symmetric, since each of the forbidden
subwords 1212, 1212, 2121, and 2121 is braid-equivalent to a word that contains 11. In

fact, comparing (3.2) and (8.1), the following is an immediate consequence of Theorem 7.4.

THEOREM 8.6. If w € D,, is A-stable, then we have

GD(w;s,t): Z 5§+(w’K)t§_(w’K)GB(|w|K).
N(w)CKCL(|w])

In particular, given the @-positivity of the symmetric functions Gp(w), we see that
for the A-stable w € D,,, the @-function coefficients of Gp(w;s,t) are polynomials with
nonnegative coefficients. In fact, as we will shall see below, this holds for every finely

symmetric w € D,,.

9. Finely symmetric elements
In the following, we reserve the notation A, _» specifically for the parabolic subgroup

of D,, generated by sa,...,8,_1.
LEMMA 9.1. We have An—l = An—Z U An_zslAn_z.

Proof. In the canonical reduced word for any w € A,,_1, the index n — 1 occurs at most
once. Since s; — $,_; 18 an automorphism, 1t follows that w also has a reduced word in

which the index 1 appears at most once. [
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LEMMA 9.2. For w € D, the following are equivalent.

(a) we€ Ap_2s151An_2.

(b) Every i€ R(w) has one 1, one 1, and no 2 occurs between the 1 and the 1.

(¢) The canonical reduced word for w has the subword 11 and no other 1 or 1.

(d) The one-line form of w has exactly two negative entries, and the first entry is —1.

Proof. (a)=(b). If w € Ap_28,571A,_32, then there is at least one i € R(w) that meets
the conditions of (b). Furthermore, in any such word, there is no opportunity to apply the
braid relations 121 ~ 212 or 121 ~ 212. Since the remaining braid relations preserve the
number of occurrences of 1 and 1 as well as the relative positions of 1,2, and 1, it follows
that every i € R(w) meets the conditions of (b).

(b)=(c). Let {my,ni]---{my,n,] be the canonical reduced word for w, and suppose
that 1 (resp., 1) occurs in the subword (m;, n;] (resp., (m;,n;]). If i = j, then they appear
consecutively in the order 11, by construction. Otherwise, if (say) ¢ < j, then a 2 must
occur immediately following the 1, contrary to the hypotheses of (b).

(¢)=(a) is immediate.

(a)&(d). If w = ws;s7y for some #,y € A, _2, then the first entry of the one-line form
of y must be 1. Therefore, the first two entries of s;s7y are (—1, —5) for some j > 1, and
w 1s obtained by arbitrarily permuting the entries of sys7y in positions beyond the first.

Thus (d) holds. Reversing this argument proves the converse. 0O

We remark that it is not possible to characterize the members of the double coset
Ap_28187An—2 in terms of pattern avoidance. Indeed, every pattern involving positive
terms occurs in some member of this double coset. However, it contains no member of
A, _1 and yet members of A,,_; have only positive entries.

On the other hand, if we include the double cosets containing the remaining members
of Dy (ie., 1, sy, and s1), it is possible to give both pattern-avoidance and forbidden

subword characterizations.

THEOREM 9.3. For w € D,, the following are equivalent.

(a) weE A,_aDs A, _5.
(b) Neither 121 nor 121 occur as subwords of any i € R(w).
(¢) w avoids all patterns (a,b,c) such that b,c < 0, as well as all patterns that are

permutations of (+1, -2, —3).

Proof. (a)=(b). If w € Ap_2s151An_2, then the implication (a)=(b) of Lemma 9.2

shows that neither 121 nor 121 can appear in any reduced word for w. Otherwise, we have
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w€ A,_1orwe fln_l, in which case every reduced word for w omits either 1 or 1, and
hence (b) is trivially satisfied.

(b)=(c). Towards a contradiction, assume that w has three entries (a, b, ¢) that fit one
of the patterns forbidden by (c), and no reduced word for w contains 121 or 121. Among all
such counterexamples, choose one that minimizes length. Given this, w cannot have four
or more negative entries; otherwise, any choice of s; such that ¢(s;w) < £(w) would yield
a shorter element with (at least) four negative entries or two negative entries preceded by
a positive one, both of which are forbidden. Thus exactly two of a, b, ¢ are negative, and
the remaining entries of w are positive.

If (a, b, ¢) is a permutation of (1, —2, —3), then since every such permutation is forbidden,
we must have £(s;w) > {(w) for all j > 1. In other words, the one-line form of w must
be increasing. Therefore (a, b, ¢) must fit the pattern (=3, —2,1) and a, b are the first two
entries of w. Whether or not the third entry of w is ¢, the fact that the entries increase
implies that the first three entries also fit the pattern (—3,—2,1). However in that case,
w has a reduced word that begins with 121, a contradiction.

The remaining possibility is that (a,b,¢) fits a pattern with @ > 0 and b,¢ < 0. Since
every entry prior to b is positive, we may assume that a is the first entry of w. If we
permute any pair of entries of w not involving the first, the result will still contain a
forbidden pattern. Therefore, minimality requires £(s;w) > {(w) for all j > 2; i.e., the
entries beyond the first position of w must increase. Hence, (a, b, ¢) fits one of the patterns
(1,-3,-2), (2,-3,—1), or (3,—2,—1). In the first two cases, we see that {(s;w) < £(w)
and syw still contains a forbidden pattern (contrary to minimality), but in the last case,
w has a reduced word that begins with 121, a contradiction.

(¢)=(a). If w avoids all patterns involving three negative terms, then w has at most
two negative entries. If w has none, then w € A,_1 C A,_2D24,,_2 (Lemma 9.1), so
assume that w has exactly two. If —1 is not one the negative entries, then w contains a
pattern formed by some permutation of (1, -2, —3), contrary to (c). If the first entry is
positive, then w contains a pattern (a, b, ¢) such that b,¢ < 0, again contrary to (¢). Thus
the negative entries are —1 and —j for some j > 1 and one of them occurs in the first
position. If —1 occurs first, then Lemma 9.2 implies w € A, _3s;57An—2. Otherwise, we
can find € A,,_g so that the first two entries of the one-line form of zw are (—j,—1).

However in that case, sjrw € A, _9, and therefore w € A,,_ss74,_o. O

Recall that w € D, is finely symmetric if none of 1212, 1212, 2121, and 2121 occur as
subwords of any i € R(w). This clearly does not happen unless 121 and 121 occur as well,

so we obtain the following.
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COROLLARY 9.4. Every w € A,,_2DsA,,_5 is finely symmetric.

REMARK 9.5. The members of A,_; and A,_; are obviously A-stable and therefore
finely symmetric, so the only “new” finely symmetric elements identified by this result are
the members of A, _2s,;57A4,_2. Since Lemma 9.2 implies that every such element w has

exactly one occurrence each of 1 and 1 in every reduced word, it follows that
Gp(w;s,t) = 4stGp(w).

In particular, the @-positivity of Gp(w;s,t) follows from the Q-positivity of Gp(w).

THEOREM 9.6. For w € D,, the following are equivalent.

(a) w is finely symmetric.
(b) w is A-stable or w € Ap_2D2 A, 3.

(¢) w avolids the patterns
(£1,-2,-3), (£1, -3, -2), (=2,+1,-3), (=3,£1,-2),
(=2,-3,£1), (2,-3,-1), (3,—-1,-2), (2,—1,-3).

Proof. (a)<>(b). We have already noted that the A-stable members of D,,, as well as
the members of A, _2Ds A, _», are finely symmetric. Conversely, if w 1s not A-stable and
not in A, _5s;s7A,_2, then by Theorem 7.1 and Lemma 9.2 the subword 11 appears in the
canonical reduced word i for w, along with at least one other occurrence of either 1 or 1.
It follows that i has a subword of the form 1i’11, 1i’11, 11i’l, or 11i’l, with 1 and 1 not
appearing in 1’. Note that 2 must appear in 1’; otherwise 1 would not be reduced. However
in that case, Lemma 9.1 shows that i’ is braid-equivalent to some word in which 2 appears
exactly once (and 1 and 1 do not occur at all). Since the indices > 2 commute with 1
and 1, it follows that 1i'11 is braid-equivalent to a word containing 1211 ~ 2121, and
hence w could not be finely symmetric. (The other cases are similar.)

(b)=(c). If w is A-stable, then w avoids the patterns (£1,—2) (Theorem 7.1). Hence
w also avoids the patterns listed in (c), since each of them fits either (1,—2) or (=1, —2).
Also, any member of A,_2D-5A,_5 avoids the patterns listed in Theorem 9.3, and hence
also the patterns of (¢), since the latter are a subset of the former.

(¢)=(b). Assume w has at least two negative entries; otherwise w is clearly A-stable.

Case 1: w avoids (—1,—2). In this case, the negative terms must appear in increasing
order, so if the pattern (1, —2) occurs, then one of the patterns (=3,1,-2), (1,—-3, —2),
or (2,—3,—1) also occurs. However, each of these patterns is explicitly forbidden by (c).
Thus w avoids (1, —2), and hence is A-stable (Theorem 7.1).
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Case 2: w contains the pattern (—1,—2). In this case, w must contain exactly two
negative terms, since the only pattern among the permutations of (—1, -2, —3) that is
not forbidden is (—3,—2,—1). If the first entry of w is positive, then one of the patterns
(1,-2,-3), (2,—1,-3), or (3,—1,—-2) occurs, contrary to (c¢). If the first entry of w
is negative but not —1, then one of the patterns (—2,1,—3) or (=2, —3,1) occurs, again

contrary to (¢). Hence the first entry of wis —1, so w € Ap_28;51A4,_2 by Lemma 9.2. O

ProprosITION 9.7. There are

(a) %(n + D!+ (n—1)(n— 1)! finely symmetric members of D,,.
(b) (3n —2)(n — 1)! members of Ay,_2D3A,_5.

(¢) (2n—1)(n —1)! A-stable members of Ap_2D2An_»

Proof. The description in Lemma 9.2(d) shows that the double coset A,,_2s;s1Ap_2 has
(n—1)(n—1)! members. Thus (a) follows from Theorem 9.6 and Corollary 7.3. Obviously
no member of this double coset 18 A-stable, and the remaining members of A,_2D2A4,_»
consist of A,_1 U A,_1. The latter has cardinality 2(n!) — (n — 1)!, yielding (c); restoring
the (n — 1)(n — 1)! members of A, _25,51Ap_2 yields (b). O

Define w € D, to be £y;-invariant if £11(1) = ¢,(1) + ¢1(i) is independent of the choice
of i € R(w). Since the only braid relations that affect £;(i) or ¢1(i) are 121 = 212 and
121 =~ 212, it follows that w is f4-invariant if and only if neither 212 nor 212 occur as
subwords of any i € R(w). In particular, every £4;-invariant element is finely symmetric.

We remark that the £yi-invariant members of D,, and A, _9D5A,,_2, and the A-stable
portions thereof, cannot be characterized in terms of pattern avoidance. To prove this,
note that since A-stability and membership in D,,, A,_sD2A,_5 and A, _1 can be char-
acterized by pattern avoidance, and each contains A, _1, 1t suffices merely to show that
£4i-invariance in A, _1 cannot be characterized by pattern avoidance. For this, consider
the one-line form of w = s28152 € Da; i.e., (3,2,1). Since w is not £4;-invariant, (3,2, 1)
must be a forbidden pattern for f4i-invariance in A, _1, if a set of such patterns exists.
However w' = s283582 € Dy has one-line form (1,4, 3,2), so it contains the pattern (3,2,1)

and yet is clearly £4-invariant.

ProrosiTION 9.8. For w € D,,, the following are equivalent.

(a) w is A-stable and {y-invariant.
(b) N(w) = L(|w]).

(¢) oR(w) = R(x) for some x € By_;.
(d)

In the canonical reduced word for w, the subword 11 does not appear, and the

occurrences of 1 and 1 alternate.
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Proof. (a)=(b). If w is A-stable, then we have N(w) C L(|w]|) (Corollary 7.2). Also,
Theorem 7.4 shows that there exist 1,1’ € R(w) such that £4;(i) = #N(w) — 1 and
ly1(1) = #L(lw]) — 1. Thus if w is £y;-invariant, #N(w) = #L(|w|) and (b) follows.

(b)=(c). If N(w) = L(|w]) then w is A-stable (Corollary 7.2). Apply Theorem 7.4(b).

(¢)=(d). Given that oR(w) only contains reduced words for B,_1, the subword 11
cannot appear in the canonical (or any) reduced word i for w. If there were (say) a
subword 1i’l of i such that neither 1 nor 1 occurs in i/, then by Lemma 9.1, 1i’l would
be braid-equivalent to some word in which 1 occurs exactly once (and 1 not at all). The
number of occurrences of 0 in the o-images of these words therefore varies. On the other
hand, the hypothesis ¢R(w) = R(x) implies that there are {o(z) occurrences of 0 in every
member of oR(w), a contradiction.

(d)=(a). If 11 does not occur in the canonical reduced word i for w, then w is A-stable
(Theorem 7.1), and (i) is the canonical reduced word for some top element # € By _;
(Theorem 4.1). Given that the occurrences of 1 and 1 alternate in i, it follows that if w
failed to be fi;-invariant, there would exist a sequence of braid relations not involving
11 ~ 11, 121 =~ 212, or 121 ~ 212 that transforms i into a reduced word j containing 212
or 212. (Each allowed transformation preserves the property of alternating 1’s and 1’s, so
212 or 212 must occur before 121 or 121.) The o-images of these transformations are valid
for B,_1, so 0(j) € R(x). However 0(212) = ¢(212) = 101 is a subword of &(j), which by
Theorem 4.1 contradicts the fact that # 1s a top element. O

REMARK 9.9. (a) Suppose that w € D, is £1i-invariant but not A-stable. Of course
w must be finely symmetric, so w € A, _28;s1An—2 by Theorem 9.6. However in that
case, Lemma 9.2 shows that every reduced word for w has one 1 and one 1, and hence is
£y -invariant. In other words, the £4i-invariant members of 1), are the elements described
in Proposition 9.8, together with the members of the double coset A, _os;57A4,_2.

(b) For any f4;-invariant w € D,,, the absence of the subwords 212 and 212 shows that
not only is £41(-) constant on R(w), but in fact ¢,(-) and ¢1(-) are constant as well. Hence
the notations ¢ (w) and ¢1(w) are unambiguous. In case w is also A-stable, Theorem 7.4
and Proposition 9.8(d) show that

Gw) = SHIUu) = 1+8), ) = SEHL(ul) ~ 1-€),

where £ is the sign of the first entry of w when #L(w) is even, and 0 otherwise.
(¢) If w € Dy, is £y;i-invariant and A-stable, then the element z € B,,_; appearing in
part (c¢) of Proposition 9.8 is top(|w]|) (cf. Remark 7.7(a)). If we restrict our attention to

the £4-invariant elements w € A,,_1, the range of the map w — top(w) consists of those
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elements with exactly one term in the decomposition of Corollary 2.5; i.e., the members
of B,_; that are top-and-bottom elements. In other words, there is a bijection between

the top-and-bottom elements of B, and the £4i-invariant members of A,,.
ProprosiTiON 9.10. There are
(a) B3n—2)(n—1)! £y;-invariant members of D,,.
(b) (

(¢) (n—=D!(n+2H(n—1)) {yi-invariant members of Ap_2D2Ap_2.

(d) (n—=D'(14+2H(n—1)) A-stable {y,-invariant members of A, _2D2A,_».

2n — 1)(n — 1)! A-stable {1;-invariant members of D,,.

Proof. For (b), Proposition 9.8 shows that we can construct the canonical reduced word
for any A-stable £1;-invariant w € D, by selecting any of the n! canonical reduced words
for A,_;, and then replacing every other occurrence of 1 with 1. Assuming there is at
least one occurrence of 1, this can be done in two ways, for a total of 2(n!) — (n — 1)L

For (a) recall from Remark 9.9(a) that the £y;-invariant members of D, that are not
A-stable are the members of A,,_2s,s74,_2. We know from the proof of Proposition 9.7
that this double coset has (n — 1)(n — 1)! members.

By Remark 9.9(c) and Proposition 4.3, we know that there are (n — )1 (1 4+ H(n — 1))
{4 1-invariant members of 4,1, and hence (n—1)! (14+2H(n—1)) £4;-invariant members
of A,_1UA,_1, since every member of A,,_1 N A,_1 is £41-invariant. This yields (d), and
restoring the (n — 1)(n — 1)! members of A,_ss,5714,_2 yields (¢). O

10. Full commutativity
The equivalence of (a) and (¢) in the following has also been obtained by Fan [F,§7],

although his choice of coordinates is not the same as ours.

THEOREM 10.1. For w € D,, the following are equivalent.

(a) w is fully commutative.
(b) In the canonical reduced word {(my,n1] - - {m,,n,] for w, the occurrences of 1 and 1
alternate, and either
(1) my > >mg >|mgp1| == |my| =1 for some s < r, or
(2) my>--->my_1 >—my >0, my_1 > 1, and m, # —1.
(c) w avoids all patterns (a,b, ¢) such that |a| > b > ¢ or —b > |a| > c.

Proof. (a)=>(b). If w is fully commutative, then w is £1i-invariant. If w is A-stable as
well, then (i) the occurrences of 1 and 1 in the canonical reduced word for w must alternate,
and (ii) oR(w) = R(z) for some x € B,_1, by Proposition 9.8. In fact  must be a fully

commutative top element, since otherwise there would be a subword (¢ — 1)¢ (with ¢ > 1)
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appearing in some i € R(#z), contradicting the fact that w is fully commutative. Hence

the canonical reduced word [m), ni]---[m., nl] for x satisfies
my>--->ml>ml = =mp =0

for some s < r, by Corollary 5.6(b). Any o-preimage of this word satisfies (1), and is
necessarily the canonical reduced word for some member of D, .

Otherwise, if w is not A-stable, then w € A, _25,51Ap_2 (see Remark 9.9(a)). Tt follows
that the subword 11 occurs in some factor (m;, n;] of the canonical reduced word i for w,

and there are no other occurrences of 1 or 1, by Lemma 9.2. Let
i'= (2, ] (migr, niga] - (e, e ] = [2, 0] [migr, niga] - - [my, ]

denote the subword of i formed by every term following the unique occurrence of 11. The
word 1’ is the canonical reduced word for some (necessarily fully commutative) member
of the parabolic subgroup of type A generated by ss,...,s,_2. Since the first term of 1/
is 2 (or i’ is empty), Corollary 5.8 shows that this is possible only if ¢ = r. Therefore,
my,...,mp_1 > 1, my <0, and m, # —1.

Now let m be the leading term of {(m,,n.]; i.e., m = —m, (if m, < —1) or m =1 (if
my = 0), and let

i = (my,m] - (me_1,ne_1]m = [my,na] - [mye_1, ne_1][m, m]
be the subword of i obtained by deleting all terms beyond the first term of (m,,n.].
Since n,_1 > n, > |m,| in every canonical reduced word, it follows that i” is a canonical
reduced word for some (necessarily fully commutative) member of A,,_;. By Corollary 5.8,
it follows that my > --- > m._1 > m > 1.

(¢)=(a). Arguing by contradiction, it suffices to prove the following.

(i) If w has a reduced word that begins with 212 or i(¢ — 1)i for some i > 1, then w
contains one of the patterns forbidden by (c).
(i1) If £(s;w) > €(w) and w contains a pattern forbidden by (c¢), then so does s;w.

Given the hypothesis of (i), w has reduced words beginning with either of 1 and 2,
or ¢ — 1 and i. In the former case, the one-line form of w, say (wy,...,wy), satisfies
—w1 > ws > ws, and in the latter case we have w;_1 > w; > wiy1. In either case, w
contains one of the forbidden patterns.

For (ii), suppose £(sjw) > {(w) and that the one-line form of w has a subsequence

(a,b,c) such that |a| > b > cor —b > |a| > ¢. If j > 1 then the same is true of s;w,
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by the same argument used in the proof of the implication (¢)=-(a) for Theorem 5.1. We
therefore consider only the case 7 = 1. If b does not occur in the second position of w, then
siw has a subsequence of the form (+a, b, ¢), contrary to (¢). Otherwise, a and b occur in
the first two positions of w, and (¢, ¥, ¢’) = (—b, —a, ¢) is a subsequence of s;w. We also
have a 4+ b > 0 (since ¢(s7w) > €(w)), so the subsequence (a, b, ¢) must satisfy a > b > ¢
or —b > —a > c¢. In the latter case, we obtain a’ > b’ > ¢’ and hence |a’| > ' > ¢/, which
is forbidden by (c). In the former case, we obtain —b' > —a’ > ¢/. However a +b > 0 also
implies —b' > @', so we have —b' > |a'| > —a’ > ¢/. Hence =’ > |a’| > ¢/, which is also
forbidden by (c).

(b)=(c). Let i = {my,n1]---{m,,n,] denote the canonical reduced word for w.

Case 1: 1 satisfies (1). In this case, w is A-stable and £4;-invariant, by Proposition 9.8.
In particular, Theorem 7.1 implies that w avoids the patterns (£1,—2), and hence all
patterns (a,b,¢) such that —b > |a| > ¢ (or even —b > |a]). Furthermore, among the
patterns (a,b,¢) such that |a| > b > ¢ (see (5.2)), the only ones that manage to avoid
(£1,-2) are the patterns (+3,2,4+1). Hence for this case, it suffices to prove that w
avoids the patterns (+3,2, +1).

For this, we first note that (i) is the canonical reduced word for some fully commutative
top element # € B,,_1, by Corollary 5.6. In particular (again by Corollary 5.6), # avoids
the patterns (+1,—2) and (£3,2,+1). Towards a contradiction, suppose that (a,b,¢) is
a subsequence of the one-line form of w that fits one of the patterns (+3,2,+1) (i.e.,
|a| > b > |c|). Since x is a top element, # is obtained by unbumping the entries of |w| at
the positions where left-minima occur. Therefore if b appears to the right of £1 in w, no
unbumping affects b and ¢ and (£(a — 1),b— 1,¢— 1) is a subsequence of # fitting one of
the patterns (+3,2,1), a contradiction. Otherwise, let ay (resp., az) be the left-minimum
of |w| immediately preceding (resp., following) b in |w|. Note that b itself cannot be a
left-minimum, since b > 0 and N(w) = L(Jw|) (Proposition 9.8). Therefore to obtain
from |w|, a; unbumps as, replacing it with —(a; — 1). In particular, (b—1,—(a; — 1)) is a
subsequence of the one-line form of . Since # avoids (1, —2), this requires a; < b. Now if
no unbumping affects a, then @ > 0 and (a—1,b—1, —(a; —1)) is a subsequence of z fitting
the pattern (3,2, —1), a contradiction. Otherwise, if |a| is unbumped, then |a| appears to
the left of a; (since |a] > b > a1), and (—|a — 1], — 1, —(a; — 1)) is a subsequence of
fitting the pattern (—3,2,—1), a contradiction.

Case 2: i satisfies (2). In this case, 11 is a subword of i and there are no other
occurrences of 1 or 1. Let j be the word obtained by deleting one of the two (consecutive)

occurrences of 0 from o(i). The constraints of (2) imply
j=[mi—1Ln—1]---[my_1— Lne_y — 1][-(m—1),n, — 1],
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where m denotes the leading term of (m,, n,]. Since my > -+ > my_1 > m > 1, it
follows that j is the canonical reduced word for some x € B,,_; of the type described in
Corollary 5.7(b), and is therefore fully commutative.

By Lemma 9.2, the one-line form of w has exactly two negative entries, and the first
entry is —1. The effect of s;s7 on one-line forms of members of D,, is to negate the first
two coordinates, whereas the effect of sy on B, is to negate only the first coordinate. The
remaining generators act as adjacent transpositions on B, and D, . It follows that if we
delete the initial —1 from w and replace each remaining ¢ (resp., —¢) such that ¢ > 2
with ¢ — 1 (resp., —(¢ — 1)), we obtain the one-line form of . Therefore, if (a,b,¢) is a
subsequence of the one-line form of w such that |a| > & > ¢ or —b > |a| > ¢, then a is
the first entry of w; otherwise there would be subsequence of # fitting the same pattern,
contrary to Theorem 5.1. However the first entry is —1, so |a| > b > cor =b > |a| > ¢
would both imply the impossibility b,¢ < 0. O

Since (£3,2,+1) are the only (£1, —2)-avoiding patterns (a, b, ¢) such that |a] > b > ¢
or —b > |a| > ¢, we obtain the following.
COROLLARY 10.2. For w € D, the following are equivalent.

(a) w is fully commutative and A-stable.

(b) In the canonical reduced word {(my,n1] - - {m,,n,] for w, the occurrences of 1 and 1
alternate and my > -+ > mg > |mgq1| = -+ = |m,| = 1 for some s < r.

(¢) w avoids the patterns (£1,—2) and (£3,2, +1).

Similarly, by selecting the patterns (a, b, ¢) such that |a] > b > ¢ or —b > |a| > ¢ that

are not eliminated by Theorem 9.3, we obtain

COROLLARY 10.3. For w € A,,_3D2 A, _2, the following are equivalent.

(a) w is fully commutative.
(b) The canonical reduced word {my,nq]---{m,,n,] for w satisfies
my > - > me_q > max(|mye|, 1).

(¢) w avoids the patterns (£3,2,+1), (2,-3,1), (3,1, -2), and (2,1, =3).

Part (a) of the following has also been obtained by Fan (Proposition 3 of [F]).

ProprosIiTION 10.4. There are

(a) %(n +3)C(n) — 1 fully commutative members of D,

(b) %(Zn") fully commutative A-stable members of D,,.

(¢) 3C(n)—C(n—1)—1 fully commutative members of A,_2D2A4,_5.
) 2

n
(d) 2C(n) — C(n — 1) fully commutative A-stable members of Ap_2D2A, 3.
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Proof. For w € By, let w' € B, be the element obtained by changing the sign of the
entry =1 in the one-line form of w. Exactly one member of each pair (w, w’) is the one-line
form of a member of D,,. Furthermore, w avoids the patterns (+1,—2) and (£3,2,+1)
if and only if the same is true of w’. Comparing Corollary 10.2 with Corollary 5.6, we
deduce that there are half as many fully commutative A-stable members of 1,, as there
are fully commutative top elements in B,,. Applying Proposition 5.9(b), we obtain (b).

For (d), recall that A,_; U A,_;1 is the set of A-stable members of A, _3DsA,_s.
We know that A,_; and A,_; each have C(n) fully commutative elements, and their
intersection (being A,_2) has C'(n—1) such elements, yielding a total of 2C'(n) —C(n—1).

By Theorem 10.1, the canonical reduced words (my,ni]---{(m,,n,] for the fully com-

mutative members of A, _ss,57A,_2 are characterized by the relations
my>-->mp_1>m>1, m, <0, m #—1,

where m denotes the leading term of {m,,n,]. Also, given that m, = 0 or m, < —1, the
leading term of {m,, n,] uniquely determines m, as well. Comparing this with Theorem 5.1,
we see that there is a one-to-one correspondence between these words and the canonical
reduced words for the fully commutative members of B,, that are not top elements. There
are C'(n) — 1 of the latter, by parts (a) and (b) of Proposition 5.9.

Since A, _98187An_o 18 the set of £4-invariant members of D,, that are not A-stable,
it follows that there are %(Zn") +C(n)—1= %(n +3)C(n)— 1 fully commutative members
of D, (yielding (a)), and 2C(n) — C(n — 1) + C(n) — 1 fully commutative members of
Ap_2Da A, _q, yielding (¢). O

Let {my,n1]---{my,n,] be the canonical reduced word for some A-stable fully commu-
tative w € Dy, and let s be the largest index such that m; > 2. We define the shape of w
to be the shifted shape A/p, where A = (n1,...,n.) and p = (my —1,...,m; — 1).

The 1 = @ case in part (b) of the following is equivalent to Proposition 3.13 of [BH].

ProposiTiON 10.5. If w € D, is fully commutative, A-stable and of shape A/p, then

(a) The heap of w is isomorphic to D/A/u (as a labeled poset).
(b) Gp(w) = 2_(Z(>\)_Z(u))A(D/>\/u) =Py

Proof. Let 1 be the canonical reduced word for w. As we have noted previously, o(i) is
the canonical reduced word for some fully commutative top element x € B,_1. In fact x
and w have the same shape, so by Proposition 6.1, the heap of z is isomorphic to D/A/u'
Since there is no reduced word for w in which 1 and 1 appear consecutively, it follows that

the heaps of 1 and (i) are isomorphic as labeled posets (yielding (a)). Furthermore, we
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FIGURE 4.

have £41(w) = £o(x) = €(A) — £(p) (the number of cells on the main diagonal of D/A/u)’
so (b) follows from Corollary 6.6 and Corollary 8.2. O

Now consider the heap of some fully commutativew € A, _3s157A,_2; by Theorem 10.1,
we know that the only fully commutative members of I),; that are not A-stable are of this
type. Furthermore, if i = {m1,n1]---{m,,n,] is the canonical reduced word for w, then
we have my > -+ > my_1 > m > 1, where m denotes the leading term of {m,,n,]. We
define the shape of w to be the shape of the fully commutative A-stable element whose

canonical reduced word 1s
j = <m1a nl] T <m7‘—1a nr—1]<ma nT]'

That is, the shape of wis A/pu, where A = (ny,...,ny)and p = (m1—1,...,my_1—1,m—1).

We obtain i from j by replacing the unique occurrence of the smallest term m with the
word m---2112---m. (In case m = 1, we replace 1 with 11.) It follows that the heap of
i can be obtained from the heap of j by replacing the unique vertex labeled m with the
heap of m---2112---m. The latter is nearly a total order, the only exception being that
the vertices labeled 1 and 1 are incomparable.

More explicitly, given a labeled poset P with a unique vertex x labeled m > 1, define
Y (P) to be the labeled poset obtained from P by replacing & with 2m elements ordered
so that

Ty < < Tlg < T, 81 < Ly < -+ < Ty

The label of z_; is defined to be 1, and all other elements x; are labeled |i|. (Compare
this with the definition of I,,,(P) in Section 6.1.)

Summarizing, we have the following.

ProrosiTiON 10.6. If w € A, _281s1An—2 is fully commutative, then the heap of w is
isomorphic to Yy, (P), where P is the heap of the fully commutative A-stable element of

the same shape as w, and m is the smallest label in P.
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For example, the fully commutative element w € Dg whose canonical reduced word is
(6, 8](4,6](—3,5] has shape 865/532 (cf. Figure 1). The corresponding fully commutative
A-stable element has canonical reduced word j = (6, 8](4, 6](3, 5] and smallest term m = 3.
The heap of w is therefore obtained by replacing the vertex labeled 3 in the heap of j with
the heap of 321123 (see Figure 4).

REMARK 10.7. By Corollary 8.2, it follows that we obtain a A-symmetric poset from
any skew diagram D/A/u with smallest label m > 0 by applying the operation Y, .

11. The V-stable members of D,.

Let i = 4y---4; be a reduced word for some w € D,,, and set w;, = Sipyr Sipgs - 54y for
0 < k <[l (In particular, w; is the identity element.) The elements wy,...,w; form a
shortest path from w = wy to the identity. We define V(i) to be the set of “I-visitors”
along this path; i.e., the set of entries that appear in the first positions of the one-line
forms of |wgl, ..., |wi|. Tt will be convenient to let v(i) := #V(i).

For example, if i = 212, then the one-line forms of w = wq, w1, ws and ws are (in reverse
order) (1,2,3), (1,3,2), (—3,—1,2), and (—3,2,—1), so we have V(i) = {1, 3}.

The following result also occurs in the work of Billey-Haiman (Proposition 3.7 of [BH]).

LEmMMA 11.1. For w € D, andi € R(w), we have
#{jeR(w) : 0(j) = o(i)} = 2+ D-vH+

Proof. Let | = £41(i). For any j € R(w), define j' to be the word obtained by replacing
each occurrence of 1 with 1. There is a unique factorization igi; - - -i; of i’ in which 1 is
the last term of i for 0 < k < [ and i; is possibly empty.

For 0 <k <1, let a € A,_1 denote the product of the generators indexed by ig. There
is a one-to-one correspondence between the set of words j € R(w) such that i’ = j' (or

equivalently, o(i) = ¢(j)) and [-tuples (¢1,...,%;) taken from {1, s;s1} such that
w:xotll‘ltz“'l‘l_ltll‘l. (111)

Indeed, one chooses t, = 1 (resp., t = sy517) according to whether the kth occurrence of 1
in i’ is in a position where 1 (resp., 1) occurs in j.

Thus the objective is to count solutions of (11.1).

For this, note that D, is the semi-direct product of A,_; and the kernel T' of the

homomorphism w — |w|. In particular, every w € D, has a (unique) representation

53



w = |w| -t for some ¢ € T. Given any solution of (11.1), we see that |w| = ®¢---2; and

the element ¢ is given by
(l‘o .- ~l‘l)_1(l‘0t1l‘1t2 .- ~l‘l_1tll‘1) = tlljltzzh .- ~t;jl,

where yi, = zpxpyy -2 and ¥ = y~lty. Conversely, (¢1,...,%) is a solution of (11.1)

whenever ¢ = t§'¢3? - - -¢/'. However T is abelian, so
(t1, ..o ty) st Y

is clearly a group homomorphism {1, s;s7} — T. It follows that the number of solutions
of (11.1) is #(Ker ) = 2! /#(Im ).

To determine the range of ¢, note that for any y € A,_1, (s1571)Y = y~ls;sjy € T acts
on R” by changing the sign of the two coordinates indexed by the first two entries in the
one-line form of y. Now as the one-line form of w is computed by applying the generators
of i (read from right to left), the entry that appears in the first coordinate changes only
when the generator to be applied is s; or sy. It follows that the members of V(i) are
the first entries of yo, ..., y; say, vo,v1,...,v = 1. (We are not assuming that vg,..., v
are distinct.) Furthermore, in passing from yi to yi_1, the entry in the second position
of y; moves to the first position of yi_1; in other words, the first two entries of y; are
(v, vi—1). It follows that Tm ¢ is the subgroup of T consisting of all sign changes involving

even subsets of coordinates indexed by V (i), a group of order -1

It is easy to see that for i € R(D,), V(i) and A(i) (see (1.2)) depend only on j = o(i).
Hence the use of v(j) and A(j) in the following is unambiguous.
THEOREM 11.2. For w € D,,, we have
_ 1 4
Gp(w) = Z —QV(j)—lhA(j)'
jeoR(w)
Proof. Set s =t =1/21in (8.1) and apply Lemma 11.1. O
Define w € D,, to be V-stable if V(i) does not depend on the choice of i € R(w).

THEOREM 11.3. For w € D, the following are equivalent.

(a) w is V-stable.
(b) v(i) = #V (i) is independent of i € R(w).
(c) L(Jwl) € N(w).
Moreover, if w is V-stable, then v(1) = #N(w) for alli € R(w).

This result is an immediate corollary of the following.

54



LEMMA 11.4. If (wy,...,wy,) is the one-line form of w € D,,, then
N(w) C{j:|w;jl € V(i)} C N(w)U L(|w|)
for every i € R(w). Furthermore, both bounds are attained.

Proof. Let j € N(w); e, w; <0, j=1 or |w;| = 1. If w; <0, then +w; must be the
first entry of some member of the path from w to the identity defined by any i € R(w),
since an entry cannot be changed from negative to positive without appearing in the first
position. Also, wy; and 1 must appear in the first position of the starting and finishing
members of the path. Thus in each case, j € N(w) implies |w;| € V(i).

Next consider some index j € N(w) U L(Jw|); i.e., suppose that w; is a positive entry
of w that is not a left-minimum of |w|. We claim that if £(s;w) < £(w), then the same is
true of s;w; i.e., w; is a positive entry of s;w that is not a left-minimum. If s; does not
change the jth coordinate then there is nothing to prove, so assume ¢ = j, ¢ = 5 — 1, or
i =1and j = 2. (We cannot have j = 1, otherwise w; is trivially a left-minimum.) If
¢ = j, then s; moves w; to the right and hence it remains a left non-minimum. If ¢ = j -1,
then s; moves w; to the left. However in that case, £(s;w) < {(w) implies wj_q1 > wy, so
w; remains a left non-minimum. Finally, if i = 1 and j = 2, then {(s;w) < {(w) implies
w1 + wy < 0. However this yields 0 < wy < —wy; thus w; = ws is a left-minimum of |w|,
a contradiction.

Having proved the claim, it follows by induction on £(w) that any positive entry a of
w that is not a left-minimum of |w| can never occur as a left-minimum in any member of
the path from |w| to the identity defined by i. In particular, no such entry can appear in
the first position; i.e., j € N(w)U L(|w|) implies |w;| ¢ V(i).

Attaining the lower bound. Since N(w) C {j : |w;| € V(1)}, it suffices to exhibit some
i€ R(w) such that v(i) < #N(w). For this we proceed by induction on £(w).

Case 1: w € A,_1. In this case, w has no negative entries. If the first entry of w is 1,
then #N(w) = 1 and v(i) = 1 for every i € R(w). Otherwise, if 1 occurs in position
J+ 1> 2 then ¢(sjw) < {(w). Hence by induction, there exists j € R(s;w) such that
v(j) < #N(s;jw), and by adding j to the beginning of j we obtain a reduced word 1 for w.
If j = 1, then the first entry of s;w is 1, so we obtain v(i) = 2 and N(w) = {1,2}. On
the other hand, if j > 1 then v(i) = v(j) and #N(w) = #N(sjw) = 2. In either case, we
obtain v(i) < #N(w).

Case 2: w ¢ An—1. In this case, w has two or more negative entries. If the first two
entries are negative then f(syw) < £(w), so by induction we can find j € R(sjw) so that
v(j) = #N(sjw), and adding 1 at the beginning of j yields a reduced word i for w. Since

the second entry of syw is now positive, we have #N(w) — #N(s;w) = 1, unless this
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second entry is 1, in which case #N(w) = #N(s;w). On the other hand, in passing from j
to i, at most one new entry appears in the first position; i.e., v(i) — v(j) < 1, with equality
occurring only if |w1]| > 1. Thus in either case, we obtain v(i) < #N(w).

The remaining possibility is that w has a positive entry in some position 7 > 1, imme-
diately followed by a negative entry. It follows that ¢(s;w) < €(w), so by induction there
exists j € R(s;jw) such that v(j) < #N(s;w), and by adding j to the beginning of j we
obtain a reduced word i for w. Since w and s;w have the same negative entries, we have
#N(w) = #N(sjw), unless j = 1 and wy > 1, in which case #N(w) — #N(s;w) = 1.
In passing from j to i, we have v(i) — v(j) < 1, with equality only if a new entry appears
in the first position. Since the latter occurs only if j = 1 and w; > 1, we again obtain
v(i) < #N(w) in either case.

Attaining the upper bound. Since {j : |w;| € V(1)} C N(w)U L(|w]), it follows that the
upper bound is attained if there is some i € R(w) such that v(i) = #(N(w)U L(Jw|)). In
fact, we claim that this occurs when 1 is the canonical reduced word for w. Proceeding by
induction with respect to n, let x,- - -2 be the canonical factorization of w, and let i’ be
the canonical reduced word for w’ = &, _1 -+ x5, a suffix of 1.

If n occurs in position j > 1 of w, then the one-line form of w is obtained from w’ by
removing n from the nth position (regarding w’ as a member of D, ) and re-inserting it

into position j. In that case, we claim that
v(i) = v(i) = #(N(w') U L(Jw'])) = #(N(w) U L(w])).

The first equality is a consequence of the fact that in passing from 1’ to 1, the entry n
never occupies the first position. The second equality is the induction hypothesis, and the
last is a consequence of the fact that since n does not occur in the first position of w, it
cannot be a left-minimum of |w|.

Otherwise, in case —n occurs in any position, or n occurs in the first position of w, then
4n must visit the first position in passing from i’ to 1, and either a new negative entry
occurs in some position beyond the first, or a new left-minimum is created. It follows that
the values of v(i) and #(N(w) U L(|w])) are increased by 1 relative to the corresponding

values for 1’ and w’. Hence by the induction hypothesis, the quantities are equal. O

Let r(w) = #(N(w) U L(Jw])). Since Lemma 11.4 shows that r(w) is the maximum
value of v(i) as i ranges over R(w), it follows from Theorem 11.2 that 2"“)=1G'p(w) is
a (symmetric) integer linear combination of the quasi-symmetric functions K. Thus by
Theorem 3.8 of [Stel], we obtain the following.

COROLLARY 11.5. For every w € D,,, 2" "“)=1Gp(w) is Q-integral.
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In other words, for w € D, and strict partitions A of size | = £(w), the coefficients

ex(w) appearing in the expansion

27T G (w) = > ea(w)Qn (11.2)

A

are integers. (And hence, nonnegative integers, by the work of Lam and Billey-Haiman.)
If we use (11.2) to extract the coefficient of z1---z from QT(w)_lGD(w), we obtain
Sy exa(w)2'g*. On the other hand, if w is V-stable, then v(i) = r(w) for every i € R(w),

so 1n this case Theorem 11.2 implies

Since the coefficient of z;--- 2z in Ky is 2! (see (1.1)), it follows that in the V-stable case,
the coefficient of z1- - - z; In QT(w)_lGD(w) is 2 - #0R(w). Having obtained two expressions

for the coefficient of z;- - - z;, we deduce the following.

COROLLARY 11.6. If w € D,, is V-stable, then the integers cx(w) of (11.2) satisfy

#HoR(w) = Z ex(w)gh.

A

For example, consider the longest element wy of D,,. The one-line form of wq is
(£1,-2,...,=n), so N(wg) = {1,...,n}, L(|wg|) = {1}, and wy is V-stable, by the
criterion of Theorem 11.3. Tt is known by Corollary 5.3 of [L] or Proposition 3.16 of [BH]
that Gp(wo) = Pian_2,.,4,2), 50 QT(WD)_lGD(wO) = Q(2n-2,...,4,2)- In other words, there is

just one term in the expansion of Corollary 11.6, yielding
#O'R(wo) — g(Zn—Z,...A 2).

That is, the number of distinct reduced words for wg under the identification 1 = 1 is
the number of standard shifted tableaux of shape (2n — 2,...,4,2). This fact is proved
bijectively by both Lam [L] and Billey-Haiman [BH].

REMARK 11.7. (a) Given that ¢y (w) > 0, the same reasoning that proves Corollary 11.6
can also be used to show that for every w € D,,, we have #oR(w) < Y, ex(w)g?, with
equality occurring if and only if w is V-stable. By Theorems 4.18 and 4.35 of [L], it also
follows that #oR(w) = >, bx(w)g* for certain nonnegative integers by (w) < ex(w).

(b) One might hope to prove Corollary 11.5 directly from the P-integrality of G'p(w),
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bypassing Theorem 11.2. This would require r(w) > £(X) for every strict partition A such
that ¢y(w) > 0. However this fails, even in the V-stable case. Alternatively, one could
attempt to use (8.1) to bypass Theorem 11.2; this would require r(w) > €11(i) for every
i€ R(w). However again this fails, even in the V-stable case.

(¢) A natural question to ask at this point is how the set of V-stable elements overlaps
with the set of finely symmetric elements. By Corollary 7.2, we know that w is A-stable
if and only if N(w) C L(|w|). Comparing this with Theorem 11.3, we see that the only
A-stable members of D,, that are also V-stable are those that satisfy N(w) = L(|w]); by
Proposition 9.8, these are the fi;i-invariant elements. Otherwise, if w is finely symmet-
ric but not A-stable, then w € Ap_2s,514,_2 (Remark 9.5). However the criterion of
Lemma 9.2(d) shows that all such elements satisfy L(|w|) = {1}, and hence are V-stable.
But the members of w € A, _5s1s7A,_2 are also £4;-1nvariant, so we conclude that w is
finely symmetric and V-stable if and only if w is £4;-invariant.

(d) We claim that V-stability cannot be characterized by means of pattern avoidance.
Indeed, since fine symmetry does have a pattern-avoidance characterization (Theorem 9.6),
a set of patterns for V-stability would, by the previous remark, also imply the existence of
a set of patterns for £1;-invariance. However the discussion prior to Proposition 9.8 shows

that a set of such patterns does not exist.
Let (2n—D!'=1-3-5---(2n—1).
PROPOSITION 11.8. There are 2(2n — 1)t — 2" =1(n — 1)! V-stable members of D,,.

Proof. For a given w € A,,_; with [ > 2 left-minima, there are 27 ~!*! elements v’ € D,
such that |w'| = w and L(w) C N(w’). If w has only one left-minimum (i.e., the first

entry of w is 1), then there are only 2"~! such elements, not 2". Hence by Theorem 11.3,

Z 2n—#L(w)+1 _ Z 2n—1

WEA,_1 WEA,_2o

there are

V-stable members of D,,. Apply Lemma 2.6 with ¢ = 1/2. O
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Appendix
Tables 1 and 2 list the number of members of B, and D, (for n < 7) belonging to
the various subsets identified in Parts T and II, respectively. (Abbreviations: T =top,
B =bottom, FC = fully commutative, F'S = finely symmetric, A = A-stable, £ =/{1;-
invariant, IT = Ap_2D2Ap_2.)

X #X, 1 23 4 5 6 7
All 27n! 2 8 48 381 3840 46080 645120
A-reduced | L(n+2)!+ in! 2 7 33 192 1320 10440 93240
T,B (n+1)! 2 6 24 120 720 5040 40320
TNB n!(1+ H(n)) 2 5 17 74 394 2484 18108
rc (n+2)C(n)—1 2 7 24 8 293 1055 3860
rent &) 2 6 20 70 252 924 3432
FCNB |Cn)+C(n+1)—1| 2 6 18 55 173 560 1858
FCNTNB C(n+1) 2 5 14 42 132 429 1430
TABLE 1: B,.
X #X, 2 3 4 5 6 7
All 27~ 1n! 4 24 192 1920 23040 322560
V-stable | 2(2n— )11 —=2""Yn—1)! | 4 22 162 1506 16950 224190
FS fn+ D+ (m—n-1)! 4 16 78 456 3120 24480
A I(n+1)! 3 12 60 360 2520 20160
011 (3n —2)(n — 1)! 4 14 60 312 1920 13680
ANeGANIT (2n — 1)(n — 1)! 3 10 42 216 1320 9360
enIT (n—=1!(n+2H(n—1)) | 4 12 46 220 1268 8568
AnenIl | (n—1)!(14+2H(n—-1)) | 3 8 28 124 668 4248
rc (n+3)C(n) -1 4 14 48 167 593 2144
FCNA (") 3 10 35 126 462 1716
renii 3C(n)—C(n—1)—1 4 12 36 111 353 1154
FCNANII 2C(n) — C(n— 1) 38 23 70 222 726

TABLE 2: D,,.
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