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Introduction.The aim of this paper is to give a review of the main results on Schubert varieties andtheir generalizations. In the �rst section Schubert varieties (over C) are introduced, in thesetting of the theory of reductive groups and their Bruhat decomposition. Some geometricresults are discussed. The Steinberg variety associated to a reductive group is also introduced.Most of the material of this section is `classical'.In section 2 examples are given of constructions of algebraic objects, based on the geometrydiscussed in Section 1. For example, 2.2 gives an elementary geometric construction of theWeyl group W of a reductive group G. It uses correspondences on the 
ag variety X of G.Using machinery from algebraic topology, a calculus of correspondences on X produces theHecke algebra H of W . This is discussed in 2.4 and 2.5.Section 3 discusses generalizations of Schubert varieties. These occur, for example in the con-text of spherical varieties. A closed subgroup H of G is spherical if a Borel subgroup B of Ghas �nitely many orbits on G=H . Then G=H is a (homogeneous) spherical variety. The orbitclosures generalize Schubert varieties (which one recovers for H = B). An important specialcase is the case of symmetric varieties, where H is the �xed point group of an involutorialautomorphism of G.The combinatorial properties of the set of orbits are discussed in 3.6. A calculus of corre-spondences gives rise to a representation of H, discussed in 3.7. The last part of Section 3reviews special features of the the case of symmetric varieties.I am grateful to Cathy Krilo� for help in the preparation of these notes.1. Flag manifolds and Schubert varieties.1.1. The origin of the Schubert varieties lies in the `Schubert calculus', devised by H. Schu-bert at the end of the 19th century, which gives recipes to determine -not always rigorously-numbers of solutions of geometric problems (see [Sch]).A simple example of such a problem: determine the number of lines in P3(C) intersecting 4lines in general position (the answer is 2). A more general example: determine the numberof d-planes in Pn(C) intersecting (d + 1)(n� d) planes of dimension (n � d � 1) in generalposition (the answer is 1!2!:::d!((d+ 1)(n� d))!(n � d)!(n� d+ 1)!:::n! ):Let Gd;n be the set of d-dimensional subspaces of Cn. It is a projective algebraic variety,coordinatized by `Pl�ucker coordinates'. It is also the variety of (d� 1)-planes in Pn�1(C).Fix a basis (e1; :::; en) of V = Cn and let Vi be the subspace of V spanned by (e1; :::; ei), withV0 = f0g. Then F = (V0; V1; :::; Vn�1; Vn) is a complete 
ag in V . Let W be a d-dimensionalsubspace and put J(W ) = fj j Vj�1 \W 6= Vj \Wg:This is an increasing sequence of d integers � 1, the jump sequence of W . It determinesthe position of W relative to F . For example, for a subspace `in general position' we haveJ(W ) = (n � d + 1; :::; n). Let YJ be the set of W 2 Y = Gd;n with J(W ) = J , a given2



sequence. Then Y is the disjoint union of the YJ . Moreover, one shows that each YJ is locallyclosed in Y , and is isomorphic to an a�ne space. After ordering the set of J componentwise,the closures (both in the Zariski topology and the complex topology) are described byYJ = [J 0�J YJ 0 :These closures are the Schubert varieties in Gd;n.In the Schubert calculus one deals with intersections of Schubert varieties and their multi-plicities. This is best done in terms of the Chow ring of Y , spanned by equivalence classes ofsubvarieties of Y . This leads into the theory of symmetric functions. See [Fu, 14.7]. I shallnot go into this.I shall concentrate on the group theoretical aspects. The group G = GLn(C) acts alge-braically on Y . The action is transitive, so Y is a homogeneous space of G and is of the formY = G=P , where P is the parabolic subgroup of the g = (gij) 2 G with gij = 0 for i > d andj � d. It is not hard to see that the YJ are precisely the orbits of G.We shall consider a more general situation, which will englobe the special case of Grassman-nians.1.2. Notations.The notions and results from the theory of algebraic groups which we use without furtherreference can be found in [Bo2] or [Hu2]. For root systems and the Weyl group see [Bou].G is a connected, reductive, linear algebraic group over C (one could work over an arbitraryalgebraically closed �eld, but I won't do this). We �x a maximal torus T of G and a Borelsubgroup B � T . Also, N is the normalizer of T and W = N=T is the Weyl group. Fix asection w 7! _w of W to N .Let R be the root system of (G; T ) and let R+ be the system of positive roots de�ned byB. For � 2 R we have a one parameter subgroup U� of G, normalized by T . The unipotentradical U of B is generated by the U� with � 2 R+. For w 2 W let Uw be the subgroup ofG generated by the subgroups U� with � 2 R+; w�1� 62 R+.For � 2 R let s� 2 W be the re
ection which it de�nes. Let D be the basis of R de�nedby R+. The set S of simple re
ections s� (� 2 D) generates W . The corresponding lengthfunction on W is l. We have dim Uw = l(w).Put Gw = B _wB. This is a locally closed subset of G, being an orbit of B�B. (The underlyingtopology is the Zariski topology. One might also take the complex topology.)1.3. Bruhat's lemma.Proposition. (`Bruhat's lemma') (i) G = `Gw;(ii) (u; b) 7! u _wb de�nes an isomorphism of algebraic varieties Uw �B ! B _wB.In fact, (G;B;N; S) make up the ingredients of a Tits system, see [Hu1, no. 29]. Thisimplies that for w 2 W; s 2 SGsGw = ( Gsw if l(sw) > l(w);Gw [ Gsw if l(sw) < l(w):It follows that for s 2 S Ps = Ge [ Gs3



is a parabolic subgroup of G containing B = Ge. We have Ps=B ' P1. It also follows that ifs = (s1; :::; sl) is a reduced decomposition of w 2 W (where si 2 S; l = l(w) we haveGw = Gs1Gs2 :::Gsl:Lemma. Ps1Ps2 :::Psl is the closure Gw.If Y and Z are varieties with a right (respectively, left) B-action we write Y �BZ for thequotient of Y � Z by the B-action b(y; z) = (yb�1; bz). (It is presupposed that the quotientexists.) A similar notation is used for multiple products.Put Z = Ps1 �B Ps2 �B :::�B Psl ;this is an irreducible variety. The product map of G induces a morphism � : Z ! G, whichis proper (because all quotients Psi=B are projective lines). Hence Im � is closed and irre-ducible. Moreover ��1Gw is open and dense in Z and the restriction of � to this set maps itbijectively onto Gw. The lemma follows from these facts.1.4. Bruhat order.The closure Gw is a union of double cosets Gx. De�ne an order on W by x � w if Gx � Gw.This is the Bruhat order (originally introduced by Chevalley).It follows from the lemma of 1.3 that there is the following combinatorial description of theBruhat order. Let s = (s1; :::; sl) be a reduced decomposition of w 2 W (where si 2 S; l =l(w)) and let x 2 W . Then x � w if and only if x is a subproduct of s1:::sl. In fact, on anyCoxeter group there exists an order with this description, see [Hu2, 5.9].1.5. Schubert varieties.The quotient X = G=B is a 
ag variety. It is an irreducible, smooth, projective, homogeneousspace for G. Let Xw be the image of Gw in X under the canonical map, this is a Bruhat cellin X . The big cell is Xw0 , where w0 is the longest element of W . The Bruhat cell Xw is alocally closed subvariety of X , isomorphic to a�ne space Al(w), as a consequence of 1.3 (ii).The big cell is open and dense in X .By 1.3 (i), (Xw)w2W is a `paving' of X by a�ne spaces (or a `cellular decomposition'). TheXw are the B-orbits (or U -orbits) on X .A Schubert variety is a closure Sw = Xw (w 2 W ). It is an (in general non-smooth) irre-ducible, projective variety on which B acts. By 1.3 (i) and 1.4 we have a paving Sw = (Xx)x�w.Example. Let G = GLn. It acts on V = kn. A 
ag in V of length s is a sequence ofdistinct subspaces Vi (0 � i � s) of V with V0 = f0g; V0 6= V1 � V2 � ::: � Vs. The 
agis complete if s = n (in which case dimVi = i for all i). G acts on the set of 
ags and theparabolic subgroups of G are the stabilizers of 
ags. The Borel subgroups are the stabilizersof complete 
ags.Let (V0; V1; :::; Vn) be the complete 
ag of 1.1. Its stabilizer is the Borel group B of uppertriangular matrices and G=B can be identi�ed with the space of all complete 
ags. Let P � Bbe the stabilizer of the 
ag (V0; Vd; Vn). Then G=P is the Grassmannian Gd;n. The canonicalmorphism G=B ! G=P maps a complete 
ag onto its d-dimensional ingredient. A `classical'Schubert variety YJ as in 1.1 is the image in G=P of a Schubert variety Sw in G=B, or theclosure of a B-orbit in G=P . By Tits system theory these orbits are parametrized by thecosets of the Weyl group of G modulo the Weyl group of P (see [Bou, Ch. IV, p. 28]). In4



the present case this means that the Schubert varieties in Gd;n are indexed by the elementsof Sn=(Sd � Sn�d), i.e. by the d-element subsets of f1; 2; :::; ng. These are in bijection withthe `jump sequences' of 1.1.For w 2 W put Ow = f(x; y) 2 X �X j x�1y 2 Gwg:The Ow are the G-orbits on X � X . There is a close connection with the Bruhat cells: the�rst projection X � X ! X de�nes a �bering Ow ! X with �bers Xw. Similarly for theclosures Ow . It follows that Ow = [x�wOx:1.6. The T -action.The torus T acts on X and on all Schubert varieties. The �xed points of T in X are theimages pw of the _w in X (w 2 W ), so their number is �nite. The �xed points of T in theSchubert variety Sw are the px with x � w.Let again w0 be the longest element of W .Lemma 1. Let x; w 2 W and assume that l(x) � l(w).(i) If the intersection Sx \ _w0Sw0w is non-empty then x = w and the intersection is the pointpw;(ii) Xw and _w0Xw0w intersect transversally at pw.(iii) Let x < w. Then (u _xB; gB) 7! ugB (u 2 Ux) de�nes a T -equivariant isomorphism ofXx � ( _w0Xw0x \ Sw)onto an open neighborhood of px in Sw.The intersection in (i) is a T -stable projective variety and contains T -�xed points. If py isone then we have both y � x and w0y � w0w, i.e. y � w. This implies that y = x = w. Ifthe intersection had dimension > 1 it would contain at least two �xed points and (i) follows.Part (ii) is proved by considering tangent spaces.Put U� = _w0U( _w0)�1, this is the subgroup of G generated by the U� with � 2 �R+. ThenU�B is open in G by 1.3 (ii). Hence xU�B=B is an open neighborhood of px in X . Then(iii) follows by observing that U� = x�1Uxx: _w0Xw0x( _w0)�1:The variety Xx;w = _w0Xw0xTSw is a `transverse slice' at px of Xx inside Sw. Let � be acocharacter of T (a one parameter multiplicative subgroup) such that hw0�; �i > 0 for all� 2 R+ with x�1w0� 2 �R+ (the brackets denote the pairing between characters and cochar-acters). Then � contracts Xx;w to x, i.e. if a 2 Xx;w then limt!0 �(t):a = x.Let S be a subset of T and let H = ZG(S) be its centralizer. If S �xes a point upw (u 2 Uw)of X then S must centralize u, and since centralizers of semi-simple elements in connectedsolvable groups are connected, we can conclude that u lies in the connected centralizer H�.Similarly, the intersection of H with a Borel subgroup of G containing T is a Borel subgroupof H�. The irreducible components of the �xed point set XS of S in X are H�-stable and itreadily follows that each component is a homogeneous space for H�, isomorphic to the 
ag5



manifold of H�. Similarly, one sees that the �xed point sets SSw must be stable under theBorel group B\H� of H� and it follows that each irreducible component of such a �xed pointset is isomorphic to a Schubert variety for H�. Notice that if S is an algebraic subgroup of Tof codimension d, the reductive group H� has semi-simple rank � d. In particular, if d = 1the irreducible components of SSw are Schubert varieties for SL2, hence are points or T -stableprojective lines. Conversely, a T -stable irreducible curve in Sw must be �xed pointwise by acodimension one subtorus of T and hence is a component of its �xed point set.In particular, the number of T -stable curves in X is �nite. They can be described explicitly.Let � be the set of re
ections in W . A re
ection � 2 � de�nes a 3-dimensional subgroup G�of G, generated by U� and U��, where � = s� = s�� (notations of 1.1). For (w; �) 2 W � �put Cw;� = G� _wB=B.Lemma 2. (i) Cw;� is a T -stable curve. Any T -stable curve is of this form;(ii) The T -�xed points contained in Cw;� are pw and p�w;(iii) If Cw0;�0 = Cw;� then either (w0; �0) = (w; �) or (w0; �0) = (�w; �);(iv) Cw;� � Sx if and only if w � x; �w � x.We have G� = ZG(Ker �)�. The observations of the previous paragraph then imply that Cw;�is a T -stable curve.A T -stable curve C � X must contain a �xed point pw. Then _wU�B=B = _wU�( _w�1)B=Bis a T -stable open neighborhood of pw. Its intersection with C is a T -stable a�ne curve.One is reduced to �nding such curves, or to �nding T -stable curves in U through the identityelement. It is not hard to see that the latter are the U� contained in U . Then the secondpart of (i) follows. The argument also gives that Cw;� � Sw, which implies (iv).1.7. Geometric properties of Schubert varieties.Schubert varieties tend to be singular. There is a useful `resolution' of a Schubert variety Sw,which we now describe.Let s be a reduced decomposition of w, as in 1.5. With the notations of 1.3, putZs = Ps1 �B Ps2 �B :::�B (Psl=B):This is a Bott-Samelson variety. It is an iterated P1-bundle, hence is irreducible and smooth.From the lemma of 1.3 we deduce the following.Proposition 1. There is a proper, surjective, birational morphism  : Zs ! Sw.The morphism  is induced by the product morphism in G. is not always a resolution of singularities of Sw in the usual sense, as  need not be bijectiveon the inverse image of the set of smooth points of Sw. For example, if R is irreducible andw = w0 (so Sw = X) then  is bijective only if R is of type A1.Criteria for smoothness and rational smoothness of a Schubert variety were recently givenby Kumar [Ku]. See also Brion's contribution [Bri2, no. 5], where these matters are discussedin the context of equivariant intersection theory. (Recall that an irreducible algebraic vari-ety Z is rationally smooth at a point z if z has arbitarily small open neighborhoods whichare `homologically like open balls'. A formal de�nition is: the constant sheaf Q is its ownGrothendieck-Verdier dual, up to a dimension shift.) See also [Bri3].We discuss some more elementary results about smoothness of Schubert varieties, due toCarrell and Peterson (see [Ca]). 6



Lemma. Let Y be a T -stable irreducible subvariety of X. If y 2 Y is a T -�xed point, thenumber of T -stable curves in Y passing through y is at least dim Y . Equality holds if Y issmooth at y.The proof of the �rst part is quite elementary, and goes through in greater generality.Proposition 2. Let x; w 2 W with x < w and denote by a(x; w) the number of � 2 �with x < �x � w.(i) a(x; w) � l(w)� l(x). Equality holds if Sw is smooth at px;(ii) If a(x; w) = l(w)� l(x) then Sw is rationally smooth at px.(i) follows from the lemma. The proof of (ii) given in [loc. cit.] uses a computation withKazhdan-Lusztig polynomials. For another proof see [Bri3, 2.1].Peterson (unpublished) has proved that if the root system R is simply laced, one may replacein (ii) `rationally smooth' by `smooth'.Example. Let G = SL4. Then W = S4. The set S of generators of W consists ofs1 = (12); s2 = (23); s3 = (34). Take w = s2s1s3s2 = (13)(24); x = s2. Then l(w)� l(x) = 3and a(x; w) = 4, so Sw is not smooth.Although Schubert varieties are in general not smooth they are always normal and Cohen-Macaulay (see [Ra]). These matters are also discussed in Littelmann's contribution [Li, ] ref.Littelmann1.8. Line bundles on X.Denote by X�T the character group of T . A character � of T can be lifted to a character ofB, denoted by the same symbol.Let Y be a variety with a right B-action. For � 2 X�T we have a line bundle L(�) on Y=B.Namely, L is the quotient of Y �A1 by the B-action b(y; a) = (yb�1; �(b)�1a).In particular, taking Y = G, we have line bundles L(�) on the 
ag manifold X . They areG-equivariant, and are locally trivial for the Zariski topology.1.9. Some related varieties.Assume G to be semi-simple. Lie algebras will be denoted by gothic letters, so g is the Liealgebra of G. Let F ( ; ) be the Killing form on g, a non-degenerate bilinear symmetric forminvariant under the adjoint action Ad of G on g. For the matters to be discussed in thissection see [CG, Ch. 3].Consider the cotangent variety T �X of the 
ag variety. The tangent space TxX to X atx = gB is g=Adg(b). Identifying the linear dual of g with g via F , the dual of TxX is the sub-space of g orthogonal to Ad(g)(b), which is Ad(g)u. So T �X is the set of pairs (�; gB) 2 g�Xwith � 2 Ad(g)u. Let N � g be the variety of nilpotent elements of g. The group G acts onit via the adjoint action, with �nitely many orbits (see [CG, 3.3.28]).The �rst projection induces a morphism � : T �X ! N . In fact, � can be viewed as themoment map for the G-action on the symplectic variety T �X (see Brylinski's contribution ). ref.BrylinskiTheorem 1. � is a resolution of singularities of N .Recall that this means that T �X is smooth, � is proper and that � induces an isomorphism��1Nsm ! Nsm, where Nsm is the open subvariety of smooth points of N . The �rst twoproperties are easy. To prove the third one has to use properties of the regular nilpotentelements of g. An element x 2 N is regular if its G-orbit is open in N . One proves that x is7



regular if and only if one of the following holds:(a) N is smooth at x,(b) ��1fxg consists of one point.The required property follows. (For a discussion of these matters and further references see[Slo, no. 3, p. 40].)We denote by Z the �bre product T �X �N T �X . More concretely,Z = f(�; gB; hB) 2 N �X �X j � 2 Ad(g)u\ Ad(h)ug:This is the Steinberg variety of G. It is clear that G acts on it.We have morphisms � : Z ! N and � : Z ! X � X . For w 2 W put Zw = ��1Ow, whereOw is as in 1.5. Then Zw is the conormal bundle T �Ow (see [CG, Prop. 3.3.4]).Let � 2 N and let C;C0 be two irreducible components of ��1�. Then Z�;C;C0 = G:(f�g �C � C 0) is an irreducible subset of Z.Theorem 2. Z has pure dimension 2 dimX. Its irreducible components are the closuresZw and also the closures Z�;C;C0 .This is proved in [loc. cit., Ch. 3], using symplectic geometry.For � 2 g let ZG(�) = Z(�) be its centralizer in G, and let r be the rank of G.Corollary 1. Let � 2 N . The �bre ��1� is connected. Its irreducible components havedimension 12(dimZ(�)� r).See [loc. cit., 3.3.24].Let � be a set of representatives of the nilpotent orbits. For � 2 N let �(�) be the setof irreducible components of ��1� and let A(�) be the quotient of Z(�) by its identity com-ponent Z(�)�. This is a �nite group, which acts on �(�). Theorem 2 gives two descriptionsof the components of Z.Corollary 2. There is a bijection W ' `�2�A(�)n(�(�)� �(�)).Example. Let G = SLn(C). Then � can be identi�ed with the set of partitions of n,i.e. with the set of Young diagrams with n boxes. The groups A(x) are all trivial. If � 2 � (aYoung diagram) then �(�) can be viewed as the set of standard tableaux with shape �. Corol-lary 2 then leads to the Robinson-Schensted correspondence between the symmetric group Snand pairs of standard tableaux of the same shape. See [St2].Corollary 2 also gives a map of W onto the set of nilpotent orbits in g.The Steinberg variety provides a bridge between Schubert varieties and nilpotent elements.2. Constructions of algebraic objects.2.1. In the geometry of 
ag varieties, Schubert varieties and the Steinberg variety alge-braic objects are hidden. To bring these to light various tools from algebraic topology areused. The following objects appear:(a) The cohomology ring of a 
ag variety X . Closely related is the Chow ring of X . The-more general- T -equivariant cohomology and Chow ring of X are discussed in [Bri3].8



(b) Cohomology of the Steinberg variety Z.(c) G-equivariant sheaves on X , intersection cohomology of Schubert varieties.(d) G-equivariant coherent sheaves on X .(e) K-theory and equivariant K-theory of X and the Steinberg variety Z. See [CG, Ch. 7]and [Gi, no. 11].I shall give some examples of constructions of algebraic objects.2.2. An elementary construction of the Weyl group W .Notations are as in 1.2. If x; y 2 W the product set Gx:Gy is a union of �nitely many Gz.Let �x;y � W be the set of these z.Proposition. �x;y contains a unique minimal element for the Bruhat order, namely xy.I sketch a proof. If x 2 S we have �x;y = fxyg if l(xy) > l(y) and �x;y = fx; xyg ifl(xy) < l(y), whence the proposition in this case, and similarly in the case that y 2 S.We use induction on l(x). We may assume that l(x) > 0. Choose s 2 S such that l(xs) < l(x).Then Gx = Gxs:Gs and �x;y = �xs;sy if l(sy) > l(y);�x;y = �xs;y [�xs;sy if l(sy) < l(y):The proposition will follow if we show that in the last case xsy > xy. Now xsy = xsx�1:xy.Let x = s1 � � �sa�1sa, y = t1t2 � � � tb with si; tj 2 S and a = l(x); b = l(y); sa = t1 = s. Thenxy = s1 � � �sa�1t2 � � � tb. If l(xsy) < l(xy) the `strong exchange condition' of Coxeter groups[Hu2, p. 117] shows that x or y would have smaller length than a or b, a contradiction. Hencel(xy) < l(xsy) and the strong exchange condition implies that xy < xsy.Remark. The proposition could be viewed as a special case of the following result on theHecke algebra H of a Coxeter group (W;S) (de�ned in [Hu2, Ch. 7]). Let (ex)x2W be thestandard basis of H (denoted by (Tx) in [loc. cit.]. If x; y 2 W then all z 2 W such that ezoccurs in exey with a non-zero coe�cient are � xy (for the Bruhat order on W ) and z = xyoccurs (see [Sh]).The proposition can be reformulated in terms of correspondences on X . For x 2 W theG-orbit Ox is a locally closed correspondence on X . If � denotes the set-theoretical compos-ite of correspondences we have Ox � Oy = [z2�x;y Oz :It follows that Oxy is the orbit of lowest dimension in the composite. Also, Ox�1 is the inverseof the correspondence Ox. So the Weyl group W is produced by the set-theoretical calculusof correspondences.More formally, the product of correspondences is described as follows. Let �ij ((ij) =(12); (13); (23) be the obvious maps X �X �X ! X �X and denote by � : X �X �X !(X �X)� (X �X) the map (x; y; z)! ((x; y); (y; z)). If S; T are correspodences on X , i.e.subsets of X �X their product isS ? T = �13((�)�1(S � T ))):A sheaf-theoretical version of this formalism will produce the Hecke algebra of W , see be-low in 2.4. Another version of the formalism in algebraic topology leads to convolution in9



Borel-Moore homology, used in [CG, Ch. 3] for the Steinberg variety Z of 1.8 to constructthe group algebra Q[W ] [loc. cit., 3.4.1]). See also [Gi].2.3. The Chow ring of X.The Chow ring A�X = LArX , where ArX is a quotient of the free group generated bythe irreducible subvarieties of X of dimension dimX � r, see [Fu, p. 141]. For w 2 W let�w 2 Al(w0)�l(w)X be the image of the Schubert variety Sw.Proposition. (i) A�X is a free abelian group with basis (�w)w2W ;(ii) If l(x) = l(w) we have �w:�w0x = �x;w�w0 .See [De1]. Part (ii) follows from lemma 1 of 1.6. It provides a duality pairing on A�X .In 1.8 we associated to a character � of T a line bundle L(�) on X . Let c(�) 2 A1X beits Chern class. Let S� be the (graded) symmetric algebra of the character group X�T , itis acted upon by the Weyl group W . For any root � 2 R we de�ne an endomorphism d� ofdegree �1 of S� by d�u = ��1(u� s�:u):If � is a simple root and s = s� we put ds = d�.The maps d� were introduced in [BGG, BGG] and in [De1]. They have the properties of thefollowing lemma.Lemma. (i) d2� = 0;(ii) Let s = (s1; :::; sr) be a reduced decomposition of w 2 W . Then dw = ds1 :::dsr dependsonly on w.The lemma could be proved algebraically, but a proof also comes out of the proof of the nexttheorem.We have a graded ring homomorphism c : S� ! A�X . Denote by I the ideal in Q 
 S�generated by the non-constant homogeneous W -invariant elements. Let � : S� ! Z be theaugmentation map.Theorem. (i) c(u) =Pw2W �(dw:u)�ww0 ;(ii) c induces an isomorphism of graded algebras (Q
 S�)=I ' Q
A�X.In the proof of (i) given in [De1] �rst the Chow group of the Bott-Samelson variety associatedto a reduced decomposition of w0 is determined.We have a cycle map from the Chow group of X to the cohomology of X , doubling de-grees. Using it one obtains `Borel's theorem':Corollary. H�(X;Q) ' (Q
 S�)=I.By the corollary, the Weyl group W acts on H�(X;Q). As a W -module, it is the regularrepresentation of W .The action ofW on the cohomology H�(X;Q) can also be described in a more direct manner.The canonical map G=T ! G=B = X makes G=T into a locally trivial vector bundle over X ,and hence induces an isomorphism of cohomology groupsH�(G=T;Q)' H�(X;Q):10



Now W acts on G=T , via right action of the normalizer N of T . Hence W acts on the co-homology group of the left-hand side and hence on the one of the right-hand side. It can beshown that this action is the same as that of the theorem.Part (i) of the theorem solves (theoretically) the problem of Schubert calculus: to describethe intersection of Schubert varieties, i.e. to determine the multiplicative structure of A�X .It follows from (ii) that c(S�) has �nite index in A�X . But c need not be surjective (see [De2]).The equivariant cohomology of X is discussed in [Bri3].2.4. A construction of the Hecke algebra of W .Recall that the Hecke algebra H of W is a free module over Z[t; t�1], with a basis (ew)w2W .The multiplication is determined by the ruleses:ew = esw if l(sw) > l(w);es:ew = (t2 � 1)esw + t2ew if l(sw) < l(w):In particular, e2s = (t2 � 1)es + t2. Specializing t = 1 we obtain the group algebra Z[W ] (see[Hu2, Ch. 7]I �rst sketch a sheaf-theoretical construction of H via correspondences on X (see [Sp1, no.2]). One works with sheaves of Q-vector spaces on an algebraic variety Y , which are con-structible relative to some strati�cation (a �nite decomposition into locally closed irreduciblepieces Y = ` Yi i.e. sheaves which are locally constant along the strata Yi and whose stalksare �nite-dimensional). We work with Y = X�X and the strati�cation de�ned by the orbitsOw . For w 2 W let Aw be the sheaf on X �X whose restriction to Ow is the constant sheafQ, and whose stalks at the points outside Ow are zero. (Aw will produce the basis elementew of H.)To make the calculus of correspondence work we need, however, to enlarge the category ofsheaves on a variety Y to the bounded derived category Dbc(Y ) whose objects are complexesA of Q-sheaves, such that the cohomology sheaves H i(A) are constructible (as before) andvanish if jij is large. We will not go into the de�nition of such categories, their morphisms,and the de�nitions of the functors between such categories associated to morphisms (see [Bo1,Ch. V] for these matters, see also [Gi, no. 3]).We identify a sheaf S with the complex A such that A0 = S; Ai = 0 for i 6= 0.In our situation we denote by E(X � X) the full subcategory of Dbc(X � X) whose ob-jects have cohomology sheaves which are locally constant (and then they are in fact constant)along the G-orbits Ow . For A 2 E(X �X) de�ne the element h(A) 2 H byh(A) = Xw2W(Xi dimH i(A)wti)ew;where H i(A)w is the stalk of H i(A) at a point of Ow (these stalks are all isomorphic).For example, h(Aw) = ew. If s 2 S then Os = Os [ Oe. Let A0s be the sheaf which is Q onOw and 0 outside this set. Then h(A0s) = es + 1.11



For A;B 2 E(X �X) de�ne their convolution product A ? B, byA ? B = �?13(��(A� B):Here A � B is the outer tensor product of A and B, �� is the pull-back morphism associ-ated to the morphism � of 2.2 and ��13 is the direct image morphism associated to the propermorphism �13. (It is to de�ne such direct image functors that one needs complexes of sheaves.)Proposition. Let s 2 S. Let A 2 E(X � X) be such that H i(A) = 0 for all even i orfor all odd i. Then A0s ?A is a complex with the same properties and h(A0s ?A) = (es+1)h(A).This is proved (by elementary means) in [Sp1, 2.6].The proposition shows that H, described in terms of its the generators es + 1 (s 2 S) canbe constructed via the sheaf theoretic calculus of correspondences on the 
ag variety. But acleaner construction is obtained in the context of the theory of perverse sheaves (or intersec-tion cohomology).2.5. Construction of the Hecke algebra of W in intersection cohomology.Let Y be an irreducible algebraic variety. In the category Dbc(Y ) one has a duality functorD, with good properties, see [Bo1, V, x7], see also [Gi, no. 3].A perverse sheaf on Y is a complex A in Dbc(Y ) such thatdim supp(H i(A)) � �i; dim supp(H i(DA)) � �i:For the theory of perverse sheaves we refer to [BBD], see also [Gi, no. 4]. We only mentiona few essential points. The perverse sheaves on Y form an abelian category P(Y ), all ofwhose objects have �nite length. The irreducible objects are as follows. For each irreduciblesubvariety Z of Y and each irreducible local system on a smooth open piece U of Z, thereis a unique irreducible perverse sheaf I = IC(Y;L) supported by Y such that the restrictionof I to U is the complex L[dimZ] (L in dimension � dimZ and 0 in the other dimensions).This is the intersection cohomology complex for Y and L. We havedim supp(H i(I)) < �i if i > � dimZ:If L is the constant sheaf Q then the hypercohomology of I is the intersection cohomology ofZ. It satis�es Poincar�e duality.If Z is smooth then IC(Y;Q) = Q[dimZ], and intersection cohomology coincides with ordi-nary cohomology.A complex A 2 Dbc(Y )) is semi-simple if it is a direct sum of shifted irreducible perversesheaves Ii, A = �Ii[ni]:A powerful result is the decomposition theorem:If f : Y ! Z is a proper morphism and if A 2 Ob(P(Y ) is irreducible then the direct imagef�A is semi-simple.See [BBD, nos. 5, 6].We return to the Hecke algebra. There is a ring automorphism h 7! h of H mapping t12



to t�1 and such that ew = e�1w�1 . One shows that for w 2 W there is a unique element cw 2 Hwith cw = cw, of the form cw = t�l(w) Xx�w Px;w(t2)ex;where, the Px;w being polynomials with Pw;w = 1, 2deg Px;w < l(w)� l(x) if x < w. The cwform a basis of H, the Kazhdan-Lusztig basis (introduced in [KL1], see also [Hu2, II, 7]).We shall now connect the Kazhdan-Lusztig elements with the intersection cohomology com-plexes Iw = IC(Ow;Q) of the G-orbit closures in X � X . For s 2 S we have Is = A0s[1],where A0s is as in 2.4. Also, h is as in 2.4.Theorem. Let x; w 2 W .(i) h(Iw) = cw,(ii) h(Ix ? Iw) = cxcw.See [Sp1, no. 2]. It follows, in particular, thatt�l(w)Px;w(t2) =XdimH i(Iw)xti;from which we see that Iw satis�es the parity condition:H i(Iw) = 0 if i 6� l(w) (mod 2):The theorem shows that the Hecke algebra H can be recovered from the perverse sheaves Iw.There is a variant of this construction, which works with the perverse sheaves on G. Considerthe perverse sheaves on G which are B�B-equivariant (the action being (b; b0):g 7! bg(b0)�1).Denote by K the Grothendieck group of the category of these perverse sheaves. It has asbasis the classes ~cw of the intersection cohomology complexes ~Iw = IC(Gw;Q) (w 2W ). Toa semi-simple complex A =L ~Iw [hw] we associate the element~h(A) =X thw ~cw 2 Z[t; t�1]
K:The product map G � G induces a proper morphism � : G�B G ! G. Let x; y 2 W . Theouter tensor product of ~Ix and ~Iy is the pull back of a shifted perverse sheaf ~A on G �B G.By the decomposition theorem the direct image complex �� ~A is semi-simple.De�ne an algebra structure on ~H = Z[t; t�1]
K by~cx:~cy = ~h(��A):Proposition. The Z[t; t�1]-algebra ~H is isomorphic to H, the isomorphism sending ~cw tocw.A proof of the proposition is contained in [MS1, 4.2]. In that proof it is shown that theinductive formulas of [KL] for the Kazhdan-Lusztig polynomials can be recovered from themorphism � (x being a simple re
ection).The construction using G can be generalized. Instead of ~Iw one can work, more generally,with a perverse sheaf IC(Gw;L), where L is a B�B-equivariant local system on the smoothopen piece Gw of Gw (there exist non-constant local systems of this kind; this is not the case13



for Ow, which is simply connected). One is led to a more general kind of Hecke algebra, see[loc. cit.].2.6. The Steinberg variety.In the Steinberg variety Z of 1.8 the representation theory of the Weyl group W is hidden.In [CG, Ch. 3] convolution on the top Borel-Moore homology of Z is used to reveal thatrepresentation theory. This is also discussed in [Gi, no. 6].Another method to do this uses Lusztig's observation that there is an action of the Weylgroup W on the direct image complex ��Q (see e.g. [Sp1, no. 4]), where � is as in 1.9. Itfollows that there is an action of W �W on ��Q, where � : Z ! N is the morphism of 1.9.Hence W �W operates on the cohomology with compact support H�c (N ; ��Q) = H�c (Z;Q).The irreducible components of Z are parametrized by the elements of W (see 1.9), they allhave the same dimension 2d, where d = dimX = l(w0). The cohomology classes zw whichthey determine span the top cohomology group H4dc (Z;Q), which thus has dimension jW j.Proposition. (i) H�c (Z;Q) is isomorphic to the induced graded W �W -moduleIndW�WW (H�(X;Q)[�2d]);(ii) In particular, the W � W -module H4dc (Z;Q) is isomorphic to Q[W ], under two-sidedaction.In (i) the W -action on H�(X;Q) is as in 2.3. For a proof see [Sp3, no. 3]. A concretedescription of the W �W -action on the basis (zw) of H4dc (Z;Q) does not seem to be known.Equivariant K-theory on Z is used to construct the a�ne Hecke algebra associated to Wand its representations. We shall not go into this. See [CG, Ch. 7,8] and [Gi, no. 11].2.7. Coherent cohomology.Assume G to be semi-simple and simply connected. The character group X�T is the weightlattice P of R. Let P+ � P be the set of dominant weights. For � 2 P we have the linebundle L(�) of 1.8.Theorem. Let w 2 W , � 2 P+. Then H i(Sw;L(�)) = 0 for i > 0.See [Ra, 3.2] (where more general results are discussed). See also Littelmann's contribution. ref. Littel-mannIn the situation of the theorem, H0(Sw;L(�)) is a �nite dimensional complex vector spaceV on which B acts. In particular, T acts. Let Z[P ] be the group ring of P . It has a basise(�) (� 2 P ), with e(� +  ) = e(�)e( ), and the Weyl group W acts on it.Put char(V ) =P�2P (dimV�)e(�), where V� is a weight space for T . This element of Z[P ] isthe character of V .Let � be a simple root and put s = s�. De�ne an endomorphism Ds of Z[P ] byDsu = u � s:u1� e(�) :Lemma. (i) D2s = Ds;(ii) Let s = (s1; :::; sr) be a reduced decomposition of w 2 W . Then Dw = Ds1 :::Dsr dependsonly on W . 14



This is a multiplicative analogue of the lemma of 2.3. With these de�nitions we have De-mazure's character formula.Proposition. If � 2 P+ then char(H0(Sw;L(�)) = e(�)Dw(e(��� �)):Here � is half the sum of the positive roots of R. See [De1], [Ra, p. 505] and Littelmann'scontribution. ref. Littel-mannFor w = w0 we have Sw = X . In that case H0(X;L(�)) is G-module, which is irreduciblewith highest weight �w0�. The proposition then gives Weyl's character formula.3. Generalizations of Schubert varieties.3.1. Schubert varieties associated to Kac-Moody algebras.Let g be a Kac-Moody algebra. It is an in�nite dimensional Lie algebra, associated to ageneralized Cartan matrix M (see [Ka]). M de�nes a Coxeter group (W;S), the Weyl groupof g.One can associate to g Schubert varieties Sw, indexed by the elements of W . They haveproperties similar to those of the ordinary Schubert varieties: they are projective algebraicvarieties, of dimension l(w) (the length of w relative to S), and if x � w then Sx is a closedsubset of Sw.In this generality, Schubert varieties are de�ned and studied in [Ma], in arbitrary characteris-tics. The de�nition involves representation theory of g. These Schubert varieties are normalprojective varieties. In [loc. cit.] a generalization is proved of the theorem of 2.7, and ofDemazure's character formula. See also Littelmann's contribution. ref.LittelmannThe Cartan matrixM de�nes an `in�nite dimensional group' B, an analog of the Borel groupof 1.2. In [loc. cit.] analogues are constructed of the closures Gw of 1.4. These are (non-noetherian) a�ne schemes B(w) over C, with a two-sided B�B-action, as in the case of Gw.B operates locally freely on the right, and Sw = B(w)=B.I will not go further into this general case. But to make things more concrete I shall brie
ydiscuss one example in a special case. The associated Kac-Moody algebra would be an a�neone, however it will not appear in the example.3.2. An example.Let A = C[[t]] be the ring of formal power series and F = C((t)) its quotient �eld. Let G bea semi-simple, simply connected linear algebraic group over C. The notations are as in 1.2.We denote by W the a�ne Weyl group of R (the semi-direct product of W and the lattice ofcoroots).Put G = G(F ), the group of F -valued points of G. The obvious homomorphism A ! Cinduces a group homomorphism of the group G(A) of A-valued points to G. Let B be theinverse image of B under this homomorphism. This is an Iwahori subgroup of G. As in 1.2we have subsets Gw = B _wB of G, where w 2 W . We have a Bruhat decompositionG = aw2W Gw;by the Bruhat-Tits theory (see e.g. [Ti, p. 51].)Put X = G=B, Xw = Gw=B and Sw = Sx�w Xw . Then Sw is the underlying set of a Schubert15



variety. It can be given the structure of projective algebraic variety. We shall indicate howthis can be done for G = SLn (following [KL2, x5]).Let G = SLn, so G = SLn(F ). We take B to be the subgroup of SLn(A) whose elementsspecialize to an upper triangular matrix for t = 0 (the upper triangular group is a Borelsubgroup of G).Let V = Fn. Then � = An is a lattice in V over A, i.e. a free A-submodule of V containing abasis. The group G operates on the set of lattices. We identify G=B with the set of sequencesof lattices �0 � �1 � � � � � �n = t�0such that dimC �j=�j+1 = 1 (0 � j � n � 1), and that �0 2 G:�.For i � 0 let Xi be the set of such sequences witht�i� � �0 � � � � � �n � ti+1�:Then (Xi) is an increasing sequence of subsets of X with union X (to see this use that forany lattice �0 there exist a; b � 0 with ta� � �0 � t�b�).Fix i and put Z = t�i�=ti+1�, this is a �nite dimensional vector space on which t acts asa nilpotent endomorphism. Then Xi can be identi�ed with the set of sequences of t-stablesubspaces Z0 � Z1 � ::: � Zn = tZ0of Z such that dimZj=Zj+1 = 1; Zn = tZ0. This set has a structure of projective variety(being a closed subset of a product of Grassmannians), whence such a structure on Xi.Then X is an inductive limit of projective varieties. Any Xw is contained in an Xi, whence astructure of projective variety on the Schubert varieties.3.3. Spherical varieties.The notations are as in 1.2. A spherical variety (for G) is an algebraic variety X with aG-action such that the Borel group B has �nitely many orbits (see [Bri1]).In particular, G has �nitely many orbits. A G-orbit is a spherical homogeneous space G=H ,where H is a closed subgroup such that the double coset space BnG=H is �nite. Such asubgroup is called spherical. It is clear that H is a spherical subgroup if and only if H actson X = G=B with �nitely many orbits.Examples. (1) X = G=B. By Bruhat's lemma (1.3) B is a spherical subgroup. TheB-orbits are indexed by W , and the Schubert varieties in X are the orbit closures.(2) The symmetric case (see [Sp2]). Let � be an involution (automorphism of order two) ofthe algebraic group G. The �xed point group K is reductive and X = G=K is spherical. Itis an a�ne algebraic variety, called a symmetric variety.(3) Assume that H = G � G, and let � be the permutation automorphism: (x; y) 7!(y; x) (x; y 2 G). The �xed point group K of � is G, imbedded diagonally in H , andH=K ' G. B � B is a Borel subgroup of H . It acts on H=K = G by (b; b0):g = bg(b0)�1 ByBruhat's lemma, the B � B-orbits on H=K are the Gw of 1.3. We recover example 1.(4) The unipotent part U of B is another example of a spherical subgroup (by Bruhat'slemma), and G=U gives an example of a spherical variety which is not symmetric (as U isnot reductive). Another such example is provided by H = T:(U; U), where (U; U) is the16



commutator subgroup of U . That H is spherical follows from Bruhat's lemma, and the obser-vation that T acts by conjugation on U=(U; U) with �nitely many orbits (the quotient beingisomorphic to Q�2D U�.)(5) An instructive example of a symmetric variety is G = SL2, with � the inner automor-phism Int(i;�i). Let T be the diagonal torus and B the upper triangular subgroup. ThenK = T is spherical: in this case G=B is the projective line P1, and T acts on it with threeorbits, namely the closed orbits f0g; f1g of dimension 0 and the open orbit P1 � f0;1g ofdimension 1.Let G0 = PSL2 and let �0 is the automorphism of G0 induced by �. The �xed point group K0of �0 is non-connected, it is the image in G0 of the normalizer N of T . B0 denoting the imageof B, we have G0=B0 = P1.K 0 has two orbits on P1, viz. the reducible orbit f0;1g and its complement.3.4. The set of orbits.Let X = G=H be spherical homogeneous. Denote by V the set of B-orbits in X . This is a�nite set with combinatorial properties resembling those of a Weyl group.(a) V carries a (partial) order.If v; w 2 V de�ne v � w if �v � �w (compare with the Bruhat order of W , see 1.4). Since X isirreducible V has a unique a unique maximal element vmax, the open B-orbit.(b) The minimal elements of V are the closed orbits. They are of the form BgH=H , whereBgH is closed in G. Hence Hg�1B=B is closed in G=B, which means that H \ g�1Bg is aBorel subgroup of H . This implies that all closed orbits have the same dimension. We de�nea length function l on V by l(v) = dim v � dim v0, where v0 is minimal. Then l is strictlymonotonic, and l(v) = 0 if and only if v is minimal.There may be several minimal orbits, as example (5) of 3.3 shows.We may identify V with the set of K-orbits in G=B. The order and the length of V canalso be de�ned via the latter set, in the same way.To analyze further the combinatorial structure of V we use the parabolic subgroups Ps ofG, as we did in 1.3 to establish the combinatorial description of the Bruhat order of W . Wehave to study the map Ps � v ! X de�ned by the G-action.3.5. A basic construction.Let s 2 S be a simple re
ection. We have the parabolic subgroupP = Ps = Ge [Gs:Let v 2 V then P:v is an irreducible locally closed subvariety of our variety X which is a�nite union of B-orbits. There is one orbit which is open in P:v and has maximal dimension.We denote it by m(s):v.The P -action on X de�nes a morphism� : P �B v ! P:v:Lemma 1. We have the following possibilities.I. P:v = v. 17



IIa. P:v = v[m(s):v, v is closed in P:v, � is generically bijective and dimm(s):v = dim v+1.IIb. P:v = v [ v0, v is open in P:v, dim v0 = dim v � 1 and v0 is in case IIa.IIIa. P:v = v [ v0 [ m(s):v, v 6= v0, both v and v0 are closed in P:v and dimm(s):v =dim v + 1 = dim v0 + 1.IIIb. P:v = v [ v0 [ v00, both v0 and v00 are closed in P:v, v0 6= v00, dim v0 = dim v00 = dim v� 1and v0; v00 are in case IIIa.IVa. As in case IIa, but � is generically a double cover.IVb. As in case IIb, but v0 is in case IV a.Let x 2 v and let Px be the isotropy group of x in P . Then P:v ' P=Px. There is a bijectionof the �nite set of B-orbits in P:v onto the set of Px-orbits on BnP ' P1. So we are led tosubgroups of the automorphism group PGL2 of P1 which have �nitely many orbits. Analysisof the possible cases leads to the lemma. See [MS2, 4.1].In the case that X = G=B the cases III and IV do not occur, which simpli�es matters con-siderably.For v 2 V; s 2 S we de�ne s:v = m(s):v in case IIa, s:v = v0 in cases IIb and IIIaand s:v = v in all other cases. The notation is suggestive of a W -action. We shall see belowthat there is indeed a W -action on V such that the simple re
ections act as described.Denote by � the canonical map B ! B=U . The restriction of � to T is bijective. Weidentify T with B=U .For x 2 X let Bx be its isotropy group. It is easy to see that for all x 2 v the image�Bx is the same. Write Tv for this image. Let s = s� (� 2 D) be as before. Denote by �_the coroot of � (a homomorphism of GL1 into a one-dimensional subgroup of T . Recall that� is a non-trivial character of T .The following lemma describes the relations between Tv and Tm(s):v, in the cases of the pre-vious lemma where m(s):v > v, i.e. the cases IIa, IIIa, IVa.Lemma 2. Assume m(s):v > v.(i) (Case IIa) Tm(s):v = s:Tv;(ii) (Case IIIa) Tm(s):v = Tv \Ker � and T = Tv:Ker �;(iii) (Case IVa) Im �_ � Tv, �(Tm(s):v) = f�1g andTv \Ker � = Tm(s):v \Ker �:See [MS2]. The lemma implies that in case IIa dim Tm(s):v = dim Tv and that dim Tm(s):v =dim Tv � 1 in the cases IIIa and IVa.3.6. The monoid M(W ).Let M = M(W ) be the monoid with elements m(w) indexed by the elements w 2 W suchthat m(s)m(w) = m(sw) if l(sw) > l(w); m(s)m(w) = m(w) if l(sw) < l(w):The existence ofM follows from [Hu2, Theorem, p. 146]. M is generated by the m(s) (s 2 S)subject to the relations m(s)2 = m(s) and the `braid relations' of the Weyl groupm(s)m(t)m(t) � � �= m(t)m(s)m(t) � � � (s; t 2 S);the number of factors on both sides being the order of st.If s = (s1; :::; sr) is a reduced decomposition of w 2 W we put m(w) = m(s1) � � �m(sr). This18



is well-de�ned.Lemma. The map (s; v) 7! m(s):v extends to an action of M(W ) on V .This follows from Ps:Ps = Ps and the braid relations PsPtPs � � � = PtPsPt � � �.Remark. The Dw of 2.6 provide another example of an M - action.We have the following properties.Proposition 1. Let v; w 2 V; s 2 S.(a) v � m(s):v and l(m(s):v)� l(v) + 1.(b) If m(s):v = m(s):w and l(v) = l(w); v 6= w then w = s:v. Moreover v < m(s):v and wehave case IIIa;(c) If v � w then m(s):v � m(s):w.(d) Put V�v = fx 2 V j x � vg. If m(s):v 6= v thenV�m(s):v = [x�vfm(s):x; x; s:xg:(a) is a consequence of lemma 1 of 3.5 and (c), (d) follow from the equality Ps:v = Ps:�v.(b) also follows from lemma 1 of 3.5. By (a) we may assume that v < m(s):v; w < m(s):w.The lemma then shows that v � Ps(m(s):v). Looking at the possible cases (b) follows.A reduced decomposition of v 2 V is a pair (v; s) of a sequence v = (v0; v1; :::; vr) of dis-tinct elements in V and a sequence s = (s1; :::sr) in S such that v0 is minimal, vr = v andvi = m(si):vi�1 (1 � i � r).In the symmetric case (example (2) of 3.3) all v have a reduced decomposition (see below in3.9). Examples show that this is not generally true.The symmetric case is analyzed in [RS]. Some of the results carry over to the general case. Imention the following generalization of the combinatorial description of the Bruhat order of1.4.Let (v; s) be a reduced decomposition of v. A subexpression of (v; s) is a sequence x =(x0; x1; :::; xr) in V with x0 = v0, such that for 1 � i � r we have one of the following alter-natives: (�) xi�1 = xi, (�) xi 6= xi�1; l(xi) = l(xi�1) and xi = si:xi�1, (
) l(xi) = l(xi�1)+1and xi = m(si):xi�1: We call xr the �nal term of x.Proposition 2. Let (v; s) be a reduced decomposition of v. If x � v there is a subex-pression of (v; s) with �nal term x.This is a consequence of property (d), see [RS, 6.4, 6.5].The existence of a reduced decomposition of v 2 V can be formulated as follows: thereexist w 2 W and a minimal element v0 2 V with m(w):v0 = v; l(w) = l(v): Part (i) of thefollowing proposition is a `dual' result which is generally true.Proposition 3. (i) Let v 2 V . There is w 2 W with m(w):v = vmax; l(w) = l(vmax)� l(w);(ii) vmax has a reduced decomposition.As in 3.4., vmax is the maximal element of V .Assume that v 6= vmax. Then v 6= vmax = G:v. Since G is generated by the parabolic sub-groups Ps (s 2 S) there must be s 2 S with dimPs:v > dim v, i.e. with m(s):v > v. Then (i)follows by descending induction on l(v). Applying (i) with v minimal we obtain (ii).19



Let (v; s) be a reduced decomposition of vmax. By proposition 2 we have for any v 2 Va subexpression of (v; s) with �nal term v. We obtain a weak sort of reduced decompositionof v.Finally, we mention another example of a set V with an M -action, where we also havethe properties of proposition 1. Namely, the set V of involutions in the Weyl group W . Theaction of M is de�ned by the m(s):v for s 2 S; v 2 V . These are as follows: m(s):v = svs ifl(svs) > l(v), m(s):v = sv if l(sv) > l(v) and sv = vs, and m(s):v = v in all other cases (l isthe length function on W ). This example (slightly generalized) is discussed in [RS, Compl.no. 1].3.7. Hecke algebra representation associated to a spherical variety.The notations are as before. The ideas of the constructions of the Hecke algebra of W withtools from algebraic topology, discussed in 2.4, can also be used in the context of sphericalvarieties. Write now Y for the 
ag variety, and as before X for a spherical variety. ThenG acts with �nitely many orbits in Y � X , which are parametrized by our set V . Via acalculus of correspondences one is led to consider complexes M in Dbc(Y � X) whose coho-mology is locally constant along the G-orbits in Y � X . If A 2 Dbc(Y � Y ) is as in 2.4, acomplex with cohomology constant along the G-orbits Ow , one de�nes as in 2.4 a productA ?M 2 Dbc(Y �X).We are thus led to a representation of H on a free Z[t; t�1]-module M, which has a basis(ev;�) indexed by pairs of an orbit v 2 V and a B-equivariant local system � on V (in thesitiuation of 2.4 local systems did not appear, since we were dealing with simply connectedorbits).Also, in the present situation we do not have available the proposition of 2.4. To circumventthis di�culty one passes to a situation over a �nite �eld, where the Frobenius action can beexploited. This was �rst carried out for the case of symmetric varieties by Lusztig and Voganin [LV]. The case of spherical varieties is dealt with in [MS2].Constructions in intersection cohomology, as those of 2.5, can also be carried out in the con-text of spherical varieties, see [loc. cit.]. I now describe the structure of the representation ofH which one obtains. The results are for the situation over C. But, as already pointed out,they are obtained via a passage to �nite �elds.First some results on B-equivariant local systems on an orbit v. These are are classi�edby the character group �v of the �nite group Bx=(B0x), where x 2 V . Since Bx \ U is aunipotent algebraic group over C it is connected, and it follows that Bx=B�x ' Tv=T 0v , henceis a �nite abelian group, uniquely determined by v. We describe the connection between �vand �m(s):v in the cases IIa, IIIa, IVa of 3.5.Lemma 1. (i) In case IIa there is an isomorphism � 7! s:� of �v onto �m(s):v;(ii) In case IIIa there is an injection �v;s : �v ! �m(s):v;(iii) In case IVa there is an injection �v;s of �v in a quotient �0m(s):v of �m(s):v by a subgroupof order 2.This follows from lemma 2 of 3.5. For case IIa this is clear. In case IIIa we have by part (ii)of that lemma �(Tv) = Gm, whence �(Tv) = �(T 0v ). SoTv=T 0v = Tv \Ker �:T 0v =T 0v ;and there is a surjective homomorphism Tm(s):v=T 0m(s):v ! Tv=T 0v . This implies (ii). The20



proof of (iii) is similar.The action of H on M is described by giving the products es:ev;� (v 2 V; � 2 �v), of agenerator of H and a basis element of M. They are listed in the next proposition. Thenotations are explained below. The cases are as in lemma 1 of 3.5.Proposition. There is a representation of H on M such that the products es:ev;� are asfollows.Case I. t2ev;�;Case IIa. es:v;s:�;Case IIb. (t2 � 1)ev:� + t2es:v;s:�;Case IIIa. es:v;s:� + em(s):v;�0;Case IIIb. (t2 � 2)ev;� + (t2 � 1)(ev0;�0 + ev00 ;�00) or �ev;�;Case IVa. ev;� + em(s):v;�0 + em(s):v;�00 ;Case IVb. (t2 � 1)ev;� � ev:�0 + (t2 � 1)ev0;�00 or �ev;�.In case IIIa we have written �0 = �v;s� and in case IVa, �0 and �00 are the elements of �m(s):vwhich project onto the element �v;s� of �0v;s.In case IIIb we have by the previous lemma a injections �v0 ;s, �v";s into �v . The �rst alter-native prevails if and only if there are �0 2 �v0 ; �00 2 �v00 with � = �v0;s�0 = �v00;s�00. In caseIVb, � and �0 are the elements of �v projecting on an element �0v0;s�00,, if such an �00 exists.Otherwise we have the second alternative.The proposition is a consequence of the results of [MS2, 4.3]. There similar formulas areestablished, in a more general situation (for more general local systems on the orbits). How-ever, in [loc. cit.] one works not over C but over the algebraic closure of a �nite �eld Fq overwhich everything is de�ned. The Frobenius action on cohomology comes into play. In orderto deduce the proposition one passes by a well-known reduction procedure (see e.g. [BBD,no. 6]) from C to a suitable �nite �eld Fq, to which the results of [MS2] can be applied.They imply that we have a representation of the `specialized' Hecke algebra Hq, where t2 isreplaced by q on the (similarly) specialized module Mq. The same is true with q replacedby qn, for all n � 1. Now observe that the assertion of the proposition is equivalent to thevanishing of a number of polynomials in t2, which expresses the de�ning relations of H. By[loc. cit.] these polynomials have in�nitely many zeros, namely all powers qn. Hence theyvanish, and the proposition follows.As a consequence of the proposition we prove the existence of the Weyl group action onV , announced in 3.5.Corollary. There exists an action of W on V such that, with the notations of lemma 1 of3.5, we have s:v = m(s):v in case IIa, s:v = v0 in cases IIb and IIIa and s:v = v in all othercases.Specializing t to 1 in the proposition we obtain a representation of W in a free Z-module Fspanned by basis elements fv;� (v 2 V; � 2 �v). Let Fr be the submodule of F spanned bythe fv;� with dim Tv � r, where Tv is as in 3.5. They de�ne a �ltration of F and it followsfrom lemma 2 of 3.5 and the formulas of the proposition that W stabilizes the �ltration. LetF be the associated graded module. It carries a representation of W . The basis fv;� de�nesa basis fv;� of F and the formulas of the proposition show that for s 2 S we haves:fv;� = �f s:v;�0 ;for some �0. This implies that if s = (s1; :::; sl) is a reduced decomposition of w 2 W , w:fv;�21



is of the form �f s1::::sl:v;�:It follows that w:v = s1:::::sl:v de�nes an action of W on V which is as asserted.The W -action is due to Knop ([Kn], the results established there are more general).The proof of the corollary also gives that for w 2 W , w:fv;� is of the form �v(w)fw:v;�,with �v(w) = �1 (independent of �). We have for x; w 2 W; v 2 V�v(xw) = �w:v(x)�v(w):Let Wv be the isotropy group of v in W . The preceding formula shows that the restriction of�v toWv is a character ofWv with values in f�1g. If s 2 S\Wv then we are in one of the casesIVa, IIIb, IVb, and by the proposition �v(s) equals 1 in the �rst case and �1 in the other cases.3.8. Symmetric varieties.From now on we assume that our spherical variety X is symmetric (see example (2) of 3.3).So there is an involution � of G, with �xed point group K, such that X = G=K. By resultsof Steinberg [St2, p. 51] we may assume that B and T are �xed by �. Then � operates on Rand W .The set V of B-orbits in X = G=K can now be described more concretely. Put V = fx 2G j x(�x)�1 2 Ng: This set is acted upon by N (and in particular by T ) on the left and byK on the right.Lemma 1. (i) The map x 7! BxK=K induces a bijection of TnV=K onto V ;(ii) The N -action on V induces the W -action on V of 3.5.(iii) The map x 7! x(�x)�1T induces a map � : V ! W whose image lies in the set of twistedinvolutions I� = fw 2 W j �w = w�1g.For (i) and (ii) see [Sp2, x4]. The �niteness of V also follows. For (iii) see [RS, no. 2]. Thatthe action of W is the one of 3.5 follows from [RS, 4.3].In the sequel we identify V and TnV=K.3.9. Combinatorial questions.We describe the cases of the lemma 1 of 3.5 in terms of roots. Let v 2 V , let � be a simpleroot and put s = s�. Put �(v) = w. Consider the cases of the lemma. In cases IIa (IIb)we have w�� 2 R+ � f�g (respectively, -w�� 2 R+ � f�g). We then say that � is complexrelative to v. In cases IIIa and IVa, w�� = �. Then � is imaginary. In the cases IIIb andIVb, w�� = ��, and � is real.For � 2 R let G� be the three dimensional subgroup of G generated by U� and U�� . In casesI, III and IV, � stabilizes x�1G�x, where x 2 V represents v. Case I and III are distinguishedby the property that � acts trivially (respectively, non-trivially) on x�1G�x. Then � is com-pact imaginary (respectively, non-compact imaginary). These de�nitions can be given for allroots of R, not necessarily simple (the notions are current in the theory of real Lie groups).We use the same terminology for the corresponding re
ections.The � 2 R which are imaginary (relative to v), i.e. satisfying w�� = �, form a closedsubsystem Ri of R. De�ne � : Ri ! Z=2Z by �(�) = 0 if and only � is compact imaginary.Then � is a grading mod 2 of Ri, i.e. �(��) = �(�) and �(�+
) = �(�)+�(
) if �; 
; �+
 2 Ri.22



So our orbit v gives rise to algebraic objects: an involution � = w� of the root system R anda grading mod 2 on the corresponding imaginary roots. The connection of orbits with suchalgebraic objects was �rst pointed out by Vogan in [Vo] (see also [Sp6]).Let v 2 V . Then v has a reduced decomposition (see [RS, 7.9], the proof uses a reduceddecomposition in W of �(v). Let ((v0; :::; vr); (s1; :::; sr))be one. For 1 � i � r we have m(si):vi�1 = vi > vi�1 (see 3.6). For each i we have one ofthe cases IIa, IIIa, IVa of lemma 1 of 3.4. Let a; b; c be the respective numbers of such i, soa + b+ c = r = l(v).Lemma 2. (i) a = l(�(v))� l(v);(ii) a, b and c are independent of the choice of the reduced decomposition of v.� is as in lemma 1. (i) shows that a is independent of the reduced decomposition. (i) followsfrom [RS, 3.8, 3.9]. The independence of b and c was proved by Richardson (unpublished).Finally, we mention the following result, proved in [RS, 2.7].Proposition. There is a bijection of the set of W -orbits in V onto the set of K-orbits of�-stable maximal tori of G.In [loc. cit., no. 9] this is made more precise.3.10. Geometric questions.We shall now write Xv for the orbit v. The closures Sv = �v (v 2 V ) are generalizations ofSchubert varieties. We brie
y review some facts about their geometry. First notice that theXv need not be isomorphic to an a�ne space, and need not be simply connected (in contrastto the case of Bruhat cells). This one sees already in example (5) of 3.3 (with G = SL2),where the open orbit is isomorphic to C� f0g.The Bott-Samelson varieties of 1.7 have an analogue in the symmetric case. Let (v; s) bea reduced decomposition of v 2 V (recall that in the symmetric case all elements of V possessreduced decompositions). With notations as in 1.7 de�neZ(v;s) = Psr �B Psr�1 �B :::�B Ps1 �B Xv0 :Proposition. There is a proper, surjective morphism  : Z(v;s) ! Sv. Its degree is 2c(v).c(v) is the integer c of lemma 2 of 3.9. The proof is similar to the proof of propositon 1 of1.7.There is a bijection of the set V of B-orbits on X = G=K onto the set of of K-orbits in~X = BnG, K acting on the right (see 3.4 ). We write these orbits as ~Xv and their closures as~Sv . The latter are projective varieties. With the notations of 1.6 we put ~Cw;� = BnB _wG�.Lemma 2 of 1.6 implies that these are the T -stable curves in ~X, T acting on the right.Now assume that � is an inner automorphism Int(t), with t 2 T . Then T is a maximaltorus of K and T operates on the varieties Xv . In [Sp4] the smoothness criterion of Carrelland Peterson (see the lemma of 1.7) is applied in the present situation. The result is as follows.23



Let � 2 � be a non-compact imaginary re
ection. The group G� (see 1.6) is acted uponnon-trivially by � (see 3.9). Let � 2 R be a root with � = r�. Then T� = Im �_ is amaximal torus in G�; let n 2 G� be an element in the normalizer of T�. There is x 2 G� withx(�x)�1 = n. Then x lies in the set V of 3.8 and de�nes an element v(�) of V . In fact v(�) isdetermined by the property that Sw:v(�) intersects ~Cw;� in an open subset. Let v0 = BnB:K;this is a closed orbit.Proposition. Let v 2 V; w 2 W be such that w:v0 � v. The number of non-compact imagi-nary � 2 � with w:v(r) � v is at least l(v). Equality holds if Sv is smooth in B _w.Since ~Sv is smooth if and only if Sv is, the proposition gives a smoothness criterion for thelatter (in the case that the involution is inner).In [Bri3] more general results are established, as an application of results from equivariantcohomology. See [loc. cit., 2.4].In contrast to Schubert varieties the Sv are not always normal. For a counterexample (inSp8) see [BE, 6.9].Let v 2 V and let � 2 �v (see 3.7). The de�nition shows that in the present case wehave �v ' Ker(w� � 1; T )=Im(w� + 1; T ), which shows that now �v is an elementary abelian2-group.� 2 �v is a one dimensional local system on Xv. Let Iv;� = IC(Sv; �) be the intersectioncohomology complexes (irreducible perverse sheaves) determined by (v; �) (whose de�nitionwas recalled in 2.5).Theorem. Iv;� satis�es the parity condition, i.e.H i(Iv;�) = 0 if i 6� dim Sv (mod 2):This was �rst proved in [LV], using representation theory. A geometric proof follows fromthe results of [MS1, no. 6] (where this is established over the algebraic closure of a �nite�eld). An important geometric ingredient is the existence, in the case of symmetric varieties,of a `transverse slice' at a point of Xx inside Sv if x < v (see [MS1, 6.4], compare with part(iii) of 1.6, lemma 1).The theorem leads to generalized Kazhdan-Lusztig polynomials in the present situation. Letx 2 V; x � v. The restriction of H2i�l(v)(Iv;�) to Xx is a direct sum of local systems in �x.For � 2 �x let mix;�;v;� be the multiplicity of � in that restriction. The polynomials are givenby Px;�;v;�(t2) = Xi�0;x;�mix;�;v;�t2i:The elements cv;� = t� dimv Xx�v;�2�x Px;�;v;�(t2)ex;�of the module M of 3.7. are analogues of the elements cw of the Hecke algebra H of 2.4.3.10. A generalization of the Steinberg variety.We still assume X = G=K to be symmetric, with G semi-simple and simply connected. Theinvolution � acts on the Lie algebra g. Let p be the �1-eigenspace. It is non-zero.24



As in 1.9, let N � g be the the variety of nilpotent elements of g. We have the resolution� : T �(G=B)! N (theorem 1 of 1.9). Put N� = N \ p, Z� = Z = ��1N� . SoZ = f(�; gB) 2 N� �G=B j � 2 Ad(g)ug:If G = H �H with � permuting the factors, Z is the Steinberg variety of H .We have morphisms � : Z ! N� and � : Z ! G=B. For v 2 V put Zv = ��1(Kx�1B=B),where x 2 V represents v. Let � 2 N� and let C be a component of ��1�. Put Z�;C =K:(f�g � C). We have the following generalization of the proposition of 1.8.Proposition 1. Z is of pure dimension d = dimG=B. Its irreducible components arethe closures Zv and also the closures Z�;C.The proof uses the following lemma, due to Kostant and Rallis [Ko, Prop. 5, p. 770].Lemma. dimZG(�)� 2 dimZK(�) is independent of �, for � 2 p.Remarks (1) Zv is (isomorphic to) the conormal bundle of G=B along Kx�1B=B.(2) Let � be a set of representatives of the K-orbits in N� , it is �nite. As in 1.9, denoteby �(�) the set of irreducible components of ��1� (� 2 N ). Now let A(�) be the quotientZK(�)=ZK(�)0. We obtain a `generalized Robinson-Schensted correspondence', a bijectionV ' a�2�A(�)n�(�):In particular, we obtain a map of V to the set of nilpotent K-orbits in p.As in 2.6 we have an action of the Weyl group on the cohomology H�c (Z;Q). A full gen-eralization of the proposition of 2.5 does not seem to be known. Only the action of W on thetop cohomology H2dc (Z;Q) has been described (in [Sp2, 4.7], via a passage to �nite �elds).This goes back to Rossmann, who proved similar results by analytic methods, in the contextof real Lie groups (see [Ro, 3.2, 3.3]). To describe the W -module structure of H2d(Z;Q) weneed some more notation.Let v 2 V and let x 2 V represent it. Then x�1Tx is a �-stable maximal torus in G. PutWv = (xKx�1 \N)=(xKx�1\T ). This is a �nite subgroup of W , uniquely determined by v.Let � be a set of representatives of the K-orbits in V (by the proposition of 3.9 these orbitsare in bijection with the K-conjugacy classes of �-stable maximal tori in G). For v 2 V letagain Wv be its isotropy group in W .Proposition 2. There exist characters �v of Wv, with values in f�1g, such that the W -module H2dc (Z;Q) is isomorphic to Mv2� IndWWv(�v):The �v are described in [Sp2, p. 609] (actually, they coincide with the characters introducedat the end of 3.7, but this is not discussed in [loc. cit.]).References[BE] D. Barbasch and S. Evens, K-orbits on Grassmannians and a PRV-conjecture forreal groups, J. Algebra 167 (1994), 258-283.25
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