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Abstract. This contribution reviews the main results on Schubert varieties and their gener-
alizations. It covers, more or less, the material of the lectures at the Seminar. These were
partly expository, introducing material needed by other lecturers. In particular, Section 1
reviews ‘classical’ material, used in several of the other contributions.



Introduction.

The aim of this paper is to give a review of the main results on Schubert varieties and
their generalizations. In the first section Schubert varieties (over C) are introduced, in the
setting of the theory of reductive groups and their Bruhat decomposition. Some geometric
results are discussed. The Steinberg variety associated to a reductive group is also introduced.
Most of the material of this section is ‘classical’.

In section 2 examples are given of constructions of algebraic objects, based on the geometry
discussed in Section 1. For example, 2.2 gives an elementary geometric construction of the
Weyl group W of a reductive group . It uses correspondences on the flag variety X of G.
Using machinery from algebraic topology, a calculus of correspondences on X produces the
Hecke algebra H of W. This is discussed in 2.4 and 2.5.

Section 3 discusses generalizations of Schubert varieties. These occur, for example in the con-
text of spherical varieties. A closed subgroup H of GG is spherical if a Borel subgroup B of G
has finitely many orbits on GG/H. Then G/ H is a (homogeneous) spherical variety. The orbit
closures generalize Schubert varieties (which one recovers for # = B). An important special
case is the case of symmetric varieties, where H is the fixed point group of an involutorial
automorphism of G.

The combinatorial properties of the set of orbits are discussed in 3.6. A calculus of corre-
spondences gives rise to a representation of H, discussed in 3.7. The last part of Section 3
reviews special features of the the case of symmetric varieties.

I am grateful to Cathy Kriloff for help in the preparation of these notes.

1. Flag manifolds and Schubert varieties.

1.1. The origin of the Schubert varieties lies in the ‘Schubert calculus’, devised by H. Schu-
bert at the end of the 19" century, which gives recipes to determine -not always rigorously-
numbers of solutions of geometric problems (see [Sch]).
A simple example of such a problem: determine the number of lines in P?(C) intersecting 4
lines in general position (the answer is 2). A more general example: determine the number
of d-planes in P"(C) intersecting (d + 1)(n — d) planes of dimension (n —d — 1) in general
position (the answer is

120.d((d+ 1)(n—d))!

(n—d)l(n—d+ 1)!...n!)'

Let Gy, be the set of d-dimensional subspaces of C". It is a projective algebraic variety,
coordinatized by ‘Pliicker coordinates’. It is also the variety of (d — 1)-planes in P"~1(C).
Fix a basis (eq,...,e,) of V.= C™ and let V; be the subspace of V' spanned by (eq, ..., ¢;), with
Vo = {0}. Then F = (Vi, V1, ..., V,,_1, V,,) is a complete flag in V. Let W be a d-dimensional
subspace and put

JW)={j | VianW £V;n W}

This is an increasing sequence of d integers > 1, the jump sequence of W. It determines
the position of W relative to F. For example, for a subspace ‘in general position” we have

JW) =(n—-d+1,...n). Let Yj be the set of W € Y = Gy, with J(W) = J, a given



sequence. Then Y is the disjoint union of the Y;. Moreover, one shows that each Y is locally
closed in Y, and is isomorphic to an afline space. After ordering the set of J componentwise,
the closures (both in the Zariski topology and the complex topology) are described by

Vy=J Y.
Ji<J

These closures are the Schubert varieties in G gy, .

In the Schubert calculus one deals with intersections of Schubert varieties and their multi-
plicities. This is best done in terms of the Chow ring of Y, spanned by equivalence classes of
subvarieties of Y. This leads into the theory of symmetric functions. See [Fu, 14.7]. T shall
not go into this.

I shall concentrate on the group theoretical aspects. The group ¢ = GL,(C) acts alge-
braically on Y. The action is transitive, so Y is a homogeneous space of GG and is of the form
Y = G/ P, where P is the parabolic subgroup of the g = (¢;;) € G with g;; = 0 for ¢ > d and
J < d. It is not hard to see that the Y; are precisely the orbits of .

We shall consider a more general situation, which will englobe the special case of Grassman-
nians.

1.2. Notations.

The notions and results from the theory of algebraic groups which we use without further
reference can be found in [Bo2] or [Hu2]. For root systems and the Weyl group see [Bou].

(i is a connected, reductive, linear algebraic group over C (one could work over an arbitrary
algebraically closed field, but I won’t do this). We fix a maximal torus T' of G’ and a Borel
subgroup B D T. Also, N is the normalizer of T"and W = N/T is the Weyl group. Fix a
section w — w of W to N.

Let R be the root system of (G,T) and let RT be the system of positive roots defined by
B. For o € R we have a one parameter subgroup U, of G, normalized by T'. The unipotent
radical U of B is generated by the U, with @ € R*. For w € W let U,, be the subgroup of
G generated by the subgroups U, with a € R, w™la ¢ RT.

For o € R let s, € W be the reflection which it defines. Let D be the basis of R defined
by R*. The set S of simple reflections s, (o € D) generates W. The corresponding length
function on W is [. We have dim U,, = l(w).

Put G, = BwB. This is alocally closed subset of G, being an orbit of Bx B. (The underlying
topology is the Zariski topology. One might also take the complex topology.)

1.3. Bruhat’s lemma.
Proposition. (‘Bruhat’s lemma’) (i) G =[] G
(7i) (u,b) — ub defines an isomorphism of algebraic varieties U, X B — BwB.

In fact, (G, B, N,S) make up the ingredients of a Tits system, see [Hul, no. 29]. This
implies that for w € W, s € §

B Gsw it l(sw) > l(w),
GG = { GuUGg, it I(sw)<l(w).

It follows that for s € 9
P, =G, UG,



is a parabolic subgroup of G containing B = G.. We have P;/B ~ P1. It also follows that if
s = (51,...,51) is a reduced decomposition of w € W (where s; € 5, | = [(w) we have

G = Goy Gy Gy

Lemma. P, Py, ...Ps is the closure [
If Y and Z are varieties with a right (respectively, left) B-action we write Y xgZ for the
quotient of Y x Z by the B-action b(y,z) = (yb=!,bz). (It is presupposed that the quotient
exists.) A similar notation is used for multiple products.
Put

Z = PS1 XB P52 XB ... XB Psl,

this is an irreducible variety. The product map of & induces a morphism 7 : Z — G, which
is proper (because all quotients Ps,/B are projective lines). Hence Im 7 is closed and irre-
ducible. Moreover 7=1G,, is open and dense in Z and the restriction of 7 to this set maps it
bijectively onto GG,,. The lemma follows from these facts.

1.4. Bruhat order.

The closure G, is a union of double cosets Gi,,. Define an order on W by z < w if G, C G,,.
This is the Bruhat order (originally introduced by Chevalley).

It follows from the lemma of 1.3 that there is the following combinatorial description of the
Bruhat order. Let s = (s1,...,5) be a reduced decomposition of w € W (where s; € 5, [ =
l(w)) and let € W. Then z < w if and only if z is a subproduct of sy...s;. In fact, on any
Coxeter group there exists an order with this description, see [Hu2, 5.9].

1.5. Schubert varieties.

The quotient X = G/ B is a flag variety. It is an irreducible, smooth, projective, homogeneous
space for G. Let X, be the image of GG, in X under the canonical map, this is a Bruhat cell
in X. The big cell is X,,,, where wq is the longest element of W. The Bruhat cell X,, is a
locally closed subvariety of X, isomorphic to affine space A®), as a consequence of 1.3 (ii).
The big cell is open and dense in X.

By 1.3 (i), (Xy)wew is a ‘paving’ of X by affine spaces (or a ‘cellular decomposition’). The
X, are the B-orbits (or U-orbits) on X.

A Schubert variety is a closure S, = X,, (w € W). It is an (in general non-smooth) irre-
ducible, projective variety on which B acts. By 1.3 (i) and 1.4 we have a paving ., = (X, )e<uw-

Example. Let ¢ = GL,,. It acts on V' = k™. A flag in V of length s is a sequence of
distinct subspaces V; (0 <7 < s) of V with Vo = {0}, Vo # V4 C Vo C ... C V. The flag
is complete if s = n (in which case dim V; = ¢ for all ¢). G acts on the set of flags and the
parabolic subgroups of G are the stabilizers of flags. The Borel subgroups are the stabilizers
of complete flags.

Let (Vo, V1,...,V,,) be the complete flag of 1.1. Its stabilizer is the Borel group B of upper
triangular matrices and G/ B can be identified with the space of all complete flags. Let P O B
be the stabilizer of the flag (Vo, Vy, V,,). Then G/ P is the Grassmannian Gy ,,. The canonical
morphism G/B — G/P maps a complete flag onto its d-dimensional ingredient. A ‘classical’
Schubert variety Y as in 1.1 is the image in G/P of a Schubert variety 5, in G/B, or the
closure of a B-orbit in G/P. By Tits system theory these orbits are parametrized by the
cosets of the Weyl group of G modulo the Weyl group of P (see [Bou, Ch. 1V, p. 28]). In



the present case this means that the Schubert varieties in Gy, are indexed by the elements
of 5,/(S4 X Sp—d), i.e. by the d-element subsets of {1,2,...,n}. These are in bijection with
the ‘jump sequences’ of 1.1.

For w e W put
Op={(z,y) e X x X |27y € G, }.

The O,, are the G-orbits on X X X. There is a close connection with the Bruhat cells: the
first projection X x X — X defines a fibering O,, — X with fibers X,,. Similarly for the

closures O,,. It follows that

o, = 0.

r<w

1.6. The T-action.
The torus T acts on X and on all Schubert varieties. The fixed points of 7" in X are the
images p,, of the w in X (w € W), so their number is finite. The fixed points of 1" in the
Schubert variety 5, are the p, with x < w.
Let again wg be the longest element of W.

Lemma 1. Let z,w € W and assume that [(z) < [(w).

(i) If the intersection Sy N WoSy,w 15 non-empty then x = w and the intersection is the point
Do

(71) X, and WXy, intersect transversally at p,,.

(iii) Let x < w. Then (uzB,gB)w— ugB (u € U,) defines a T-equivariant isomorphism of

Xls X (wOXwox N Sw)

onto an open neighborhood of p,. in S,,.

The intersection in (i) is a T-stable projective variety and contains 7-fixed points. If p, is
one then we have both y < z and woy < wow, i.e. y > w. This implies that y = z = w. If
the intersection had dimension > 1 it would contain at least two fixed points and (i) follows.
Part (ii) is proved by considering tangent spaces.

Put U~ = woU(to)~, this is the subgroup of G generated by the U, with @ € —RT. Then
U~ B is open in ¢ by 1.3 (ii). Hence zU~ B/B is an open neighborhood of p, in X. Then
(iii) follows by observing that

U™ = $_1Uls$.w0Xw0x(w0)_1‘

The variety X, ., = woXy,z[)Sw is a ‘transverse slice’” at p, of X, inside 5,,. Let A be a
cocharacter of T (a one parameter multiplicative subgroup) such that (wga, A) > 0 for all
o € RT with 27 'wga € —R™ (the brackets denote the pairing between characters and cochar-
acters). Then A contracts X, ,, to z, i.e. if a € X, ,, then lim,_o A(t).a = 2.

Let S be a subset of 7" and let H = Zg(.5) be its centralizer. If S fixes a point up,, (u € U,)
of X then 5 must centralize u, and since centralizers of semi-simple elements in connected
solvable groups are connected, we can conclude that u lies in the connected centralizer H°.
Similarly, the intersection of H with a Borel subgroup of G containing T is a Borel subgroup
of H°. The irreducible components of the fixed point set X* of § in X are H°-stable and it
readily follows that each component is a homogeneous space for H°, isomorphic to the flag



manifold of H°. Similarly, one sees that the fixed point sets S5 must be stable under the
Borel group BN H® of H® and it follows that each irreducible component of such a fixed point
set is isomorphic to a Schubert variety for H°. Notice that if 5 is an algebraic subgroup of T’
of codimension d, the reductive group H° has semi-simple rank < d. In particular, if d = 1
the irreducible components of S are Schubert varieties for SLy, hence are points or T-stable
projective lines. Conversely, a T-stable irreducible curve in 5,, must be fixed pointwise by a
codimension one subtorus of 7" and hence is a component of its fixed point set.

In particular, the number of T-stable curves in X is finite. They can be described explicitly.

Let X be the set of reflections in W. A reflection o € ¥ defines a 3-dimensional subgroup G,
of G, generated by U, and U_,, where 0 = s, = s_, (notations of 1.1). For (w,0) e W x ¥
put Cy o = GowB/B.

Lemma 2. (i) Cy,, is a T-stable curve. Any T'-stable curve is of this form;

(71) The T-fized points contained in Cy, , are py, and pgy,;

(1it) If Cypr o1 = Cy o then either (w',0') = (w,0) or (w',0') = (ow, 0);

(v) Cyo C Sy if and only if w < z,0w < z.

We have G, = Zg(Ker a)°. The observations of the previous paragraph then imply that Cy, ,
is a T-stable curve.

A T-stable curve C' C X must contain a fixed point p,. Then wU~B/B = wU~ (v~ !)B/B
is a T-stable open neighborhood of p,. Its intersection with C is a T-stable affine curve.
One is reduced to finding such curves, or to finding T-stable curves in U through the identity
element. It is not hard to see that the latter are the U, contained in U. Then the second
part of (i) follows. The argument also gives that C', , C 5, which implies (iv).

1.7. Geometric properties of Schubert varieties.

Schubert varieties tend to be singular. There is a useful ‘resolution’ of a Schubert variety 5,
which we now describe.

Let s be a reduced decomposition of w, as in 1.5. With the notations of 1.3, put

Zs = Ps, Xp Py, Xp ... xg (Ps,/B).

This is a Bott-Samelson variety. It is an iterated P'-bundle, hence is irreducible and smooth.
From the lemma of 1.3 we deduce the following.

Proposition 1. There is a proper, surjective, birational morphism ¢ : Zg — 5.

The morphism 1 is induced by the product morphism in G.

1 is not always a resolution of singularities of .9, in the usual sense, as 1) need not be bijective
on the inverse image of the set of smooth points of 5,,. For example, if R is irreducible and
w = wp (so 9, = X) then 9 is bijective only if R is of type A;.

Criteria for smoothness and rational smoothness of a Schubert variety were recently given
by Kumar [Ku]. See also Brion’s contribution [Bri2, no. 5], where these matters are discussed
in the context of equivariant intersection theory. (Recall that an irreducible algebraic vari-
ety Z is rationally smooth at a point z if z has arbitarily small open neighborhoods which
are ‘homologically like open balls’. A formal definition is: the constant sheaf Q is its own
Grothendieck-Verdier dual, up to a dimension shift.) See also [Bri3].

We discuss some more elementary results about smoothness of Schubert varieties, due to
Carrell and Peterson (see [Cal).



Lemma. LetY be a T-stable irreducible subvariety of X. If y € Y s a T-fized point, the
number of T-stable curves in' Y passing through y is at least dimY . Fquality holds if Y 1is
smooth at y.

The proof of the first part is quite elementary, and goes through in greater generality.

Proposition 2. Let z,w € W with * < w and denote by a(z,w) the number of o € %
with * < ox < w.

(1) a(z,w) > l(w) — (). Equality holds if S, is smooth at p,;

(77) If a(z,w) = l(w) — l(z) then Sy, is rationally smooth at p,.

(i) follows from the lemma. The proof of (ii) given in [loc. cit.] uses a computation with
Kazhdan-Lusztig polynomials. For another proof see [Bri3, 2.1].

Peterson (unpublished) has proved that if the root system R is simply laced, one may replace
in (ii) ‘rationally smooth’ by ‘smooth’.

Example. Let ¢ = SLy. Then W = 5;. The set 5 of generators of W consists of
51 = (12), s3 = (23), s3 = (34). Take w = sgs515359 = (13)(24), = sg. Then [(w)—I{(z) =3
and a(z,w) =4, so 5y, is not smooth.

Although Schubert varieties are in general not smooth they are always normal and Cohen-
Macaulay (see [Ra]). These matters are also discussed in Littelmann’s contribution [Li, ]

1.8. Line bundles on X.

Denote by X*T the character group of T'. A character A of T' can be lifted to a character of
B, denoted by the same symbol.

Let Y be a variety with a right B-action. For A € X*T we have a line bundle £(A) on Y/B.
Namely, £ is the quotient of ¥ x Al by the B-action b(y,a) = (yb=*, A(b)"ta).

In particular, taking Y = G, we have line bundles £(\) on the flag manifold X. They are
G-equivariant, and are locally trivial for the Zariski topology.

1.9. Some related varieties.

Assume G to be semi-simple. Lie algebras will be denoted by gothic letters, so g is the Lie
algebra of GG. Let F(, ) be the Killing form on g, a non-degenerate bilinear symmetric form
invariant under the adjoint action Ad of G on g. For the matters to be discussed in this
section see [CG, Ch. 3].

Consider the cotangent variety T™X of the flag variety. The tangent space T, X to X at
x = gBis g/Adg(b). Identifying the linear dual of g with g via F', the dual of T,,.X is the sub-
space of g orthogonal to Ad(g)(b), which is Ad(g)u. So T*X is the set of pairs ({,¢gB) € gx X
with £ € Ad(g)u. Let A C g be the variety of nilpotent elements of g. The group G acts on
it via the adjoint action, with finitely many orbits (see [CG, 3.3.28]).

The first projection induces a morphism 7 : 7*X — A. In fact, 7 can be viewed as the
moment map for the G-action on the symplectic variety 7*X (see Brylinski’s contribution ).

Theorem 1. 7 is a resolution of singularities of .

Recall that this means that T* X is smooth, 7 is proper and that 7= induces an isomorphism
T " Nam — Nem, where Ny, is the open subvariety of smooth points of A". The first two
properties are easy. To prove the third one has to use properties of the regular nilpotent
elements of g. An element # € N is regular if its GG-orbit is open in A". One proves that z is

ref.Littelmann

ref.Brylinski



regular if and only if one of the following holds:

(a) N is smooth at z,

(b) m={x} consists of one point.

The required property follows. (For a discussion of these matters and further references see
[Slo, no. 3, p. 40].)

We denote by Z the fibre product T X X T*X. More concretely,
Z={(&,9B,hB)e N x X x X | £ € Ad(g)un Ad(h)u}.

This is the Steinberg variety of G. It is clear that G acts on it.

We have morphisms p: Z — N andv:Z — X x X. For w € W put Z,, = v=10,,, where
O, is as in 1.5. Then Z,, is the conormal bundle 15, (see [CG, Prop. 3.3.4]).

Let £ € N and let C,C’ be two irreducible components of 771¢. Then Zg oo = G.({£} x
C x (") is an irreducible subset of Z.

Theorem 2. Z has pure dimension 2dim X . Its irreducible components are the closures
Z,, and also the closures Ze oo
This is proved in [loc. cit., Ch. 3], using symplectic geometry.

For € € glet Zg(£) = Z(£) be its centralizer in &, and let r be the rank of G.

Corollary 1. Let £ € N. The fibre n=1¢ is connected. Its irreducible components have
dimension 1(dim Z(§) — r).

See [loc. cit., 3.3.24].

Let ¥ be a set of representatives of the nilpotent orbits. For £ € N let T'({) be the set
of irreducible components of 771¢ and let A(¢) be the quotient of Z(£) by its identity com-
ponent Z(£)°. This is a finite group, which acts on I'(£). Theorem 2 gives two descriptions
of the components of Z.

Corollary 2. There is a bijection W ~ [[¢ex A(E\(I'(E) x T(€))-

Example. Let ¢ = SLy(C). Then ¥ can be identified with the set of partitions of n,
i.e. with the set of Young diagrams with n boxes. The groups A(z) are all trivial. If £ € ¥ (a
Young diagram) then I'(§) can be viewed as the set of standard tableaux with shape £. Corol-
lary 2 then leads to the Robinson-Schensted correspondence between the symmetric group 5,
and pairs of standard tableaux of the same shape. See [St2].

Corollary 2 also gives a map of W onto the set of nilpotent orbits in g.
The Steinberg variety provides a bridge between Schubert varieties and nilpotent elements.

2. Constructions of algebraic objects.

2.1. In the geometry of flag varieties, Schubert varieties and the Steinberg variety alge-
braic objects are hidden. To bring these to light various tools from algebraic topology are
used. The following objects appear:

(a) The cohomology ring of a flag variety X. Closely related is the Chow ring of X. The
-more general- T-equivariant cohomology and Chow ring of X are discussed in [Bri3].



b) Cohomology of the Steinberg variety Z.

¢) G-equivariant sheaves on X, intersection cohomology of Schubert varieties.

d) G-equivariant coherent sheaves on X.

e) K-theory and equivariant K -theory of X and the Steinberg variety Z. See [CG, Ch. 7]
and [Gi, no. 11].

I shall give some examples of constructions of algebraic objects.

(
(
(
(

2.2. An elementary construction of the Weyl group W.
Notations are as in 1.2. If z,y € W the product set G,.G, is a union of finitely many &.
Let 1l , C W be the set of these z.
Proposition. 1l , contains a unique minimal element for the Bruhat order, namely xy.
I sketch a proof. If z € S we have Il,, = {zy} if l(zy) > l(y) and 11, , = {z,zy} if
l(zy) < l(y), whence the proposition in this case, and similarly in the case that y € 5.
We use induction on [(z). We may assume that [(2) > 0. Choose s € S such that {(zs) < [(2).
Then G, = G,,.G, and

sy = Moy if 1(sy) > (),

My = sy ULl sy if {(sy) < I(y).

The proposition will follow if we show that in the last case zsy > zy. Now xsy = xsz~ ' .ay.
Let @ = 8184184, Yy = tita - -ty with s;, t; € S and @ = (z), b =l(y), s, =t; = s. Then
TY = 81+ Se—1tz---tp. If [(@sy) < {(zy) the ‘strong exchange condition’ of Coxeter groups
[Hu2, p. 117] shows that x or y would have smaller length than a or b, a contradiction. Hence
l(zy) < l(xsy) and the strong exchange condition implies that zy < xsy.

Remark. The proposition could be viewed as a special case of the following result on the
Hecke algebra H of a Coxeter group (W,5) (defined in [Hu2, Ch. 7]). Let (e;)yew be the
standard basis of H (denoted by (1) in [loc. cit.]. If z,y € W then all 2 € W such that e,
occurs in ege, with a non-zero coefficient are > zy (for the Bruhat order on W) and z = 2y
occurs (see [Sh]).

The proposition can be reformulated in terms of correspondences on X. For z € W the
G-orbit O, is a locally closed correspondence on X. If * denotes the set-theoretical compos-
ite of correspondences we have

0,0y = U 0.

z€Ilg 4

It follows that O, is the orbit of lowest dimension in the composite. Also, O, -1 is the inverse
of the correspondence O,. So the Weyl group W is produced by the set-theoretical calculus
of correspondences.
More formally, the product of correspondences is described as follows. Let m;; ((ij) =
(12),(13),(23) be the obvious maps X X X X X — X x X and denote by A: X x X x X —
(X X X) x (X x X) the map (z,y,2) — ((z,9),(y,2)). If 5, T are correspodences on X, i.e.
subsets of X x X their product is

SxT = m3((A)1(S x T))).

A sheaf-theoretical version of this formalism will produce the Hecke algebra of W, see be-
low in 2.4. Another version of the formalism in algebraic topology leads to convolution in



Borel-Moore homology, used in [CG, Ch. 3] for the Steinberg variety Z of 1.8 to construct
the group algebra Q[W] [loc. cit., 3.4.1]). See also [Gi].

2.3. The Chow ring of X.

The Chow ring A*X = @ A" X, where A" X is a quotient of the free group generated by
the irreducible subvarieties of X of dimension dim X — r, see [Fu, p. 141]. For w € W let
Q,, € Allwo)=l(w) X he the image of the Schubert variety .5,,.

Proposition. (i) A*X is a free abelian group with basis (ouy)wew;
(17) If l(z) = [(w) we have a0y = 05 a0y, -
See [Del]. Part (ii) follows from lemma 1 of 1.6. It provides a duality pairing on A*X.

In 1.8 we associated to a character A of T a line bundle £(A\) on X. Let ¢(\) € A'X be
its Chern class. Let S* be the (graded) symmetric algebra of the character group X*7', it
is acted upon by the Weyl group W. For any root @ € R we define an endomorphism d, of
degree —1 of S* by

dou = o™ (u — s4.1u).

If « is a simple root and s = s, we put d; = d,.
The maps d,, were introduced in [BGG, BGG] and in [Del]. They have the properties of the
following lemma.

Lemma. (i) d% = 0;

(i7) Let s = (s1,...,5,) be a reduced decomposition of w € W. Then d,, = dg,...ds, depends
only on w.

The lemma could be proved algebraically, but a proof also comes out of the proof of the next
theorem.

We have a graded ring homomorphism ¢ : 5* — A*X. Denote by I the ideal in Q ® 5™
generated by the non-constant homogeneous W-invariant elements. Let € : S* — Z be the
augmentation map.

Theorem. (i) c(u) =Y ,cw €(dw- 1), ;

(i) ¢ induces an isomorphism of graded algebras (Q ® S*)/I ~ Q ® A*X.

In the proof of (i) given in [Del] first the Chow group of the Bott-Samelson variety associated
to a reduced decomposition of wq is determined.

We have a cycle map from the Chow group of X to the cohomology of X, doubling de-
grees. Using it one obtains ‘Borel’s theorem’:

Corollary. H*(X,Q) ~ (Q® S*)/1.

By the corollary, the Weyl group W acts on H*(X,Q). As a W-module, it is the regular
representation of W.

The action of W on the cohomology H*(X, Q) can also be described in a more direct manner.
The canonical map G/T — G/B = X makes G/T into a locally trivial vector bundle over X,
and hence induces an isomorphism of cohomology groups

HYG/T, Q) ~ H*(X, Q).

10



Now W acts on G//T, via right action of the normalizer N of 7. Hence W acts on the co-
homology group of the left-hand side and hence on the one of the right-hand side. It can be
shown that this action is the same as that of the theorem.

Part (i) of the theorem solves (theoretically) the problem of Schubert calculus: to describe
the intersection of Schubert varieties, i.e. to determine the multiplicative structure of A*X.
It follows from (ii) that ¢(5*) has finite index in A*X. But ¢ need not be surjective (see [De2]).

The equivariant cohomology of X is discussed in [Bri3].

2.4. A construction of the Hecke algebra of W.
Recall that the Hecke algebra H of W is a free module over Z[t,1™'], with a basis (€4 )wew-
The multiplication is determined by the rules

5.6y = €5y if 1(sW0) > (W),

5w = (12 = Degy + t2ey if I(sw) < I(w).

In particular, €2 = (1* — 1)es + t2. Specializing ¢ = 1 we obtain the group algebra Z[W] (see
[Hu2, Ch. 7]

I first sketch a sheaf-theoretical construction of H via correspondences on X (see [Spl, no.
2]). One works with sheaves of Q-vector spaces on an algebraic variety Y, which are con-
structible relative to some stratification (a finite decomposition into locally closed irreducible
pieces Y = []YV; i.e. sheaves which are locally constant along the strata Y; and whose stalks
are finite-dimensional). We work with ¥ = X X X and the stratification defined by the orbits
O,,. For w € W let A,, be the sheaf on X X X whose restriction to O, is the constant sheaf
Q, and whose stalks at the points outside O,, are zero. (A, will produce the basis element
ey of H.)

To make the calculus of correspondence work we need, however, to enlarge the category of
sheaves on a variety Y to the bounded derived category DE(Y) whose objects are complexes
A of Q-sheaves, such that the cohomology sheaves H'(A) are constructible (as before) and
vanish if |¢] is large. We will not go into the definition of such categories, their morphisms,
and the definitions of the functors between such categories associated to morphisms (see [Bol,
Ch. V] for these matters, see also [Gi, no. 3]).

We identify a sheaf § with the complex A such that AY = 5, A" =0 for i # 0.

In our situation we denote by E(X x X) the full subcategory of D2(X x X) whose ob-
jects have cohomology sheaves which are locally constant (and then they are in fact constant)

along the G-orbits O,,. For A € E(X x X ) define the element h(A) € H by

hA) = > O dim H'(A)wt)ew,
weW ¢
where H'(A), is the stalk of H*(A) at a point of O, (these stalks are all isomorphic).
For example, h(A,) = e,. If s € S then Oy = O, U O,. Let A’ be the sheaf which is Q on

O, and 0 outside this set. Then h(A}) = e + 1.
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For A, B € FE(X x X ) define their convolution product A x B, by
Ax B =7i5(A"(A® B).

Here A © B is the outer tensor product of A and B, A* is the pull-back morphism associ-
ated to the morphism A of 2.2 and 7{5 is the direct image morphism associated to the proper
morphism 7y3. (It is to define such direct image functors that one needs complexes of sheaves.)

Proposition. Let s € S. Let A € E(X x X) be such that H'(A) = 0 for all even i or
for all odd i. Then A’ %A is a complex with the same properties and h(AlxA) = (es+1)h(A).
This is proved (by elementary means) in [Spl, 2.6].

The proposition shows that H, described in terms of its the generators e; + 1 (s € 5) can
be constructed via the sheaf theoretic calculus of correspondences on the flag variety. But a
cleaner construction is obtained in the context of the theory of perverse sheaves (or intersec-
tion cohomology).

2.5. Construction of the Hecke algebra of W in intersection cohomology.

Let Y be an irreducible algebraic variety. In the category D%(Y) one has a duality functor
D, with good properties, see [Bol, V, §7], see also [Gi, no. 3].

A perverse sheaf on Y is a complex A in D%(Y') such that

dim supp(H'(A)) < —i, dim supp(H*(DA)) < —i.

For the theory of perverse sheaves we refer to [BBD], see also [Gi, no. 4]. We only mention
a few essential points. The perverse sheaves on Y form an abelian category P(Y), all of
whose objects have finite length. The irreducible objects are as follows. For each irreducible
subvariety Z of Y and each irreducible local system on a smooth open piece U of Z, there
is a unique irreducible perverse sheaf I = IC(Y, L) supported by Y such that the restriction
of I to U is the complex £[dim Z] (£ in dimension —dim Z and 0 in the other dimensions).
This is the intersection cohomology complex for ¥ and £. We have

dim supp(H'(I)) < —i if i > — dim Z.

If £ is the constant sheaf QQ then the hypercohomology of I is the intersection cohomology of
7. It satisfies Poincaré duality.

If 7 is smooth then IC(Y,Q) = Q[dim Z], and intersection cohomology coincides with ordi-
nary cohomology.

A complex A € DYY)) is semi-simple if it is a direct sum of shifted irreducible perverse
sheaves I;,

A= @IZ[TLZ]

A powerful result is the decomposition theorem:

If f:Y — Z is a proper morphism and if A € Ob(P(Y) is irreducible then the direct image
[+ A is semi-simple.

See [BBD, nos. 5, 6].

We return to the Hecke algebra. There is a ring automorphism %~ +— % of H mapping t
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to t~1 and such that e, = 6;11. One shows that for w € W there is a unique element ¢,, € H
with €, = ¢, of the form
= 171 Z Pgmw(tz)egg7
r<w
where, the P, ., being polynomials with Py, ,, = 1, 2deg P, ,, < l[(w)—l(z) if 2 < w. The ¢,
form a basis of H, the Kazhdan-Lusztig basis (introduced in [KL1], see also [Hu2, II, 7]).

We shall now connect the Kazhdan-Lusztig elements with the intersection cohomology com-
plexes I, = IC(O,,Q) of the G-orbit closures in X x X. For s € § we have I, = A/[1],
where A’ is as in 2.4. Also, h is as in 2.4.

Theorem. Let z,w € W.

(i) h(1y,) = cu,

(11) h(Ily % I,) = cpCp.

See [Spl, no. 2]. It follows, in particular, that

1P, (%) = dim HY(1,),
from which we see that [, satisfies the parity condition:
Hi(I,) =0if i # [(w) (mod 2).
The theorem shows that the Hecke algebra H can be recovered from the perverse sheaves [I,,.

There is a variant of this construction, which works with the perverse sheaves on ¢G. Consider
the perverse sheaves on G which are B X B-equivariant (the action being (b,').g — bg(b')™1).
Denote by K the Grothendieck group of the category of these perverse sheaves. It has as
basis the classes é,, of the intersection cohomology complexes I, = IC(Gy, Q) (w € W). To
a semi-simple complex A = @ I,,[h.,] we associate the element

hA)=> tve, e Zt,t e K.

The product map G X G induces a proper morphism 7@ : G Xp G — G. Let x,y € W. The
outer tensor product of I,, and fy is the pull back of a shifted perverse sheaf A on G xp G.
By the decomposition theorem the direct image complex 7. A is semi-simple.

Define an algebra structure on H = Z[t,t~'] @ K by

Epely = (T A).

Proposition. The Z[t,t™']-algebra H is isomorphic to 'H, the isomorphism sending ¢, to
Cuw-

A proof of the proposition is contained in [MS1, 4.2]. In that proof it is shown that the
inductive formulas of [KL] for the Kazhdan-Lusztig polynomials can be recovered from the
morphism 7 (z being a simple reflection).

The construction using G can be generalized. Instead of I,, one can work, more generally,

with a perverse sheaf IC(G.,, L), where £ is a B x B-equivariant local system on the smooth
open piece (,, of G, (there exist non-constant local systems of this kind; this is not the case
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for O,, which is simply connected). One is led to a more general kind of Hecke algebra, see
[loc. cit.].

2.6. The Steinberg variety.

In the Steinberg variety Z of 1.8 the representation theory of the Weyl group W is hidden.
In [CG, Ch. 3] convolution on the top Borel-Moore homology of Z is used to reveal that
representation theory. This is also discussed in [Gi, no. 6].

Another method to do this uses Lusztig’s observation that there is an action of the Weyl
group W on the direct image complex 7.Q (see e.g. [Spl, no. 4]), where 7 is as in 1.9. It
follows that there is an action of W x W on u.Q, where y : Z — N is the morphism of 1.9.
Hence W x W operates on the cohomology with compact support HX(N, 1. Q) = HX(Z,Q).
The irreducible components of Z are parametrized by the elements of W (see 1.9), they all
have the same dimension 2d, where d = dim X = I(wg). The cohomology classes z, which
they determine span the top cohomology group H2¥(Z,Q), which thus has dimension |W|.

Proposition. (i) HX(Z,Q) is isomorphic to the induced graded W x W -module
Indy "W (H*(X, Q)[-2d]);

(i) In particular, the W x W-module H2¥(Z,Q) is isomorphic to Q[W], under two-sided
action.

In (i) the W-action on H*(X,Q) is as in 2.3. For a proof see [Sp3, no. 3]. A concrete
description of the W x W-action on the basis (z,) of H2¥(Z, Q) does not seem to be known.

Equivariant K-theory on Z is used to construct the affine Hecke algebra associated to W
and its representations. We shall not go into this. See [CG, Ch. 7,8] and [Gi, no. 11].

2.7. Coherent cohomology.

Assume G to be semi-simple and simply connected. The character group X*7T is the weight
lattice P of R. Let PT C P be the set of dominant weights. For A € P we have the line
bundle £(\) of 1.8.

Theorem. Let w € W, A € P*. Then H'(S,,L()\)) =0 fori > 0.

See [Ra, 3.2] (where more general results are discussed). See also Littelmann’s contribution.

In the situation of the theorem, H°(S,,L(\)) is a finite dimensional complex vector space
V on which B acts. In particular, T" acts. Let Z[P] be the group ring of P. It has a basis
e(x) (x € P), with e(x + %) = e(x)e(?), and the Weyl group W acts on it.

Put char(V') = 3 cp(dim Vy )e(x), where V, is a weight space for T'. This element of Z[P] is
the character of V.

Let a be a simple root and put s = s,. Define an endomorphism D; of Z[P] by

U — s.u

Dsu = ———.
R e(a)

Lemma. (i) D? = Dy;
(i1) Let s = (s1,...,5;) be a reduced decomposition of w € W. Then D,, = D, ...D;,_ depends
only on W.
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This is a multiplicative analogue of the lemma of 2.3. With these definitions we have De-
mazure’s character formula.

Proposition. If A € Pt then char(H°( Sy, L(A)) = e(p)Dy(e(=X — p)).
Here p is half the sum of the positive roots of R. See [Del], [Ra, p. 505] and Littelmann’s
contribution.

For w = wy we have S, = X. In that case H°(X,L(\)) is G-module, which is irreducible
with highest weight —wgA. The proposition then gives Weyl’s character formula.

3. Generalizations of Schubert varieties.

3.1. Schubert varieties associated to Kac-Moody algebras.

Let g be a Kac-Moody algebra. It is an infinite dimensional Lie algebra, associated to a
generalized Cartan matrix M (see [Ka]). M defines a Coxeter group (W, 5), the Weyl group
of g.

One can associate to g Schubert varieties 5, indexed by the elements of W. They have
properties similar to those of the ordinary Schubert varieties: they are projective algebraic
varieties, of dimension /(w) (the length of w relative to 5), and if < w then 5, is a closed
subset of 9.

In this generality, Schubert varieties are defined and studied in [Ma], in arbitrary characteris-
tics. The definition involves representation theory of g. These Schubert varieties are normal
projective varieties. In [loc. cit.] a generalization is proved of the theorem of 2.7, and of
Demazure’s character formula. See also Littelmann’s contribution.

The Cartan matrix M defines an ‘infinite dimensional group’ B, an analog of the Borel group
of 1.2. In [loc. cit.] analogues are constructed of the closures G, of 1.4. These are (non-
noetherian) affine schemes B(w) over C, with a two-sided B x B-action, as in the case of 7.
B operates locally freely on the right, and 5, = B(w)/B.

I will not go further into this general case. But to make things more concrete I shall briefly
discuss one example in a special case. The associated Kac-Moody algebra would be an affine
one, however it will not appear in the example.

3.2. An example.

Let A = C[[t]] be the ring of formal power series and F' = C((t)) its quotient field. Let G be
a semi-simple, simply connected linear algebraic group over C. The notations are as in 1.2.
We denote by W the affine Weyl group of R (the semi-direct product of W and the lattice of
coroots).

Put G = G(F'), the group of F-valued points of G. The obvious homomorphism A — C
induces a group homomorphism of the group G(A) of A-valued points to . Let B be the
inverse image of B under this homomorphism. This is an Twahori subgroup of G. As in 1.2
we have subsets G,, = BwB of G, where w € W. We have a Bruhat decomposition

g: H ng
weW

by the Bruhat-Tits theory (see e.g. [Ti, p. 51].)
Put X =G/B, Xy, = G,/Band S, = U Xy. Then S, is the underlying set of a Schubert

r<w
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variety. It can be given the structure of projective algebraic variety. We shall indicate how
this can be done for ¢ = SL,, (following [KL2, §5]).

Let G = SL,, so G = SL,(#'). We take B to be the subgroup of SL,(A) whose elements
specialize to an upper triangular matrix for ¢ = 0 (the upper triangular group is a Borel
subgroup of G).
Let V.= F". Then A = A" is a lattice in V over A, i.e. a free A-submodule of V' containing a
basis. The group G operates on the set of lattices. We identify G/B with the set of sequences
of lattices

AgDA D DA, =1Ag

such that dimg A;/Aj41 =1(0 < j <n—1),and that Ag € G.A.
For ¢ > 0 let A; be the set of such sequences with

tTAD Ag D - DA, DAL

Then (&;) is an increasing sequence of subsets of A’ with union X’ (to see this use that for
any lattice A’ there exist a,b > 0 with 1*A C A’ C t7°A).
Fix ¢ and put Z = t~*A/t*+1A, this is a finite dimensional vector space on which t acts as
a nilpotent endomorphism. Then A; can be identified with the set of sequences of t-stable
subspaces

ZoD 1D ...D 4, =1Ly

of Z such that dim Z;/Z;41 = 1, Z,, = tZy. This set has a structure of projective variety
(being a closed subset of a product of Grassmannians), whence such a structure on A;.
Then A is an inductive limit of projective varieties. Any A, is contained in an A}, whence a
structure of projective variety on the Schubert varieties.

3.3. Spherical varieties.

The notations are as in 1.2. A spherical variety (for ) is an algebraic variety X with a
(-action such that the Borel group B has finitely many orbits (see [Bril]).

In particular, G has finitely many orbits. A G-orbit is a spherical homogeneous space G/ H ,
where H is a closed subgroup such that the double coset space B\G/H is finite. Such a
subgroup is called spherical. 1t is clear that H is a spherical subgroup if and only if H acts
on X = GG/B with finitely many orbits.

Examples. (1) X = G/B. By Bruhat’s lemma (1.3) B is a spherical subgroup. The
B-orbits are indexed by W, and the Schubert varieties in X are the orbit closures.

(2) The symmetric case (see [Sp2]). Let @ be an involution (automorphism of order two) of
the algebraic group GG. The fixed point group K is reductive and X = G//K is spherical. It
is an affine algebraic variety, called a symmetric variety.

(3) Assume that H = G x G, and let # be the permutation automorphism: (z,y) —
(y,2) (z,y € G). The fixed point group K of 6 is G, imbedded diagonally in H, and
H/K ~ (. B x B is a Borel subgroup of H. It acts on H/K = G by (b,b').g = bg(¥')~! By
Bruhat’s lemma, the B X B-orbits on H/K are the G, of 1.3. We recover example 1.

(4) The unipotent part U of B is another example of a spherical subgroup (by Bruhat’s
lemma), and G'/U gives an example of a spherical variety which is not symmetric (as U is
not reductive). Another such example is provided by H = T.(U,U), where (U,U) is the
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commutator subgroup of U. That H is spherical follows from Bruhat’s lemma, and the obser-
vation that 7" acts by conjugation on U/(U,U) with finitely many orbits (the quotient being
isomorphic to [T,ep Ua-)

(5) An instructive example of a symmetric variety is G = SLg, with # the inner automor-
phism Int(7,—7). Let T be the diagonal torus and B the upper triangular subgroup. Then
K = T is spherical: in this case G/B is the projective line P!, and T acts on it with three
orbits, namely the closed orbits {0}, {00} of dimension 0 and the open orbit P* — {0, 00} of
dimension 1.

Let G’ = PSL; and let € is the automorphism of G’ induced by #. The fixed point group K’
of @’ is non-connected, it is the image in G’ of the normalizer N of T'. B’ denoting the image
of B, we have G'/B’' = P1L.

K’ has two orbits on P!, viz. the reducible orbit {0, 00} and its complement.

3.4. The set of orbits.

Let X = G/H be spherical homogeneous. Denote by V' the set of B-orbits in X. This is a
finite set with combinatorial properties resembling those of a Weyl group.

(a) V carries a (partial) order.

If v,w eV define v < wif ¥ C w (compare with the Bruhat order of W, see 1.4). Since X is
irreducible V has a unique a unique maximal element vy, the open B-orbit.

(b) The minimal elements of V' are the closed orbits. They are of the form BgH/H, where
BgH is closed in G. Hence Hg='B/B is closed in (G/B, which means that H N ¢g~'Bg is a
Borel subgroup of H. This implies that all closed orbits have the same dimension. We define
a length function [ on V' by {(v) = dimv — dim vy, where vy is minimal. Then [ is strictly
monotonic, and [(v) = 0 if and only if v is minimal.

There may be several minimal orbits, as example (5) of 3.3 shows.

We may identify V' with the set of K-orbits in G/B. The order and the length of V' can
also be defined via the latter set, in the same way.

To analyze further the combinatorial structure of V' we use the parabolic subgroups Ps of
G, as we did in 1.3 to establish the combinatorial description of the Bruhat order of W. We
have to study the map P; x v — X defined by the GG-action.

3.5. A basic construction.
Let s € § be a simple reflection. We have the parabolic subgroup

P=P =G UG,.

Let v € V then P.v is an irreducible locally closed subvariety of our variety X which is a
finite union of B-orbits. There is one orbit which is open in P.v and has maximal dimension.
We denote it by m(s).v.

The P-action on X defines a morphism

p:Pxpv— Pou.

Lemma 1. We have the following possibilities.
1. Pv=wv.
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Ila. Pv=vUm(s).v, v is closed in P.v, pu is generically bijective and dim m(s).v = dimv+1.
IIb. Pv=vU, v is open in Pv, dimv' = dimv — 1 and v' is in case Ila.

Hla. Pv = vUv Um(s)v, v # v, both v and v' are closed in P.v and dimm(s).v =
dimv+1=dimo + 1.

IITb. P.o = vUv" Uv", both v' and v" are closed in P.v, v' #v"”, dim v = dim v" = dim v — 1
and v',v" are in case Illa.

IVa. As in case Ia, but p is generically a double cover.

IVb. As in case 1Ib, but v’ is in case 1V a.

Let € v and let P, be the isotropy group of 2 in P. Then P.v ~ P/P,. There is a bijection
of the finite set of B-orbits in P.v onto the set of P,-orbits on B\P ~ Pl. So we are led to
subgroups of the automorphism group PGLy of P! which have finitely many orbits. Analysis
of the possible cases leads to the lemma. See [MS2, 4.1].

In the case that X = G/ B the cases III and IV do not occur, which simplifies matters con-
siderably.

For v € V, s € S we define s.o = m(s).v in case Ila, s.v = v’ in cases [Ib and [IIa
and s.v = v in all other cases. The notation is suggestive of a W-action. We shall see below
that there is indeed a W-action on V such that the simple reflections act as described.

Denote by 7 the canonical map B — B/U. The restriction of 7 to T is bijective. We
identify T" with B/U.

For x € X let B, be its isotropy group. It is easy to see that for all z € v the image
7B, is the same. Write T}, for this image. Let s = s, (@ € D) be as before. Denote by a“
the coroot of @ (a homomorphism of GL; into a one-dimensional subgroup of T'. Recall that
a is a non-trivial character of 7.

The following lemma describes the relations between T}, and T, ()., in the cases of the pre-
vious lemma where m(s).v > v, i.e. the cases Ila, IIla, IVa.

Lemma 2. Assume m(s).v > v.

(i) (Case Ia) Ty ()., = .Ty;

(ii) (Case Illa) Ty, sy, = Ty N Ker a and T' = T, Ker a;

(iii) (Case IVa) Im o C Ty, a(Ty(5).,) = {£1} and

Ty nKer o =T,,35)., N Ker a.

See [MS2]. The lemma implies that in case Ila dim T,,,(,), = dim T}, and that dim Ty, ()., =
dim 7T, — 1 in the cases IIla and IVa.

3.6. The monoid M(W).
Let M = M(W) be the monoid with elements m(w) indexed by the elements w € W such
that
m(s)m(w) = m(sw) if (sw) > l(w), m(s)m(w) = m(w) if [(sw) < [(w).
The existence of M follows from [Hu2, Theorem, p. 146]. M is generated by the m(s) (s € .9)
subject to the relations m(s)? = m(s) and the ‘braid relations’ of the Weyl group
(Sym(tym(t) - = mOm(s)m(t) - (s, € 5),

the number of factors on both sides being the order of st.
If s =(sq,...,5,) is a reduced decomposition of w € W we put m(w) = m(sy)---m(s,). This
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is well-defined.

Lemma. The map (s,v)— m(s).v extends to an action of M(W) on V.
This follows from P;.P, = P, and the braid relations P, PP, ---= PP, P; - - -
Remark. The D, of 2.6 provide another example of an M- action.

We have the following properties.

Proposition 1. Letv,w eV, s€ 5.

(a) v < m(s).v and l(m(s).v) <I(v)+ 1.

(b) If m(s).v = m(s).w and l(v) = l(w), v # w then w = s.v. Moreover v < m(s).v and we
have case Illa;

(c) If v < w then m(s).v < m(s).w.

(d) Put Vo, = {z € V | 2 <v}. If m(s).v # v then

Vem(s)o = U {m(s).z,z,s.x}.

r<v

(a) is a consequence of lemma 1 of 3.5 and (c¢), (d) follow from the equality Ps.v = Ps.7.
(b) also follows from lemma 1 of 3.5. By (a) we may assume that v < m(s).v, w < m(s).w.
The lemma then shows that v C Ps(m(s).v). Looking at the possible cases (b) follows.

A reduced decomposition of v € V is a pair (v,s) of a sequence v = (vg, 1, ...,v,) of dis-
tinct elements in V and a sequence s = (sq,...s,) in S such that vy is minimal, v, = v and
vy =m(s;)vi— (1< <r).

In the symmetric case (example (2) of 3.3) all v have a reduced decomposition (see below in
3.9). Examples show that this is not generally true.

The symmetric case is analyzed in [RS]. Some of the results carry over to the general case. |
mention the following generalization of the combinatorial description of the Bruhat order of
1.4.

Let (v,s) be a reduced decomposition of v. A subexpression of (v,s) is a sequence x =
(z0,21,...,2,) in V with 29 = v, such that for 1 <7 < r we have one of the following alter-
natives: () zj—1 = @, () @ # v, () = lzi—1) and 2; = s;.x-q0, (v) Uz;) = Hzi—1) + 1
and z; = m(s;).x;—1. We call z, the final term of x.

Proposition 2. Let (v,s) be a reduced decomposition of v. If v < v there is a subex-
pression of (v,s) with final term x.
This is a consequence of property (d), see [RS, 6.4, 6.5].

The existence of a reduced decomposition of v € V can be formulated as follows: there
exist w € W and a minimal element vy € V' with m(w).vg = v, l(w) = [(v). Part (i) of the
following proposition is a ‘dual’ result which is generally true.

Proposition 3. (i) Let v € V. There is w € W with m(w).v = vmayx, (W) = {(Vmax) — [(w);
(11) Vmax has a reduced decomposition.

As in 3.4., vinayx is the maximal element of V.

Assume that v # vpax. Then T # Tpax = GLv. Since G is generated by the parabolic sub-
groups Ps (s € ) there must be s € S with dim Ps.v > dim v, i.e. with m(s).v > v. Then (i)
follows by descending induction on I(v). Applying (i) with » minimal we obtain (ii).
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Let (v,s) be a reduced decomposition of vyay. By proposition 2 we have for any v € V
a subexpression of (v,s) with final term v. We obtain a weak sort of reduced decomposition
of v.

Finally, we mention another example of a set V with an M-action, where we also have
the properties of proposition 1. Namely, the set V' of involutions in the Weyl group W. The
action of M is defined by the m(s).v for s € 5, v € V. These are as follows: m(s).v = svs if
[(svs) > Il(v), m(s).v = svif [(sv) > (v) and sv = vs, and m(s).v = v in all other cases (I is
the length function on W). This example (slightly generalized) is discussed in [RS, Compl.
no. 1].

3.7. Hecke algebra representation associated to a spherical variety.

The notations are as before. The ideas of the constructions of the Hecke algebra of W with
tools from algebraic topology, discussed in 2.4, can also be used in the context of spherical
varieties. Write now Y for the flag variety, and as before X for a spherical variety. Then
G acts with finitely many orbits in ¥ x X, which are parametrized by our set V. Via a
calculus of correspondences one is led to consider complexes M in D%(Y x X) whose coho-
mology is locally constant along the G-orbits in ¥ x X. If A € DE(Y x Y)is asin 2.4, a
complex with cohomology constant along the G-orbits O,,, one defines as in 2.4 a product
AxM e DYY x X).

We are thus led to a representation of H on a free Z[t,t7!]-module M, which has a basis
(ey,y) indexed by pairs of an orbit v € V' and a B-equivariant local system y on V (in the
sitination of 2.4 local systems did not appear, since we were dealing with simply connected
orbits).

Also, in the present situation we do not have available the proposition of 2.4. To circumvent
this difficulty one passes to a situation over a finite field, where the Frobenius action can be
exploited. This was first carried out for the case of symmetric varieties by Lusztig and Vogan
in [LV]. The case of spherical varieties is dealt with in [MS2].

Constructions in intersection cohomology, as those of 2.5, can also be carried out in the con-
text of spherical varieties, see [loc. cit.]. I now describe the structure of the representation of
‘H which one obtains. The results are for the situation over C. But, as already pointed out,
they are obtained via a passage to finite fields.

First some results on B-equivariant local systems on an orbit ». These are are classified
by the character group I, of the finite group B,/(BY), where 2 € V. Since B, N U is a
unipotent algebraic group over C it is connected, and it follows that B, /B2 ~ T,/T?, hence
is a finite abelian group, uniquely determined by v. We describe the connection between I,
and T';,(5)., in the cases Ila, IITa, IVa of 3.5.

Lemma 1. (i) In case Ila there is an isomorphism £ — s.£ of I', onto Lo(s)ows

(ii) In case Ila there is an injection ¢, s : Uy — T'py).05

(711) In case IVa there is an injection ¢, s of I'y in a quotient F;n(s)
of order 2.

This follows from lemma 2 of 3.5. For case Ila this is clear. In case IIla we have by part (ii)
of that lemma a(7,) = G, whence a(T,) = a(T9). So

T,/T? =T, N Ker a.T0 /TP,
— T,/T°. This implies (ii). The

U

of T'(s).0 by @ subgroup

and there is a surjective homomorphism Tm(s).v/T%(s).u
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proof of (iii) is similar.

The action of H on M is described by giving the products e;.e,, (v € V, x € I'}), of a
generator of H and a basis element of M. They are listed in the next proposition. The
notations are explained below. The cases are as in lemma 1 of 3.5.

Proposition. There is a representation of H on M such that the products e,.e,  are as
follows.

Case I. t%e,¢;

Case Ila. €4 5¢;

Case ITb. (1% — 1)e,¢ + t2esps6;

Case Hla. €556 + €m(s)vels

Case IITb. (1 — 2)ey e + (12 — 1)(ey g + €y en) or —eye;

Case IVa. eyt + €5y e T Em(s)vers

Case IVh. (12 = 1)ey ¢ — ey + (12 — Ve en or —ee.

In case Illa we have written {' = ¢, § and in case IVa, £ and £" are the elements of T', (.,
which project onto the element ¢, £ of H]’S.

In case IIIb we have by the previous lemma a injections ¢,/ 5, ¢y» s into I',. The first alter-
native prevails if and only if there are &' € T'yr, £ € Ty with € = ¢y ;£ = ¢y €. In case
IVb, € and ¢ are the elements of I', projecting on an element ¢!, £”,, if such an £ exists.
Otherwise we have the second alternative. 7

The proposition is a consequence of the results of [MS2, 4.3]. There similar formulas are
established, in a more general situation (for more general local systems on the orbits). How-
ever, in [loc. cit.] one works not over C but over the algebraic closure of a finite field F, over
which everything is defined. The Frobenius action on cohomology comes into play. In order
to deduce the proposition one passes by a well-known reduction procedure (see e.g. [BBD,
no. 6]) from C to a suitable finite field F,, to which the results of [MS2] can be applied.
They imply that we have a representation of the ‘specialized’” Hecke algebra H,, where ¢* is
replaced by ¢ on the (similarly) specialized module M,. The same is true with ¢ replaced
by ¢", for all n > 1. Now observe that the assertion of the proposition is equivalent to the
vanishing of a number of polynomials in 2, which expresses the defining relations of H. By
[loc. cit.] these polynomials have infinitely many zeros, namely all powers ¢". Hence they
vanish, and the proposition follows.

As a consequence of the proposition we prove the existence of the Weyl group action on
V', announced in 3.5.

Corollary. There exists an action of W on V' such that, with the notations of lemma 1 of
3.5, we have s.v = m(s).v in case Ila, s.v = v' in cases IIb and Illa and s.v = v in all other
cases.

Specializing ¢ to 1 in the proposition we obtain a representation of W in a free Z-module F
spanned by basis elements f, ¢ (v € V,£ € I'y). Let F, be the submodule of F spanned by
the f,¢ with dim 7, < r, where T}, is as in 3.5. They define a filtration of F and it follows
from lemma 2 of 3.5 and the formulas of the proposition that W stabilizes the filtration. Let
F be the associated graded module. It carries a representation of W. The basis f, ¢ defines
a basis 71]75 of F and the formulas of the proposition show that for s € § we have

8'?@,{ = i?s.v,{’v

for some &’. This implies that if s = (1, ..., s;) is a reduced decomposition of w € W, w.fug
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is of the form
j:fsl....sl.v,*'

It follows that w.v = sq.....s;.v defines an action of W on V which is as asserted.
The W-action is due to Knop ([Kn], the results established there are more general).

The proof of the corollary also gives that for w € W, w.fug is of the form Gv(w)fwﬂ’*,
with ¢,(w) = £1 (independent of £). We have for z,w e W, v € V

en(zw) = €44 ()€ (w).

Let W, be the isotropy group of v in W. The preceding formula shows that the restriction of
€, to W, is a character of W, with values in {+1}. If s € SNW, then we are in one of the cases
IVa, I1Ib, IVb, and by the proposition €,(s) equals 1 in the first case and —1 in the other cases.

3.8. Symmetric varieties.

From now on we assume that our spherical variety X is symmetric (see example (2) of 3.3).
So there is an involution 6 of G, with fixed point group K, such that X = G/K. By results
of Steinberg [St2, p. 51] we may assume that B and T are fixed by 6. Then 6 operates on R
and W.

The set V' of B-orbits in X = G//K can now be described more concretely. Put V = {z €
G | x(0z)~' € N}. This set is acted upon by N (and in particular by T') on the left and by
K on the right.

Lemma 1. (i) The map z — Bax K /K induces a bijection of T\V/K onto V;

(i1) The N-action on'V induces the W-action on V' of 3.5.

(iii) The map x — z(02)"T induces a map ¢ : V. — W whose image lies in the set of twisted
involutions Ty = {w € W | fw = w™'}.

For (i) and (ii) see [Sp2, §4]. The finiteness of V' also follows. For (iii) see [RS, no. 2]. That
the action of W is the one of 3.5 follows from [RS, 4.3].

In the sequel we identify V and T\V/K.

3.9. Combinatorial questions.

We describe the cases of the lemma 1 of 3.5 in terms of roots. Let v € V', let a be a simple
root and put s = s,. Put ¢(v) = w. Consider the cases of the lemma. In cases Ila (IIb)
we have wla € Rt — {a} (respectively, -wfa € RT — {a}). We then say that a is complex
relative to v. In cases Illa and IVa, wf@a = a. Then « is imaginary. In the cases I1Ib and
IVb, wa = —a, and «a is real.

For 3 € R let G/g be the three dimensional subgroup of G generated by Ug and U_g. In cases
I, III and IV, @ stabilizes 2= 'G 2, where 2 € V represents v. Case I and I1I are distinguished
by the property that  acts trivially (respectively, non-trivially) on 27 'G,2. Then « is com-
pact imaginary (respectively, non-compact imaginary). These definitions can be given for all
roots of R, not necessarily simple (the notions are current in the theory of real Lie groups).
We use the same terminology for the corresponding reflections.

The § € R which are imaginary (relative to v), i.e. satisfying wf3 = 3, form a closed
subsystem R; of R. Define € : R; — Z/27Z by ¢(f) = 0 if and only « is compact imaginary.
Then € is a grading mod 2 of R;, i.e. ¢(—F) = ¢(3) and e(B+7) = €(B)+e(v)if 5,7,8+7 € R;.
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So our orbit v gives rise to algebraic objects: an involution ¢ = wé of the root system R and
a grading mod 2 on the corresponding imaginary roots. The connection of orbits with such
algebraic objects was first pointed out by Vogan in [Vo] (see also [Sp6]).

Let v € V. Then v has a reduced decomposition (see [RS, 7.9], the proof uses a reduced
decomposition in W of ¢(v). Let

(00, ooy 07), (815 ey S1))

be one. For 1 < i < r we have m(s;).v;_1 = v; > v;—1 (see 3.6). For each ¢ we have one of
the cases Ila, Illa, IVa of lemma 1 of 3.4. Let a, b, ¢ be the respective numbers of such i, so
a+b+c=r=I).

Lemma 2. (i) a = (¢(v)) —l(v);

(ii) a, b and ¢ are independent of the choice of the reduced decomposition of v.

¢ is as in lemma 1. (i) shows that @ is independent of the reduced decomposition. (i) follows
from [RS, 3.8, 3.9]. The independence of b and ¢ was proved by Richardson (unpublished).

Finally, we mention the following result, proved in [RS, 2.7].

Proposition. There is a bijection of the set of W-orbits in V onto the set of K -orbits of
f-stable mazimal tori of .

In [loc. cit., no. 9] this is made more precise.

3.10. Geometric questions.

We shall now write X, for the orbit ». The closures S, = v (v € V') are generalizations of
Schubert varieties. We briefly review some facts about their geometry. First notice that the
X, need not be isomorphic to an affine space, and need not be simply connected (in contrast
to the case of Bruhat cells). This one sees already in example (5) of 3.3 (with G = SLy),
where the open orbit is isomorphic to C — {0}.

The Bott-Samelson varieties of 1.7 have an analogue in the symmetric case. Let (v,s) be
a reduced decomposition of v € V (recall that in the symmetric case all elements of V possess
reduced decompositions). With notations as in 1.7 define

XB ... XB PS1 XBXU()'

r—1

Z(v,s) =P, Xp Ps

Proposition. There is a proper, surjective morphism ¥ : Zy gy — Sy lIts degree is 20(v),
¢(v) is the integer ¢ of lemma 2 of 3.9. The proof is similar to the proof of propositon 1 of
1.7.

There is a bijection of the set V' of B-orbits on X = G//K onto the set of of K-orbits in
X = B\G, K acting on the right (see 3.4 ). We write these orbits as X, and their closures as
S,. The latter are projective varieties. With the notations of 1.6 we put C’wJ = B\BwG,.
Lemma 2 of 1.6 implies that these are the T-stable curves in X, T" acting on the right.

Now assume that # is an inner automorphism Int(¢), with ¢ € 7. Then T is a maximal

torus of K and T operates on the varieties X,. In [Sp4] the smoothness criterion of Carrell
and Peterson (see the lemma of 1.7) is applied in the present situation. The result is as follows.
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Let 0 € ¥ be a non-compact imaginary reflection. The group G, (see 1.6) is acted upon
non-trivially by 6 (see 3.9). Let a € R be a root with ¢ = r,. Then T, = Im " is a
maximal torus in G,;let n € G, be an element in the normalizer of T,. There is x € G, with
z(#z)~' = n. Then =z lies in the set V of 3.8 and defines an element v(¢) of V. In fact v(o) is
determined by the property that 5, ,(,) intersects CN'wJ in an open subset. Let vy = B\B.K;
this is a closed orbit.

Proposition. Let v € V, w € W be such that w.vg < v. The number of non-compact imagi-
nary o € ¥ with w.o(r) < v is at least [(v). Equality holds if S, is smooth in B.

Since S, is smooth if and only if S, is, the proposition gives a smoothness criterion for the
latter (in the case that the involution is inner).

In [Bri3] more general results are established, as an application of results from equivariant
cohomology. See [loc. cit., 2.4].

In contrast to Schubert varieties the 5, are not always normal. For a counterexample (in
Spg) see [BE, 6.9].

Let v € V and let £ € T'y (see 3.7). The definition shows that in the present case we
have I', ~ Ker(wé — 1,T)/Im(wf + 1,7T), which shows that now I', is an elementary abelian
2-group.

¢ € I', is a one dimensional local system on X,. Let [, = 1C(5,,€) be the intersection
cohomology complexes (irreducible perverse sheaves) determined by (v, &) (whose definition
was recalled in 2.5).

Theorem. [, ¢ satisfies the parity condition, i.e.

H(I¢)=0if i # dim S, (mod 2).

This was first proved in [LV], using representation theory. A geometric proof follows from
the results of [MS1, no. 6] (where this is established over the algebraic closure of a finite
field). An important geometric ingredient is the existence, in the case of symmetric varieties,
of a ‘transverse slice” at a point of X, inside 5, if z < v (see [MS1, 6.4], compare with part
(iii) of 1.6, lemma 1).

The theorem leads to generalized Kazhdan-Lusztig polynomials in the present situation. Let
x € V, 2 <wv. The restriction of Hzl_l(”)(fug) to X, is a direct sum of local systems in I',.
For n € I'y let mj, ., . be the multiplicity of  in that restriction. The polynomials are given
by . .
Py e(t?) = Z m;’m;vitzz'
i>0,2,n

The elements

Coe =1 dim Z mem&(tz)el’m
z<v,nely

of the module M of 3.7. are analogues of the elements ¢,, of the Hecke algebra H of 2.4.
3.10. A generalization of the Steinberg variety.

We still assume X = G/ K to be symmetric, with G semi-simple and simply connected. The
involution @ acts on the Lie algebra g. Let p be the —1-eigenspace. It is non-zero.
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As in 1.9, let A/ C g be the the variety of nilpotent elements of g. We have the resolution
7 :T*(G/B) — N (theorem 1 of 1.9). Put Ny = N Np, Zg=7Z =7 1Nj. So
Z={(&9B) e Ny x G/B | £ € Ad(g)u}.
If G = H x H with 8 permuting the factors, Z is the Steinberg variety of H.
We have morphisms y: Z — Mg and v : Z — G/B. For v € V put Z, = v} (Kz~1B/B),

where z € V represents v. Let £ € Ay and let C' be a component of 771¢. Put Zg o =
K.({£} x C). We have the following generalization of the proposition of 1.8.

Proposition 1. Z is of pure dimension d = dimG/B. Its irreducible components are
the closures 7, and also the closures Ze G
The proof uses the following lemma, due to Kostant and Rallis [Ko, Prop. 5, p. 770].

Lemma. dim Z¢(£) — 2dim Zx (€) is independent of £, for £ € p.

Remarks (1) Z, is (isomorphic to) the conormal bundle of /B along Kz~'B/B.
(2) Let X be a set of representatives of the K-orbits in Ay, it is finite. As in 1.9, denote
by T'(£) the set of irreducible components of 771¢ (¢ € A'). Now let A(£) be the quotient
Zr(€)]Zx(€)°. We obtain a ‘generalized Robinson-Schensted correspondence’, a bijection
Vo TT A(O\L().
£ex

In particular, we obtain a map of V' to the set of nilpotent K-orbits in p.

As in 2.6 we have an action of the Weyl group on the cohomology H(Z,Q). A full gen-
eralization of the proposition of 2.5 does not seem to be known. Only the action of W on the
top cohomology H2%(Z,Q) has been described (in [Sp2, 4.7], via a passage to finite fields).
This goes back to Rossmann, who proved similar results by analytic methods, in the context
of real Lie groups (see [Ro, 3.2, 3.3]). To describe the W-module structure of H?*¢(Z, Q) we
need some more notation.

Let v € V and let z € V represent it. Then 2z~ '7Tz is a #-stable maximal torus in G. Put
W, = (zK2='nN)/(zKz~'NT). This is a finite subgroup of W, uniquely determined by v.
Let & be a set of representatives of the K-orbits in V' (by the proposition of 3.9 these orbits
are in bijection with the K-conjugacy classes of #-stable maximal tori in ). For v € V let
again W, be its isotropy group in W.

Proposition 2. There exist characters €, of W,, with values in {+1}, such that the W-
module H*¥(Z,Q) is isomorphic to

@ Indyy ().

ved
The €, are described in [Sp2, p. 609] (actually, they coincide with the characters introduced
at the end of 3.7, but this is not discussed in [loc. cit.]).
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