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0. IntroductionLetW be an arbitrary Coxeter group. This paper is concerned with the elementsw 2Wwith the property that any reduced word for w can be obtained from any other by usingonly the Coxeter relations that involve commuting generators. We say that such elementsare fully commutative.Our motivation for studying full commutativity arose from some applications we dis-covered that involve the symmetric functions associated with the Weyl groups of type Band D studied by Billey and Haiman [BH], Fomin and Kirillov [FK], and T. K. Lam [L].(These applications are discussed in [Ste].) A second (related) motivation arose from theinteresting combinatorial properties of full commutativity in the symmetric group case.For example (quoting [BJS]), the fully commutative members of Sn are the permutationsw that avoid the pattern 321 (in one-line notation). The number of these is the Cata-lan number Cn, and there is a skew Young diagram � naturally associated to each fullycommutative w with the property that the standard Young tableaux of shape � are inone-to-one correspondence with the reduced words for w.A third motivation, valid in any Coxeter group, is the fact that full commutativity isequivalent to several other natural combinatorial properties. For example (Theorem 2.2below), w 2 W is fully commutative if any only if the set of reduced words for w isorder-theoretic, by which we mean that there is a labeled partially ordered set whoselinear extensions are the reduced words for w. Also, one can show (again Theorem 2.2)that knowledge of the fully commutative elements of W is equivalent to knowledge of thesubintervals of the weak ordering of W that are distributive lattices. (By a theorem ofBj�orner [Bj], one knows that every subinterval of the weak order is at least a lattice.)In his recent Ph. D. thesis [F] (see also [F2]), C. K. Fan has independently studied thefully commutative elements of simply-laced1 Coxeter groups with an entirely di�erent setof motivations in mind. Fan proves that the fully commutative elements index a basisfor a quotient of the associated Iwahori-Hecke algebra. In the symmetric group case, thisquotient is the Temperley-Lieb algebra. In the (simply-laced) Weyl group case, Fan givesthe following characterization of full commutativity: If �(w) is the set of positive rootssent to negative roots by w, then w is fully commutative if and only if the root spacesindexed by �(w) generate an abelian subalgebra of the associated Lie algebra. Fan alsouses this characterization as the de�nition for commutative elements of non simply-lacedWeyl groups, but this is not equivalent to full commutativity as we de�ne it.The outline of the paper is as follows. In Section 2, we prove several characterizationsof full commutativity, including the ones mentioned above. Of central importance is the1A Coxeter group is simply-laced if the product of any pair of noncommuting generators has order 3.2



\heap" associated to a fully commutative element w|this is a labeled partial order whoselinear extensions are the reduced words for w. In Section 3, we prove that every fullycommutative heap occurs as a convex subset of a heap with unique maximal and minimalelements; these are the heaps of fully commutative double coset representatives of Wrelative to pairs of maximal parabolic subgroups. We also prove (Theorem 3.4) that afully commutative element that is maximal with respect to multiplication on the righthas a heap with a \top tree" that amounts to a rooted version of the Coxeter graph.In particular, there are no such elements unless the Coxeter graph is acyclic. We thencharacterize (Theorem 3.5) the rooted trees that arise in this fashion.In Section 4, we classify the Coxeter groups that are FC-�nite (i.e., contain �nitelymany fully commutative elements). This generalizes the work in [F], where Fan treats thesimply-laced case. It is interesting to note that the proof we give is self-contained, purelycombinatorial, and close to being a proof of the classi�cation theorem for �nite Coxetergroups. (However, there do exist in�nite Coxeter groups that are FC-�nite.)In Section 5, we classify the parabolic quotients of Coxeter groups whose membersare all fully commutative. The result is that aside from a few exceptional cases, theirreducible quotients with this property arise from orbits of minuscule weights in �nite Weylgroups and Coxeter groups in which every edge of the Coxeter graph has in�nite weight.Among the �nite Weyl groups, this classi�cation coincides with Proctor's classi�cationof the parabolic quotients of Weyl groups whose Bruhat ordering is a lattice [P]. In the�nal section, we extend Proctor's result by classifying all parabolic quotients of arbitraryCoxeter groups such that (1) the Bruhat ordering is a lattice, (2) the Bruhat orderingis a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the weakordering and Bruhat ordering coincide. Interestingly, one �nds that all four classi�cationproblems have the same answer. 1. PreliminariesThroughout this paper, W shall denote a Coxeter group with �nite generating set Sand Coxeter matrix M = [m(s; t)]s;t2S . Thus m(s; t) is the order of st in W (possiblym(s; t) = 1). We let � denote the Coxeter graph of (W;S); i.e., the simple graph withvertex set S and edges between pairs of non-commuting generators. By the Coxeterdiagram, we mean the pair (�;M ), regarding M as a weight function on the edges of �.1.1 Commutativity classes.Let S� denote the free monoid generated by S. We will represent the members of S�as sequences, so that s = (s1; : : : ; sl) would be typical. By a subword of s, we shall meana subsequence of s occupying consecutive positions, such as (si; si+1; : : : ; sj). Also, for3



integers m � 0 and s; t 2 S, let us de�nehs; tim = (s; t; s; t; s; : : :| {z }m ) 2 S�:For w 2 W , let `(w) denote the minimum length of any expression w = s1 � � � sl withsi 2 S. Any such minimum-length expression for w is said to be reduced. It will beconvenient more generally to declare any expression of the formw = w1 � � �wl with wi 2Wto be reduced if `(w) = `(w1) + � � �+ `(wl). We let R(w) � S� denote the set of all wordss = (s1; : : : ; sl) such that w = s1 � � �sl and the expression is reduced.Let � denote the congruence on S� generated by the braid relationshs; tim(s;t) � ht; sim(s;t)for all s; t 2 S such that m(s; t) <1. Of central importance for this paper is the fact thatif s is any particular reduced word for w, then R(w) is the equivalence class of s relativeto �; i.e., any reduced word for w can be obtained from any other by means of the braidrelations [B, xIV.1.5].Now consider the weaker congruence � on S� generated by the braid relations corre-sponding to pairs of commuting generators (i.e., the relations (s; t) � (t; s) for all s; t 2 Ssuch that m(s; t) = 2). We remark that the quotient monoids S�=�, known in the liter-ature as free partially abelian monoids, or commutation monoids, were �rst studied in asystematic way by Cartier and Foata [CF]. (See also the survey in [V].)The equivalence class C of a given reduced word s (relative to �) consists of the wordsobtainable from s by transposing adjacent commuting pairs. We call C the commutativityclass of s. Since � is weaker than �, it is clear that there is a decompositionR(w) = C1 _[ � � � _[ Clof R(w) into commutativity classes. If R(w) consists of just one commutativity class, wesay that w is fully commutative.Proposition 1.1. An element w 2W is fully commutative if and only if for all s; t 2 Ssuch that 3 � m(s; t) < 1, there is no member of R(w) that contains hs; tim(s;t) as asubword.Proof. Given the fact that any reduced word can be obtained from any other via thebraid relations, the su�ciency of the stated condition is clear. To prove that it is alsonecessary, suppose that s is a reduced word for some w 2 W , and that s; t 2 S are such4



that 3 � m(s; t) < 1. Every member of the commutativity class of s can be obtainedby exchanging adjacent pairs of letters not including the pair s; t. It follows that thesubsequence of s formed by the occurrences of s and t is an invariant of the commutativityclass of s. Therefore, if s contains hs; tim as a subword (where m = m(s; t)), then thereduced word s0 obtained by applying the braid relation hs; tim � ht; sim belongs to adi�erent commutativity class, and hence w could not be fully commutative. �1.2 Heaps.Let s = (s1; : : : ; sl) be an arbitrary (i.e., not necessarily reduced) word in S�. De�ne apartial ordering 4 on [ l ] = f1; 2; : : : ; lg via the transitive closure of the relationsi � j if i < j and m(si; sj) 6= 2:In particular, i � j if i < j and si = sj . The triple Ps = ([ l ];4; s) can be regarded as alabeled poset (i.e., a partial order in which the elements have special labels), the label ofthe ith vertex being si. Following the terminology of [V], we call Ps the heap of s.Let P be any partial ordering of [ l ]. By a linear extension of P , we mean a totalordering � = (�(1); : : : ; �(l)) of [ l ] consistent with P ; i.e., �(i) < �(j) in P implies i < j.We let L(P ) denote the set of all linear extensions of P . Regarding s as a labeling of P(i.e., the element i has label si), it is convenient to de�neL(P; s) = f(s�(1); : : : ; s�(l)) 2 S� : � 2 L(P )g:In the case of a heap, the elements with the same label are totally ordered, so there isat most one linear extension corresponding to any given word in S�. We will refer to themembers of L(P; s) as labeled linear extensions of P .The following result is a standard part of the theory of heaps (e.g., see Lemma 3.2 of [V]or Exercise 3.48(b) of [St]).Proposition 1.2. For s 2 S�, L(Ps; s) is the commutativity class of s.Proof. Suppose that s0 = (s01; : : : ; s0l) 2 L(Ps; s) and that � 2 L(Ps) is the correspondinglinear extension. Since adjacent elements in a linear extension must either be incomparableor a covering pair, it follows that for every k < l, either �(k) and �(k+1) are incomparablein Ps, or else s0k and s0k+1 do not commute. Therefore, the interchange of any pair ofadjacent commuting generators in s0 corresponds to the interchange of a pair of adjacentincomparable elements in �, and hence yields another (labeled) linear extension of Ps.Since s 2 L(Ps; s), it follows that L(Ps; s) contains the commutativity class of s.5



Conversely, to prove that L(Ps; s) only contains elements from the commutativity classof s, we proceed by induction on the length of s. Suppose that � and s0 are as above.Since i = �(l) is a maximal element of Ps, si must commute with sj for all j > i, sos � s00 = (s1; : : : ; si�1; si+1; : : : ; sl; si). However, (s01; : : : ; s0l�1) is a labeled linear extensionof the heap of (s1; : : : ; si�1; si+1; : : : ; sl), so by induction we obtain s0 � s00 and the resultfollows. �We remark that Ps is an invariant of the commutativity class of s in the sense thatif s � s0, then there exists a poset isomorphism ' : Ps ! Ps0 such that si = s0'(i).In particular, if w is fully commutative, the heaps of the reduced words for w are allequivalent, so we may speak of the heap of w without ambiguity.1.3 The weak order.The (right) weak ordering of (W;S), denoted �R, is de�ned to be the transitive closureof the relations w <R ws for all w 2 W , s 2 S such that `(w) < `(ws). Equivalently, forall x; y 2 W one has x �R xy if and only if xy is reduced (i.e., `(xy) = `(x) + `(y)). Theleft weak ordering is de�ned similarly|one has y �L xy if and only if xy is reduced. Weremark that the map w 7! w�1 provides an isomorphism between the left and right weakorderings of W . Apart from the special case of symmetric groups, the weak ordering ofCoxeter groups seems to have been �rst studied by Bj�orner [Bj].Proposition 1.3. For all x; y 2W such that x �R y, we havefw 2W : x �R w �R yg �= fw 2W : w �R x�1ygas subposets of (W;�R).Proof. The map w 7! x�1w is easily shown to be an isomorphism. �Note that an immediate consequence of Proposition 1.1 is the fact that if w is fullycommutative and w0 �R w, then w0 is also fully commutative; i.e.,Proposition 1.4. The set of fully commutative elements of W forms an order idealwith respect to the right (or left) weak order.For w 2W , let DR(w) = fs 2 S : `(ws) < `(w)g and DL(w) = fs 2 S : `(sw) < `(w)gdenote the right and left descent sets for w, respectively. It is well-known (e.g., [H, x1.10])that for all J � S,W J = fw 2W : s 2 J ) `(ws) > `(w)g = fw 2W : DR(w) \ J = ?gJW = fw 2W : s 2 J ) `(sw) > `(w)g = fw 2W : DL(w) \ J = ?g6



are, respectively, left and right coset representatives for the parabolic subgroup WJ gen-erated by J . Let us also note that for I; J � S,IW J = IW \W J = fw 2 W : DL(w) \ I = DR(w) \ J = ?gforms a set of double coset representatives for WInW=WJ .Proposition 1.5. For J � S, JW (resp., W J ) is an order ideal of the right (resp.,left) weak ordering of W .Proof. Let w 2 JW . If w0 �R w, then there exists a reduced expression w = w0x forsome x 2 W . Hence for any s 2 J , sw = sw0x is reduced, so sw0 is reduced. In otherwords, `(sw0) > `(w0) for all s 2 J , so w0 2 JW . �It should be noted that W J need not be an order ideal of the right weak order.We remark that if W is �nite, with w0 2 W being the longest element, the fact that`(w0x) = `(xw0) = `(w0)� `(x) for all x 2W (e.g., [H, x1.8]) shows that w0 is the uniquemaximal element of W with respect to �R and �L. More generally, if wJ0 2 W J denotesthe left coset representative for w0, we have the following.Proposition 1.6. For J � S, wJ0 is the unique maximal element of (W J ;�L).Proof. Let x0 denote the longest element of WJ . Given w 2 W J , the expression wx0must be reduced (otherwise by the deletion property [H, x5.8], w would not be the shortestmember of its coset). Similarly, the expression w0 = wJ0x0 must be reduced. Thereforewx0 �L w0 = wJ0x0, and hence also w �L wJ0 . �2. Characterizations of full commutativityFor any partial order P , let J(P ) denote the distributive lattice of order ideals of P .Lemma 2.1. Let w 2 W be of length l. If P is a partial order of [ l ] and s 2 S� is alabeling such that R(w) = L(P; s), then fx 2W : x �R wg �= J(P ) as posets.Proof. We claim that for s 2 S, Cs := fi : si = sg is a totally ordered subset of P .Indeed, if i and j were incomparable and si = sj = s, then there would exist a linearextension of P in which i and j appear consecutively. However, the corresponding word inS� would have two consecutive occurrences of s, and hence could not be a reduced wordfor w, proving the claim.Now let s(i) denote the ith smallest member of the chain Cs, relative to P . For anys0 2 S�, de�ne �(s; s0) to be the number of occurrences of s in s0.7



Suppose that s0 is a reduced word for some x �R w. Since any reduced word for xcan be completed to a reduced word for w, it follows that s0 is an initial segment of somelabeled linear extension of P , and henceI(s0) := fs(i) : i � �(s; s0); s 2 Sgis an order ideal of P . Furthermore, we claim that if s00 is another reduced word for x,then I(s0) = I(s00). If not, then it would be necessary that �(s; s0) 6= �(s; s00) for somes 2 S. Since the su�x of any completion of s0 to a reduced word for w can also be used asthe su�x for a completion of s00, it follows that there exist reduced words for w in whichthe multiplicity of s varies. However by assumption, R(w) = L(P; s), so every reducedword for w must be a permutation of s.We can thus use I(x) to denote the common value of I(s0) for s0 2 R(x). We claim thatthe map x 7! I(x) de�nes an order-isomorphism between fx 2W : x �R wg and J(P ).To prove this, we �rst note that the map is order-preserving. Indeed, given any coveringrelation x <R xs, we can choose a reduced word for x and complete it to a reduced wordfor xs by appending s, and therefore I(x) � I(xs).To prove that the map is surjective, let I be an order ideal of P . One can �nd s0 2 L(P; s)so that some initial segment of s0, say s00, is a labeled linear extension of I. However byhypothesis, s0 must be a reduced word for w. Hence s00 must be a reduced word for somex �R w and I = I(s00) = I(x).To prove that the map is injective, suppose that I(x) = I(y) = I for some x; y �R w.In that case, there must exist a labeled linear extension of I belonging to R(x). Anycompletion of this to a labeled linear extension of P (thus yielding a reduced word for w)must be a reduced word for x�1w. On the other hand, since I(y) = I, the same argumentproves that it must also be a reduced word for y�1w, so x = y. �Let us declare a subset R of S� to be order-theoretic if there exists a partial orderingP of [ l ] for some integer l � 0 and a labeling s 2 S� of P so that R = L(P; s).Theorem 2.2. For w 2 W , the following are equivalent:(a) w is fully commutative.(b) fx 2W : x �R wg, as a subposet of (W;�R), is a distributive lattice.(c) fx 2W : x �R wg �= J(Ps) for some (equivalently, every) s 2 R(w).(d) R(w) is order-theoretic.(e) R(w) = L(Ps; s) for some (equivalently, every) s 2 R(w).Proof. The implications (c))(b) and (e))(d) are immediate, (e))(c) and (d))(b) arespecial cases of Lemma 2.1, and (a))(e) follows from Proposition 1.2. To complete the8
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11Figure 1(a). Figure 1(b).proof, it therefore su�ces to establish (b))(a). For this, assume towards a contradictionthat fx 2 W : x �R wg is a distributive lattice, but that w is not fully commutative.Among all such counterexamples, assume that w is one that minimizes length. By Propo-sition 1.1, there must exist a reduced word s 2 R(w) and a pair s; t 2 S such thaths; tim occurs as a subword of s, where m = m(s; t) and 3 � m < 1. However, Propo-sition 1.3 shows that if w0 2 W has a reduced word that occurs as a subword of s, thenfx 2 W : x �R w0g is order-isomorphic to a subinterval of fx 2 W : x �R wg. Sincesubintervals of distributive lattices are also distributive, the minimality of `(w) forcess = hs; tim; i.e., w must be the longest element of the dihedral Coxeter group generatedby fs; tg. Since the weak ordering of such Coxeter groups is transparently not distributivefor m � 3 (e.g., see Figure 1(a) for the case m = 4), we obtain a contradiction. �A subset C of a partial order P is said to be convex if i; j 2 C and i < k < j in Pimplies k 2 C. The following result provides an intrinsic characterization of the heaps offully commutative elements.Proposition 2.3. The heap P of a word s 2 S� is the heap of some fully commutativew 2 W if and only if(a) There is no convex chain i1 < � � � < im in P such that si1 = si3 = � � � = s andsi2 = si4 = � � � = t, where 3 � m = m(s; t) <1.(b) There is no covering relation i < j in P such that si = sj .Proof. For any convex chain (or covering relation) of a poset P , there exist linearextensions in which the members of the chain appear consecutively. Thus if s is a reducedword for some fully commutativew 2W , Proposition 1.1 implies the necessity of (a). Sinceno reduced word can have two equal adjacent terms, (b) is also necessary. Conversely,given (a), Proposition 1.2 implies that the commutativity class of s has no members that9



contain hs; tim as a subword, for all s; t 2 S such that m = m(s; t) � 3. Therefore, theequivalence class of s relative to the braid relations is the same as its commutativity class.If follows that P is the heap of some fully commutative member of W , provided that s isa reduced word. However, this additional property is a consequence of (b). �3. Special propertiesSuppose that P is the heap of (a reduced word for) some fully commutative w 2 W .Recall that for each s 2 S, the members of P with label s form a chain. It will beconvenient for what follows to let s(i) denote the ith greatest member of this chain withrespect to P . (This is dual to the notation used in the proof of Lemma 2.1, but shouldnot cause confusion.)Lemma 3.1. Let s 2 S, and let w 2 W be fully commutative with heap P . If ws is notfully commutative, then ws is reduced and there is a unique t 2 S such that m(s; t) � 3and s(1) < t(1) in P . Moreover, m(s; t) <1 ands(k) < t(k) < s(k�1) < t(k�1) < � � � < s(1) < t(1) (if m(s; t) = 2k + 1)t(k) < s(k�1) < t(k�1) < � � � < s(1) < t(1) (if m(s; t) = 2k);is a convex chain in P .Proof. Since the fully commutative part of W is an order ideal with respect to �R(Proposition 1.4), it follows that if ws is not fully commutative, then ws is reduced. Nowlet P0 be the heap obtained from P by appending s at the end of a reduced word for w,and let s(0) denote the new vertex. For ws to not be fully commutative, it is necessary byProposition 2.3 that for some generator t 2 S such that 3 � m(s; t) <1, we haves(k) < t(k) < � � � < s(1) < t(1) < s(0) (if m(s; t) = 2k + 1)t(k) < � � � < s(1) < t(1) < s(0) (if m(s; t) = 2k)occurring as a convex chain in P0. If there were another t0 2 S such that m(s; t0) � 3 (orm(s; t0) = 1) and s(1) < (t0)(1) in P , then we would have s(1) < (t0)(1) < s(0) in P0, sothe above chain would not be convex. �3.1 Reduction to maximal quotients.For s 2 S, let hsi = S � fsg. Note that the maximal quotient W hsi consists of theidentity element, together with those w 2W with the property that every s 2 R(w) endswith s. The fully commutative elements with this property are characterized by the factthat their heaps have a maximum element with label s.10



Theorem 3.2. If W is irreducible and w 2 W is fully commutative, then there existsa fully commutative w0 �R w such that w0 2 W hsi for some s 2 S.Proof. Let s be a reduced word for w and P = Ps the heap of w. We may assume thatevery s 2 S appears in s, since if s does not appear, then ws >R w and ws is still fullycommutative.Let D = DR(w) � S denote the right descent set of w. Thus s 2 D if and only if s(1)is maximal in P . If D = fsg is a singleton, then w 2 W hsi and there is nothing more toprove. Otherwise, let us de�ne the separation of D to be the minimum distance in theCoxeter graph � among all pairs of elements in D. (Note that � is connected since W isassumed to be irreducible.) We claim that there exists a fully commutative w0 >R w suchthat either jDR(w0)j < jDR(w)j, or else jDR(w0)j = jDR(w)j and DR(w0) has a smallerseparation than DR(w). By iteration, this result would establish the existence of a fullycommutative w0 >R w such that jDR(w0)j = 1, thereby completing the proof.To prove the claim, consider a pair s; t 2 D whose distance in � is minimal, and lets = s0; s1; : : : ; sl = t be a shortest path from s to t. It is necessary that m(si�1; si) � 3for 1 � i < l, m(si; sj) = 2 for ji� jj > 2 (otherwise the path is not minimal), and l � 2(otherwise, s(1) and t(1) would be comparable in P and hence could not both be maximal).In particular, since si�1 and si do not commute, s(1)i�1 and s(1)i must be comparable in P .Bearing in mind that s(1) and t(1) are both maximal in P , it follows that there must existan index i such that s(1)0 > s(1)1 > � � � > s(1)i < s(1)i+1:In particular, there are (at least) two elements greater than s(1)i in P whose labels do notcommute with si. Thus wsi is reduced and (by Lemma 3.1) fully commutative. Further-more, in the heap of wsi, we haves(1)0 > s(1)1 > � � � > s(1)i�1 < s(1)i :Hence by similar reasoning, wsisi�1 is reduced and fully commutative. Iterating thisreasoning, we obtain that w0 := wsisi�1 : : : s1 is reduced and fully commutative. Moreover,we have s = s0 62 DR(w0), and there is only one element (namely, s1) of DR(w0) not inDR(w), so jDR(w0)j � jDR(w)j. If equality occurs, then we have s1; t 2 DR(w0) and theseparation of DR(w0) is at most l � 1. �Let �LR denote the partial order on W generated by the union of the left and rightweak orders; i.e., the transitive closure of the relations x <LR xy and y <LR xy for allx; y 2 W such that xy is reduced. It is clear that the fully commutative elements of W11



form an order ideal with respect to <LR. The following result shows that this order idealis generated by members of the maximal two-sided quotients of W .Corollary 3.3. IfW is irreducible and w 2 W is fully commutative, then there existsa fully commutative w0 �LR w such that w0 2 hsiW hti for some s; t 2 S.Proof. By Theorem 3.2, there is a fully commutative w0 �R w such that w0 2 W hsi forsome s 2 S. It follows that s(1) is the unique maximal element of the heap of w0. Withoutloss of generality, we can assume that every member of S occurs in some (equivalently,every) reduced word for w0, so that adding elements at the bottom of the heap will notchange the fact that s(1) is the unique maximal element of the heap. In other words, forevery fully commutative w00 �L w0, we have w00 2 W hsi. However, by the dual version ofTheorem 3.2, we can �nd a fully commutative w00 �L w0 such that w00 2 htiW for somet 2 S, and thus w00 2 htiW \W hsi = htiW hsi. �3.2 The top tree of a maximal element.By an ordering of a tree T with vertex set S, we mean a partial ordering of S obtainedby choosing a special vertex s0 2 S, and declaring s < t if t is on the unique path from sto s0. The Hasse diagram of such an ordering is the tree T , rooted at s0.Let w 2 W be fully commutative with heap P . We will say that w is right-maximal(resp., left-maximal) if for every s 2 S, ws (resp., sw) is either not reduced or not fullycommutative. In other words, w is maximal in the right (resp., left) weak order withrespect to full commutativity. In case w is right-maximal, it will be convenient to de�neP (1) = fs(1) : s 2 Sg, a subposet of P . (We will sometimes abuse this notation and regardP (1) as a partial order on S.) It should be noted that every generator must occur in anyreduced word for a right-maximal element, so s(1) is indeed de�ned for all s 2 S.The following result explains why we refer to P (1) as the top tree.2Theorem 3.4. Assume that W is irreducible. If w 2 W is fully commutative andright-maximal with heap P , then the Coxeter graph � is a tree, P (1) is an order �lter ofP , and P (1) is an ordering of the tree �.Proof. Choose s 2 S, and suppose that t(i) covers s(1) in P for some t 2 S and i � 1. Itfollows that s(1) < t(i) � t(1) in P and m(s; t) � 3. Since ws cannot be fully commutative,Lemma 3.1 implies that the two-element chain s(1) < t(1) must be convex (i.e., a coveringrelation) in P , and therefore i = 1. In other words, the only members of P that cover s(1)are members of P (1); thus P (1) is an order �lter of P .2We thank R. Proctor for suggesting this terminology.12



A second consequence of Lemma 3.1 is that there can be at most one element coverings(1) in P . Since Theorem 3.2 implies that the heap of a right-maximal w has a uniquemaximal element, it follows that P (1) is an ordering of some tree. Hence to complete theproof, we must show that this tree is �. Certainly it is true that every covering relation ofP (1) must involve a pair of elements whose labels are non-commuting generators|these arethe adjacent pairs in �. Conversely, given a pair of non-commuting generators s; t 2 S, itmust be the case that s(1) and t(1) are comparable in P ; say s(1) < t(1). In that case, sincews cannot be fully commutative, Lemma 3.1 implies that t(1) must be the only elementgreater than s(1) in P whose label does not commute with s, so it must cover s(1). �3.3. The classi�cation of top trees.If Q is an ordering of a tree on the vertex set S, we will use the notation t  s toindicate the covering relation of Q; i.e., t < s in Q and s; t are adjacent in the tree.The following result describes the irreducible Coxeter groups that contain right-maximalfully commutative elements, as well as the top trees of all such elements. Of course bythe previous result, we know that W cannot contain any left- or right-maximal elementsunless the Coxeter graph � is a tree, but this is far from su�cient.Theorem 3.5. Assume that � is a tree, and let Q be an ordering of �. There exists afully commutative right-maximal w 2 W with top tree Q (i.e., P (1) = Q for the heap Pof w) if and only if the following conditions are satis�ed for all s; t; u 2 S:(a) m(s; t) <1.(b) If t s, u s and t 6= u, then m(s; t) = m(s; u) = 3.(c) If u t s, then m(s; t) � 4.(d) If u t s and m(s; t) = 4, then m(t; u) = 3.Proof. We �rst prove that conditions (a){(d) are necessarily satis�ed by any right-maximal w 2W with heap P such that Q = P (1).(a) If s; t 2 S are such that m(s; t) � 3, then either s(1) < t(1) or t(1) < s(1). Assumingthe latter, wt must be reduced and therefore cannot be fully commutative. However byLemma 3.1, this is possible only if m(s; t) <1.(b) Assume towards a contradiction that t  s, u  s, t 6= u, and m(s; t) � 4. Inthat case, wt is reduced and therefore cannot be fully commutative. Thus by Lemma 3.1,s(2) < t(1) < s(1) must occur as a convex chain in P . However, u  s implies thatu(1) < s(1) is a covering relation of P . Since u(1) and s(2) must be comparable, we thereforehave s(2) < u(1) < s(1), so the chain s(2) < t(1) < s(1) is not convex, a contradiction.(c) Assume towards a contradiction that u t s and m(s; t) � 5. As in the previouscase, it follows that wt is reduced and therefore cannot be fully commutative. Thus by13



Lemma 3.1, t(2) < s(2) < t(1) < s(1) must occur as a convex chain in P . However, u  timplies that u(1) < t(1) is a covering relation of P . Since u(1) and t(2) must be comparable,it follows that t(2) < u(1) < t(1), so the chain t(2) < s(2) < t(1) < s(1) is not convex, acontradiction.(d) Assume towards a contradiction that u  t  s, m(s; t) = 4, and m(t; u) � 4. Inthis case, both wt and wu are reduced and hence neither can be fully commutative. ByLemma 3.1, it follows that both s(2) < t(1) < s(1) and t(2) < u(1) < t(1) must occur asconvex chains in P . In particular, s(2) < t(1) must be a covering relation. However, s(2)and t(2) must be comparable, so t(2) < s(2) < t(1), contradicting the convexity of the chaint(2) < u(1) < t(1).For the converse, we assume (a){(d) and construct a right-maximal w 2 W with toptree Q, by induction on jSj. If jSj = 1, the nonidentity member of W su�ces. If jSj = 2,then (a) implies that W is a �nite dihedral group, and it is straightforward to construct asuitable element w in this case.Otherwise, we have jSj � 3. Let s 2 S denote the root of Q, and let Q1; : : : ; Qk denotethe ordered subtrees obtained by deleting the root fromQ. Each subtree has a root si 2 S.Furthermore, the parabolic subgroups Wi generated by each Qi commute with each other.By induction, we can �nd a fully commutative right-maximal element wi (relative to Wi)with top tree Qi, for each i.Case 1: k � 2, or k = 1 and m(s1; s) = 3. Consider w = w1 � � �wks. Since s doesnot occur in any reduced expression for wi, it is clear that w is fully commutative. Toprove that w is right-maximal, choose t 2 S and consider wt. If t = s, then wt is notreduced. If t is an internal vertex of Qi, then witi is reduced and hence cannot be fullycommutative, since wi is right-maximal for Wi. Hence, wt = w1 � � � (witi) � � �wks cannotbe fully commutative. The remaining possibility is that t = si for some i. If k � 2, then(b) implies m(si; s) = 3; otherwise, if k = 1 then we have m(si; s) = 3 by hypothesis.Since si is the root of Qi, every reduced word for wi ends with si, so wissi is not fullycommutative, so wt = wsi is not fully commutative. Thus w is indeed right-maximal, andit is clear that Q is the top tree of w.Case 2: k = 1 and m(s1; s) = 4. (Since Q1 has two or more elements, (c) impliesthat this is the only remaining possibility.) Since s1 is the root of Q1, there is a reducedexpression for w1 of the form w1 = w01s1, where w01 2 W1. Consider w = w01ss1s. Sincew01s is reduced (s does not occur in w01) and w01s1 is reduced, it follows that w01 is theshortest representative of its left coset, relative to the parabolic subgroup generated byfs; s1g. In particular, the expression w01ss1s is reduced.We claim that w is fully commutative. To see this, we argue incrementally as follows.14



First, w01s is fully commutative, since s 62 W1. Second, w01ss1 is fully commutative, sinceotherwise Lemma 3.1 (and the fact that m(s1; s) = 4) would imply that some reducedexpression for w01 must involve s. Finally, it follows that w = w01ss1s is fully commutative,since otherwise by Lemma 3.1, s(2)1 < s(1) < s(1)1 must be a convex chain in the heap ofw01ss1. Hence there would be a reduced expression for w01 ending with s1, contradictingthe fact that w01s1 is reduced.Finally, we claim that w is right-maximal. For this, choose t 2 S and consider wt. Ift = s, then wt is not reduced. If t = s1, then wt = w01ss1ss1 is transparently not fullycommutative. Otherwise, t is an internal vertex of Q1. In particular, it commutes with s,and by maximality of w1, w1t = w01s1t is not fully commutative. If t also commuteswith s1, then w01t must also not be fully commutative, and hence wt = w01tss1s is not fullycommutative. Otherwise, by (d) we have m(s1; t) = 3 and Lemma 3.1 implies that thereis a reduced expression for w01 ending with t. Therefore, there is a reduced expression forwt ending with tss1st = sts1ts, which is not fully commutative. �4. The classi�cation of FC-�nite Coxeter groupsWe will say that W is FC-�nite if the number of fully commutative w 2 W is �nite.The simply-laced FC-�nite Coxeter groups were classi�ed by Fan in his thesis [F]; in thefollowing, we treat the general case. It is interesting to note that there are no \exceptional"FC-�nite Coxeter groups, in the sense that the irreducible ones occur in seven naturallyidenti�able in�nite families. (See Figure 2.)Theorem 4.1. The irreducible FC-�nite Coxeter groups are An (n � 1), Bn (n � 2),Dn (n � 4), En (n � 6), Fn (n � 4), Hn (n � 3), and I2(m) (5 � m <1).Before beginning the proof, let us outline the strategy. First, we derive a list of necessaryconditions that collectively eliminate all Coxeter groups not named in the above list. Forthe converse, it is well known and easy to show that the groups An, Bn, Dn and I2(m)(m <1) are �nite (and hence, FC-�nite), so we con�ne our attention to proving that thegroups En, Fn and Hn are FC-�nite.Proof. Assume that W is irreducible and FC-�nite.(1) � must be acyclic. Indeed, suppose that s1; : : : ; sn 2 S form a circuit of �, so thatsi and si+1 do not commute for 1 � i � n (subscripts taken modulo n). It follows thatany initial segment of the word(s1; s2; : : : ; sn; s1; s2; : : : ; sn; : : : )15
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2 (m)Figure 2: The FC-�nite Coxeter groups.has no subwords of the form hs; tim with m = m(s; t). Hence, any such word is not merelyreduced, it is also rigid; i.e., it is the unique reduced word for some w 2W . In particular,any such w is fully commutative, so W could not be FC-�nite.(2) Every edge of � has �nite weight. If m(s; t) = 1, then any initial segment of thein�nite word (s; t; s; t; s; t; : : :) is rigid.(3) � has at most one edge of weight �4. Otherwise, there exists a path s1; : : : ; sn in� such that n � 3, m(s1; s2) � 4, and m(sn�1; sn) � 4. However in that case, any initialsegment of the following in�nite word is rigid:(s1; s2; : : : ; sn�1; sn; sn�1; : : : ; s2; s1; s2; : : : ; sn�1; sn; sn�1; : : : ; s2; s1; s2; : : : ):We remark that an alternative proof of (1) and (2) is provided by the fact that any FC-�nite Coxeter group must contain right-maximal fully commutative elements, and hencemust satisfy the conditions of Theorems 3.4 and 3.5. We also remark that it is not hardto show that properties (1){(3) characterize the (irreducible) Coxeter groups with �nitelymany rigid elements.(4) � has no vertex of degree �4, and at most one vertex of degree 3. Otherwise, �contains an induced subgraph isomorphic to the one indicated in Figure 3(a); the existence16
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mFigure 4.of a vertex of degree 4 corresponds to the case n = 5. Now consider the in�nite word(s1; s2; s3; : : : ; sn�2; sn�1; sn; sn�2; : : : ; s3; s1; s2; s3 : : : ; sn�2; sn�1; sn; sn�2; : : : ):The only subwords of the form hs; tim with m = m(s; t) that occur in this word involvethe commuting pairs (s1; s2) and (sn�1; sn). Since this property is preserved when any ofthese pairs are transposed, it follows that every initial segment of this word is reduced andfully commutative.(5) � cannot have both a vertex of degree 3 and an edge of weight �4. Otherwise,� contains an induced subgraph isomorphic to the one indicated in Figure 3(b), withm(s1; s2) � 4 and n � 4. In this case, consider the in�nite word(s1; s2; : : : ; sn�2; sn�1; sn; sn�2; : : : ; s2; s1; s2; : : : ; sn�2; sn�1; sn; sn�2; : : :):The only subwords of the form hs; tim with m = m(s; t) that occur in this word involvethe commuting pair (sn�1; sn). Since this property is preserved when any of these pairsare transposed, it follows that every initial segment of this word is reduced and fullycommutative.Assuming W 6= A1, properties (1){(5) imply that the Coxeter diagram (�;M ) must beisomorphic to a member of one of the families Y (p; q; r) or I(p; q;m) indicated in Figure 4,with p; q; r � 1. Note that in the former case, every edge has weight 3; in the latter case,one edge has weight m for some (�nite) m � 3, and the remainder have weight 3.17



(6) If max(p; q) �2 and m �6, then I(p; q;m) is not FC-�nite. Indeed, if the generatorsare labeled so that m(s1; s2) � 6 and m(s2; s3) = 3, then the in�nite word(s2; s1; s3; s2; s1; s2; s1; s3; s2; s1; s2; s1; s3; s2; : : :)has the property that the only subwords of the form hs; tim withm = m(s; t) that occur in-volve the commuting pair (s1; s3). Furthermore, when any of these pairs are interchanged,the longest alternating (s1; s2)-subword has length 5, and the occurrences of (s2; s3) and(s3; s2) remain disjoint. Hence, any initial segment of this word is reduced and fully com-mutative. It follows that if � has an edge of weight � 6, then W must be one of the (�nite)dihedral groups I2(m).(7) If p; q �2, then I(p; q;5) is not FC-�nite. We can assume that the generators arelabeled so that m(s1; s01) = 5, with s1; s2; : : : and s01; s02; : : : forming the two \branches" ofthe Coxeter graph. Again we claim that there is an in�nite word whose initial segmentsare reduced words for fully commutative members of W . However in this case, it is morehelpful to describe the heap of this in�nite word: See Figure 5. (Note that the verticesof the heap have been assigned the labels of the corresponding generators.) One merelyneeds to check that this poset satis�es the criterion of Proposition 2.3. Once this is done,it follows that every (�nite) order ideal of this poset is the heap of some fully commutativeelement. Thus if the group W = I(p; q; 5) is FC-�nite, it is necessary that min(p; q) = 1;however in that case, W �= Hp+q .(8) If p; q �3, then I(p; q;4) is not FC-�nite. Let us continue the labeling of thegenerators established in (7), except that we now have m(s1; s01) = 4. In this case, thein�nite heap of Figure 6 satis�es the conditions of Proposition 2.3, and hence proves thatthe group in question is not FC-�nite. It follows that if W = I(p; q; 4) is FC-�nite, thenmin(p; q) = 1 or 2. However in that case, W is isomorphic to Bp+q or Fp+q .The only remaining groups of the form I(p; q;m) are those for which m = 3; however,these are Coxeter groups of type A.(9) If p; q; r �2, then Y (p; q; r) is not FC-�nite. Let us suppose that the generatorsare labeled so that s0 is the vertex of degree 3, with s1; s2; : : : ; s01; s02; : : : ; and s001 ; s002 ; : : :forming the three branches of �. In this case, the in�nite heap of Figure 7 proves thatthese groups cannot be FC-�nite.(10) If p; q �3 and r �1, then Y (p; q; r) is not FC-�nite. Continuing the labeling usedin (9), the in�nite heap of Figure 8 proves that these groups cannot be FC-�nite.Properties (9) and (10) prove that if W = Y (p; q; r) is FC-�nite and p � q � r � 1,then (q; r) = (1; 1) or (q; r) = (2; 1). However in these respective cases, one has W �= Dp+3and W �= Ep+4. 18
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To complete the proof of Theorem 4.1, it remains to be shown that the groups En, Fn,and Hn are FC-�nite. Continuing the notation of Section 3, given a heap P and s 2 S,let s(i) denote the ith greatest vertex of P with label s, relative to the partial order.Lemma 4.2. Let W = An and s 2 S. If s has degree one in � (or n = 1), then there isat most one occurrence of s in any reduced word for any fully commutative w 2W .Proof. Let P be the heap of some fully commutative w 2 W in which two or morevertices are labeled s. Clearly n � 2, so there is a unique t 2 S such that m(s; t) = 3. Itfollows that the convex subposet Q = fj 2 P : s(2) < j < s(1)g of P is the heap of somefully commutative member w0 of the parabolic subgroup of type A generated by S � fsg.Since Q is nonempty (Proposition 2.3(b)), it follows that at least one member of Q coverss(2) and at least one is covered by s(1). The labels of such elements cannot commutewith s, and hence must be t. However by induction with respect to n, every reduced wordfor w0 has at most one occurrence of t. Thus in fact Q must consist of a single vertex withlabel t; given that w is fully commutative, this contradicts Proposition 2.3(a). �Suppose that the parabolic subgroup of W generated by some J � S is of type A. Ifthere is a unique s 2 J and a unique t 2 S � J such that m(s; t) � 3, and if moreover s isan \end node" (i.e., jJ j = 1 or s has degree one relative to J), then we will say that J isa branch of S, with s and t being the points of contact. If m(s; t) = 3, the branch will besaid to be simple.Lemma 4.3. Let J be a branch of S with points of contact s 2 J and t 2 S�J . If P isthe heap of some fully commutative w 2 W , then for each i > 1 such that t(i) is de�ned,there is at most one vertex j of P with label s such that t(i) < j < t(i�1) in P . In thatcase, the chain t(i) < j < t(i�1) is unre�nable.Proof. Let t(i) = j0 < j1 < � � � < jm = t(i�1) be an unre�nable chain of P with at leastone member having label s. The label sequence corresponding to j0; : : : ; jm must form apath in � from t to t with no intermediate vertex of label t and at least one vertex withlabel s. Given that J is a branch of S, this is possible only if j1 and jm both have label s.It follows that Qi = fk 2 P : t(i) < k < t(i�1)g is the heap of some fully commutativemember of WJ , a Coxeter group of type A. However by Lemma 4.2, any such heap canhave at most one vertex with label s, so j1 = jm and m = 1. �Lemma 4.4. Let J be a simple branch of S with points of contact s 2 J and t 2 S�J .If P is the heap of some fully commutative w 2 W and there is an unre�nable chaini1 < j1 < i2 < j2 < � � � < im+1 in P such that i1; : : : ; im+1 have label t and j1; : : : ; jmhave label s, then m � jJ j. 20



Proof. Proceed by induction on m, the case m = 1 being trivial. We note that J � fsgis also a simple branch of S, with the points of contact being s and some s0 2 J � fsg.By Proposition 2.3, the chain j1 < i2 < j2 cannot be convex, so there must exist someother vertex k of P such that j1 < k < j2, with k covering j1. Since J is a branch, theonly generators not commuting with s are t and s0, so this is possible only if the label of kis s0. However in that case, Lemma 4.3 implies that the chain j1 < k < j2 is unre�nable.Iterating this argument, we obtain an unre�nable chain j1 < k1 < j2 < k2 < � � � < jm inP such that k1; : : : ; km�1 have label s0. Hence by the induction hypothesis, we must havem � 1 � jJ j � 1. �Proof that Hn is FC-�nite. For W = Hn, there exist generators s; t 2 S such thatm(s; t) = 5 and S�ftg is a branch, with the points of contact being s and t. Now supposethat P is the heap of some fully commutative w 2 Hn, and let i1 < � � � < im be thevertices of P with label t. Since s is the only generator that does not commute with t,Lemma 4.3 implies that there is an unre�nable chain i1 < j1 < i2 < j2 < � � � < im inP such that j1; : : : ; jm�1 have label s. Now by Proposition 2.3, i1 < j1 < i2 < j2 < i3cannot be a convex chain in P . On the other hand, there is a unique s0 2 S � fs; tg thatdoes not commute with s and there is no such vertex that does not commute with t. Itfollows that there must be some vertex k 2 P with label s0 such j1 < k < j2. Iterating thisargument, we obtain the existence of a chain j1 < k1 < j2 < k2 < � � � < jm�1 in P in whichk1; : : : ; km�2 have label s0. By Lemma 4.3, this chain must be unre�nable. Furthermore,since S�fs; tg is a simple branch of S of size n�2, Lemma 4.4 implies that m�2 � n�2.In other words, every fully commutative w 2 Hn uses the generator t at most n times.Thus any such element can be expressed in the form w0tw1tw2 � � � twm, where m � n andeach wi belongs to the (�nite) parabolic subgroup generated by S � ftg. �Proof that Fn is FC-�nite. Let s; t 2 S denote the two generators of W = Fn withm(s; t) = 4, and let t0 2 S denote the end node with m(t; t0) = 3 and the property thatft0g is a branch of S. Now suppose that P is the heap of some fully commutative w 2 Fn.We �rst claim that for each i such that t(i+1) occurs in P , there must exist a vertex labeleds in the convex subposet Qi = fk 2 P : t(i+1) < k < t(i)g. Otherwise, Qi is the heap ofsome fully commutative w0 in the parabolic subgroup generated by S � fs; tg. However,the only member of S � fs; tg that does not commute with t is t0, so by Lemma 4.3, Qimust consist of a singleton vertex with label t0. This contradicts Proposition 2.3, so theclaim follows.Secondly, we claim that Qi and Qi+1 cannot both contain vertices with label t0. Oth-erwise, there would exist a chain t(i+2) < k1 < t(i+1) < k2 < t(i), necessarily unre�nable21



(Lemma 4.3), in which k1 and k2 both have label t0. However, ft0g is a simple branch of S,so this contradicts Lemma 4.4.Let i1 < � � � < im denote the vertices of P with label t. By the �rst claim, there isa chain i1 < j1 < i2 < j2 < � � � < im in P such that j1; : : : ; jm�1 have label s. ByLemma 4.3, this chain must be unre�nable. By the second claim, there is either no vertexk of P with label t0 such that i1 < k < i2 or else no such vertex with i2 < k < i3. If theformer holds, consider the chain i1 < j1 < i2 < j2; if the latter, consider j1 < i2 < j2 < i3.By Proposition 2.3, neither chain can be convex. Since every generator commutes witheither s or t, and we have eliminated the possibility of a vertex labeled t0 between i1 and i2(the former case) or between i2 and i3 (the latter case), the only remaining possibility isthat there is a vertex k such that j1 < k < j2, with the label of k being a generatornot commuting with s, other than t. Note there is a unique generator, say s0, with thisproperty. Note also that S � fs; t; t0g is a simple branch of S, with the points of contactbeing s and s0.By iterating this argument, we obtain a chain j1 < k1 < j2 < k2 < � � � < jm�1 in Pwith the property that k1; : : : ; km�2 have label s0. By Lemma 4.3, this chain must beunre�nable. Furthermore, since S � fs; t; t0g is a simple branch, Lemma 4.4 implies thatm�2 � n�3. In other words, every fully commutativew 2 Fn uses the generator t at mostn�1 times. Thus any such element can be expressed in the form w0tw1tw2 � � � twm, wherem < n and each wi belongs to the (�nite) parabolic subgroup generated by S � ftg. �Proof that En is FC-�nite. We can label the generators ofW = En so that t has degree 3in �, and s; s0; s00 are the generators adjacent to t. We can arrange the labels so that thereare (simple) branches of sizes n� 4, 2 and 1, with points of contact t and (respectively) s,s0 and s00. Now suppose that P is the heap of some fully commutative w 2 En. Assumingthat t(i+1) occurs in P , consider the convex subposet Qi = fk 2 P : t(i+1) < k < t(i)gof P . The possible labels of elements covering t(i+1) are s; s0; s00. Since each of them is apoint of contact for a branch at t, Lemma 4.3 implies that each such element must alsobe covered by t(i). Since Proposition 2.3 implies that Qi cannot be a singleton, there arethree remaining possibilities:(a) Qi is a tripleton, with vertices labeled s; s0, and s00.(b) Qi is a doubleton, with vertices labeled s and s0.(c) Qi is a doubleton, with vertices labeled s and s00.(d) Qi is a doubleton, with vertices labeled s0 and s00.Note that the members of Qi are incomparable in P .Given that there are m occurrences of the label t in P , we can construct a word �22



of length m � 1 in the alphabet fa; b; c; dg, according to the type of each subintervalQ1; : : : ; Qm�1. Since fs00g is a simple branch of S, Lemma 4.4 implies that there canbe no subword of � of the form xy, where x; y 2 fa; c; dg. Furthermore, we claim thatthe letter d can appear only at the beginning or end of �. Otherwise, the only possiblesubword of the form xdy that avoids the previously forbidden subwords of length 2 is bdb.However if this occurs, then for some i, each of Qi; Qi+1; Qi+2 contain vertices labeled s0,contradicting Lemma 4.4 and the fact that there is a simple branch of size 2 connectings0 and t.Since d is the only interval-type omitting vertices labeled s, it follows that Q2; : : : ; Qm�2must each contain a vertex labeled s. Since there is a simple branch of size n�4 connectings and t, Lemma 4.4 implies that m�3 � n�4. In other words, the generator t can appearat most n� 1 times in any fully commutative w 2 En. Thus any such w can be expressedin the form w0tw1tw2 � � � twm, where m < n and each wi belongs to the (�nite) parabolicsubgroup generated by S � ftg. �5. Fully commutative quotientsBy Theorem 3.2, we know that the order ideal (with respect to �R) of fully commuta-tive elements of W is generated by the fully commutative parts of the maximal parabolicquotients W hsi for s 2 S. Thus to a large extent, the task of determining all fully commu-tative elements of W reduces to the corresponding question for maximal quotients. In thecase of the symmetric groups, the situation is particularly simple, since it is known (and italso follows from what will be demonstrated below) that every member of every maximalquotient is fully commutative. This raises the question: Which parabolic quotients ofCoxeter groups (not necessarily maximal) have the property that every member is fullycommutative? As we shall see, apart from degenerate cases, the answer to this questionalso turns out to be the answer to several very natural order-theoretic questions aboutparabolic quotients.Let J � S. The quotient W J will be said to be minuscule if W is (isomorphic to)a �nite Weyl group and the subgroup WJ is the stabilizer of a minuscule weight �. (Anonzero weight � is minuscule if there is a representation of a semisimple Lie algebra withWeyl group W whose set of weights is the W -orbit of �.) The classi�cation of minusculeweights is well-known and can be found in Exercise VI.4.15 of [B], for example. Assumingthat W is irreducible, the pairs (W;WJ ) such that the quotient W J is minuscule are asfollows:1. W �= An; J = S � fsg for any s 2 S.2. W �= Bn; WJ �= Bn�1 or An�1. 23



3. W �= Dn; WJ �= Dn�1 or An�1.4. (W;WJ ) �= (E6; D5) or (E7; E6).Note that all irreducible minuscule quotients are also maximal quotients.Theorem 5.1. Assume that W is irreducible. If J is a proper subset of S, then everymember of W J is fully commutative if and only if one of the following is true:(a) Every edge of � has in�nite weight (i.e., m(s; t) � 3) m(s; t) =1).(b) W J is minuscule.(c) (W;WJ ) �= (H3; I2(5)) or (I2(m); A1).Proof. First, we show that properties (a){(c) are each su�cient to imply that everymember of W J is fully commutative. Indeed, if (a) holds, then the only braid relationsinvolve pairs of commuting generators, and hence everymember ofW is fully commutative.If W = I2(m), then there is only one member ofW that is not fully commutative; namely,the longest element w0. It has (right) descent set S, and hence does not belong to W Junless J = ?.In case W �= H3, label the generators s1; s2; s3 so that m(s1; s2) = 5 and m(s2; s3) = 3.Also, set J = fs1; s2g, so that WJ �= I2(5). Now consider the heap P ofs = (s3; s2; s1; s2; s3; s1; s2; s1; s2; s3)depicted in Figure 9. Using only Proposition 2.3, it is clear that P is the heap of some fullycommutativew 2W . Furthermore, since the unique maximal element of P has label 3, wehave w 2 W J . Bearing in mind that the longest elements of H3 and I2(5) have respectivelengths 15 and 5, it follows that w must be wJ0 (the longest element of W J ), since it haslength 15 � 5 = 10. However, wJ0 is the unique maximal element of W J with respect to�L (Proposition 1.6), so every member of W J is fully commutative (Proposition 1.5).Now consider (b); i.e., we suppose that W is a �nite Weyl group with a crystallographicroot system � embedded in some real Euclidean space E with inner product (� ; �), simpleroots � � �, weight lattice � � E, and WJ is the stabilizer of some minuscule weight� 2 �. For each � 2 �, let s� 2 W denote the reection on E �xing the hyperplaneperpendicular to �, so that S = fs� : � 2 �g.Temporarily, let us discard the hypothesis that � is minuscule, and instead merelyassume that � 2 E belongs to the closure of the fundamental chamber (i.e., (�; �) � 0 forall � 2 �). In this case, one knows (e.g., [H, x1.12]) that the stabilizer of � is WJ , whereJ = fs� 2 S : (�; �) = 0g.Lemma 5.2. Given w 2 W J and � 2 �, we have s�w <L w if and only if (w�; �) < 0.24



Proof. If s�w <L w, then it is necessarily the case that s�w� 6= w�; otherwise, s�wwould be a member of wWJ , contradicting the fact that w is the shortest member of itscoset. Hence, (w�; �) 6= 0. However since `(s�w) < `(w), it follows that w�1� must be anegative root (e.g., [H, x1.6]). On the other hand, � is in the closure of the fundamentalchamber, so we must have (w�; �) = (�;w�1�) < 0. Conversely, if (�;w�1�) < 0, thenw�1� is a negative root, so `(s�w) < `(w) (again [H, x1.6]), so s�w <L w. �Now suppose that w 2W J is not fully commutative. By replacing w with somew0 <L wif necessary (cf. Propositions 1.1 and 1.5), we can assume that w has a reduced expressionof the form x0y, where x0 is the element of length m(s; t) in the parabolic subgroupgenerated by some fs; tg � S such that m(s; t) � 3. Now let �; � 2 � denote the simpleroots corresponding to s and t, so that s = s� and t = s� . Since `(sx0) = `(tx0) < `(x0),it follows that sw; tw <L w, and hence by Lemma 5.2, (w�; �) < 0 and (w�; �) < 0.For  2 �, let _ = 2=(; ) denote the corresponding co-root. Since � is assumed tobe crystallographic, it follows that (w�; �_) and (w�; �_) are negative integers. Further-more, since s and t generate an irreducible Weyl group of rank 2, it follows that there isat least one root in the positive integral span of � and �, and the same is true of �_ and�_ relative to the co-root system �_. That is, there exist integers c1; c2 > 0 and  2 �such that _ = c1�_ + c2�_. Thus we obtain(w�; _) = c1(w�; �_) + c2(w�; �_) � �c1 � c2 � �2:However, by Exercise VI.1.24 of Bourbaki [B], one knows that if � is minuscule, then(w�; _) 2 f0;�1g for all  2 � and w 2 W . This contradicts the hypothesis that W Jcontains elements that are not fully commutative.We remark that in Proposition 10 of [F], Fan gives a di�erent proof that every memberof a simply-laced minuscule quotient is fully commutative.Turning to the converse, we derive a series of conditions that are necessary for everymember of W J to be fully commutative, and we show that these conditions collectivelyeliminate all parabolic quotients other than those listed in (a){(c). To begin with, we willassume that � has at least one edge of �nite weight (since otherwise (a) applies).(1) Every edge of � has �nite weight. Otherwise, given s 2 S � J , there are threepossibilities: (i) there is a pair t; u 2 S such that m(s; t) = 1 and 3 � m(s; u) < 1, orthere is a path s1; s2; : : : ; sn = s in � such that (ii)m(s1; s2) =1 andm(s2; s3) = m <1,or (iii) m(s1; s2) = m < 1 and m(s2; s3) = 1. In these respective cases, we claim thatthe following are reduced words for some member of W J that is not fully commutative:(i) s = (hs; uim; t; s), where m = m(s; u).25
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2 Figure 10.(ii) s = (hs2; s3im; s1; s2; : : : ; sn).(iii) s = (hs1; s2im; s3; s2; s3; : : : ; sn).In each case, it is straightforward to check that s is indeed a reduced word for some w 2W .In fact, one �nds that R(w) has either two or three members, depending on whether t andu commute (case (i)) or s1 and s3 commute (cases (ii) and (iii)). It is also transparentthat w is not fully commutative. Since each of the two or three members of the braidequivalence class of s ends with s, it follows that w 2W J and the claim follows.(2) W J is a maximal quotient. Otherwise, let s = s1; : : : ; sn = t be a path in � thatconnects s; t 2 S � J , and consider the words = (hs1; s2im; s3; : : : ; sn); (�)where m = m(s1; s2). (We may assume m < 1, by (1).) It is easy to see that s is areduced word for some w 2W that is not fully commutative. Furthermore, every memberof the braid equivalence class of s ends with either t = sn or s = s1, and the latter occursif and only if s1 commutes with s3; : : : ; sn. Hence DR(w) � fs; tg and w 2W J .Henceforth, we may assume that J = S�fsg for some �xed s 2 S. In this situation, wehave w 2W J if and only if DR(w) = fsg or w = 1. Thus we can reformulate our objectiveas one of identifying conditions that force the existence of w 2W with DR(w) = fsg thatare not fully commutative.Lemma 5.3. Let I � S�fsg, and suppose there is a path in � from some t 2 I to s thatmeets I only at t. If there is somew 2 WI withDR(w) = ftg that is not fully commutative,then there is some w0 2W with DR(w0) = fsg that is not fully commutative.Proof. Let t = s1; : : : ; sn = s be the given path in �, and suppose that w 2 WI is notfully commutative and DR(w) = ftg. Consider w0 = ws2s3 � � �sn. Every reduced word for26



w ends with t. Furthermore, since s2; : : : ; sn do not appear in w and si does not commutewith si+1, it follows that the expression ws2s3 � � � sn is reduced, and every reduced wordfor w0 consists of a reduced word for w followed by (s2; : : : ; sn). Therefore w0 is not fullycommutative and DR(w0) = fsg. �(3) � is acyclic. If not, then by Lemma 5.3 we can assume that there is a circuit of �through s. Assuming that s1; : : : ; sn = s are the vertices of a minimal circuit, so that siand si+1 do not commute for 1 � i � n (subscripts taken modulo n), consider the word sof (�) and the corresponding w 2 W . In (2), we noted that DR(w) � fs1; sng, and thats1 2 DR(w) if and only if s1 commutes with s3; : : : ; sn. However in this case, s1 and sndo not commute, so DR(w) = fsng = fsg.(4) � has no vertex of degree �4, and at most one vertex of degree 3. Otherwise, byfollowing a path from s to a vertex of degree � 3, we can use Lemma 5.3 to reduce toa con�guration in which there are generators s1; : : : ; sn 2 S that induce a subgraph of �isomorphic to the one in Figure 3(b), with s = s2. (The case n = 4 occurs when there isa vertex of degree � 4.) In that case, considers = (hs1; s2im; s3; : : : ; sn�2; sn�1; sn; sn�2; : : : ; s3; s2);where m = m(s1; s2). By examining the heap of s and the equivalent word obtained byapplying the braid relation hs2; s1im � hs2; s1im, one can see that s is a reduced word forsome w 2 W that is not fully commutative. Both heaps have a maximum element withlabel s = s2, so DR(w) = fsg.(5) Either W is of type A, or s is an end node. If � has a vertex of degree 3 and s hasdegree � 2, then there is a con�guration in � isomorphic to the one in (4). Otherwise,� is a path. Assuming W 6= An and that s has degree 2, it follows that there is a paths1; : : : ; sn in � such that n � 3, m(sn�1; sn) � 4, and s = s2. In that case, considers = (hs1; s2im; s3; : : : ; sn�1; sn; sn�1; : : : ; s3; s2);where m = m(s1; s2). By reasoning similar to (4), s is a reduced word for some w 2W hsithat is not fully commutative.Since every maximal quotient of W = An is minuscule, for the remainder of the proofwe may assume that W is not of type A, and hence also that s is an end node of �.(6) � cannot have both a vertex of degree 3 and an edge of weight �4. Otherwise, byfollowing a path from s we will reach either a vertex of degree 3 or an edge of weight � 4.If the former occurs �rst, then by Lemma 5.3, we can reduce to a con�guration of thetype that was eliminated in (5). If the latter occurs, we can use Lemma 5.3 to reduce to a27



con�guration of generators s1; : : : ; sn 2 S that induce a subgraph of � isomorphic to theone in Figure 3(b), with s = s1 and m = m(s1; s2) � 4. However in that case,(hs1; s2im; s3; : : : ; sn�2; sn�1; sn; sn�2; : : : ; s2; s1)is a suitable reduced word for some w 2 W hsi that is not fully commutative.(7) � has at most one edge of weight �4. If � has two or more edges of weight � 4,then � must be a path and s must be an end node, thanks to (5) and (6). By followingthe path from s, we can use Lemma 5.3 to reduce to the case of a path s = s1; s2; : : : ; snin � such that m = m(s1; s2) � 4 and m(sn�1; sn) � 4. However in that case,(hs1; s2im; s3; : : : ; sn�1; sn; sn�1; : : : ; s3; s2; s1)is a suitable reduced word for some w 2 W hsi that is not fully commutative.In the following, we will continue to construct explicit reduced words for members ofW that are not fully commutative; however, in most of the remaining cases, the structureof the commutativity and braid equivalence classes are su�ciently complex that it iseasier to deduce what is needed by examining heaps. More speci�cally, in (most of) theremaining constructions, we present a pair of heaps, and it is left to the reader to checkthe following: (i) Each heap has exactly one convex chain with alternating labels i; j; i; : : :of cardinality m = m(si; sj) � 3 for some pair of generators si; sj. (ii) The braid relationhsi; sjim � hsj ; siim, when applied to a linear extension of each heap, interchanges thetwo heaps. (iii) Both heaps have a maximum element, and the label of this elementcorresponds to s. These properties collectively imply that some w 2 W hsi has exactly twocommutativity classes and hence cannot be fully commutative.(8) An edge of weight �4 must be adjacent to an end node. Otherwise, by Lemma 5.3 wecan reduce to a case in which there is a path s = s1; s2; s3; s4 with m(s2; s3) � 4. By (7),we may also assume that m(s1; s2) = 3. However in that case, the pair of braid-relatedheaps in Figure 10 prove the existence of some w 2W hsi that is not fully commutative.Suppose now that � is a path, say s1; s2; : : : ; sn. By (5), (7) and (8), we may assumethat m = m(s1; s2) � 4, all other edge weights are 3, and s = s1 or s = sn. If n = 2 thenW is a dihedral group (a case covered by (c)), so assume n � 3. We may also assumem � 5, since otherwise m = 4, W = Bn, and both end nodes correspond to minusculequotients. If s = s1, m � 5 and n � 3, then w = s2s3s2s1s2s1 is a member of W hsi thatis not fully commutative, so we can assume s = sn. If n = 3 and m = 5, then W = H3and WJ = I2(5) (a case covered by (c)). If n = 3 and m � 6, then w = s2s3s2s1s2s1s2s3is a member of W hsi that is not fully commutative. With Lemma 5.3, this eliminates all28
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Figure 12.cases with n � 3 and m � 6. Finally, if n = 4 and m = 5 (i.e., W = H4, WJ = H3), thenthe pair of braid-related heaps in Figure 11 prove the existence of some w 2W hsi that isnot fully commutative. With Lemma 5.3, this eliminates all cases with n � 4 and m = 5.The only remaining possibility is that W = Y (p; q; r) (see Figure 4), and that s is theend node of (say) the branch of length p. Continuing the labeling established in Section 4,we let s0 denote the vertex of degree 3, and let s1; : : : ; sp; s01; : : : ; s0q; s001 ; : : : ; s00r denote thegenerators along the three branches of �. If q = r = 1, thenW = Dn andW J is minuscule.On the other hand, if q; r � 2, then the braid-related heaps in Figure 12 provide a memberof W J that is not fully commutative for the case p = 1, and hence we may also eliminatep > 1 (Lemma 5.3). For what remains, we may thus assume q � 2 and r = 1. Now if p = 1then W = Dn and W J is again minuscule, so we may further assume that p � 2. If q � 3,then the heaps in Figure 13 provide a member of W J that is not fully commutative forthe case p = 2, and hence we may also eliminate p � 3 (again Lemma 5.3). Thus q = 2.If p = 2, then W = E6 and WJ = D5, and if p = 3 then W = E7 and WJ = E6, both ofwhich yield minuscule quotients. All that remains is p � 4, q = 2, and r = 1; however inthat case, Lemma 5.3 and the heaps in Figure 14 prove that W J has members that arenot fully commutative. � 29
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4 Figure 14.6. Consequences for the Bruhat orderLet T = fwsw�1 : w 2 W; s 2 Sg denote the set of (abstract) reections in W . TheBruhat order (e.g., [Bj], [H]) may be de�ned as the partial ordering �B on W generatedby the transitive closure of the relationsw <B wt whenever `(w) < `(wt)for all w 2 W , t 2 T . We note that there is no distinction between a \left" and \right"Bruhat order, since tw = w(w�1tw) >B w if and only if `(tw) > `(w). It is also clear thatthe Bruhat order re�nes both the left and right weak orders; i.e., x �LR y ) x �B y forall x; y 2 W . However, unlike the weak ordering, the fully commutative part of W andthe parabolic quotients W J need not be order ideals of (W;�B).In [P], Proctor classi�es the parabolic quotients of �nite Weyl groups whose Bruhatorderings are lattices; aside from the minuscule quotients, the only other examples occurin the case W = G2.3 Also, it is implicit in [P] and explicit for the symmetric groupcase in [Bj, (4.9)] that the Bruhat ordering and weak ordering of a minuscule quotient are3However in [P], Proctor also remarks without proof that among the �nite Coxeter groups, the Bruhatorder on WJ with (W;WJ) �= (H3; A2) is a lattice. Theorem 6.1 shows that this is incorrect.30



identical. The following result characterizes the parabolic quotients of arbitrary Coxetergroups with these properties.Theorem 6.1. If W is irreducible and J is a proper subset of S, then the followingare equivalent.(a) (W J ;�B) is a lattice.(b) (W J ;�B) is a distributive lattice.(c) (W J ;�L) is a distributive lattice.(d) (W J ;�B) = (W J ;�L).(e) W J is minuscule, or (W;WJ ) �= (H3; I2(5)) or (I2(m); A1) (possibly m =1).Proof. First we show that each of the quotients listed in (e) satis�es properties (a){(d).In case W is a (possibly in�nite) dihedral group and J is a singleton, it is easy to checkthat (W J ;�L) is a total order. In particular, it is a distributive lattice. Since the Bruhatorder re�nes the weak order, it follows that the two orders must coincide. Otherwise, inthe remaining cases W J is a quotient of a �nite group, and thus (Proposition 1.6) has aunique maximal element with respect to �L. By Theorem 5.1, every member (includingthe top element) of W J is fully commutative, so by Theorem 2.2 it follows that (W J ;�L)is a distributive lattice. To prove that the remaining properties hold, it thus su�ces toshow that the Bruhat order and weak order coincide on W J .In case W = H3 and WJ = I2(5), Theorem 2.2 implies that (W J ;�L) is isomorphic tothe lattice of order ideals of the heap in Figure 9. One can see directly that this lattice hasexactly two incomparable elements; namely, w1 = s1s2s1s2s3 and w2 = s3s2s1s2s3 (usingthe labels for generators introduced in Section 5). Since these two elements have the samelength, they must also be incomparable in the Bruhat order. Thus the two orders coincidein this case.Now consider the minuscule case. Continuing our previous notation, let E, �, and �be as they were de�ned in Section 5, and let � be a minuscule weight with stabilizer WJ .De�ne r to be the linear functional on E satisfying r(�) = 1 for all � 2 �.Lemma 6.2. For w 2W J , we have `(w) = r(�) � r(w�).Proof. The case `(w) = 0 is obvious, so assume `(w) � 1 and choose � 2 � so thats�w <L w. By Lemma 5.2, it follows that (w�; �) < 0, so by Exercise VI.1.24 in [B], wehave (w�; �_) = �1. Hence s�(w�) = w� + �, so r(s�w�) = r(w�) + 1 and the resultfollows by induction with respect to `(w). �Now let t 2 T , w 2 W be such that tw <B w is a covering relation. We have t = s� forsome (positive) � 2 �. It is necessary that tw� 6= w�; otherwise, tw would be a shorter31



member of the coset containing w. Therefore (w�; �) 6= 0, and hence by the Bourbakiexercise (ibid.), (w�; �_) = �1. It follows that tw� = w�� �, so r(�) = `(w) � `(tw), byLemma 6.2. However, the Bruhat order is graded by the length function (e.g., [H, x5.11]),so the only covering relations involve pairs with a length di�erence of one. It follows thatr(�) = 1, so � is a simple root and tw <L w. Thus every covering relation of the Bruhatorder is also a covering relation of the weak order, so the two coincide.Turning to the converse, we show that if W J is any of the quotients not listed in (e),then none of the properties (a){(d) hold. By Theorem 5.1, there are two possibilities:either W J contains elements that are not fully commutative, or W has rank � 3 and everyedge-weight of � is in�nite.Suppose that w 2 W J is not fully commutative. By replacing w with some w0 <L wif necessary, we can assume that there is a reduced expression of the form w = x0y,where x0 is the element of length m(s; t) in the parabolic subgroup generated by somefs; tg � S such that m(s; t) � 3. Consider the subinterval of (W J ;�L) from y to w. ByProposition 1.3, this interval is order-isomorphic to the weak ordering of the parabolicsubgroup generated by fs; tg (cf. Figure 1(a)). This interval is not a distributive lattice,so (c) does not hold. (This fact is also an immediate consequence of Theorem 2.2, giventhat W J contains elements that are not fully commutative.) Furthermore, with respectto the Bruhat order, this interval contains additional relations, such as sy <B sty andty <B tsy (cf. Figure 1(b)), so (d) does not hold. Since we also have sy <B tsy andty <B sty, it follows that sy and ty have no least upper bound relative to the Bruhatorder, so and (a) and (b) do not hold.The remaining possibility is that W has rank � 3 and every edge of � has in�niteweight. It follows that there must exist generators s; t; u 2 S such that s 62 J , and either(1) m(s; t) = m(s; u) = 1 or (2) m(s; t) = m(t; u) = 1. In case (1), consider theelements uts, sts, suts, and usts. It is easy to see that every reduced word for theseelements ends with s, so they all belong to W J . Secondly, it is not hard to show, usingthe subword property (e.g., [H, x5.10]) or otherwise, that the two elements of length fourare both upper bounds for the two elements of length three with respect to the Bruhatorder, so (a) and (b) do not hold. The fact that sts and suts are unrelated with respectto the weak order shows that (d) does not hold. We also claim that the elements sts anduts have no upper bounds relative to �L. By de�nition, the upper bounds for sts are thereduced expressions of the form wsts. Since the only braid relations in W involve pairsof commuting generators, it follows that every reduced word for wsts must have at leasttwo occurrences of s following any occurrence of u. In particular, no such reduced wordcan end with (u; t; s), so wsts cannot be an upper bound for uts. Hence (W J ;�L) is not32
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